
CHAPTER 2

ELEMENTARY HOMOTOPY THEORY

Homotopy theory, which is the main part of algebraic topology, studies topo-
logical objects up to homotopy equivalence. Homotopy equivalence is a weaker re-
lation than topological equivalence, i.e., homotopy classes of spaces are larger than
homeomorphism classes. Even though the ultimate goal of topology is to classify
various classes of topological spaces up to a homeomorphism, in algebraic topol-
ogy, homotopy equivalence plays a more important role than homeomorphism,
essentially because the basic tools of algebraic topology (homology and homotopy
groups) are invariant with respect to homotopy equivalence, and do not distinguish
topologically nonequivalent, but homotopic objects.

The first examples of homotopy invariants will appear in this chapter: degree
of circle maps in Section 2.4, the fundamental group in Section 2.8 and higher
homotopy groups in Section 2.10, while homology groups will appear and will
be studied later, in Chapter 8. In the present chapter, we will see how effectively
homotopy invariants work in simple (mainly low-dimensional) situations.

2.1. Homotopy and homotopy equivalence

2.1.1. Homotopy of maps. It is interesting to point out that in order to define
the homotopy equivalence, a relation between spaces, we first need to consider a
certain relation between maps, although one might think that spaces are more basic
objects than maps between spaces.

DEFINITION 2.1.1. Two continuous maps f0, f1 : X → Y between topo-
logical spaces are said to be homotopic if there exists a a continuous map F :
X × [0, 1] → Y (the homotopy) that F joins f0 to f1, i.e., if we have F (i, ·) = fi

for i = 1, 2.
A map f : X → Y is called null-homotopic if it is homotopic to a constant

map c : X → {y0} ⊂ Y . If f0, f1 : X → Y are homeomorphisms, they are
called isotopic if they can be joined by a homotopy F (the isotopy) which is a
homeomorphism F (t, ·) for every t ∈ [0, 1].

If two maps f, g : X → Y are homotopic, we write f % g.

maybe add a picture (p. 37)

EXAMPLE 2.1.2. The identity map id: D2 → D2 and the constant map c0 :
D2 → 0 ∈ D2 of the disk D2 are homotopic. A homotopy between them may be
defined by F (t, (ρ,ϕ)) = ((1− t) ·ρ,ϕ), where (ρ,ϕ) are polar coordinates in D2.
Thus the identity map of the disk is null homotopic.
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FIGURE 2.1.1. Homotopic maps

EXAMPLE 2.1.3. If the maps f, g : X → Y are both null-homotopic and Y is
path connected, then they are homotopic to each other.

Indeed, suppose a homotopy F joins f with the constant map to the point
a ∈ Y , and a homotopy G joins g with the constant map to the point b ∈ Y . Let
c : [0, 1] → Y be a path from a to b. Then the following homotopy

H(t, x) :=






F (x, 3t) when 0 ≤ t ≤ 1
3 ,

c(3t− 1) when 1
3 ≤ t ≤ 2

3

G(x, 3− 3t) when 2
3 ≤ t ≤ 1.

joins the map f to g.

EXAMPLE 2.1.4. If A is the annulus A = {(x, y)|1 ≤ x2 + y2 ≤ 2}, and the
circle S1 = {z ∈ C : |z| = 1} is mapped homeomorphically to the outer and inner
boundary circles of A according to the rules f : eiϕ (→ (2,ϕ) and g : eiϕ (→ (1,ϕ)
(here we are using the polar coordinates (r, ϕ)) in the (x, y)− plane), then f and
g are homotopic.

Indeed, H(t, ϕ) := (t + 1,ϕ) provides the required homotopy.
Further, it should be intuitively clear that neither of the two maps f or g is

null homotopic, but at this point we do not possess the appropriate techniques for
proving that fact.

2.1.2. Homotopy equivalence. Tomotivate the definition of homotopy equiv-
alent spaces let us write the definition of homeomorphic spaces in the follow-
ing form: topological spaces X and Y are homeomorphic if there exist maps
f : X → Y and g : Y → X such that

f ◦ g = IdX and g ◦ f = IdY .

If we now replace equality by homotopy we obtain the desired notion:

DEFINITION 2.1.5. Two topological spacesX, Y are called homotopy equiva-
lent if there exist maps f : X → Y and g : Y → X such that

f ◦ g : X → X and g ◦ f : Y → Y

are homotopic to the corresponding identities IdX and IdY .
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FIGURE 2.1.2. Homotopy equivalent spaces

EXAMPLE 2.1.6. The point, the disk, the Euclidean plane are all homotopy
equivalent. To show that pt% R2, consider the maps f : pt → 0 ∈ R2 and
g : R2 →pt. Then g ◦ f is just the identity of the one point set pt, while the map
f ◦ g : R2 → R2 is joined to the identity of R2 by the homotopy H(t, (r, ϕ)) :=
((1− t)r, ϕ).

EXAMPLE 2.1.7. The circle and the annulus are homotopy equivalent. Map-
ping the circle isometrically on the inner boundary of the annulus and projecting
the entire annulus along its radii onto the inner boundary, we obtain two maps that
comply with the definition of homotopy equivalence.

PROPOSITION 2.1.8. The relation of being homotopic (maps) and being ho-
motopy equivalent (spaces) are equivalence relations in the technical sense, i.e.,
are reflexive, symmetric, and transitive.

PROOF. The proof is quite straightforward. First let us check transitivity for
maps and reflexivity for spaces.

Suppose f % g % h. Let us prove that f % h. Denote by F and G the
homotopies joining f to g and g to h, respectively. Then the homotopy

H(t, x) :=

{
F (2t) when t ≤ 1

2 ,

G(2t− 1) when t ≥ 1
2

joins f to h.
Now let us prove that for spaces the relation of homotopy equivalence is re-

flexive, i.e., show that for any topological space X we have X % X . But the pair
of maps (idX , idX) and the homotopy given by H(t, x) := x for any t shows that
X is indeed homotopy equivalent to itself.

The proofs of the other properties are similar and are omitted. !
maybe add picture (p.39)

PROPOSITION 2.1.9. Homeomorphic spaces are homotopy equivalent.

PROOF. If h : X → Y is a homeomorphism, then h ◦ h−1 and h−1 ◦ h are the
identities of Y and X , respectively, so that the homotopy equivalence of X and Y
is an immediate consequence of the reflexivity of that relation. !
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In our study of topological spaces in the previous chapter, the main equivalence
relation was homeomorphism. In homotopy theory, its role is played by homotopy
equivalence. As we have seen, homeomorphic spaces are homotopy equivalent.
The converse is not true, as simple examples show.refer to the picture above

EXAMPLE 2.1.10. Euclidean space Rn and the point are homotopy equivalent
but not homeomorphic since there is no bijection between them. Open and closed
interval are homotopy equivalent since both are homotopy equivalent to a point but
not homeomorphic since closed interval is compact and open is not.

EXAMPLE 2.1.11. The following five topological spaces are all homotopy
equivalent but any two of them are not homeomorphic:

• the circle S1,
• the open cylinder S1 × R,
• the annulus A = {(x, y)|1 ≤ x2 + y2 ≤ 2},
• the solid torus S1 × D2,
• the Möbius strip.

In all cases one can naturally embed the circle into the space and then project
the space onto the embedded circle by gradually contracting remaining directions.
Proposition 2.2.8 below also works for all cases but the last.

Absence of homeomorphisms is shown as follows: the circle becomes discon-
nected when two points are removed, while the other spaces are not; the annulus
and the solid torus are compact, the open cylinder and the Möbius strip are not.
The remaining two pairs are a bit more tricky since thy require making intuitively
obvious statement rigorous: (i) the annulus has two boundary components and
the solid torus one, and (ii) the cylinder becomes disconnected after removing any
subset homeomorphic to the circle1 while the Möbius strip remains connected after
removing the middle circle.

As is the case with homeomorphisms in order to establish that two spaces are
homotopy equivalent one needs just to produce corresponding maps while in order
to establish the absence of homotopy equivalence an invariant is needed which can
be calculated and shown to be different for spaces in question. Since homotopy
equivalence is a more robust equivalence relation that homeomorphism there are
fewer invariants and many simple homeomorphism invariants do not work, e.g.
compactness and its derivative connectedness after removing one or more points
and so on. In particular, we still lack means to show that the spaces from two
previous examples are not homotopy equivalent. Those means will be provided in
Section 2.4

2.2. Contractible spaces

Now we will study properties of contractible spaces, which are, in a natural
sense, the trivial objects from the point of view of homotopy theory.

1This follows from the Jordan Curve Theorem Theorem 5.1.2
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2.2.1. Definition and examples. As we will see from the definition and exam-
ples, contractible spaces are connected topological objects which have no “holes”,
“cycles”, “apertures” and the like.

DEFINITION 2.2.1. A topological spaceX is called contractible if it is homo-
topically equivalent to a point. Equivalently, a space is contractible if its identity
map is null-homotopic.

EXAMPLE 2.2.2. Euclidean and complex spaces Rn, Cn are contractible for
all n. So is the closed n-dimensional ball (disc)Dn, any tree (graph without cycles;
see Section 2.3), the wedge of two disks. This can be easily proven by constructing
homotopy equivalence On the other hand, the sphere Sn, n ≥ 0, the torus Tn,
any graph with cycles or multiple edges are all not contractible. To prove this one
needs to construct someinvariants, i.e. quantities which are equal for homotopy
equivalent spaces. An this point we do not have such invariants yet.

PROPOSITION 2.2.3. Any convex subset of Rn is contractible.

PROOF. Let C be a convex set in Rn ant let x0 ∈ C, define
h(x, t) = x0 + (1− t)(x− x0).

By convexity for any t ∈ [0, 1]we obtain a map ofC into itself. This is a homotopy
between the identity and the constant map to x0 !

REMARK 2.2.4. The same proof works for a broader class of sets than convex,
namely star-shaped. A set S ⊂ Rn is called star-shaped if there exists a point x0

such that the intersection of any half line with endpoint x0 with S is an interval.
hence any star-shaped set is contractible.

2.2.2. Properties. Contractible spaces have nice intrinsic properties and also
behave well under maps.

PROPOSITION 2.2.5. Any contractible space is path connected.

PROOF. Let x1, x2 ∈ X , whereX is contractible. Take a homotopy h between
the identity and a constant map, to, say x0. Let

f(t) :=

{
h(x, 2t) when t ≤ 1

2 ,

h(y, 2t− 1) when t ≥ 1
2 .

Thus f is a continuous map of [0, 1] to X with f(0) = x and f(1) = y. !

PROPOSITION 2.2.6. If the spaceX is contractible, then any map of this space
f : X → Y is null homotopic.

PROOF. By composing the homotopy takingX to a point p and the map f , we
obtain a homotopy of f and the constant map to f(p). !
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PROPOSITION 2.2.7. If the space Y is contractible, then any map to this space
f : X → Y is null homotopic.

PROOF. By composing the map f with the homotopy taking Y to a point and,
we obtain a homotopy of f and the constant map to that point. !

PROPOSITION 2.2.8. If X is contractible, then for any topological space Y
the product X × Y is homotopy equivalent to X .

PROOF. If h : Y × [0, 1] → Y is a homotopy between the identity and a
constant map of Y ,that is, h(y, 0) = y and h(y, 1) = y0. Then for the map
H := IdX ×h one hasH(x, y, 0) = (x, y) andH(x, y, 1) = (x, y0). Thus the pro-
jection π1 : (x, y) (→ x and the embedding iy0 : x (→ (x, y0) provide a homotopy
equivalence. !

2.3. Graphs

In the previous section, we discussed contractible spaces, the simplest topolog-
ical spaces from the homotopy point of view, i.e., those that are homotopy equiva-
lent to a point. In this section, we consider the simplest type of space from the point
of view of dimension and local structure: graphs, which may be described as one-
dimensional topological spaces consisting of line segments with some endpoints
identified.

We will give a homotopy classification of graphs, find out what graphs can be
embedded in the plane, and discuss one of their homotopy invariants, the famous
Euler characteristic.

2.3.1. Main definitions and examples. Here we introduce (nonoriented) graphs
as classes of topological spaces with an edge and vertex structure and define the
basic related notions, but also look at abstract graphs as very general combinatorial
objects. In that setting an extra orientation structure becomes natural.

DEFINITION 2.3.1. A (nonoriented) graph G is a topological space obtained
by taking a finite set of line segments (called edges or links) and identifying some
of their endpoints (called vertices or nodes).

Thus the graph G can be thought of as a finite sets of points (vertices) some
of which are joined by line segments (edges); the sets of vertices and edges are
denoted by V (G) and E(G), respectively. If a vertex belongs to an edge, we
say that the vertex is incident to the edge or the edge is incident to the vertex.
A morphism of graphs is a map of vertices and edges preserving incidence, an
isomorphism is a bijective morphism.

It the two endpoints of an edge are identified, such an edge is called a loop.
A path (or chain) is a ordered set of edges such that an endpoint of the first edge
coincides with an endpoint of the second one, the other endpoint of the second edge
coincides with an endpoint of the third edge, and so on, and finally an endpoint of
the last edge coincides with an endpoint of the previous one. A closed path (i.e.,
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FIGURE 2.3.1. Constructing a graph by identifying endpoints of segments

a path whose first vertex coincides with its last one) is said to be a cycle; a loop is
regarded as a particular case of a cycle.

A tree is a graph without cycles.
A graph is called connected if any two vertices can be joined by a path. This is

equivalent to the graph being connected (or path-connected) as a topological space.
The number of edges with endpoints at a given vertex is called the degree of

this vertex, the degree of a graph is the maximal degree of all its vertices.
A complete graph is a graph such that each pair of distinct vertices is joined by

exactly one edge. check the terminology

EXERCISE 2.3.1. Prove that any graph can be embedded into R3, i.e. it is
isomorphic to a graph which is a subset of the three-dimensional space R3.

A graph is called planar if it is isomorphic to a graph which is a subset of the
plane R2.

EXAMPLE 2.3.2. The sets of vertices and edges of the n-simplex constitute
a graph, which is connected and complete, and whose vertices are all of degree
n + 1. The sets of edges of an n-dimensional cube constitute a connected graph
whose vertices are all of degree n, but which is not complete (if n ≥ 2).

EXAMPLE 2.3.3. The figure shows two important graphs, K3,3 and K5, both
of which are nonplanar. The first is the formalization of a famous (unsolvable)
problem: to find paths joining each of three houses to each of three wells so that
the paths never cross. In practice would have to build bridges or tunnels. The
second is the complete graph on five vertices. The proof of their nonplanarity will
be discussed on the next subsection.

K5K33

FIGURE 2.3.2. Two nonplanar graphs: K3,3 andK5

DEFINITION 2.3.4. An oriented graph is a graph with a chosen direction on
each edge. Paths and cycles are defined as above, except that the edges must be
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FIGURE 2.3.3. The polygonal lines L1 and L2 must intersect

coherently oriented. Vertices with only one edge are called roots if the edge is
oriented away from the vertex, and leaves if it is oriented towards the vertex.

2.3.2. Planarity of graphs. The goal of this subsection is to prove that the
graph K3,3 is nonplanar, i.e., possesses no topological embedding into the plane
R2. To do this, we first prove the polygonal version of the Jordan curve theorem
and show that the graphK3,3 has no polygonal embedding into the plane, and then
show that it has no topological embedding in the plane.

PROPOSITION 2.3.5. [The Jordan curve theorem for broken lines] Any bro-
ken line C in the plane without self-intersections splits the plane into two path
connected components and is the boundary of each of them.

PROOF. Let D be a small disk which C intersects along a line segment, and
thus dividesD into two (path) connected components. Let p be any point inR2\C.
From p we can move along a polygonal line as close as we like to C and then,
staying close to C, move inside D. We will then be in one of the two components
of D \ C, which shows that R2 \ C has no more than two components.

It remains to show that R2 \C is not path connected. Let ρ be a ray originating
at the point p ∈ R2 \ C. The ray intersects C in a finite number of segments and
isolated points. To each such point (or segment) assign the number 1 if C crosses ρ
there and 0 if it stays on the same side. Consider the parity π(p) of the sum S of all
the assigned numbers: it changes continuously as ρ rotates and, being an integer,
π(p) is constant. Clearly, π(p) does not change inside a connected component of
R2 \C. But if we take a segment intersecting C at a non-zero angle, then the parity
π at its end points differs. This contradiction proves the proposition. !

We will call a closed broken line without self-intersections a simple polygonal
line.

COROLLARY 2.3.6. If two broken lines L1 and L2 without self-intersections
lie in the same component of R2 \ C, where C is a simple closed polygonal line,
with their endpoints on C in alternating order, then L1 and L2 intersect.
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PROOF. The endpoints a and c of L1 divide the polygonal curve C into two
polygonal arcs C1 and C2. The curve C and the line L1 divide the plane into three
path connected domains: one bounded by C, the other two bounded by the closed
curves Ci ∪ L, i = 1, 2 (this follows from Proposition 2.3.5). Choose points b and
d on L2 close to its endpoints. Then b and d must lie in different domains bounded
by L1 and C and any path joining them and not intersecting C, in particular L2,
must intersect L1. !

PROPOSITION 2.3.7. The graph K3,3 cannot be polygonally embedded in the
plane.

PROOF. Let us number the vertices x1, . . . , x6 ofK3,3 so that its edges consti-
tute a closed curve C := x1x2x3x4x5x6, the other edges being

E1 := x1x4, E2 := x2x5, E3 := x3x6.

Then, ifK3,3 lies in the plane, it follows from Proposition 2.3.5 that C divides the
plane into two components. One of the two components must contain at least two
of the edges E1, E2, E3, which then have to intersect (by Corollary 2.3.6). This is
a contradiction which proves the proposition. !

THEOREM 2.3.8. The graph K3,3 is nonplanar, i.e., there is no topological
embedding h : K3,3 ↪→ R2.

The theorem is an immediate consequence of the nonexistence of aPL-embedding
ofK3,3 (Proposition 2.3.7) and the following lemma.

LEMMA 2.3.9. If a graphG is planar, then there exists a polygonal embedding
of G into the plane.

PROOF. Given a graphG ⊂ R2, we first modify it in small disk neighborhoods
of the vertices so that the intersection of (the modified graph) G with each disk is
the union of a finite number of radii of this disk. Then, for each edge, we cover
its complement to the vertex disks by disks disjoint from the other edges, choose a
finite subcovering (by compactness) and, using the chosen disks, replace the edge
by a polygonal line. !

We conclude this subsection with a beautiful theorem, which gives a simple geometri- small print for parts outside of
the main line: no proofs or too

difficultcal obstruction to the planarity of graphs. We do not present the proof (which is not easy),
because this theorem, unlike the previous one, is not used in the sequel.

THEOREM 2.3.10. [Kuratowski] A graph is nonplanar if and only if it contains, as a
topological subspace, the graph K3,3 or the graph K5.

REMARK 2.3.11. The words “as a topological subspace” are essential in this theorem.
They cannot be replaced by “as a subgraph”: if we subdivide an edge of K5 by adding a
vertex at its midpoint, then we obtain a nonplanar graph that does not contain either K3,3

orK5.
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EXERCISE 2.3.2. Can the graphK3,3 be embedded in (a) the Möbius strip, (b)
the torus?

EXERCISE 2.3.3. Is there a graph that cannot be embedded into the torus?

EXERCISE 2.3.4. Is there a graph that cannot be embedded into the Mob̈ius
strip?

2.3.3. Euler characteristic of graphs and plane graphs. The Euler charac-
teristic of a graph G is defined as

χ(G) := V − E,

where V is the number of vertices and E is the number of edges.
The Euler characteristic of a graph G without loops embedded in the plane is

defined as
χ(G) := V − E + F,

where V is the number of vertices andE is the number of edges ofG, while F is the
number of connected components ofR2\G (including the unbounded component).

THEOREM 2.3.12. [Euler Theorem] For any connected graphG without loops
embedded in the plane, χ(G) = 2.

PROOF. At the moment we are only able to prove this theorem for polygonal
graphs. For the general case we will need Jordan curve Theorem Theorem 5.1.2.
The proof will be by induction on the number of edges. Without loss of generality,
we can assume (by Lemma 2.3.9) that the graph is polygonal. For the graph with
zero edges, we have V = 1, E = 0, F = 1, and the formula holds. Suppose it
holds for all graphs with n edges; then it is valid for any connected subgraphH of
G with n edges; take an edge e from G which is not in H but incident to H , and
add it to H . Two cases are possible.

Case 1. Only one endpoint of e belongs toH . Then F is the same for G as for
H and both V and E increase by one.

Case 2. Both endpoints of e belong to toH . Then e lies inside a face ofH and
divides it into two.2 Thus by adding e we increase both E and F by one and leave
V unchanged. Hence the Euler characteristic does not change. !

2.3.4. Homotopy classification of graphs. It turns out that, from the view-
point of homotopy, graphs are classified by their Euler characteristic (which is
therefore a complete homotopy invariant.)

EXERCISE 2.3.5. Prove that any tree is homotopy equivalent to a point.

THEOREM 2.3.13. Any connected graphG is homotopy equivalent to the wedge
of k circles, with k = χ(G)− 1.

2It is here that we need the conclusion of Jordan curve Theorem Theorem 5.1.2 in the case of
general graphs. The rest of the argument remains the same as for polygonal graphs.
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FIGURE 2.4.1. Exponential map

PROOF. Consider a maximal tree T which is a subgraph of G. The graph W
obtained by identifying T into a single vertex p is homotopically equivalent to G.
But any edge of W whose one endpoint is p must be a loop since otherwise T
would not be a maximal tree in G. Since W is connected it has a single vertex p
and hence is a wedge of several loops. !

At this point we do not know yet that wedges of different numbers of circles
are mutually not homotopically equivalent or, for that matter that they are not con-
tractible. This will be shown with the use of the first non-trivial homotopy invariant
which we will study in the next section. This will of course also imply that the Eu-
ler characteristic of a graph is invariant under homotopy equivalence.

2.4. Degree of circle maps

Now we will introduce a homotopy invariant for maps of the circle to itself. It
turns out that this invariant can easily be calculated and have many impressive ap-
plications. Some of those applications are presented in three subsequent sections.

2.4.1. The exponential map. Recall the relation between the circle S1 =
R/Z and the line R. There is a projection π : R → S1, x (→ [x], where [x] is
the equivalence class of x in R/Z. Here the integer part of a number is written .·/
and {·} stands for the fractional part.

PROPOSITION 2.4.1. If f : S1 → S1 is continuous, then there exists a contin-
uous map F : R → R, called a lift of f to R, such that

(2.4.1) f ◦ π = π ◦ F,

that is, f([z]) = [F (z)]. Such a lift is unique up to an additive integer constant
and deg(f) := F (x + 1)−F (x) is an integer independent of x ∈ R and the lift F .
It is called the degree of f . If f is a homeomorphism, then |deg(f)| = ±1.
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PROOF. Existence: Pick a point p ∈ S1. Then we have p = [x0] for some
x0 ∈ R and f(p) = [y0] for some y0 ∈ R. From these choices of x0 and y0

define F : R → R by requiring that F (x0) = y0, that F be continuous, and that
f([z]) = [F (z)] for all z ∈ R. One can construct such an F , roughly speaking, by
varying the initial point p continuously, which causes f(p) to vary continuously.
Then there is no ambiguity of how to vary x and y continuously and thus F (x) = y
defines a continuous map.

To elaborate, take a δ > 0 such that

d([x], [x′]) ≤ δ implies d(f([x]), f([x′])) < 1/2.

Then we can define F on [x0 − δ, x0 + δ] as follows: If |x − x0| ≤ δ then
d(f([x]), q) < 1/2 and there is a unique y ∈ (y0 − 1/2, y0 + 1/2) such that
[y] = f([x]). Define F (x) = y. Analogous steps extend the domain by another
δ at a time, until F is defined on an interval of unit length. (One needs to check
consistency, but it is straightforward.) Then f([z]) = [F (z)] defines F on R.

Uniqueness: Suppose F̃ is another lift. Then [F̃ (x)] = f([x]) = [F (x)] for all
x, meaning F̃ − F is always an integer. But this function is continuous, so it must
be constant.

Degree: F (x + 1) − F (x) is an integer (now evidently independent of the
choice of lift) because

[F (x + 1)] = f([x + 1]) = f([x]) = [F (x)].

By continuity F (x + 1)− F (x) =: deg(f) must be a constant.
Invertibility: If deg(f) = 0, then F (x + 1) = F (x) and thus F is not mono-

tone. Then f is noninvertible because it cannot be monotone. If |deg(f)| > 1,
then |F (x + 1)−F (x)| > 1 and by the Intermediate Value Theorem there exists a
y ∈ (x, x + 1) with |F (y) − F (x)| = 1, hence f([y]) = f([x]), and [y] 0= [x], so
f is noninvertible. !

2.4.2. Homotopy invariance of the degree. Here we show that the degree of
circle maps is a homotopy invariant and obtain some immediate corollaries of this
fact.

PROPOSITION 2.4.2. Degree is a homotopy invariant.

PROOF. The lift construction can be simultaneously applied to a continuous
family of circle maps to produce a continuous family of lifts. Hence the degree
must change continuously under homotopy. Since it is an integer, it is in fact
constant. !

COROLLARY 2.4.3. The circle is not contractible.

PROOF. The degrees of any constant map is zero, whereas for the identity map
it is equal to one. !
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THEOREM 2.4.4. Degree is a complete homotopy invariant of circle self–
maps: for any m ∈ Z any map of degree m is homotopic to the map

Em := x (→ mx ( mod 1).

PROOF. Obviously, the map Em lifts to the linear map x (→ mx of R. On the
other hand, every lift F of a degree m map f has the form F (x) = mx + H(x),
where H is a periodic function with period one. Thus the family of maps

Ft(x) := mx + (1− t)H(x)

are lifts of a continuous family of maps of S1 which provide a homotopy between
f and Em. !

Since Em ◦ En = Emn we obtain

COROLLARY 2.4.5. Degree of the composition of two maps is equal to the
product of their degrees.

EXERCISE 2.4.1. Show that any continuous map f : S1 → S1 has at least
|deg f − 1| fixed points.

EXERCISE 2.4.2. Prove Corollary 2.4.5 directly, not using Theorem 2.4.4.

EXERCISE 2.4.3. Given the maps f : S1 → D2 and g : D2 → S1, what can be
said about the degree of their composition.

2.4.3. Degree and wedges of circles. In order to complete homotopy classifi-
cation of graphs started in Section 2.3.4 we need to proof the following fact which
will be deduced from the degree theory for circle maps.

PROPOSITION 2.4.6. The wedges of k circles for k = 0, 1, 2, . . . are pairwise
not homotopy equivalent.

PROOF. We first show that the wedge of any number of circles is not con-
tractible. For one circle this has been proved already (2.4.3). LetW be the wedge
of k > 1 circles and p ∈ W be the common point of the circles. If W is con-
tractible then the identity map IdW of W is homotopic to the constant map cP of
W to p. Let S be one of the circles comprisingW and let U be the union of remain-
ing circles. Then one can identify U into a single point (naturally identified with
p and project the homotopy to the identification space which is naturally identified
with the circle S and thus provides a homotopy between the identity and a constant
map on the circle, a contradiction. More specifically we apply the following pro-
cess which looks like cutting the graph of a continuous function at a constant level
when the function exceeds this level. As long as the images of a point x ∈ S stay
in S we change nothing. When it reaches p and leaves S we replace the images by
the constant p.
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Now assume that the wedgeW ofm circles is homotopically equivalent to the
wedge of n < m circles which can be naturally identified with a subset U of W
consisting of n circles. This implies that there exists a homotopy between IdW

and the map cU : W → W which is equal to the identity on U and maps m − n
circles comprisingW \U into the common point p of all circles inW . As before,this does not follow from

homotopy equivalence directly.
Need to be argued or replaces

by another argument
we identify U into a point and project the homotopy into the identification space
which is naturally identified with the wedge of m − n circles. Thus we obtain a
homotopy between a homotopy between the identity map and the constant map cp

which is impossible by the previous argument. !
Now we can state the homotopy classification of graphs as follows.

COROLLARY 2.4.7. Two graphs are homotopy equivalent if and only if they
have the same Euler characteristic. Any graph with Euler characteristic E is ho-
motopy equivalent to the wedge of E + 1 circles.

2.4.4. Local definition of degree. One of the central ideas in algebraic topol-
ogy is extension of the notion of degree of a self-map from circles to spheres of
arbitrary dimension and then to a broad class of compact manifold. Definition
which follows from Proposition 2.4.1 stands no chance of generalization since the
exponential map is a phenomenon specific for the circle and, for example in has
no counterparts for spheres of higher dimensions. Now we give another definition
which is equivalent to the previous one for the circle but can be generalized to other
manifolds.

We begin with piecewise strictly monotone maps of the circle into itself. For
such a map every point x ∈ S1 has finitely many pre-images and for if we exclude
finitely many values at the endpoints of the interval of monotonicity each pre-image
y ∈ f−1(x) lies on a certain interval of monotonicity where the function f either
“increases”, i.e. preserves orientation on the circle or “decreases”, i.e. reverses
orientation. In the first case we assign number 1 to the point y and call it a positiveprovide picture(s)

pre-image and in the second the number -1 and call it a negative pre-image of x.
Adding those numbers for all y ∈ f−1(x) we obtain an integer which we denote
d(x).

THEOREM 2.4.8. The number d(x) is independent of x and is equal to the
degree of f .

REMARK 2.4.9. Since any continuous map of the circle can be arbitrary well
approximated by a piecewise monotone map (in fact, even by a piecewise linear
one) and by the above theorem the number thus defined for piecewise monotone
maps (call it the local degree) is the same for any two sufficiently close maps we
can define degree of an arbitrary continuous map f : S1 → S1 as the the local
degree of any piecewise monotone map g sufficiently close to f . This is a “baby
version” of the procedure which will be developed for other manifolds in ??.

PROOF. Call a value x ∈ S1 critical if x = f(y) where x is an endpoint of an
interval of monotonicity for f which we will call critical points. Obviously d(x)
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does not change in a neighborhood of any non-critical value. It does not change at
a critical value either since each critical value is the image of several critical points
and near each such point either there is one positive and one negative pre-image
for nearby values on one side and none on the other or vise versa. Thus d(x) is
constant which depends only on the map f and can thus be denoted by d(f).

For any piecewise monotone map f let as call its piecewise linear approxima-
tion fPL the map which has the same intervals of monotonicity and is linear on
any of them. Obviously d(fPL) = d(f); this follows from a simple application of
the intermediate value theorem from calculus. Consider the straight-line deforma-
tion of the map fPL to the linear map Edeg f . Notice that since fPL is homotopic
to f (by the straight line on each monotonicity interval) deg fPL = deg f . This
homotopy passes through piecewise linear maps which we denote by gt and hence
the local degree is defined. A small point is that for some values of t the map gt

may be constant on certain intervals of monotonicity of of f but local degree is
defined for such maps as well. It remains to notice that the local degree does not
change during this deformation. But this is obvious since any non-critical value of
gt remains non-critical with a small change of t and for each t all but finitely many
values are non-critical. Since local degree can be calculated at any non-critical
value this shows that

d(f) = d(fPL) = d(Edeg f ) = deg f.

!

2.5. Brouwer fixed point theorem in dimension two

In the general case, the Brouwer theorem says that any (continuous) self-map
of the disk Dn (a closed ball in Rn) has a fixed point, i.e., there exists a p ∈ Dn

such that f(p) = p.
The simplest instance of this theorem (for n = 1) is an immediate corollary

of the intermediate value theorem from calculus since a continuous map f of a
closed interval [a, b] into itself can be considered as a real-values function such
that f(a) ≥ a and f(b) ≥ b. Hence by the intermediate value theorem the function
f(x)− x has a zero on [a, b].

The proof in dimension two is based on properties of the degree.

THEOREM 2.5.1. [Brouwer fixed-point theorem in dimension two.] Any con-
tinuous map of a closed disk into itself (and hence of any space homeomorphic to
the disk) has a fixed point.

PROOF. We consider the standard closed disc

D2 := {(x, y) ∈ R2 : x2 + y2 ≤ 1}.
Suppose f : D2 → D2 is a continuous map without fixed points. For p ∈ D2

consider the open halfline (ray) beginning at F (p) and passing through the point p.
This halfline intersects the unit circle S1, which is the boundary of the disc D2, at
a single point which we will denote by h(p). Notice that for p ∈ ∂D2, h(p) = p
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r(x)

x
f(x)

f(y)

y = r(y)

FIGURE 2.5.1. Retraction of the disk onto the circle

The map h : D2 → ∂D2 thus defined is continuous by construction (exactly
because f has no fixed points) and is homotopic to the identity map IdD2 via the
straight-line homotopy H(p, t) = (1 − t)p + th(p). Now identify ∂D2 with the
unit circle S1. Taking the composition of hwith this identification, we obtain a map
D2 → S1, which we will denote by g. Let i : S1 → D2 be the standard embedding.
We have

g ◦ i : S1 → S1 = IdS1 , i ◦ g = h is homotopic to IdD2 .

Thus the pair (i, g) gives a homotopy equivalence between S1 and D2.
But this is impossible, since the disc is contractible and the circle is not (Corol-

lary 2.4.3). Hence such a map h cannot be constucted; this implies that F has a
fixed point at which the halfline in question cannot be uniquely defined. !

EXERCISE 2.5.1. Deduce the general form of the Brouwer fixed–point theo-
rem: Any continuous map of a closed n-disc into itself has a fixed point, from the
fact that the identity map on the sphere of any dimension is not null homotopic.
The latter fact will be proved later (??).

2.6. Index of a point w.r.t. a curve

In this section we study curves and points lying in the plane R2 and introduce
an important invariant: the index ind(p, γ) of a point p with respect to a curve
γ : S1 → R2. This invariant has many applications, in particular it will help us
prove the so-called “Fundamental Theorem of Algebra” in the next section.

2.6.1. Main definition and examples. By a curve we mean the image C =
f(S1) of a continuous map f : S1 → R2, not necessarily injective. Recall that C
is compact by Proposition 1.5.11 Let p be a point in the open complement R2 −C
of the curve. The complement is nonempty since C is compact but R2 is not.
Notice however that C may have an interior if f is a so-called Peano curve ??
or somehting similar. Denote by ϕ the angular parameter on S1 and by Vϕ the
vector joining the points p and f(ϕ). As ϕ varies from 0 to 2π, the endpoint of the
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unit vector Vϕ/|Vϕ| moves along the unit circle S0 centered at p, defining a map
γf : S0 → S0.

DEFINITION 2.6.1. The index of the point p with respect to the curve f is
defined as the degree of the map γ, i.e.,

ind(p, f) := deg(γf )

Clearly, ind(p, f) does not change when p varies inside a connected compo-
nent of R2\C): indeed, the function ind is continuous in p /∈ C and takes integer
values, so it has to be a constant when p varies in a connected component ofR2\C).

If the point p is “far from” f(S1) (i.e., in the connected component ofR2\f(S1)
with noncompact closure), then deg(p, f) = 0; indeed, if p is sufficiently far from
C (which is compact), then C is contained in an acute angle with vertex at p, so
that the vector f(ϕ) remains within that angle as ϕ varies from 0 to 2π and γ must
have degree 0.

A concrete example of a curve in R2 is shown on Figure ??, (a); on it, the is this 2.6.1?; wheree is (b)?

integers indicate the values of the index in each connected component of its com-
plement.

2.6.2. Computing the index for immersed curves. When the curve is nice
enough, there is a convenient method for computing the index of any point with
respect to the curve. To formalize what we mean by “nice” we introduce the fol-
lowing definition.

DEFINITION 2.6.2. A curve f : S1 → R2 is said to be an immersion if f
is differentiable, has a nonzero tangent vector, and has a finite number of self-
intersections, all of them transversal, i.e. with all tangent vectors making non-zero
angles with each other.

In order to compute the index of p with respect to an immersed curve f , let us
join p by a (nonclosed) smooth curve α transversal to f to a far away point a and
move from a to p along that curve. At the start, we put i(a) = 0, and, moving along
α, we add one to i when we cross f(S1) in the positive direction (i.e., so that the
tangent vector to f looks to the right of α) and subtract one when we cross it in the
negative direction. When we reach the connected component of the complement
to the curve containing p, we will obtain a certain integer i(p).

EXERCISE 2.6.1. Prove that the integer i(p) obtained in this way is actually
the index of p w.r.t. f (and so i(p) does not depend on the choice of the curve α).

Turn this into a proposition and
provide a proof.

EXERCISE 2.6.2. Compute the indices of the connected components of the
complements to the curve shown on Figure ??(b) by using the algorithm described
above.
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FIGURE 2.6.1. Index of points w.r.t. a curve

2.7. The fundamental theorem of algebra

2.7.1. Statement and commentary. In our times the term “fundamental the-
orem of algebra” reflects historical preoccupation of mathematicians with solving
algebraic equations, i.e. finding roots of polynomials. Its equivalent statement
is that the field of complex numbers is algebraically complete i.e. that no need
to extend it in order to perform algebraic operations. This in particular explain
difficulties with constructing “hyper-complex” numbers; in order to do that in a
meaningful way, one needs to relax some of the axioms of the field (e.g. commu-
tativity for the four-dimensional quaternions).3 Thus, in a sense, the theorem is
fundamental but not so much for algebra where the field of complex numbers is
only one of many objects of study, and not the most natural one at that, but for
analysis, analytic number theory and classical algebraic geometry.

THEOREM 2.7.1. Any polynomial

p(z) = anzn + an−1z
n−1 + · · · + a1z + a0, an 0= 0, n > 0,

with complex coefficients has a least one complex root.4

REMARK 2.7.2. This theorem has many different proofs, but no “purely alge-
braic” ones. In all existing (correct!) proofs, the crucial point is topological. In the
proof given below, it ultimately comes down to the fact that a degree n self map of
the circle is not homotopic to the identity provided n ≥ 2.

3This by no means implies that one cannot include complex number to a larger field. General
algebraic constructions such as fields of rational functions provide for that.

4The fact that the polynomial x2 +1 has no real roots is the most basic motivation for introduc-
ing complex numbers.
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2.7.2. Proof of the theorem. By dividing all coefficients by an which does
not change the roots we may assume that an = 1. Furthermore, if a0 = 0 than
p(0) = 0. Thus we can also assume that a0 0= 0.

Consider the curve fn : S1 → R2 given by the formula eiϕ (→ Rn
0einϕ,

where R0 is a (large) positive number that will be fixed later. Further, consider the
family of curves fp,R : S1 → R2 given by the formula eiϕ (→ p(Reiϕ), where
R ≤ R0. We can assume that the origin O does not belong to fp,R0(S1) (otherwise
the theorem is proved).

LEMMA 2.7.3. If R0 is sufficiently large, then

ind(O, fp,R0) = ind(O, fn) = n.

Before proving the lemma, let us show that it implies the theorem.
By the lemma, ind(O, fp,R0) = n. Let us continuously decrease R from R0 to

0. If for some value ofR the curve fp,R(S1) passes through the origin, the theorem
is proved. So we can assume that ind(O, fp,R) changes continuously as R → 0;
but since the index is an integer, it remains constant and equal to n. However, if
R is small enough, the curve fp,R(S1) lies in a small neighborhood of a0; but for
such an R we have ind(O, fp,R) = 0. This is a contradiction, because n ≥ 1.

It remains to prove the lemma. The equality ind(O, fn) = n is obvious. To
prove the other equality, it suffices to show that for any ϕ the difference∆ between
the vectors Vp(ϕ) and Vn(ϕ) that join the origin O with the points fp(R0eiϕ) and
fn(R0eiϕ), respectively, is small in absolute value (as compared to Rn

0 = |Vp(ϕ)|)
ifR0 is large enough. Indeed, by the definition of degree, if the mobile vector is re-
placed by another mobile vector whose direction always differs from the direction
of the first one by less than π/2, the degree will be the same for the two vectors.

Rn
0

fn(S1)

fp,R0(S1)

0

R
→

0

R → 0

R
→

0

a0

FIGURE 2.7.1. Proof of the fundamental theorem of algebra
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Clearly, |∆| = |an−1zn−1+· · ·+a1z+a0|. Let us estimate this number, putting
z = R0eϕ and A = max{an−1, an−2, . . . , a0} (here without loss of generality we
assume that R0 > 1). We then have

|∆| = |an−1z
n−1 + · · ·+ a1z + a0| ≤ |A(Rn−1

0 + Rn−2
0 · · ·+ 1)| ≤ A ·n ·Rn−1

0 .

Now if we put R0 := K · A, where K is a large positive number, we will obtain
|∆| ≤ nA(KA)n−1 = nKn−1An. Let us compare this quantity to Rn

0 ; the latter
equals Rn

0 = KnAn, so for K large enough the ratio |∆|/Rn
0 is as small as we

wish. This proves the lemma and concludes the proof of the theorem. !

2.8. The fundamental group; definition and elementary properties

The fundamental group is one of the most important invariants of homotopycalculations for Mobius and
Klein bottle(the latter need to

be defined in Chapter 1 theory. It also has numerous applications outside of topology, especially in com-
plex analysis, algebra, theoretical mechanics, and mathematical physics. In our
course, it will be the first example of a “functor”, assigning a group to each path-
connected topological space and a group homomorphism to each continuous map
of such spaces, thus reducing topological problems about spaces to problems about
groups, which can often be effectively solved. In a more down-to-earth language
this will be the first sufficiently universal non-trivial invariant of homotopy equiv-
alence, defined for all path connected spaces and calculable in many natural situa-
tions.

2.8.1. Main definitions. Let M be a topological space with a marked point
p ∈ M .

DEFINITION 2.8.1. A curve c : [0, 1] → M such that c(0) = c(1) = p will
be called a loop with basepoint p. Two loops c0, c1 with basepoint p are called
homotopic rel p if there is a homotopy F : [0, 1]× [0, 1] → M joining c0 to c1 such
that F (t, x) = p for all t ∈ [0, 1].

If c1 and c2 are two loops with basepoint p, then the loop c1 · c2 given by

c1 · c2(t) :=

{
c1(2t) if t ≤ 1

2 ,

c2(2t− 1) if t ≥ 1
2 .

is called the product of c1 and c2.

PROPOSITION 2.8.2. Classes of loops homotopic rel p form a group with re-
spect to the product operation induced by ·.

PROOF. First notice that the operation is indeed well defined on the homotopy
classes. For, if the paths ci are homotopic to c̃i, i = 1, 2 via the maps h1 :
[0, 1]× [0, 1] → M , then the map h, defined by

h(t, s) :=

{
h1(2t, s) if t ≤ 1

2 ,

h2(2t− 1, s) if t ≥ 1
2

is a homotopy rel p joining c1 to c2.
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Obviously, the role of the unit is played by the homotopy class of the constant
map c0(t) = p. Then the inverse to c will be the homotopy class of the map
c′(t) := c(1 − t). What remains is to check the associative law: (c1 · c2) · c3 is
homotopic rel p to c1 · (c2) · c3) and to show that c · c′ is homotopic to c0. In
both cases the homotpy is done by a reparametrization in the preimage, i.e., on the
square [0, 1]× [0, 1].

For associativity, consider the following continuous map (“reparametrization”)
of the square into itself

R(t, s) =






(t(1 + s), s) if 0 ≤ t ≤ 1
4 ,

(t + s
4 , s) if 1

4 ≤ t ≤ 1
2 ,

(1− 1
1+s + t

1+s , s) if 1
2 ≤ t ≤ 1.

Then the map c1 · (c2 · c3) ◦ R : [0, 1] × [0, 1] → M provides a homotopy rel
endpoints joining the loops c1 · (c2 · c3) and (c1 · c2) · c3.

1/4
1/2

c1 c2 c3

1/2
3/4

c1 c2 c3

t

s

(c1 · c2) · c3 % c1 · (c2 · c3)

FIGURE 2.8.1. Associativity of multiplication

Similarly, a homotopy joining c · c′ to c0 is given by c · c′ ◦ I , where the
reparametrization I : [0, 1]× [0, 1] → [0, 1]× [0, 1] is defined as

I(t, s) =

{
(t, s) if 0 ≤ t ≤ 1−s

2 , or 1+s
2 ≤ t ≤ 1,

(1−s
2 , s) if 1−s

2 ≤ t ≤ 1+s
2 ,

Notice that while the reparametrization I is discontinuous along the wedge t =
(1 ± s)/2, the map (c · c′) ◦ I is continuous by the definition of c′. !

DEFINITION 2.8.3. The group described in Proposition 2.8.2 is called the fun-
damental group ofM at p and is denoted by π1(M,p).

It is natural to ask to what extent π1(M,p) depends on the choice of the point
p ∈ M . The answer is given by the following proposition.

PROPOSITION 2.8.4. If p and q belong to the same path connected component
of M , then the groups π1(M,p) and π1(M, q) are isomorphic.
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PROOF. Let ρ : [0, 1] → M be a path connecting points p and q. It is natural
to denote the path ρ ◦ S where S(t) = 1 − t by ρ−1. It is also natural to extend
the ” · ” operation to paths with different endpoints if they match properly. With
these conventions established, let us associate to a path c : [0, 1] → M with c(0) =
c(1) = p the path c′ := ρ−1 · c · ρ with c′(0) = c′(1) = q. In order to finish
the proof, we must show that this correspondence takes paths homotopic rel p to
paths homotopic rel q, respects the group operation and is bijective up to homotopy.
These staments are proved using appropriate rather natural reparametrizations, as
in the proof of Proposition 2.8.2. !

REMARK 2.8.5. By mapping the interval [0, 1] to the circle with a marked point
e first and noticing that, if the endpoints are mapped to the e, than the homotopy
can also be interpreted as a map of the closed cylinder S1 × [0, 1] to the space
with a based point which maps e × [0, 1] to the base point p, we can interpret the
construction of the fundamental group as the group of homotopy classes of maps
(S1, e) into M,p). Sometimes this language is more convenient and we will use
both versions interchangeably.
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FIGURE 2.8.2. Change of basepoint isomorphism

REMARK 2.8.6. It follows from the construction that different choices of the
connecting path ρ will produce isomorphisms between π1(M,p) and π1(M, q)
which differ by an inner automorphism of either group.

If the spaceM is path connected then the fundamental groups at all of its points
are isomorphic and one simply talks about the fundamental group of M and often
omits the basepoint from its notation: π1(M).

DEFINITION 2.8.7. A path connected space with trivial fundamental group is
said to be simply connected (or sometimes 1-connected).

REMARK 2.8.8. Since the fundamental group is defined modulo homotopy, it
is the same for homotopically equivalent spaces, i.e., it is a homotopy invariant.

The free homotopy classes of curves (i.e., with no fixed base point) correspond
exactly to the conjugacy classes of curves modulo changing base point, so there
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is a natural bijection between the classes of freely homotopic closed curves and
conjugacy classes in the fundamental group.

That this object has no natural group structure may sound rather unfortunate
to many a beginner topologist since the main tool of algebraic topology, namely,
translating difficult geometric problems into tractable algebraic ones, have to be
applied here with fair amount of care and caution here.

2.8.2. Functoriality. Now suppose that X and Y are path connected, f :
X → Y is a continuous maps with and f(p) = q. Let [c] be an element of
π1(X, p), i.e., the homotopy class rel endpoints of some loop c : [0, 1] → X . De-
note by f#(c) the loop in (Y, q) defined by f#(t) := f(c(t)) for all t ∈ [0, 1].
‖fn

∗ (v)‖ ≥ Ce−µ|n|‖v‖, for all n > 0 and v ∈ Ec(p). The following sim-
ple but fundamental fact is proven by a straightforward checking that homotopic
rel based points loop define homotopic images.

PROPOSITION 2.8.9. The assignment c (→ f#(c) is well defined on classes
of loops and determines a homomorphism (still denoted by f#) of fundamental
groups:

f# : π1(X, p) → π1(Y, q)

(refered to as the homomorphism induced by f ), which possesses the following
properties (called functorial):

• (f ◦ g)# = f# ◦ g# (covariance);
• (idX)# = idπ1(X,p) (identity maps induce identity homomorphisms).

The fact that the construction of an invariant (here the fundamental group) is
functorial is very convenient for applications. For example, let us give another
proof of the Brouwer fixed point theorem for the disk by using the isomorphism
π1(S1) = Z (see Proposition 2.8.12 below) and π1(D2) = 0 (since D2 is con-
tractible) and the functoriality of π1(·).

We will prove (by contradiction) that there is no retraction of D2 on its bound-
ary S1 = ∂D2 i.e. a mapD2 → S1 which is identity on S1, Let r : D2 → S1 be such
a retraction, let i : S1 → D2 be the inclusion; choose a basepoint x0 ∈ S1 ⊂ D2.
Note that for this choice of basepoint we have i(x0 = r(x0) = x0). Consider the
sequence of induced maps:

π1(S1, x0)
i∗−→ π1(D2, x0)

r∗−→ π1(S1, x0).

In view of the isomorphisms noted above, this sequence is actually

Z i∗−→ 0 r∗−→ Z.

But such a sequence is impossible, because by functoriality we have

r∗ ◦ i∗ = (r ◦ i)∗ = Id∗ = IdZ . !
In addition to functoriality the fundamental group behaves nicely with respect

to the product.
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PROPOSITION 2.8.10. If X and Y are path connected spaces, then

π1(X × Y ) = π1(X)× π1(Y ).

PROOF. Let us construct an isomorphism of π1(X)×π1(Y ) onto π1(X× Y ).
Let x0, y0 be the basepoints inX and Y , respectively. For the basepoint inX ×Y ,
let us take the point (x0, y0). Now to the pair of loops α and β in X and Y let us
assign the loop α × β given by α × β(t) := (α(t),β(t)). The verification of the
fact that this assignment determines a well-defined isomorphism of the appropriate
fundamental groups is quite straightforward. For example, to prove surjectivity, for
a given loop γ inX×Y with basepoint (x0, y0), we consider the two loops α(t) :=
(prX ◦ γ)(t) and β(t) := (prY ◦ γ)(t), where prX and prY are the projections on
the two factors of X × Y . !

COROLLARY 2.8.11. If C is contractible, then π1(X × C) = π1(X)

EXERCISE 2.8.1. Prove that for any path connected topological space X we
have π1(Cone(X)) = 0.

2.8.3. Examples and applications. The first non-trivial example is an easy
corollary of degree theory.

PROPOSITION 2.8.12. The fundamental group of the circle R/Z is Z and in
additive notation for S1 = R/Z with 0 being the base point the element n ∈ Z is
represented by the map Em.

PROOF. This is essentially a re-statement of Theorem 2.4.4. Since this is a
very fundamental fact of homotopy theory we give a detailed argument.

Let γ : (S1, 0) → (S1, 0) be a loop. LIft it in a unique fashion to a map Γ :
(R, 0) → R, 0). A homotopy rel 0 between any two maps γ, γ′ : (S1, 0) → (S1, 0)
lifts uniquely between a homotopy between lifts. Hence deg γ is a homotopy in-
variant of γ. On the other hand the “straight-line homotopy” between Γ and the
linear map xdeg γx projects to a homotopy rel 0 between γ and Edeg γ . !

Proposition 2.8.12 and Proposition 2.8.10 immediately imply

COROLLARY 2.8.13. π1(Tn) = Zn.

Notice that Tn = Rn/Zn and π1(Tn) is isomorphic to the subgroup Zn by
which Rn is factorized. This is not accidental but the first instance of universal
covering phenomenon, see Section 6.2.2.

On the other hand here is an example of a space, which later will be shown to
be non-contractible, with trivial fundamental group.

PROPOSITION 2.8.14. For any n ≥ 2, π1(Sn) = 0.
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PROOF. The main idea of the proof is to make use of the fact that Sn is the one-
point compactification of the contractible space Rn and that for n ≥ 2 any loop is
homotopic to one which avoids this single point. For such a loop the contraction
(deformation) of Sn with one point removed to the base point of the loop also
produces a homotopy of the loop to the trivial one. However exotic a loop whose
image covers the whole sphere may look such loops exist (see Peano curves, ??).
Still any loop is homotopic to a loop which consist of a finite number of arcs of
great circles and hence does not cover the whole sphere. The method we use here
is interesting since we will make use of a geometric structure (spherical geometry
on this occasion) to prove a purely topological statement, so we will describe it in
detail.

For any two points p and q on the standard unit n-sphere in Rn+1, which are
not diametrically opposite, there is a unique shortest curve connecting these points,
namely the shorter of the two arcs of the great circle which can be described as
the intersection of the two-dimensional plane passing through p, q and the origin.
Such curves give the next simplest example after straight lines in the Euclidean
space of geodesics which play a central role in Riemannian geometry, the core part
of differential geometry. We will mention that subject somewhat more extensively
in ?? and will describe the basics of a systematic theory in ??. An important thing
to remember is that any geodesic is provided with the natural length parameter and
that they depend continuously on the endpoints as long those are not too far away
(e.g. are not diametrically opposite in the case of the standard round sphere).

Now come back to our general continuous loop γ in Sn. By compactness
one can find finitely many points 0 = t0 < t1 < · · · < tm−1, tm = 1 such
that for k = 0, 1 . . . , m − 1 the set Γk := γ[tk, tk+1] lies is a sufficiently small
ball. In fact for our purpose it would be sufficient if this set lies within an open
half-sphere. Now for any open half-sphere H ⊂ Sn and any p, q ∈ H there is
a canonical homotopy of H into the arc of the great circle C in H connecting p
and q keeping these two points fixed. Namely, first for any x ∈ H consider the
unique arcAx of the great circle perpendicular to the great circle C and connecting
x with C and lying inH . Our homotopy moves x alongAx according to the length
parameter normalized to 1/2. The result is a homotopy of H to C ∩ H keeping
every point on C ∩H fixed. After that one contracts C ∩H to the arc between p
and q by keeping all points on that arc fixed and uniformly contracting the length
parameter normalized to 1/2 on the remaining two arcs. This procedure restricted it would be nice to have

illustrations hereto γ[tk, tk+1] on each interval [tk, tk+1], k = 0, . . . ,m − 1 produces a homotopy
of γ to a path whose image is a finite union of arcs of great circles and hence does
not cover the whole sphere. !

Now we can make an advance toward a solution of a natural problem which
concerned us since we first introduced manifolds: invariance of dimension. We
proved that one-dimensional manifolds and higher dimensional ones are not home-
omorphic by an elementary observation that removing a single point make the for-
mer disconnected locally while the latter remains connected. Now we can make a
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step forward from one to two. This will be the first instance when we prove absence
of homeomorphism by appealing to homotopy equivalence.

PROPOSITION 2.8.15. Any two-dimensional manifold and any n-dimensional
manifold for n ≥ 3 are not homeomorphic.

PROOF. First let us show that R2 and Rn for n ≥ 3 are not homeomorphic. By
removing one point we obtain in the first case the space homotopically equivalent
to the circle which hence has fundamental group Z by Proposition 2.8.12 and in
the second the space homotopically equivalent to Sn−1 which is simply connected
by Proposition 2.8.14.

Now assume that h : Mn → M2 is a homeomorphism from an n-dimensional
manifold to a two-dimensional manifold. Let h(p) = q. Point p has a base of
neighborhoods homeomorphic to Rn. Hence any loop in such a neighborhood
which does not touch p can be contracted to a point within the neighborhood with-
out the homotopy touching p. On the other hand, q has a base of neighborhoods
homeomorphic to R2 which do not possess this property. Let N - q be such a
neighborhood and let N ′ - p be a neighborhood of p homeomorphic to Rn such
that h(N ′) ⊃ N . Let γ : [0, 1] → N ′ \ {p} be a loop which is hence contractible
in N ′ \ {p}. Then h ◦ γ : [0, 1] → h(N ′) \ {q} is a loop which is contractible in
h(N ′) \ {q} and hence in N \ {q}, a contradiction. !

REMARKS 2.8.16. (1) In order to distinguish between the manifolds of
dimension higher than two the arguments based on the fundamental group
are not sufficient. One needs either higher homotopy group s introduced
below in Section 2.10 or degree theory for maps of spheres of higher
dimension ??.

(2) Our argument above by no means shows that manifolds of different di-
mension are not homotopically equivalent; obviously all Rns are since
they are all contractible. More interestingly even, the circle and Móbius
strip are homotopically equivalent as we already know. However a proper
even more general version of degree theory (which is a basic part of ho-
mology theory for manifolds) will allow as to show that dimension is an
invariant of homotopy equivalence for compact manifolds.

2.8.4. The Seifert–van Kampen theorem. In this subsection we state a classical the-
orem which relates the fundamental group of the union of two spaces with the fundamental
groups of the summands and of their intersection. The result turns out to give an efficient
method for computing the fundamental group of a “complicated” space by putting it to-
gether from “simpler” pieces.

In order to state the theorem, we need a purely algebraic notion from group theory.

DEFINITION 2.8.17. Let Gi, i = 1, 2, be groups, and let ϕi : K → Gi, i = 1, 2 be
monomorphisms. Then the free product with amalgamation of G1 and G2 with respect to
ϕ1 and ϕ2, denoted by G1 ∗K G2 is the quotient group of the free product G1 ∗ G2 by
the normal subgroup generated by all elements of the form ϕ1(k)(ϕ2(k))−1, k ∈ K.
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THEOREM 2.8.18 (Van Kampen’s Theorem). Let the path connected space X be the
union of two path connected spaces A and B with path connected intersection containing
the basepoint x0 ∈ X . Let the inclusion homomorphisms

ϕA : π1(A ∩B) → π1(A), ϕB : π1(A ∩B) → π1(B)

be injective. Then π1(X, x0) is the amalgamated product
π1(X, x0) ∼= π1(A, x0) ∗π1(A∩B,x0) π1(B, x0).

For a proof see G, Bredon, Geometry and Topology, Theorem 9.4.

2.9. The first glance at covering spaces

A covering space is a mapping of spaces (usually manifolds) which, locally, is
a homeomorphism, but globally may be quite complicated. The simplest nontrivial
example is the exponential map R → S1 discussed in Section 2.4.1.

2.9.1. Definition and examples.

DEFINITION 2.9.1. If M,M ′ are topological manifolds and π : M ′ → M is
a continuous map such that cardπ−1(y) is independent of y ∈ M and every x ∈
π−1(y) has a neighborhood on which π is a homeomorphism to a neighborhood of
y ∈ M then π is called a covering map and M ′ (or (M ′,π)) is called a covering
(space) or cover of M . If n = cardπ−1(y) is finite, then (M ′,π) is said to be an
n-fold covering.

If f : N → M is continuous and F : N → M ′ is such that f = π ◦ F , then
F is said to be a lift of f . If f : M → M is continuous and F : M ′ → M ′ is
continuous such that f ◦ π = π ◦ F then F is said to be a lift of f as well.

0 1

p

B

E

FIGURE 2.9.1. Lift of a closed curve

DEFINITION 2.9.2. A simply connected covering is called the universal cover.
A homeomorphism of a coveringM ′ ofM is called a deck transformation if it is a
lift of the identity onM .
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EXAMPLE 2.9.3. (R, exp(2πi(·))) is a covering of the unit circle. Geometri-
cally one can view this as the helix (e2πix, x) covering the unit circle under projec-
tion. The map defined by taking the fractional part likewise defines a covering of
the circle R/Z by R.

PROPOSITION 2.9.4. If π : M ′ → M and ρ : N ′ → N are covering maps,
then π × ρ : M ′ ×N ′ → M ×N is a covering map.

EXAMPLE 2.9.5. The torus T2 = S1 × S1 is covered by the cylinder S1 × R
which is in turn covered byR2. Notice that the fundamental group Z of the cylinder
is a subgroup of that of the torus (Z2) and R2 is a simply connected cover of both.

EXAMPLE 2.9.6. The maps Em, |m| ≥ 2 of the circle define coverings of the
circle by itself.

EXAMPLE 2.9.7. The natural projection Sn → RP (n) which send points x
and −x into their equivalence class is a two-fold covering. On the other, hand, the
identification map S2n−1 → CP (n) is not a covering since the pre-image on any
point is a continuous curve.

EXERCISE 2.9.1. Describe two-fold coverings of
(1) the (open) Möbius strip by the open cylinder S1 × R;
(2) the Klein bottle by the torus T2.

2.9.2. Role of the fundamental group. One of the remarkable aspects of any
covering space p : X → B is that it is, in a sense, entirely governed by the
fundamental groups of the spaces B and X , or more precisely, by the induced
homomorphism p# : π1(X) → π1(B) of their fundamental groups. We shall
observe this in the two examples given below, postponing the exposition of the
general theory to Chapter 6.

EXAMPLE 2.9.8. Let B be the plane annulus given by the inequalities 1 ≤
r ≤ 2 in the polar coordinates (r, ϕ) on the plane R2, and let X be another copy
of this annulus. Consider the map p : X → B given by (r, ϕ) (→ (r, 3ϕ). It is
obviously a covering space. Geometrically, it can be viewed as in the figure, i.e., as
the vertical projection of the strip aba′b′ (with the segments ab and a′b′ identified)
onto the horizontal annulus.
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FIGURE ?? A triple covering of the annulus

The fundamental group of B (and of X) is isomorphic to Z, and the induced
homomorphism p# : π1(X) → π1(B) is the monomorphism of Z into Z with
image 3Z ⊂ Z. The deck transformations constitute a group isomorphic to Z3

∼=
Z

/
3Z.

This is a fairly general situation. The homomorphism p# is always injective
(for any covering space p) and, provided Im(p#) is a normal subgroup of π1(B), 5
the deck transformations form a group isomorphic to the quotient π1(B)

/
Im(p#).

More remarkable is that the covering map p is entirely determined (up equiva-
lence, defined in a natural way) by the choice of a subgroup of π1(B), in our case,
of the infinite cyclic subgroup of π1(B) generated by the element 3e, where e is the
generator of π1(B) ∼= Z. There is in fact a geometric procedure for constructing
the covering space X , which in our case will yield the annulus.

Another way of defining the geometric structure of a covering space in alge-
braic terms is via the action of a discrete group in some spaceX . Then the covering
is obtained as the quotient map of X onto the orbit space of the group action. In
our case the space X is the annulus, the discrete group is Z3 and it acts on X by
rotations by the angles 0, 2π/3, 4π/3, the orbit space is B (another annulus), and
the quotient map is p.

EXAMPLE 2.9.9. LetB be the torus S1×S1 with coordinates (ϕ, ψ) andX be
the cylinder r = 1 in 3-space endowed with the cylindrical coordinates (r, θ, h).
Consider the map p : X → B given by

(1,ϕ, h) (→ (2ϕ, h mod 2π).

It is obviously a covering space map. Geometrically, it can be described as wrap-
ping the cylinder an infinite number of times along the parallels of the torus and
simultaneously covering it twice along the meridians.

The fundamental group of B is isomorphic to Z, that of X is Z ⊕ Z and the
induced homomorphism p# : π1(X) → π1(B) is the monomorphism of Z into
Z⊕ Z with image 2Z⊕ Z ⊂ Z⊕ Z. The deck transformations constitute a group
isomorphic to (Z/2Z)⊕ Z ⊂ Z⊕ Z.

Here also the covering p can be obtained by an appropriate choice of a discrete
group acting on the cylinderX; then p will be the quotient map ofX onto the orbit
space of this action.

For an arbitrary “sufficiently nice” space B, say a manifold, there is natural bi-
jection between conjugacy classes of subgroups of π1(M) and classes of covering
spaces modulo homeomorphisms commuting with deck transformations. This bi-
jection will be described in detail in Chapter 6, where it will be used, in particular,
to prove the uniqueness of the universal cover.

5This is an important condition which prevents pathologies which may appear for other cover-
ings
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2.10. Definition of higher homotopy groups

The fundamental group has natural generalizations (with S1 replaced by Sn,
n ≥ 2) to higher dimensions, called (higher)homotopy groups (and denoted by
πn(·)). The higher homotopy groups are just as easy (in a sense easier) to define
than the fundamental group, and, unlike the latter, they are commutative.

Let X be a topological space with a marked point p ∈ X . On the sphere Sn,
fix a marked point q ∈ Sn, and consider a continuous map

f : Sn → X such that f(q) = p.

Such a map is called a spheroid. Two spheroids are considered equivalent if they
are homotopic rel basepoints, i.e., if there exists a homotopy ht : Sn → X , t ∈
[0, 1], joining the two spheroids and satisfying ht(q) = p for all t ∈ [0, 1]. By
an abuse of language, we will also refer to the corresponding equivalence classes
as spheroids. It is sometimes more convenient to regard spheroids as homotopy
classes of maps

f : (Dn, ∂Dn) → (X, p),

where the homotopy ht must take ∂Dn, the n − 1-dimensional sphere Sn−1, to p
for all t ∈ [0, 1].

Let us denote by πn(X, p) the set of all (equivalence classes of) spheroids and
introduce a binary operation in that set as follows. Suppose f, g : (Sn, q) →
(X, p) are two spheroids; then their product is the spheroid fg : (Sn, q) → (X, p)
obtained by pulling the equator of Sn containing p to a point and then defining fg
by using f on one of the two spheres in the obtained wedge and g on the other (see
the figure).

s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0s0

s0 X
α

β

(a)

α

β
X

(b)

FIGURE 2.10.1. The product of two spheroids

Note that for n = 1 this definition coincides with the product of loops for the
fundamental group π1(X, p). We will also sometimes consider the set π0(X, p),
which by definition consists of the path connected components of X and has no
natural product operationdefined on it.

PROPOSITION 2.10.1. For n ≥ 2 and all path connected spaces X , the set
πn(X, p) under the above definition of product becomes an Abelian group, known
as the n-th homopoty group of X with basepoint p.
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f

f̃

0

−1

+1

−s

s

FIGURE 2.10.2. Inverse element in πn(X, p)

PROOF. The verification of the fact that πn(X, p)) is a group is straightfor-
ward; we will only show how inverse elements are constructed. This construction
is shown on the figure.

On the figure f : (Dn, ∂Dn) → (X, p) is a spheroid. Denote by f̃ : In−1 ×
[−1, 1] → X the spheroid given by f̃(x, s) := f(x,−s). Then the map (spheroid)
ff̃ satisfies ff̃(x, s) = f̃f(x,−s) (look at the figure again). Therefore we can
consider the family of maps

ht(x, s) =

{
ff̃(x, s), for |s| ≥ t,
f̃f(x,−s), for |s| ≤ t.

For this family of maps we have h0 = ff̃ , while h1 is the constant map. For the
map h(·, s) the shaded area is mapped to p. This shows that every map has an
inverse.

To see that the group πn(X, p)), n ≥ 2, is abelian, the reader is invited to look
at the next figure, which shows a homotopy between fg and gf , where g and f are
arbitrary spheroids. !

PROPOSITION 2.10.2. For n ≥ 2 and all path connected spacesX , the groups
πn(X, p) and πn(X, q), where p, q ∈ X , are isomorphic, but the isomorphism is
not canonical, it depends on the homotopy class (rel endpoints) of the path joining
p to q.

PROOF. The proof is similar to that of an analogous fact about the fundamental
group. ! elaborate a bit

PROPOSITION 2.10.3. The homotopy groups are homotopy invariants of path
connected spaces.

PROOF. The proof is a straightforward verification similar to that of an analo-
gous statement about the fundamental group. ! elaborate

EXERCISE 2.10.1. Prove that all the homotopy groups of a contractible space
are trivial.
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FIGURE 2.10.3. Multiplication of spheroids is commutative
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α

γ

FIGURE 2.10.4. Change of basepoint isomorphism for spheroids

2.11. Hopf fibration

Unlike the fundamental group and homology groups (see Chapter 8), for which
there exist general methods and algorithm for computation , the higher homotopy
groups are extremely difficult to compute. The are certain “easy” cases: for exam-
ple πk(Sn) = 0 for k < n which we will be able to show by a proper extension
of the method used in Proposition 2.8.14. Furthermore, πn(Sn) = Z. this will be
shown in ?? after developing a proper extension of degree theory.

However already computation of πk(Sn) = 0 for k > n present very difficult
problem which has not been completely solved. The first nontrivial example is the
computation of π3 for the sphere S2, based on one of the most beautiful construc-
tions in topology – the Hopf fibration which we will describe now. Computation
of π3(S2) is presented later in Chapter ??. The Hopf fibration appears in a number
of problems in topology, geometry and differential equations.make more specific

Consider the unit sphere in C2:

{(z1, z2) : |z1|2 + |z2|2 = 1}
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and the action H of the circle on it by scalar multiplication: for λ ∈ S1 put
Hλ(z1, z2) = (λz1,λz2).

PROPOSITION 2.11.1. The identification space of this action is homeomorphic
to S2.

PROOF. This identification space is the same as the identification space of C2

where all proportional vectors are identified; it is simply the restriction of this
equivalence relation to the unit sphere. The identification space is CP (1) which is
homeomorphic to S2. !

The Hopf fibration is defined by a very simple formula. To help visualize we
think of the sphere S3 as the one-point compactification of R3, so that we can
actually draw the preimages of the Hopf map h : S3 → S2 (which are circles) in
the way shown on the figure.

∞

FIGURE 2.11.1. The Hopf fibration
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EXERCISE 2.11.1. Let z(t) = (z1(t), z2(t)) ∈ C2. Consider the system of
differential equations ż = iz and restrict it to the 3-sphere {z ∈ C2 | |z| = 1}.
Show that the trajectories of this system are circles constituting the Hopf fibration.

2.12. Problems

EXERCISE 2.12.1. Prove that in S3, represented as R3∪{∞}, the complement
of the unit circle in the xy-plane centered at the origin is homotopy equivalent to
the circle.

EXERCISE 2.12.2. Prove that the 2-sphere with three points removed is homo-
topy equivalent to the figure eight (the wedge of two circles).

EXERCISE 2.12.3. The torus with three points removed is homotopy equiva-
lent to the wedge of four circles.

EXERCISE 2.12.4. Let f : S1 → D2 and g : D2 → S1 be any continuous
maps. Prove that their composition g ◦ f is homotopic to the constant map.

EXERCISE 2.12.5. For any finite cyclic group C there exists a compact con-
nected three-dimensional manifold whose fundamental group is isomorphic to C.

Hint: Use the Hopf fibration.

EXERCISE 2.12.6. Show that the complex projective plane CP (2) (which is
a four–dimensional manifold) is simply connected, i.e. its fundamental group is
trivial.

EXERCISE 2.12.7. Consider the following map f of the torus T2 into itself:
f(x, y) = (x + sin 2πy, 2y + x + 2 cos 2πx) ( mod 1).

Describe the induced homomorphism f∗ of the fundamental group.
Hint: You may use the description of the fundamental group of the direct prod-

uct π1(X × Y ) = π1(X)× π1(Y ).

EXERCISE 2.12.8. Let X = R2 \ Q2. Prove that π1(X) is uncountable.

EXERCISE 2.12.9. The real projective space RP (n) is not simply connected.
Note: Use the fact that RP (n) is the sphere Sn with diametrically opposed

points identified.

EXERCISE 2.12.10. For any abelian finitely generated group A there exists a
compact manifold whose fundamental group is isomorphic to A.

EXERCISE 2.12.11. The fundamental group of any compact connected mani-
fold is no more than countable and is finitely generated.

EXERCISE 2.12.12. Let X be the quotient space of the disjoint union of S1

and S2 with a pair of points x ∈ S1 and y ∈ S2 identified. Calculate π1(X).


