
MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 1

TOPOLOGICAL SPACES

Due on Monday 9-12-94

1. Find all different topologies (up to a homeomorphism) on the sets consisting of
2 and 3 elements.

2. Prove that the set of squares of rational numbers is dense in the set of all
non-negative real numbers.

3. Prove that for any set A in a topological space ∂A ⊂ ∂A and ∂(IntA) ⊂ ∂A.
Give an example when all these three sets are different.

4. We say that a topological space (X, T ) satisfies (T1) separation axiom (or simply
is a (T1)-space) if for any two different points x and y there exists an open set U
which contains x and does not contain y. Prove that (X, T ) is a (T1)-space if and
only if any set consisting of one point is closed.

5. Find among examples given in class a topological space which is a (T1)-space,
but not a (T2) (Hausdorff) space.

6. Prove that the product of countably many separable topological spaces with the
product topology is separable.

7. Prove that a topological space (X, T ) is connected if and only if any continuous
function from X to the set of integers (with discrete topology) is constant.

8. Prove that R (the real line) and R2 (the plane with the standard topology) are
not homeomorphic. Hint: Use the notion of a connected set.

ADDITIONAL PROBLEMS

A1. A topological space (X, T ) is called regular (or (T3)- space) if for any closed
set F ⊂ X and any point x ∈ X \ F there exist disjoint open sets U and V such
that F ⊂ U and x ∈ V . Give an example of a Hausdorff topological space which is
not regular.

A2. Prove that a topological space (X, T ) is connected if and only if any continuous
function f : X → K, where K is the Cantor set, is constant.

A3. A point x in a topological space is called isolated if the one-point set {x} is
open. Prove that any compact separable Hausdorff space without isolated points
contains a closed subset homeomorphic to the Cantor set.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 2

EXAMPLES OF TOPOLOGICAL AND METRIC SPACES

NN9–12 are due on Monday 9-19-94; NN13–16 and A4–A7 are due on Monday 9-26-94

9. Find all different topologies (up to a homeomorphism) on a set consisting of 4
elements which make it a connected topological space.

10. Let X, Y be two topological spaces f : X → Y be a continuous map,

graph f = {(x, f(x)) ∈ X × Y ; x ∈ X}.

Prove that graph f with the topology induced from X × Y is homeomorphic to X.

11. Prove that the set [0, 1] × [0, 1] \K × K, where K is the standard Cantor set,
is path-connected.

12. Let {tn}, n = 1, 2, . . . be a sequence of positive numbers such that the series∑
∞

n=1
tn converges. Let for ω, ω′ ∈ Ω2

d(ω, ω′) =

∞∑

n=1

tn|ωn − ω′

n|.

Prove that this formula defines a metric on the space Ω2 which generates the product
topology.

13. Consider the product Ωm, m ≥ 2 of countably many m-point sets with discrete
topology. Prove that Ωm provided with the product topology is a Cantor space i.e.
is homeomophic to the standard Cantor set K.

14. Let the group R act on R2 by

t(x1, x2) = (x1, x2 + x1t).

Prove that the factor-space with the factor topology is not Hausdorff but it is a
union of two disjoint subsets each of which is a Hausdorff topological space. Prove
also that the factor space is a T1-space (see problem 4).

15. For a given prime number p define the p-adic norm ‖ ‖p on the field Q of
rational numbers by

‖r‖p = p−m, if r = pm k

l
, where mk, l ∈ Z and k and l are relatively prime with p.
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Prove that the distance function d(r, r′) = ‖r − r′‖p defines a metric on Q. The
completion of Q in that metric is called p-adic numbers and the completion of Z is
called p-adic integers. Prove that the space of p-adic integers is a Cantor space and
the space of p-adic numbers is homeomorphic to the disjoint union of countably
many Cantor spaces. Hints: Use the fact that integers lie in the unit ball around
zero. Use Problem 13.

16. Define the profinite topology on the group Z of integers as the weakest topology
in which any arithmetic progression is an open set. Let T∞ be the product of
countably many copies of the circle with the product topology. Define the map
ϕ : Z → T∞ by

ϕ(n) = (exp(2πin/2), exp(2πin/3), exp(2πin/4), exp(2πin/5), . . . )

Show that the map ϕ is injective and that the topology induced on ϕ(Z) coincides
with profinite topology.

ADDITIONAL PROBLEMS

A4. Show that the closure of ϕ(Z) as in problem 16 is homeomoprhic to the Cantor
set. Introduce a translation-invariant metric on Z which generates the profinite
topology and such that Cauchy sequences in that metric are exactly the sequences
whose images under ϕ converge in T∞.

A5. Consider the weakest topology in the set R or real numbers such that for any
t ∈ R the function x → exp(itx) is continuous. Prove that this topology is not
metrizable.

A6. Prove that any compact metrizable toplogical space is homeomorphic to a
closed (and hence compact) subset of the Hilbert cube, i.e. the product of countably
many unit intervals with the product topology (universality of the Hilbert cube).

A7. A metric space X is called locally path connected if for any ε > 0 there exists
δ > 0 such that any two points at a distance less than δ can be connected by a
path contained in a ball of radius ε

Prove that for any compact path connected, and locally path connected subset
X of the plane R2 there exists a continuous map f : [0, 1] → R2 whose image
coincides with X (Generalized Peano curve).
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 3

COMPACT AND COMPLETE SPACES; TOPOLOGICAL GROUPS

due on Wednesday 10-12-94

17. Prove that any separable metric space has a countable base.

18. Prove that for a metric space compactness is equivalent to sequential com-
pactness: Every sequence contains a converging subsequence. Hint: Use previous
problem.

19. Let X be a compact Hausdorff space with a countable base (and hence metriz-
able). Prove that the topology in the space F(X) of all closed subsets of X induced
by the Hausdorff metric does not depend on the metric in X defining the given
topology.

20. A metric space X is called precompact if for any ε > 0 it can be covered by
finitely many ε-balls.

Prove that the completion of a metric space X is compact if and only if X is
pre-compact.

21. Let the weak topology in the Hilbert space l2(R) be the weakest topology in
which all maps f : l2(R) → R of the form

f(x) = Σ∞

n=1anxn, for some (a1, a2, . . . ) ∈ l2(R).

are continuous. Prove that the weak topology is weaker than the standard (norm)
topology i.e that there are open sets in the norm topology which are not open in
the weak topology.

22. A topological group is a group G endowed with a topology such that the group
multiplication and taking inverse are continuous operations, i.e. the maps

G × G → G : (g1, g2) → g1g2 and G → G : g → g−1 are continuous. Two
topological groups are isomorphic if there exists a group isomorphism between them
which is also a homeomorphism.

Prove that the space Ω2 with the coordinate-wise modulo 2 addition as the group
operation and the product topology is a topological group.

23. Consider the group SL(2, R) of all 2 × 2 matrices with determinant one with
the topolology induced from the coordinate embedding into R4. Prove that it is a
topological group.

24. Prove that the addition and multiplication can be extended in a unique way
from the rationals and non-zero rationals correspondingly to the set of p-adic num-
bers (problem 15) and non-zero p-adic numbers correspondingly so that the topol-
ogy of problem 15 makes those into topological groups.
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ADDITIONAL PROBLEMS

A8. Prove that any closed convex bounded set in l2(R) (e.g. any closed ball) is
compact in weak topology.

A9. Prove that any set in l2(R) compact in the weak topology is closed and
bounded. Give an example of a closed bounded set in l2(R) which is not com-
pact in the weak topology.

A10. Give an example of a compact metrizable path-connected topological space
X such that no point of X has a connected neighborhood.

A11. Consider the metric on Z defining the profinite topology as in Problem A4.
Show that addition can be extended in a unique way to the completion to make it
into a topological group which is isomprhic as topological group to the product of
the groups of p-adic integers for p = 2, 3, 5, . . . .

A12. Consider the following subgroup S of T∞, the product of countably many
copies of the circle: S = {(z1, z2, z3, . . . ) : z2

n = zn−1, n = 2, 3, . . .} with the
topology induced from T∞. Prove that as topological space S is connected but not
path-connected.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 4

MISCELLANEOUS GENERAL TOPOLOGY

due on Wednesday 10-26-94

25. Prove that on the real line R there are uncountably many different (non-
equivalent) complete uniform structures compatible with the standard topology
Hint:Use different metrics.

26. Prove that for any natural number n the standard n-dimensinal simplex

σn = {(x1, . . . , xn, xn+1 ∈ Rn+1 : Σn+1

k=1
xk = 1, xk ≥ 0, k = 1 . . . , n}

is homeomorphic to the closed unit ball in Rn

27. Consider the unit sphere in Rn as a homogenous space of the group SO(n) of
orthogonal matrices with determinant one. Prove that the factor-topology coincides
with the standard topology induced from Rn.

28. Let X be a compact Hausdorff space. Prove that the space of continous maps
form X to the unit interval is compact if and only if X contains finitely many
elements.

29. Prove that for any natural number k the space Ck(R2) of all k times contin-
uously differentiable functions of two real variables (with the topology of uniform
convergence on compact sets of the functions and all partial derivaves of order up
to k and the corresponding uniform structure) is complete.

30. Prove that the figure eight (i.e.the union of two circles with one common point)
is not contractible.

31. Prove that the product of a finite or countable collection of contractible spaces
is contractible.

32. A path-connected component of a topological space X is a maximal path-
connected subset of X. Prove that any space can be decomposed in a unique way
into path-connected components.
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ADDITIONAL PROBLEMS

due on Wednesday 11-2-94

A13.Describe uncountably many different incomplete uniform structures on the real
line R compatible with the standard topology.

A14.Let G = SL(2, R) be the topological group of all 2×2 matices with determinant
one. Consider the subrgoup H = SL(2, Z) ⊂ SL(2, R) of all matrices with integer
entries. Prove that the homogenous space G/H with the factor-topology is normal,
locally compact but not compact.

A15. Construct a continuous map from the unit interval onto Hilbert cube (Infinite-
dimensional Peano curve). Try not to do an explicit construction from the scratch
but use existing examples instead.

A16. Prove that in the space C([0, 1]) of continuous functions on the unit interval
the set of functions which are monotone on some interval has first category.

A17. A one-dimensional complex is a topological space which consists of a finite or
countable union of sets (edges) each of which is homeomophic to the unit interval
with disjoint interiors and such that any endpoint of any edge belong only to finitely
many edges. A loop is a collection of edges {E1, . . . , En} such that oone end point
of E1 is also an endpoint of En, the other endpoint of E1 is an endpoint of E2, the
other endpoint of E2 is an endpoint of E3 etc. A complex is a tree if it does not
contain any loops. Prove that one-dimensional complex is contractible if and only
if it is a tree.

A18. Describe in detail the path-connected components of the tolpological space
of Problem A12 (dyadic solenoid). in particular prove that every path-connected
component is dense.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

MID-TERM EXAMINATION

GENERAL TOPOLOGY

Saturday 10-22-94

Do one problem from each of Sections 1 and 2 and two problems from Section 3.

SECTION 1

1.1. Let G be the group of 3 × 3 upper-triangular matrices whose diagonal entries
are all equal to one. Consider the action of G on R3 by linear transformations.
Prove that the factor space is T1. Find minimal number of Hausdorff subsets into
which this factor-space can be divided.

1.2. Consider the action on R2 of the group generated by the rotation about the
origin by the angle 2πp

q
where p and q are positive integers. Prove that the factor-

space is homeomorphic to R2.

SECTION 2

2.1. Prove that there exists a continuous map of the unit interval I = [0, 1] onto
the unit ball D3 in the three-dimensional Euclidean space.

2.2. Prove that the space of continuous maps from the real line to the unit interval
is separable in the compact-open topology (uniform convergence on compact sets)
and is not separable in the uniform topology.

SECTION 3

3.1. Prove that the set of all irrational numbers on the real line is not of type Fσ,
ie that it can not be represented as a union of countably many closed sets.

3.2. Prove that the product of countably many finite spaces containing more than
one point each and each provided with the discrete topology is a Cantor space.

3.3. Prove that the countable product of locally compact topological spaces Xn, n =
1, 2 . . . is locally compact if and only if all but finitely many of the spaces Xn are
compact.

3.4. Consider Zariski topology in R2 ie the complements of the zero sets of polyno-
mials of two variables form a base of open sets. Prove that R2 with this topology
is T1 not Hausdorff and path-connected.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 5

HOMOTOPY EQUIVALENCE, FUNDAMENTAL GROUP

due on Friday 11-11-94

33. The (open) Mobius strip is the factor (orbit space) of R2 by the action of the
group generated by integer translations along the y-axis and the transformation
T : (x, y) → (−x, y + 1). Prove that the Mobius strip is homotopically equivalent
to the circle.

34. Prove that any convex set in Rn lies inside a certain affine subspace and contains
an open ball in that subspace.

35. Prove that any convex set in Rn is contractible.

36. Prove that the fundamental group of the Carthesian product of two path-
connected topological spaces is isomorphic to the direct product of their fundamen-
tal groups.

37. Find the fundamental group of the figure eight.

38. Prove that any contractible space is path-connected.

40. Prove that the open cylinder with one point removed and the torus T2 with one
point removed are homolopically equivalent and calculate the fundamental group
of those spaces.

41. The projective plane is the factor-space of the two-dimensional sphere where
pairs of opposite point are identified. Prove that the projective plane is not con-
tractible and is not homotopically equivalent to a sphere or a torus of any dimension.
Hint: Use fundamental groups.
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ADDITIONAL PROBLEMS

due on Monday 11-28-94

A19. Prove the following special (in fact, a leading) case of the Tychonov fixed-point

theorem: Every continuous map of the Hilbert cube into itself has a fixed point.
You may use Brouwer fixed-point theorem.

A20. The Klein bottle is the factor (orbit space) of R2 by the action of the
group generated by integer translations along the x-axis and the transformation
T : (x, y) → (−x, y + 1). Prove that the Klein bottle is a topological manifold.
Prove that it is not homotopically equivalent to the bouquet of n ≥ 1 circles.

A21. Prove that the fundamental group of any compact topological manifold is
finitely generated.

A22. Prove that the fundamental group of any one-dimensional complex (See Prob-
lem A18) is a free group with a finite or countable number of generators

A23. Prove that the unit sphere in the Hilbert space l2(R) is contractible.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 6

DEFORMATION RETRACTS, FUNDAMENTAL GROUP,
COVERING SPACES.

due on MONDAY 11-28-94

42. Give a detailed rigorous argument showing that the figure eight is a strong
deformation retract of the ”basic pretzel” (the solid double torus).

43. Consider the quadric in Rn given by the equation Σk
i=1x

2
i − Σn

i=k+1
x2

i = 1.
Prove that it has a k − 1-dimensional sphere as a deformation retract.

44. Calculate the fundamental group of the topological group SL(2, R).

45. Recall that the complex projective space CP(n) is the space of all complex
lines passing through the origin in the n + 1-dimensional complex space Cn+1, or,
equivalently, the factor of Cn+1 minus the origin with respect to the action of the
multiplicative group of non-zero complex numbers by the scalar multiplication .
The natural embedding Cn ⊂ Cn+1 generates an embedding CP(n − 1) ⊂ CP(n).
Prove that CP(n − 1) is a strong deformation retract of CP(n) with one point
deleted.

46. Prove that CP(n) is simply connected. Hint: Use previous problem and induc-
tion in dimension.

47. Calculate the fundamental group of the real projective space RP(n).

48. The Klein bottle is the factor (orbit space) of R2 by the action of the group gen-
erated by integer translations along the x-axis and the transformation T : (x, y) →
(−x, y + 1). Prove that the Klein bottle is a topological manifold. Prove that it is
not homotopically equivalent to any of the following spaces: point, sphere of any
dimension, torus of any dimension.

49. Prove that any covering space of the Klein bottle is homeomorphic to one of
the following spaces: R2, T2, open cylinder, Mobius strip and Klein bottle.

50. Describe the covering space of the figure eight corresponding to the commutant
of the fundamental group.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 7

SIMPLICIAL COMPLEXES AND SIMPLICIAL HOMOLOGY

due on Friday 12-9-94

51. Describe a simpicial decomposition of the sphere with n handles.

52. Describe a simpicial decomposition of the real projective space RP n.

53. Calculate the first and second homology groups of the Klein bottle. Hint: Use
Poincaré-Hurewicz Theorem.

54. Prove that the homology groups of a bouquet of finitely many connected sim-
plicial complexes are direct products of the corresponding homology groups.

55. Using problem 52 calculate all homology groups of the space RP 3.

56. Find the minimal number of verteces in a simplicial complex S such that
H1(S) = Z6.
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58.
Adding two Mobius caps to at least one is equivalent to adding a handle.
Equivalence of two octagon represention of the surface of genus two.
Covering between the surfaces (converse use Euler Theorem)

51. Let m ≤ n. Consider the bouquet of n circles Bn with the common point p
and let Fm ⊂ Fn = π1(Bn, p) be the subgroup generated by the first m generators.
Describe the covering of Bn corresponding to this subgroup.
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Topics:
1.Homotopy invariance of the fundamental group
2.Sphere is not a deformation retract of the ball implies Brouwer fixed point

theorem (Thus already know in dimension two)
3.Sketch of proof. Enough to show Sn not contractible.. For that sufficient to

show identity map not homotopic to zero. Homotopy may be approximated by a
smooth homotopy. .But then the push-forward of the volume has locally constant
integral. (See section 8.2) Alternatively, refer to Sard.

4.Covering spaces. Principle of covering homotopy. Examples. Deck transforma-
tions. Relatons between fundanemtal groups. construction of acover by a subgroup.

5.Universal cover.Uniqueness, Characterization of covers.Example: universal cover
of figure eight

6.Covers and proporly disconnected free actions.Examples.
7.Topology of surfaces. Handles and Mobius caps. Orientability.Calculation of

the fundamental group. Euler Theorem.
8. Simplicial complexes and simplicial docompositions of topological spaces.

Boundary operator. Chains, cycles, boundaries. Homology of a simplicial complex.
Examples.
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MATH 527: TOPOLOGY/GEOMETRY

A.Katok

FINAL EXAMINATION

Monday 12-12-94

Do one problem from each section.

SECTION 1

1.1. Consider the weak topology in the n-dimensuional complex space Cn, i.e. the
weakest topology which make any linear function f : Cn → C continuous. Prove
that it coincides with the standard (Euclidean) topology.

1.2. Let X be a compact metric space with the distance function d. Introduce the
following metric in the space Hom(X) of all homeomorphisms of X onto itself.

dist(f, g) = maxx∈Xmax(d(x, fg−1x), d(x, gf−1x))

Prove that Hom(X) is a complele topological group.

SECTION 2

2.1. Let m ≤ n. Consider the bouquet of n circles Bn with the common point p
and let Fm ⊂ Fn = π1(Bn, p) be the subgroup generated by the first m generators.
Describe the covering of Bn corresponding to this subgroup.

2.2. Let N be the real line to which circles are attached at all integer points. Prove
that there exists a covering map p : N → B2 which is a normal cover. Describe
a subgroup of F2 = π1(B2) corresponding to that cover and the group of deck
transformations.

SECTION 3

3.1. Let Xk be the unit disc whose boundary points are identified if their arguments
differ by a multiple of 2π/k. Calculate the fundanental group of Xk.

3.2. Calculate the fundamental group of the Klein Bottle with two points removed.
Note:You can pick any two different points you want. You do not have to prove

that the result does not depend on the choice of points.

SECTION 4

4.1. Let S be a simplicial polyhedron, p1, p2, . . . , pn ∈ S. Prove that the there
exists a simplicial decomposition of S which has the points p1, p2, . . . , pn among its
vertices.

4.2. Construct a compact set A ⊂ R2 which is a union of two simplicial polyherda
but is not a simplicial polyhedron itself.



16

MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 1

SIMPLICIAL COMPLEXES AND SIMPLICIAL HOMOLOGY

due on Thursday 2-9-95

1. Let K be an n-dimensional simplicial complex, K ′ its subcomplex consisting
of all simplexes of dimension less than n. Calculate the relative homology groups
Hi(K, K ′) .

2. Let K be a connected simplicial complex, L its zero-dimensional subcomplex ,ie
L consists of several, say m, vertices of K. Prove that for i ≥ 2, Hi(K, L) = Hi(K)
and H1(K, L) = H1(K) ⊕ Zm−1.

3.Prove that the direct product of two simplicial polyhedra is a simplicial polyhe-
dron.

4.Prove that the first homology group of the direct product of two simplicial poly-
hedra is isomorphic to the direct product of their first homology groups.

5. Let P be a compact convex polyhedron in R3; V , E and F be the numbers of its
vertices, edges and faces correspondingly. Prove the Euler Theorem:V −E +F = 2
Hint: You may use the fact that homology groups of a simplicial polyhedron are
independent of a simplicial decomposition.

6. Let K be an n-dimensional simplicial complex with the following property: the
union of interiors of its n– and (n − 1)– dimensional simplexes is connected and
every (n− 1)– dimensional simplex belong to at mos two n– dimensional simplexes
Prove that Hn(K) is equal to either 0 or Z.

7. Under the conditions of the previous problem show that Hn(K) = 0 if one of
the following conditions holds (i) the total number of n– and (n − 1)– simplexes
in K is infinite; or (ii) some (n − 1)– simplex belongs to the boundariy of exactly
one of n simplexes. Give an example when none of these conditions hold but still
Hn(K) = 0.

8. Calcutate the Euler characteristic of the sphere with m handles by counting the
numbers of simplexes in a simplicial decomposition (cf. Problem 51). Show that for
the second homology group the second alternative of problem 6 holds. Use all this
to calculate the first Betti number without any direct consideration of one-cycles.
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ADDITIONAL PROBLEMS

A1. Prove that every n-dimensional simplicial polyhedron can be homeomorphically
(in fact, piece-wise linearly) embedded into R2n+1.

A2. Calcutate the fundamental group of the sphere with m handles and use this
calculation to calculate the first homology group.

A3. Prove that every finitely presented group is isomorphic to the fundamental
group of a finite two-dimensional simplicial polyhedron. NOTE: Do this problem
only if you did not read the section of Rothman on Seifert-Van Kampen Theorem
which contains the proof of Theorem 7.45.

A4. Let P be a compact convex polyhedron in Rn, Fm, m = 0, 1, . . . , n − 1 be the
numbers of its m-dimensional faces. Prove the Generalized Euler Theorem:

Σm=n−1
m=0 Fm = 1 + (−1)m.

Hint: You may use the fact that homology groups of simplicial polyhedron are
independent of a simplicial decomposition.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 2

DEGREE, CELLURAR COMPLEXES AND CELLULAR HOMOLOGY

due on Tuesday 2-28-95

9. Every continuous map f : Sn → Sn such that |degf | 6= 1 has a fixed point.

10. Every continuous map f : RP (2n) → RP (2n) has a fixed point.

11. Give a detailed proof that for every m ∈ Z there exists a simplicial decompo-
sition of the n–sphere Sn and a simplicial map φ : K → K of the corresponding
simplicial complex K of degree m.

Hint: Use induction and the construction of Sn as the “double cone” over Sn−1.

12. Prove that every finite one–dimensional CW complex allows a simplicial de-
composition.

13. Let X be a CW complex which has ak cells in dimension 2k, k = 0, 1, . . . ,
Calculate homology groups of X.

14. Calculate homology groups of the Cartesian product of Sm× Sn using a cellular
decomposition.

15. Let X be the set of all unit tangent vectors to the sphere S2 with the natural
topology induced from the embedding of S2 into R3 (the unit tangent bundle).
Prove that X allows a cellular decomposition and calculate its homology.

16. Find three linearly independent unit vector fields on S3. Use this fact to
calcutate the homology groups of the unit tangent bundle to S3.

17. Consider the following CW complex : its 1-skeleton is the circle S1 with
the standard cellular decomposition; there are m two-dimensional cells C1, . . . , Cm

and the identification of ∂Ck with the 1-skeleton is given by the rotation by 2πk
m

.
Calculate homology groups of this complex.
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ADDITIONAL PROBLEMS

A5. Let pn : Sn → RP (n) be the standard projection. Prove that for n ≥ 2 no
continuous map f : RP (n) → RP (1) can be lifted to a map F :, Sn → S1 such
that p1 ◦ F = f ◦ pn

A6. Construct an example of a finite two-dimensional CW complex which does not
allow a simplicial decomposition.

A7. Prove that the fundamental group of a cell polyhedron is the same as for its
2-skeleton. Note: Carefully justify any approximation you are going to use.

A8. Use simplicial approximation to prove Hopf theorem: Two maps of Sn into
itself are homotopic if and only if they have the same degree.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

MID-TERM EXAMINATION

SIMPLICIAL AND CELL HOMOLOGY

Saturday 3-4-95

Do one problem from Section 1 and three problems from Section 2.

SECTION 1

1.1.Prove that if m < n then any continuous map f : Sm → Sn is null-homotopic,
ie homotopic to a map into a point.

1.2. Prove that there is no continuous map f : Sn → S1 for n > 1 which sends the
opposite points into opposite points, ie f ◦ In = I1 ◦ f where Ik is the flip map on
Sk.

1.3. Prove using the degree theory for the maps of the sphere that any non-constant
polynomial with complex coefficients has a complex root.

SECTION 2

2.1.Let K be a finite n-dimensional simplicial complex with the following property:
the union of interiors of its n– and (n − 1)– dimensional simplexes is connected
and every (n−1)– dimensional simplex belongs to exactly two n– dimensional sim-
plexes. Let L be the complex obtained from K by eliminating one of n–dimensional
simplexes. Suppose you know the Betti numbers of K.

Describe all possibilities for the Betti numbers of L.

2.2. Calculate homology groups of S2 × RP (2).

2.3.Consider the three–dimensional torus represented as the unit cube in R3 with
pairs of opposite faces identified. Consider the group of order three generated by
the rotation by 2π

3
around one of the main diagonals. The factor–space possesses a

natural cellular decomposition which is inherited from the standard decomposition
of the torus.

Calculate the cellular homology of the factor–space.

2.4. Consider the space of oriented big circles in S3 or, equivalently, the space of
oriented two-dimensinal subspaces of R4 with the natural topology.

Construct a cell decomposition of this space and calculate its homology groups.
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2.5. Consider the following subset S of R3:

S = {(x, y, z) ∈ R3 : ((x2 + y2)
1

2 − 1)2 + z2 = 1}.

In other words, S is the surface of revolution around z axis of the circle in the xz
plane with the center on the x axis which passes through the origin.

Construct a cellular decomposition of S and calculate its homology groups.

2.6. Consider the following two–dimensional cellular complex C. Its one skeleton
C1 is the circle identified with the unit circle in the complex plane (It can be viewed
as a one–cell attached to a zero–cell). It has two two–dimensional cells c1 and c2

The characteristic maps of c1 and c2 correspondinly have the form D → C where D

is the unit disc in the complex plane. Their restrictions to the boundary ∂D → C1

are the maps of the unit circle of the form z → z4 and z → z5 correspondingly.

Calculate homology groups of C.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 3

HIGHER HOMOTOPY GROUPS AND LOCALLY TRIVIAL FIBRATIONS

due on Thursday 03-16-95

18.Write down explicit formulas for the homotopies establishing commutativity
of the homotopy groups πn(X, x0) for n ≥ 2 and the relative homotopy groups
πn(X, A, x0) for n ≥ 3.

19.Prove that homotopically equivavent spaces have isomorphic homotopy groups.
Note: Pay attention to the fact that the homotopy equivalences may not fix the
base points.

20.Prove that all higher homotopy groups of the bouquet of n ≥ 1 circles are trivial.

21.Calculate the higher homotopy groups of the Klein bottle.

22. Consider a fibration with the total space X, base B and fiber F . Suppose one
of the three spaces is contractibe and you know homotopy groups of one of the
other two. Show how to find the homotopy groups of the remainig space.

23. Prove that π3(S
2) is an infinite group. Hint: Use Hopf fibration.

24. Prove that πk(CP (n)) = O for 3 ≤ k ≤ 2n and that π2(CP (n)) and
π2n+1(CP (n)) are infinite groups.

25. Consider the unit tangent bundle of the sphere S2 as locally trivial fibration
with the base S2 and the fiber S1. Prove that the map ∆ : π2(S

2) → π1(S
1) in

the exact sequence on this fibration has non-trivial image.

26. A Serre fibration is a map p : X → B for which the lifting homotopy principle
holds. Give an example of a Serre fibration where both X and B are compact
connected metrizable spaces and which is not a locally trivial fibration.
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ADDITIONAL PROBLEMS

A9. Prove that any locally trivial fibration whose base is a disc Dn is equivalent to
the direct product.

A10. Calculate homotopy groups of the sphere with n handles.

A11. Give an example of a path-connected compact metric space all of whose
homotopy groups are trivial and which is not contractible.

A12.(P.Foth) Prove that the tangent bundle to the direct product of spheres where
at least one sphere has an odd dimension is eqiuvalent to the direct product. In
other words, if the dimension of our product space X is equal to n there are n
linearly independent continuous vector fields on X.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 4

DIFFERENTIABLE MANIFOLDS

due on Tuesday 4-4-95

27. Describe the structure of differentiable manifold on the complex projective
space CP (n) by explicitely defining coordinate charts and calculating transition
functions.

28. Give a detailed description of the structure of differentiable manifold on the
sphere with n handles represented as a regular 4n–gon with properly identified pairs
of sides. Use the outline given in class on March 16.

29. Prove that any structure of differentiable manifold on the real line R or on the
circle S1 is equivalent to the standard one.

30. Prove that the group Diff(M) of diffeomomorphisms of any connected differen-
tiable manifold M acts transitively on M . Hint: First prove the required property
locally.

31. Prove that the group SO(3) of orthogonal 3× 3 matrices with determinant one
is an imbedded submanifold of the nine-dimensional Euclidean space of all 3 × 3
matrices.

32. Prove that SO(3) with the differentiable structure described in the previous
problem is diffeomorphic to the real projective space RP (3) with the standard
differentiable structure. Hint: Represent an ortogonal transformation as a rotation
around an axis.

33. Let M be a differentible manifold and f : M → M a diffeomorphism. Consider
the direct product M × [0, 1] with the identification of pairs of points (0, f(x)) and
(1, x) for all x ∈ M . Show that the resulting object which we denote Mf possesses
a natural structure of differentiable manifold (suspension construction). Prove that
Mf is a locally trivial fibration with base S1 and the fiber M .

34. Apply suspension construction to the following three cases :
(i) M = R, f(x) = −x , (ii) M = S1, f(z) = −z, (iii) M = S1, F (z) = z.
Identify resulting manifolds. In which of theses cases the fibration described in the
previuos problem turns out to be trivial?

35. Prove that any continuous real-valued function on a differentiable manifold can
be arbitrary well uniformly approximated by C∞ functions.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 5

VECTOR FIELDS, DISTRIBUTIONS, DIFFERENTIAL FORMS

due on Tuesday 4-25-95

36. Prove that on any non-compact connected differentaible manifold there exists
an incomplete smooth vector field. Hint: Use partition of unity.

37. Construct three linear lenearly independent non-vanishing vector fields on S3

and calculate their Lie brackets.

38.Consider the group H of 3× 3 upper-diagonal matrices with the units on the di-
agonal (the Heisenberg group). This group has natural coordinates (x12, x13, x,23 )
and it acts on itself by left translations. Let v12, v13, v,23 be the left-invariant
vector-fields on H with the values at the identity (1, 0, 0), (0, 1, 0) and (0, 0, 1) cor-
respondingly. Consder the two-dimensional distributions E and F on H generated
by v12, v13 and v12, v,23 correspondingly. Calculate both distributions in the natural
coordinates and show that E is integrable and F is not.

39. Suppose M is a compact differentiable manifold and f : M → R is a C2

function which has one non-degenerate minimum, one non-degenerate maximum
and no more critical points. Prove that M is homeomorphic to Sn.

40. Prove that the tangent and cotangent bundle of any differentiable manifold
are eqivalent as vector bundles. Find a proper generalization of this statement to
tensor bundles.

41. Prove that for the tangent bundle T (M) one can always find another vector
bundle E over M such that the Whitney sum of T (M) and E is a trivial bundle
Hint: Use an embedding theorem.

42. Prove that there is no non-vanishing skew-symmetric 2n differential form (a
volume element) on the the real projective space RP (2n), n ≥ 1.

43. Construct volume elements (non-vanishing skew-symmetric differential forms
of maximal dimension) on odd-dimensional real projective spaces and all complex
projective spaces.

44. Use the definition of the Lie derivative for a tensor field Ω to calculate the Lie
derivative of ρΩ where ρ is a scalar differentiable function.
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MATH 528: TOPOLOGY/GEOMETRY

A.Katok

PROBLEM SET # 6

You do not have to return written solutions

RIEMANNIAN METRICS, EXTERIOR DERIVATIVES,
ORIENTABILITY, DE RHAM COHOMOLOGY

45.Prove that the topology defined by the distance function generated by a Rie-
mannian metric on a differentiable manifold coincides with the topology of the
manifold.

46.Prove that the metric defined by any Riemannian metric on a compact dif-
ferentiable manifold is complete. Prove that on any non-compact connected dif-
ferentaible manifold M there exists a Riemanmnian metric which deternines an
incomplete metric on M .

47.Consider the standard embedding of the n-dimensional sphere Sn into Rn+1

with the Riemannian metric induced by the embedding. Show that for any two
points x, y ∈ Sn which are not diametrically opposite there is a unique shortest
curve in Sn connecting x and y, namely the shorter arc of the big circle. Hint: Use
“geographical coordinates” on S2 and induction in dimension.

48. Let ω be a non-vanishing differential 1-form. Prove that if dω = ω ∧ α for
some 1-form α then the codimension-one distribution Kerω is intergrable. Hint:

Use Frobenius Theorem.

49. A volume element Ω on an n-dimensional manifold M determines a duality
between differential n − 1 forms and vector fields on M via interior differentia-
tion. Prove that closed forms correspond exactly to vector fields preserving Ω, ie
divergence-free vector fields.

50. Prove that any complex manifold is orientable. A complex manifold is a differ-
entiable manifold which has an atlas of coordinate neighborhoods modeled on Cn

and such that transition maps are given by holomorphic functions of n variables.

51. For what values of m and n the space RP (m) × RP (n) is orientable?

52. Describe a basis in the first cohomology group of the sphere with n handles,
ie constuct 2n closed 1-forms ω1, . . . , ω2n whose cohomology classses form a basis
in the cogomology group. Descbibe the multiplicative structure in the cohomology
ring.Hint: You may (but do not have to) use Problem 49.
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ADDITIONAL PROBLEMS

A13. Suppose M and N are differentiable manifolds and f : M → N is a bijec-
tion. Prove that f is a diffeomorphism if and only if both f and its inverse carry
differentiable functions into differentiable functions.

A14. Prove existence of a Hausdorff connected non-separable differentiable mani-
fold.

ALTERNATIVE PROBLEMS FOR THE MID–TERM

(more difficult than 4.1)

X2. (maybe replace 1.1)

X3. Consider an n–dimensional cell complex X. Let 0 ≤ k < n and let Y be the
complex obtained by identifying the k–skeleton of X into a point. Describe the
homology of Y in terms of the cell structure and homology of X.(maybe replace
2.2)

X5. For a continuous map f : T2 → T2 (or maybe Tn → S1) show that if the
induced map f∗; H1(T

2) → H1(T
2) is zero than f is null–homotopic.

3.2. Consider the following map of the n–dimensional torus to itself :

f(x1, . . . , xn) = (k1x1, . . . , knxn) ( mod 1)

where k1, . . . , kn are integers. Find the induced map

(f∗)n : Hn(Tn) → Hn(Tn).

4.1. Show that for any natural number n there exists a compact manifold whose
universal cover is S3 and whose fundamental group is the cyclic group of order n.

4.2. A line field on a manifold M is a continuous map which assigns to each point
x ∈ M a one–dimensional subspace in the tangent space TxM . A line field on
RP (n) is, by definition, the projection of a flip–invariant line field on Sn. Prove
that there is no line field on RP (2n).
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TOPOLOGY/GEOMETRY PH.D QUALIFYING EXAMINATION

May 11, 1995

In order to obtain perfect score you should give complete solutions of two prob-
lems from each of the sections below. Partial credits will be given. If you use any
result not discussed in the Math 527-528 series you should provide a proof of such
a result.



29

Section 1:General topology and fundamental group

1.1. Prove that the complements to all dense countable subsets of R2 are homeo-
morphic.

1.2. A closed bounded subset X of Rn is called star-shaped if for some point
x ∈ X every half-line which begins at x intersects the boundary of X at exactly
one point. Prove that any closed bounded star-shaped set in Rn is homeomorphic
to the standard n-simplex σn.

1.3. Prove that the fundamental group of the set [0, 1]× [0, 1] \K ×K, where K is
the standard Cantor set, is uncountable.

1.4. Consider the following two topologies in R2: (i) Zariski topology, where a base
of open sets is formed by the complements of the zero set of polynomials in two
variables and (ii) the weakest topology where all straight lines are closed sets. Prove
that the topological spaces thus obtained are not homeomorphic.

Section 2: Simplicial and cell homology, including connections with fundamental group.

2.1. Find π1(SO(n)), n ≥ 4.

2.2. Prove that for any finitely generated abelian group G there exists a compact
connected manifold whose first homology group is isomorphic to G.

2.3. Consider the following set in R3 :

(((|x1| − 3)2 + x2
3)

1

2 − 2)2 + x2
2 = 1

Prove that it is a cell polyhedron and calculate its homology groups.

2.4. Let B2 be the “figure eight” ie the bouquet of two circles. Calculate homology
groups of B2 × B2.
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Section 3: Higher homotopy, fibered bundles, differentiable manifolds

3.1. Let Ω be a volume element on a differentiable manifold M . Prove that there
exists a Riemannian metric on M such that its Riemannian volume coincides with
(the absolute value of) Ω.

3.2. Consider the space of all straight lines in R3 with the natural structure of
differentiable manifold. Prove that it is not orientable.

3.3. Let f = (f1, . . . , fk) : Rn → Rk be a differentiable map and M = f−1(0).
Assume that the rank of Df on M is equal to k at every point. Prove that M is
an orientable n − k-dimensional embedded submanifold of Rn.

3.4. Consider the following differential 1-form in R3 : ω = x1dx2 − x2dx1 + dx3.
Show that for any non-zero scalar function ρ the form ρω is not closed.

3.5. Let f : Sn → Tn, n ≥ 2 be a differentiable map. Prove that it has degree zero,
ie for any volume element ω on Tn the n-form f∗ω has zero integral over the sphere
Sn.


