
CHAPTER 3

METRIC SPACES AND UNIFORM STRUCTURES

The general notion of topology does not allow to compare neighborhoods of
different points. Such a comparison is quite natural in various geometric contexts.
The general setting for such a comparison is that of a uniform structure. The most
common and natural way for a uniform structure to appear is via a metric, which
was already mentioned on several occasions in Chapter 1, so we will postpone
discussing the general notion of union structure to Section 3.11 until after detailed
exposition of metric spaces. Another important example of uniform structures is
that of topological groups, see Section 3.12 below in this chapter. Also, as in turns
out, a Hausdorff compact space carries a natural uniform structure, which in the
separable case can be recovered from any metric generating the topology. Metric
spaces and topological groups are the notions central for foundations of analysis.

3.1. Definition and basic constuctions

3.1.1. Axioms of metric spaces. We begin with listing the standard axioms
of metric spaces, probably familiar to the reader from elementary real analysis
courses, and mentioned in passing in Section 1.1, and then present some related
definitions and derive some basic properties.

DEFINITION 3.1.1. If X is a set, then a function d : X × X → R is called a
metric if

(1) d(x, y) = d(y, x) (symmetry),
(2) d(x, y) ≥ 0; d(x, y) = 0 ⇔ x = y (positivity),
(3) d(x, y) + d(y, z) ≥ d(x, z) (the triangle inequality).
If d is a metric, then (X, d) is called a metric space.

The set
B(x, r) := {y ∈ X d(x, y) < r}

is called the (open) r-ball centered at x. The set
Bc(x, r) = {y ∈ X d(x, y) ≤ r}

is called the closed r-ball at (or around) x.
The diameter of a set in a metric space is the supremum of distances between

its points; it is often denoted by diam A. The set A is called bounded if it has finite
diameter.

A map f : X → Y between metric spaces with metrics dX and dY is called as
isometric embedding if for any pair of points x, x′ ∈ X dX(x, x′) = dY (f(x), f(x′)).
If an isometric embedding is a bijection it is called an isometry. If there is an
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76 3. METRIC SPACES AND UNIFORM STRUCTURES

isometry between two metric spaces they are called isometric. This is an obvious
equivalence relation in the category of metric spaces similar to homeomorphism
for topological spaces or isomorphism for groups.

3.1.2. Metric topology. O ⊂ X is called open if for every x ∈ O there exists
r > 0 such that B(x, r) ⊂ O. It follows immediately from the definition that open
sets satisfy Definition 1.1.1. Topology thus defined is sometimes called the metric
topology or topology, generated by the metric d. Naturally, different metrics may
define the same topology.

Metric topology automatically has some good properties with respect to bases
and separation.

Notice that the closed ballBc(x, r) contains the closure of the open ballB(x, r)
but may not coincide with it (Just consider the integers with the the standard metric:
d(m,n) = |m− n|.)

Open balls as well as balls or rational radius or balls of radius rn, n = 1, 2, . . . ,
where rn converges to zero, form a base of the metric topology.

PROPOSITION 3.1.2. Every metric space is first countable. Every separable
metric space has countable base.

PROOF. Balls of rational radius around a point form a base of neighborhoods
of that point.

By the triangle inequality, every open ball contains an open ball around a point
of a dense set. Thus for a separable spaces balls of rational radius around points of
a countable dense set form a base of the metric topology. !

Thus, for metric spaces the converse to Proposition 1.1.12 is also true.
Thus the closure of A ⊂ X has the form

A = {x ∈ X ∀r > 0, B(x, r) ∩A += ∅}.
For any closed set A and any point x ∈ X the distance from x to A,

d(x,A) := inf
y∈A

d(x, y)

is defined. It is positive if and only if x ∈ X \ A.

THEOREM 3.1.3. Any metric space is normal as a topological space.

PROOF. For two disjoint closed sets A,B ∈ X , let
OA := {x ∈ X d(x,A) < d(x,B), OB := {x ∈ X d(x, B) < d(x,A).

These sets are open, disjoint, and contain A and B respectively. !
Let ϕ : [0,∞] → R be a nondecreasing, continuous, concave function such

that ϕ−1({0}) = {0}. If (X, d) is a metric space, then φ ◦ d is another metric on d
which generates the same topology.

It is interesting to notice what happens if a function d as in Definition 3.1.1
does not satisfy symmetry or positivity. In the former case it can be symmetrized
producing a metric dS(x, y):=max(d(x, y), d(y, x)). In the latter by the symmetry



3.1. DEFINITION AND BASIC CONSTUCTIONS 77

and triangle inequality the condition d(x, y) = 0 defines an equivalence relation
and a genuine metric is defined in the space of equivalence classes. Note that
some of the most impotrant notions in analysis such as spaces Lp of functions on
a measure space are actually not spaces of actual functions but are such quotient
spaces: their elements are equivalence classes of functions which coincide outside
of a set of measure zero.

3.1.3. Constructions.
1. Inducing. Any subset A of a metric space X is a metric space with an

induced metric dA, the restriction of d to A×A.
2. Finite products. For the product of finitely many metric spaces, there are

various natural ways to introduce a metric. Let ϕ : ([0,∞])n → R be a continuous
concave function such that ϕ−1({0}) = {(0, . . . , 0)} and which is nondecreasing
in each variable.

Given metric spaces (Xi, di), i = 1, . . . , n, let

dϕ := ϕ(d1, . . . , dn) : (X1 × . . . Xn)× (X1 × . . . Xn) → R.

EXERCISE 3.1.1. Prove that dϕ defines a metric onX1× . . . Xn which gener-
ates the product topology.

Here are examples which appear most often:
• the maximum metric corresponds to

ϕ(t1, . . . , tn) = max(t1, . . . , tn);

• the lp metric for 1 ≤ p < ∞ corresponds to

ϕ(t1, . . . , tn) = (tp1 + · · · + tpn)1/p.

Two particularly important cases of the latter are t = 1 and t = 2; the latter
produces the Euclidean metric in Rn from the standard (absolute value) metrics on
n copies of R.

3. Countable products. For a countable product of metric spaces, various met-
rics generating the product topology can also be introduced. One class of such met-
rics can be produced as follows. Let ϕ : [0,∞] → R be as above and let a1, a2, . . .
be a suquence of positive numbers such that the series

∑∞
n=1 an converges. Given

metric spaces (X1, d1), (X2, d2) . . . , consider the metric d on the infinite product
of the spaces

{
Xi

}
defined as

d((x1, x2, . . . ), (y1, y2, . . . )) :=
∞∑

n=1

anϕ(dn(xn, yn)).

EXERCISE 3.1.2. Prove that d is really a metric and that the corresponding
metric topology coincides with the product topology.
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4. Factors. On the other hand, projecting a metric even to a very good factor
space is problematic. Let us begin with an example which exhibits some of the
characteristic difficulties.

EXAMPLE 3.1.4. Consider the partition of the plane R2 into the level sets of
the function xy, i.e. the hyperboli xy = const += 0 and the union of coordinate
axes. The factor topology is nice and normal. It is easy to see in fact that the
function xy on the factor space establishes a homeomorphism between this space
and the real line. On the other hand, there is no natural way to define a metric in
the factor space based on the Euclidean metric in the plane. Any two elements of
the factor contain points arbitrary close to each other and arbitrary far away from
each other so manipulating with infimums and supremums of of distances between
the points in equivalence classes does not look hopeful.

We will see later that when the ambient space is compact and the factor-
topology is Hausdorff there is a reasonable way to define a metric as the Hausdorff
metric (see Definition 3.10.1) between equivalence classes considered as closed
subsets of the space.

Here is a very simple but beautiful illustration how this may work.

EXAMPLE 3.1.5. Consider the real projective space RP (n) as the factor space
of the sphere Sn with opposite points identified. Define the distance between the
pairs (x,−x) and (y,−y) as the minimum of distances between members of the
pairs. Notice that this minimum is achieved simultaneously on a pair and the pair
of opposite points. This last fact allows to check the triangle inequality (positivity
and symmetry are obvious) which in general would not be satisfied for the minimal
distance of elements of equivalence classes even if those classes are finite.

EXERCISE 3.1.3. Prove the triangle inequality for this example. Prove that the
natural projection from Sn to RP (n) is an isometric embedding in a neighborhood
of each point. Calculate the maximal size of such a neighborhood.

Our next example is meant to demonstrate that the chief reason for the success
of the previous example is not compactness but the fact that the factor space is the
orbit space of an action by isometries (and of course is Hausdorff at the same time):

EXAMPLE 3.1.6. Consider the natural projection Rn → Rn/Zn = Tn. De-
fine the distance d(aZn, bZn) on the torus as the minimum of Euclidean distances
between points in Rn in the equivalence classes representing corresponding points
on the torus. Notice that since translations are isometries the minimum is always
achieved and if it is achieved on a pair (x, y) it is also achieved on any integer
translation of (x, y).

EXERCISE 3.1.4. Prove the triangle inequality for this example. Prove that
the natural projection from Rn to Tn is an isometric embedding in any open ball of
radius 1/2 and is not an isometric embedding in any open ball of any greater radius.
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3.2. Cauchy sequences and completeness

3.2.1. Definition and basic properties. The notion of Cauchy sequence in
Euclidean spaces and the role of its convergence should be familiar from elemen-
tary real analysis courses. Here we will review this notion in the most general
setting, leading up to general theorems on completion, which play a crucial role in
functional analysis.

DEFINITION 3.2.1. A sequence {xi}i∈N is called a Cauchy sequence if for all
ε > 0 there exists an N ∈ N such that d(xi, xj) < ε whenever i, j ≥ N; X is said
to be complete if every Cauchy sequence converges.

PROPOSITION 3.2.2. A subset A of a complete metric space X is a complete
metric space with respect to the induced metric if and only if it is closed.

PROOF. For a closed A ∈ X the limit of any Cauchy sequence in A belongs
to A. If A is not closed take a sequence in A converging to a point in Ā \ A. It is
Cauchy but does not converge in A. !

The following basic property of complete spaces is used in the next two theo-
rems.

PROPOSITION 3.2.3. Let A1 ⊃ A2 ⊃ . . . be a nested sequence of closed sets
in a complete metric space, such that diam An → 0 as n →∞. Then

⋂∞
n=1 An is

a single point.

PROOF. Since diam An → 0 the intersection cannot contain more than one
point. Take a sequence xn ∈ An. It is Cauchy since diam An → 0. Its limit x
belongs to An for any n. Since the sets Ai are closed, it follows that x ∈ An for
any n. !

3.2.2. The Baire category theorem.

THEOREM 3.2.4 (Baire Category Theorem). In a complete metric space, a
countable intersection of open dense sets is dense. The same holds for a locally
compact Hausdorff space.

PROOF. If {Oi}i∈N are open and dense in X and ∅ += B0 ⊂ X is open then
inductively choose a ball Bi+1 of radius at most ε/i for which we have B̄i+1 ⊂
Oi+1 ∩Bi. The centers converge by completeness, so

∅ +=
⋂

i

B̄i ⊂ B0 ∩
⋂

i

Oi.

For locally compact Hausdorff spaces take Bi open with compact closure and use
the finite intersection property. !
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The Baire Theorem motivates the following definition. If we want to mesure
massivenes of sets in a topological or in particular metric space, we may assume
that nowhere dense sets are small and their complements are massive. The next
natural step is to introduce the following concept.

DEFINITION 3.2.5. Countable unions of nowhere dense sets are called sets of
first (Baire) category.

The complement to a set of first baire category is called a residual set.

The Baire category theorem asserts that, at least for complete metric spaces,
sets of first category can still be viewed as small, since they cannot fill any open
set.

The Baire category theorem is a simple but powerful tool for proving exis-
tence of various objects when it is often difficult or impossible to produce those
constructively.

3.2.3. Minimality of the Cantor set. Armed with the tools developed in the
previous subsections, we can now return to the Cantor set and prove a universality
theorem about this remarkable object.

THEOREM 3.2.6. (cf. Exercise 1.10.14)
Any uncountable separable complete metric space X contains a closed subset

homeomorphic to the Cantor set.

PROOF. First consider the following subset

X0 : {x ∈ X|any neigbourhood of x contains uncountably many points}

Notice that the set X0 is perfect, i.e., it is closed and contains no isolated points.

LEMMA 3.2.7. The set X \ X0 is countable.

PROOF. To prove the lemma, for each point x ∈ X \ X0 find a neighborhood
from a countable base which contains at most countably many points (Proposi-
tion 3.1.2). ThusX\X0 is covered by at most countably many sets each containing
at most countably many points. !

Thus the theorem is a consequence of the following fact.

PROPOSITION 3.2.8. Any perfect complete metric space X contains a closed
subset homeomorphic to the Cantor set.

PROOF. To prove the the proposition, pick two points x0 += x1 in X and let
d0 := d(x0, x1). Let

Xi := B(xi, (1/4)d0), i = 0, 1

and C1 := X0 ∪X1.



3.2. CAUCHY SEQUENCES AND COMPLETENESS 81

Then pick two different points xi,0, xi,1 ∈ IntXi, i = 0, 1. Such choices are
possible because any open set in X contains infinitely many points. Notice that
d(xi,0, xi,1) ≤ (1/2)d0. Let

Yi1,i2 := B(xi1,i2 , (1/4)d(xi1,0, xi1,1)), i1, i2 = 0, 1,

Xi1,i2 := Yi1,i2 ∩ C1 and C2 = X0,0 ∪X0,1 ∪X1,0 ∪X1,1.
Notice that diam(Xi1,i2) ≤ d0/2.

Proceed by induction. Having constructed

Cn =
⋃

i1,...,in∈{0,1}

Xi1,...,in

with diam Xi1,...,in ≤ d0/2n, pick two different points xi1,...,in,0 and xi1,...,in,1 in
IntXi1,...,in and let us successively define

Yi1,...,in,in+1 := B(xi1,...,in,in+1 , d(xi1,...,in,0, xi1,...,in,1)/4),

Xi1,...,in,in+1 := Yi1,...,in,in+1 ∩ Cn,

Cn+1 :=
⋃

i1,...,in,in+1∈{0,1}

Xi1,...,in,in+1 .

Since diam Xi1,...,in ≤ d0/2n, each infinite intersection
⋂

i1,...,in,···∈{0,1}

Xi1,...,in,...

is a single point by Heine–Borel (Proposition 3.2.3). The set C :=
⋂∞

n=1 Cn is
homeomorphic to the countable product of the two point sets {0, 1} via the map

⋂

i1,...,in,···∈{0,1}

Xi1,...,in,... 0→ (i1, . . . , in . . . ).

By Proposition 1.7.3, C is homeomorphic to the Cantor set. !
The theorem is thus proved. !

3.2.4. Completion. Completeness allows to perform limit operations which
arise frequently in various constructions. Notice that it is not possible to define
the notion of Cauchy sequence in an arbitrary topological space, since one lacks
the possibility of comparing neighborhoods at different points. Here the uniform
structure (see Section 3.11) provides the most general natural setting.

A metric space can be made complete in the following way:

DEFINITION 3.2.9. If X is a metric space and there is an isometry from X
onto a dense subset of a complete metric space X̂ then X̂ is called the completion
of X .

THEOREM 3.2.10. For any metric space X there exists a completion unique
up to isometry which commutes with the embeddings of X into a completion.
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PROOF. The process mimics the construction of the real numbers as the com-
pletion of rationals, well–known from basic real analysis. Namely, the elements of
the completion are equivalence classes of Cauchy sequences by identifying two se-
quences if the distance between the corresponding elements converges to zero. The
distance between two (equivalence classes of) sequences is defined as the limit of
the distances between the corresponding elements. An isometric embedding of X
into the completion is given by identifying element of X with constant sequences.
Uniqueness is obvious by definition, since by uniform continuity the isometric em-
bedding of X to any completion extends to an isometric bijection of the standard
completion. !

3.3. The p-adic completion of integers and rationals

This is an example which rivals the construction of real numbers in its impor-
tance for various areas of mathematics, especially to number theory and algebraic
geometry. Unlike the construction of the reals, it gives infinitely many differnt
nonisometric completions of the rationals.

3.3.1. The p-adic norm. Let p be a positive prime number. Any rational num-
ber r can be represented as pm k

l where m is an integer and k and l are integers
realtively prime with p. Define the p-adic norm ‖r‖p := p−m and the distance
dp(r1, r2) := ‖r1 − r2‖p.

EXERCISE 3.3.1. Show that the p-adic norm is multiplicative, i.e., we have
‖r1 · r2‖p = ‖r1‖p‖r2‖p.

PROPOSITION 3.3.1. The inequality

dp(r1, r3) ≤ max(dp(r1, r2), dp(r2, r3))

holds for all r1, r2, r3 ∈ Q.

REMARK 3.3.2. A metric satisfying this property (which is stronger than the
triangle inequality) is called an ultrametric.

PROOF. Since ‖r‖p= ‖ − r‖p the statement follows from the property of p-
norms:

‖r1 + r2‖p ≤ ‖r1‖p + ‖r2‖p.

To see this, write ri = pm
i

ki
li

, i = 1, 2 with ki and li relatively prime with p and
assume without loss of generality thatm2 ≥ m1. We have

r1 + r2 = pm
1

k1l2 + pm2−m1k2l1
l1l2

.

The numerator k1l2 + pm2−m1k2l1 is an integer and if m2 > m1 it is relatively
prime with p. In any event we have ‖r1+r2‖p ≤ p−m1 = ‖r1‖p = max(‖r1‖p, ‖r2‖p).

!
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3.3.2. The p-adic numbers and the Cantor set. Proposition 3.3.1 and the
multiplicativity prorerty of the p-adic norm allow to extend addition and multipli-
cation fromQ to the completion. This is done in exacly the same way as in the real
analysis for real numbers. The existence of the opposite and inverse (the latter for
a nonzero element) follow easily.

Thus the completion becomes a field, which is called the field of p-adic num-
bers and is usually denoted by Qp. Restricting the procedure to the integers which
always have norm ≤ 1 one obtains the subring of Qp, which is called the ring of
p-adic integers and is usually denoted by Zp.

The topology of p–adic numbers once again indicates the importance of the
Cantor set.

PROPOSITION 3.3.3. The space Zp is homeomorphic to the Cantor set; Zp is
the unit ball (both closed and open) in Qp.

The space Qp is homeomorphic to the disjoint countable union of Cantor sets.

PROOF. We begin with the integers. For any sequence

a = {an} ∈
∞∏

n=1

{0, 1 . . . , p− 1}

the sequence of integers

kn(a) :=
n∑

i=1

anpi

is Cauchy; for different {an} these sequences are non equivalent and any Cauchy
sequence is equivalent to one of these. Thus the correspondence

∞∏

n=1

{0, 1 . . . , p− 1}→ Zp, {an} 0→ the equivalence class of kn(a)

is a homeomorphism. The space
∏∞

n=1{0, 1 . . . , p − 1} can be mapped homeo-
morphically to a nowhere dense perfect subset of the interval by the map

{an}∞n=1 0→
∞∑

n=1

an(2p− 1)−i

. Thus the statement about Zp follows from Proposition 1.7.5.
Since Z is the unit ball (open and closed) around 0 in the matric dp and any

other point is at a distance at least 1 from it, the same holds for the completions.
Finally, any rational number can be uniquely represented as

k +
n∑

i=1

aip
−i, k ∈ Z, ai ∈ {0, . . . , p− 1}, i = 1, . . . , n.

If the corresponging finite sequences ai have different length or do not coincide,
then the p-adic distance between the rationals is at least 1. Passing to the com-
pletion we see that any x ∈ Qp is uniquely represented as k +

∑n
i=1 aip−i with

k ∈ Zp. with pairwise distances for different ai’s at least one. !
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EXERCISE 3.3.2. Where in the construction is it important that p is a prime
number?

3.4. Maps between metric spaces

3.4.1. Stronger continuity properties.

DEFINITION 3.4.1. A map f : X → Y between the metric spaces (X, d),
(Y, dist) is said to be uniformly continuous if for all ε > 0 there is a δ > 0 such
that for all x, y ∈ X with d(x, y) < δ we have dist(f(x), f(y)) < ε. A uni-
formly continuous bijection with uniformly continuous inverse is called a uniform
homeomorphism.

PROPOSITION 3.4.2. A uniformly continuous map from a subset of a metric
space to a complete space uniquely extends to its closure.

PROOF. Let A ⊂ X , x ∈ Ā, f : A → Y uniformly continuous. Fix an
ε > 0 and find the corresponding δ from the definition of uniform continuity. Take
the closed δ/4 ball around x. Its image and hence the closure of the image has
diameter ≤ ε. Repeating this procedure for a sequence εn → 0 we obtain a nested
sequence of closed sets whose diameters converge to zero. By Proposition 3.2.3
their intersection is a single point. If we denote this point by f(x) the resulting map
will be continuous at x and this extension is unique by uniqueness of the limit since
by construction for any sequence xn ∈ A, xn → x one has f(xn) → f(x). !

DEFINITION 3.4.3. A family F of maps X → Y is said to be equicontinuous
if for every x ∈ X and ε > 0 there is a δ > 0 such that d(x, y) < δ implies

dist(f(x), f(y)) < ε for all y ∈ X and f ∈ F .

DEFINITION 3.4.4. A map f : X → Y is said to be Hölder continuous with
exponent α, or α-Hölder, if there exist C, ε > 0 such that d(x, y) < ε implies

d(f(x), f(y)) ≤ C(d(x, y))α,

Lipschitz continuous if it is 1-Hölder, and biLipschitz if it is Lipschitz and has a
Lipschitz inverse.

It is useful to introduce local versions of the above notions. A map f : X → Y
is said to be Hölder continuous with exponent α, at the point x ∈ X or α-Hölder,
if there exist C, ε > 0 such that d(x, y) < ε implies

d(f(x), f(y)) ≤ C(d(x, y))α,

Lipschitz continuous at x if it is 1-Hölder at x.
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3.4.2. Various equivalences of metric spaces. Besides the natural relation of
isometry, the category of metric spaces is endowed with several other equivalence
relations.

DEFINITION 3.4.5. Twometric spaces are uniformly equivalent if there exists a
homeomorphism between the spaces which is uniformly continuous together with
its inverse.

PROPOSITION 3.4.6. Any metric space uniformly equivalent to a complete
space is complete.

PROOF. A uniformly continuous map obviously takes Cauchy sequences to
Cauchy sequences. !

EXAMPLE 3.4.7. The open interval and the real line are homeomorphic but
not uniformly equivalent because one is bounded and the other is not.

EXERCISE 3.4.1. Prove that an open half–line is not not uniformly equivalent
to either whole line or an open interval.

DEFINITION 3.4.8. Metric spaces are Hölder equivalent if there there exists a
homeomorphism between the spaces which is Hölder together with its inverse.

Metric spaces are Lipschitz equivalent if there exists a biLipschitz homeomor-
phism between the spaces.

EXAMPLE 3.4.9. Consider the standard middle–third Cantor set C and the
subset C1 of [0, 1] obtained by a similar procedure but with taking away at every
step the open interval in the middle of one half of the length. These two sets are
Hólder equivalent but not Lipschitz equivalent.

EXERCISE 3.4.2. Find a Hölder homeomorphism with Hölder inverse in the
previous example.

As usual, it is easier to prove existence of an equivalence that absence of one.
For the latter one needs to produce an invariant of Lipschitz equivalence calculate
it for two sets and show that the values (which do not have to be numbers but
may be mathematical objects of another kind) are different. On this occasion one
can use asymptotics of the minimal number of ε-balls needed to cover the set as
ε → 0. Such notions are called capacities and are related to the important notion
of Hausdorff dimension which, unlike the topological dimension, is not invariant
under homeomorphisms. See ??.

EXERCISE 3.4.3. Prove that the identity map of the product space is biLIps-
chitz homeomorphism between the space provided with the maximal metric and
with any lp metric.

EXAMPLE 3.4.10. The unit square (open or closed) is Lipschitz equivalent to
the unit disc (respectively open or closed), but not isometric to it.
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EXERCISE 3.4.4. Consider the unit circle with the metric induced from the R2

and the unit circle with the angular metric. Prove that these two metric spaces are
Lipschitz equivalent but not isometric.

3.5. Role of metrics in geometry and topology

3.5.1. Elementary geometry. The study of metric spaces with a given met-
ric belongs to the realm of geometry. The natural equivalence relation here is the
strongest one, mentioned above, the isometry. Recall that the classical (or “ele-
mentary”) Euclidean geometry deals with properties of simple objects in the plane
or in the three-dimensional space invariant under isometries, or, according to some
interpretations, under a larger class of similarity transformations since the abso-
lute unit of length is not fixed in the Euclidean geometry (unlike the prototype
non-Euclidean geometry, the hyperbolic one!).

Isometries tend to be rather rigid: recall that in the Euclidean plane an isom-
etry is uniquely determined by images of three points (not on a line) , and in the
Euclidean space by the images of four (not in a plane), and those images cannot be
arbitrary.

EXERCISE 3.5.1. Prove that an isometry of Rn with the standard Euclidean
metric is uniquely determined by images of any points x1, . . . , xn+1 such that the
vectors xk − x1, k = 2, . . . , n + 1 are linearly independent.

3.5.2. Riemannian geometry. The most important and most central for math-
ematics and physics generalization of Euclidean geometry is Riemannian geome-
try. Its objects are manifolds (in fact, differentiable or smooth manifolds which
are defined and discussed in Chapter 4) with an extra structure of a Riemannian
metric which defines Euclidean geometry (distances and angles) infinitesimally at
each point, and the length of curves is obtained by integration. A smooth mani-
folds with a fixed Riemannian metric is called a Riemannian manifold. While we
will wait till Section 13.2 for a systematic introduction to Riemannian geometry,
instances of it have already appeared, e.g. the metric on the standard embedded
sphere Sn ⊂ Rn+1 where the distance is measured along the great circles, (and is
not induced fromRn+1), its projection toRP (n), and projection of Euclidean met-
ric inRn to the torus Tn. More general and more interesting classes of Riemannian
manifolds will continue to pop up along the way, e.g. in ?? and ??.

EXERCISE 3.5.2. Prove that in the spherical geometry the sum of angels of a
triangle whose sides are arcs of great circles is always greater than π

3.5.3. More general metric geometries. Riemannian geometry is the richest
and the most important but by no means only and not the most general way met-
ric spaces appear in geometry. While Riemannian geometry, at least classically,
has been inspired mostly by analytic methods of classical geometries (Euclidean,
spherical and suchlike) there are other more contemporary directions which to a
large extent are developing the synthetic methods of classical geometric reasoning;
an outstanding example is the geometry of Aleksandrov spaces.
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EXERCISE 3.5.3. Let a > 0 and denote by Ca the surface of the cone in R3

given by the conditions a2z2 = x2 + y2, z ≥ 0. Call a curve in Ca a line segment
if it is the shortest curve between its endpoints. Find all line segments in Ca.

3.5.4. Metric as a background and a base for Lipschitz structure. The
most classical extensions of Euclidean geometry dealt (with the exception of spher-
ical geometry) not with other metrics spaces but with geometric structures more
general that Euclidean metric, such as affine and projective structures. To this one
should add conformal structure which if of central importance for complex analy-
sis. In all these geometries metrics appear in an auxiliary role such as the metric
from Example 3.1.5 on real projective spaces.

EXERCISE 3.5.4. Prove that there is no metric on the projective line RP (1)
generating the standard topology which is invariant under projective transforma-
tions.

EXERCISE 3.5.5. Prove that there is no metric in R2 generating the standard
topology and invariant under all area preserving affine transformations, i.e trans-
formations of the form x 0→ Ax+ b where A is a matrix with determinanat±1 and
b is a vector.

The role played by metrics in the principal branches of topology, algebraic and
differential topology, is somewhat similar. Most spaces studied in those disciplines
are metrizable; especially in the case of differential topology which studies smooth
manifolds and various derivative objects, fixing a Riemannian metric on the man-
ifold is very useful. It allows to bring precise measurements into the picture and
provides various function spaces associated with the manifold such as spaces of
smooth functions or differential forms, with the structure of a Banach space. But
the choice of metric is usually arbitrary and only in the special cases, when the ob-
jects of study possess many symmetries, a particular choice of metric sheds much
light on the core topological questions.

One should also point out that in the study of non-compact topological spaces
and group actions on such spaces often a natural class of biLipschitz equivalent
metrics appear. The study of such structures has gained importance over last two
decades.

3.6. Separation properties and metrizability

As we have seen any metric topology is first countable (Proposition 3.1.2) and
normal ( Theorem 3.1.3). Conversely, it is natural to ask under what conditions a
topological space has a metric space structure compatible with its topology.

A topological space is said to be metrizable if there exists a metric on it that
induces the given topology. The following theorem gives necessary and sufficient
conditions for metrizability for second countable topological spaces. Theorem 9.10 from Bredon.

THEOREM 3.6.1. [Urysohn Metrization Theorem]
A normal space with a countable base for the topology is metrizable.
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PROOF. ++++++++++++++++++++++++++ !

Theorem 3.6.1 and Proposition 1.5.4 imply

COROLLARY 3.6.2. Any compact Hausdorff space with a countable base is
metrizable.

Example: normal first
countable not metrizable?

3.7. Compact metric spaces

3.7.1. Sequential compactness.

PROPOSITION 3.7.1. Any compact metric space is complete.

PROOF. Suppose the opposite, that is, X is a compact metric space and a
Cauchy sequence xn, n = 1, 2, . . . does not converge. By taking a subsebuence
if necessary we may assume that all points xn are different. The union of the
elements of the sequence is closed since the sequence does not converge. Let

On := X \
∞⋃

i=n

{xn}.

These sets form an open cover of X but since they are increasing there is no
finite subcover. !

DEFINITION 3.7.2. Given r > 0 a subset A of a metric space X is called an
r-net if for any x ∈ X there is a ∈ A such that the distance d(x, a). Equivalently
r-balls around the points of A cover X .

A set A ⊂ X is called r-separated if the distance between any two different
points in A is greater than r.

The following observation is very useful in the especially for quantifying the
notion of compactness.

PROPOSITION 3.7.3. Any maximal r-separated set is an r-net.

PROOF. If A is r-separated and is not an r-net then there is a point x ∈ X at a
distance ≥ r from every point of A Hence the set A ∪ {x} is r-separated !

PROPOSITION 3.7.4. The following properties of a metric space X are equiv-
alent

(1) X is compact;
(2) for any ε > 0 X contains a finite ε-net, or, equivalently, any r-separated

set for any r > 0 is finite;
(3) every sequence contains a congerving subsequence.
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PROOF. (1)→ (2). If X is compact than the cover of X by all balls of radius
ε contains a finite subcover; centers of those balls form a finite ε-net.

(2)→ (3) By Proposition 3.7.1 it is sufficient to show that every sequence has
a Cauchy subsequence. Take a sequence xn, n = 1, 2, . . . and consider a finite
1-net. There is a ball of radius 1 which contains infinitely many elements of the
sequence. Consider only these elements as a subsequence. Take a finite 1/2-net and
find a subsequence which lies in a single ball of radius 1/2. Continuing by induction
we find nested subsequences of the original sequence which lie in balls of radius
1/2n. Using the standard diagonal process we construct a Cauchy subsequence.

(3)→ (1). Let us first show that the space must be separable. This implies that
any cover contains a countable subcover since the space has countable base. If the
space is not separable than there exists an ε > 0 such that for any countable (and
hence finite) collection of points there is a point at the distance greater than ε from
all of them. This allows to construct by induction an infinite sequence of points
which are pairwise more than ε apart. Such a sequence obviously does not contain
a converging subsequence.

Now assume there is an open countable cover {O1,O2, . . . } without a finite
subcover. Take the union of the first n elements of the cover and a point xn out-
side of the union. The sequence xn, n = 1, 2, . . . thus defined has a converging
subsequence xnk → x. But x belong to a certain element of the cover, say ON .
Then for a sufficinetly large k, nk > N hence xnk /∈ ON , a contradiction to
convergence. !

An immediate corollary of the proof is the following.

PROPOSITION 3.7.5. Any compact metric space is separable.

Aside from establishing equivalence of compactness and sequential compact-
ness for metric spaces Proposition 3.7.4 contains a very useful criterion of com-
pactness in the form of property (2). Right away it gives a necessary and sufficient
condition for a (in general incomplete) metric space to have compact completion.
As we see it later in Section 3.7.5 it is also a starting point for developing qualitative
notions related to the “size” of a metric space.

DEFINITION 3.7.6. A metric space (X, d) is totally bounded if it contains a
finite ε-net for any ε > 0, or, equivalently if any r-separates subset of X for any
r > 0 is finite.

Since both completion and any subset of a totally bounded space are totally
bounded Proposition 3.7.4 immediately implies

COROLLARY 3.7.7. Completion of a metric space is compact if and only if the
space is totally bounded.

EXERCISE 3.7.1. Prove that an isometric embedding of a compact metric
space into itself is an isometry.
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3.7.2. Lebesgue number.

PROPOSITION 3.7.8. For an open cover of a compact metric space there exists
a number δ such that every δ-ball is contained in an element of the cover.

PROOF. Suppose the opposite. Then there exists a cover and a sequence of
points xn such that the ball B(xn, 1/2n) does not belong to any element of the
cover. Take a converging subsequence xnk → x. Since the point x is covered by
an open set, a ball of radius r > 0 around x belongs to that element. But for k large
enough d(x, xnk) < r/2 and hence by the triangle inequality the ball B(xnk , r/2)
lies in the same element of the cover. !

The largest such number is called the Lebesgue number of the cover.

3.7.3. Characterization of Cantor sets.

THEOREM 3.7.9. Any perfect compact totally disconnected metric space X is
homeomorphic to the Cantor set.

PROOF. Any point x ∈ X is contained in a set of arbitrally small diameter
which is both closed and open. For x is the intersection of all sets which are open
and closed and contain x. Take a cover of X \ X by sets which are closed and
open and do not contain x Adding the ball B(x, ε) one obtains a cover ofX which
has a finite subcover. Union of elements of this subcover other than B(x, ε) is a set
which is still open and closed and whose complement is contained in B(x, ε).

Now consider a cover of the space by sets of diameter≤ 1which are closed and
open. Take a finite subcover. Since any finite intersection of such sets is still both
closed an open by taking all possible intersection we obtain a partition of the space
into finitely many closed and open sets of diameter ≤ 1. Since the space is perfect
no element of this partition is a point so a further division is possible. Repeating
this procedure for each set in the cover by covering it by sets of diameter≤ 1/2 we
obtain a finer partition into closed and open sets of of diameter ≤ 1/2. Proceeding
by induction we obtain a nested sequence of finite partitions into closed and open
sets of positive diameter ≤ 1/2n, n = 0, 1, 2, . . . . Proceeding as in the proof
of Proposition 1.7.5, that is, mapping elements of each partition inside a nested
sequence of contracting intervals, we constuct a homeomorphism of the space onto
a nowhere dense perfect subset of [0, 1] and hence by Proposition 1.7.5 our space
is homeomorphic to the Cantor set. !

3.7.4. Universality of the Hilbert cube. Theorem 3.2.6 means that Cantor
set is in some sense a minimal nontrivial compact metrizable space. Now we will
find a maximal one.

THEOREM 3.7.10. Any compact separable metric space X is homeomorphic
to a closed subset of the Hilbert cube H .
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PROOF. First by multiplying the metric by a constant if nesessary we may
assume that the diameter of X is less that 1. Pick a dense sequence of points
x1, x2 . . . in X . Let F : X → H be defined by

F (x) = (d(x, x1), d(x, x2), . . . ).

This map is injective since for any two distict points x and x′ one can find n
such that d(x, xn) < (1/2)d(x′, xn) so that by the triangle inequality d(x, xn) <
d(x′, xn) and hence F (x) += F (x′). By Proposition 1.5.11 F (X) ⊂ H is compact
and by Proposition 1.5.13 F is a homeomorphism between X and F (X). !

EXERCISE 3.7.2. Prove that the infinite-dimensioanl torus T∞, the product of
the countably many copies of the unit circle, has the same universality property as
the Hilbert cube, that is, any compact separable metric space X is homeomorphic
to a closed subset of T∞.

3.7.5. Capacity and box dimension. For a compact metric space there is a
notion of the “size” or capacity inspired by the notion of volume. Suppose X
is a compact space with metric d. Then a set E ⊂ X is said to be r-dense if
X ⊂

⋃
x∈E Bd(x, r), where Bd(x, r) is the r-ball with respect to d around x (see

??). Define the r-capacity of (X, d) to be the minimal cardinality Sd(r) of an
r-dense set.

For example, if X = [0, 1] with the usual metric, then Sd(r) is approximately
1/2r because it takes over 1/2r balls (that is, intervals) to cover a unit length,
and the 22 + 1/2r3-balls centered at ir(2 − r), 0 ≤ i ≤ 21 + 1/2r3 suffice.
As another example, if X = [0, 1]2 is the unit square, then Sd(r) is roughly r−2

because it takes at least 1/πr2 r-balls to cover a unit area, and, on the other hand,
the (1 + 1/r)2-balls centered at points (ir, jr) provide a cover. Likewise, for the
unit cube (1 + 1/r)3, r-balls suffice.

In the case of the ternary Cantor set with the usual metric we have Sd(3−i) =
2i if we cheat a little and use closed balls for simplicity; otherwise, we could use
Sd((3− 1/i)−i) = 2i with honest open balls.

One interesting aspect of capacity is the relation between its dependence on r
[that is, with which power of r the capacity Sd(r) increases] and dimension.

If X = [0, 1], then

lim
r→0

− log Sd(r)
log r

≥ lim
r→0

− log(1/2r)
log r

= lim
r→0

log 2 + log r

log r
= 1

and

lim
r→0

− log Sd(r)
log r

≤ lim
r→0

− log22 + 1/2r3
log r

≤ lim − log(1/r)
log r

= 1,

so limr→0− log Sd(r)/ log r = 1 = dim X . If X = [0, 1]2, then

lim
r→0

− log Sd(r)/ log r = 2 = dim X,
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and if X = [0, 1]3, then
lim
r→0

− log Sd(r)/ log r = 3 = dim X.

This suggests that limr→0− log Sd(r)/ log r defines a notion of dimension.

DEFINITION 3.7.11. IfX is a totally bounded metric space (Definition 3.7.6),
then

bdim(X) := lim
r→0

− log Sd(r)
log r

is called the box dimension of X .

Let us test this notion on a less straightforward example. If C is the ternary
Cantor set, then

bdim(C) = lim
r→0

− log Sd(r)
log r

= lim
n→∞

− log 2i

log 3−i
=

log 2
log 3

.

If Cα is constructed by deleting a middle interval of relative length 1 − (2/α)
at each stage, then bdim(Cα) = log 2/ log α. This increases to 1 as α → 2
(deleting ever smaller intervals), and it decreases to 0 as α → ∞ (deleting ever
larger intervals). Thus we get a small box dimension if in the Cantor construction
the size of the remaining intervals decreases rapidly with each iteration.

This illustrates, by the way, that the box dimension of a set may change under
a homeomorphism, because these Cantor sets are pairwise homeomorphic. Box
dimension and an associated but more subtle notion of Hausdorff dimension are
the prime exhibits in the panoply of “fractal dimensions”, the notion surrounded
by a certain mystery (or mystique) at least for laymen. In the next section we will
present simple calculations which shed light on this notion.

3.8. Metric spaces with symmetries and self-similarities

3.8.1. Euclidean space as an ideal geometric object and some of its close
relatives. An outstanding, one may even say, the central, feature of Euclidean ge-
ometry, is an abundance of isometries in the Euclidean space. Not only there is
isometry which maps any given point to any other point (e.g. the parallel transla-
tion by the vector connecting those points) but there are also isometries which inter-
change any given pair of points, e.g the central symmetry with respect to the mid-
point of the interval connecting those points, or the reflection in the (hyper)plane
perpendicular to that interval at the midpoint. The latter property distinguishes a
very important class of Riemannian manifolds, called symmetric spaces. The next
obvious examples of symmetric space after the Euclidean spaces are spheres Sn

with the standard metric where the distance is measure along the shorter arcs of
great circles. Notice that the metric induced from the embedding of Sn as the unit
sphere into Rn+1 also possesses all there isometries but the metric is not a Rieman-
ninan metric, i.e. the distance cannot be calculated as the minimum of lengths of
curves connecting two points, and thus this metric is much less interesting.

EXERCISE 3.8.1. How many isometries are there that interchange two points
x, y ∈ Rn for different values of n?
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EXERCISE 3.8.2. How many isometries are there that interchange two points
x, y ∈ Sn for different values of n and for different configurations of points?

EXERCISE 3.8.3. Prove that the real projective space RP (n) with the metric
inherited from the sphere (??) is a symmetric space.

EXERCISE 3.8.4. Prove that the torus Tn is with the metric inherited from Rn

a symmetric space.

There is yet another remarkable property of Euclidean spaces which is not
shared by other symmetric spaces: existence of similarities, i.e. transformations
which preserve angles and changes all distances with the same coefficient of pro-
portionality. It is interesting to point out that in the long quest to “prove” Euclid’s
fifth postulate, i.e. to deduce it from other axioms of Euclidean geometry, one
among many equivalent formulations of the famous postulate is existence of a sin-
gle pair of similar but not equal ( not isometric) triangles. In the non-Euclidean
hyperbolic geometry which results from adding the negation of the fifth postulates
there no similar triangles and instead there is absolute unit of length! Inciden-
tally the hyperbolic plane (as well as its higher-dimensional counterparts) is also a
symmetric space. Existence of required symmetries can be deduced synthetically
form the axioms common to Euclidean and non-Euclidean geometry, i.e. it belong
s to so-called absolute geometry, the body of statement which can be proven in
Euclidean geometry without the use of fifth postulate.

Metric spaces for which there exists a self-map which changes all distance with
the same coefficient of proportionality different from one are called self-similar.

Obviously in a compact globally self-similar space which contain more one
point the coefficient of proportionality for any similarity transformation must be
less than one and such a transformation cannot be bijective; for non-compact spaces
this is possible however.

3.8.2. Metrics on the Cantor set with symmetries and self-similarities.
There is an interesting example of a similarity on the middle-third Cantor set,
namely, f0 : [0, 1] → [0, 1], f0(x) = x/3. Since f0 is a contraction, it is also
a contraction on every invariant subset, and in particular on the Cantor set. The
unique fixed point is obviously 0. There is another contraction with the same con-
traction coefficient 1/3 preserving the Cantor set, namely f1(x) = x+2

3 with fixed
point 1. Images of these two contractions are disjoint and together they cover the
whole Cantor set

EXERCISE 3.8.5. Prove that any similarity of the middle third Cantor set be-
longs to the semigroup generated by f0 and f1.

EXERCISE 3.8.6. Find infinitely many different self-similar Cantor sets on
[0, 1] which contain both endpoints 0 and 1.
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FIGURE 3.8.1. Sierpinski carpet and Sierpinski gasket.

FIGURE 3.8.2. The Koch snowflake.

3.8.3. Other Self-Similar Sets. Let us describe some other interesting self-
similar metric spaces that are of a different form. The Sierpinski carpet (see ??) is
obtained from the unit square by removing the “middle-ninth” square (1/3, 2/3)×
(1/3, 2/3), then removing from each square (i/3, i + 1/3) × (j/3, j + 1/3) its
“middle ninth,” and so on. This construction can easily be described in terms of
ternary expansion in a way that immediately suggests higher-dimensional analogs.

Another very symmetric construction begins with an equilateral triangle with
the bottom side horizontal, say, and divide it into four congruent equilateral tri-
angles of which the central one has a horizontal top side. Then one deletes this
central triangle and continues this construction on the remaining three triangles. he
resulting set is sometimes called Sierpinski gasket.

The von Koch snowflake is obtained from an equilateral triangle by erecting
on each side an equilateral triangle whose base is the middle third of that side
and continuing this process iteratively with the sides of the resulting polygon It is
attributed to Helge von Koch (1904).

A three-dimensional variant of the Sierpinski carpet S is the Sierpinski sponge
or Menger curve defined by {(x, y, z) ∈ [0, 1]3 (x, y) ∈ S, (x, z) ∈ S (y, z) ∈
S}. It is obtained from the solid unit cube by punching a 1/3-square hole through
the center from each direction, then punching, in each coordinate direction, eight
1/9-square holes through in the right places, and so on. Both Sierpinski carper and
Menger curve have important universality properties which we do not discuss in
this book.

Let as calculate the box dimension of these new examples. For the square
Sierpinski carpet we can cheat as in the capacity calculation for the ternary Cantor
set and use closed balls (sharing their center with one of the small remaining cubes
at a certain stage) for covers. Then Sd(3−i/

√
2) = 8i and

bdim(S) = lim
n→∞

− log 8i

log 3−i/
√

2
=

log 8
log 3

=
3 log 2
log 3

,

which is three times that of the ternary Cantor set (but still less than 2, of course).
For the triangular Sierpinski gasket we similarly get box dimension log 3/ log 2.

The Koch snowflake K has Sd(3−i) = 4i by covering it with (closed) balls
centered at the edges of the ith polygon. Thus

bdim(K) = lim
n→∞

− log 4i

log 3−i
=

log 4
log 3

=
2 log 2
log 3

,

which is less than that of the Sierpinski carpet, corresponding to the fact that the
iterates look much “thinner”. Notice that this dimension exceeds 1, however, so it is
larger than the dimension of a curve. All of these examples have (box) dimension
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that is not an integer, that is, fractional or “fractal”. This has motivated calling such
sets fractals.

Notice a transparent connection between the box dimension and coefficients of
self-similarity on all self-similar examples.

3.9. Spaces of continuous maps

IfX is a compact metrizable topological space (for example, a compact mani-
fold), then the spaceC(X, X) of continuous maps ofX into itself possesses theC0

or uniform topology. It arises by fixing a metric ρ inX and defining the distance d
between f, g ∈ C(X, X) by

d(f, g) := max
x∈X

ρ(f(x), g(x)).

The subset Hom(X) of C(X, X) of homeomorphisms of X is neither open nor
closed in the C0 topology. It possesses, however, a natural topology as a complete
metric space induced by the metric

dH(f, g) := max(d(f, g), d(f−1, g−1)).

IfX is σ-compact we introduce the compact–open topologies for maps and home-
omorphisms, that is, the topologies of uniform convergence on compact sets.

We sometimes use the fact that equicontinuity gives some compactness of a
family of continuous functions in the uniform topology.

THEOREM 3.9.1 (Arzelá–Ascoli Theorem). Let X , Y be metric spaces, X
separable, and F an equicontinuous family of maps. If {fi}i∈N ⊂ F such that
{fi(x)}i∈N has compact closure for every x ∈ X then there is a subsequence
converging uniformly on compact sets to a function f .

Thus in particular a closed bounded equicontinuous family of maps on a com-
pact space is compact in the uniform topology (induced by the maximum norm).

Let us sketch the proof. First use the fact that {fi(x)}i∈N has compact clo-
sure for every point x of a countable dense subset S of X . A diagonal argument
shows that there is a subsequence fik which converges at every point of S. Now
equicontinuity can be used to show that for every point x ∈ X the sequence fik(x)
is Cauchy, hence convergent (since {fi(x)}i∈N has compact, hence complete, clo-
sure). Using equicontinuity again yields continuity of the pointwise limit. Finally
a pointwise convergent equicontinuous sequence converges uniformly on compact
sets. elaborate

EXERCISE 3.9.1. Prove that the set of Lipschitz real-valued functions on a
compact metric space X with a fixed Lipschitz constant and bounded in absolute
value by another constant is compact in C(x, R).

EXERCISE 3.9.2. Is the closure in C([0, 1], R) (which is usually denoted sim-
ply by C([0, 1])) of the set of all differentiable functions which derivative bounded
by 1 in absolute value and taking value 0 at 1/2 compact?
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3.10. Spaces of closed subsets of a compact metric space

3.10.1. Hausdorff distance: definition and compactness. An interesting con-
struction in the theory of compact metric spaces is that of the Hausdorff metric:

DEFINITION 3.10.1. If (X, d) is a compact metric space and K(X) denotes
the collection of closed subsets of X , then the Hausdorff metric dH on K(X) is
defined by

dH(A,B) := sup
a∈A

d(a,B) + sup
b∈B

d(b, A),

where d(x, Y ) := infy∈Y d(x, y) for Y ⊂ X .

Notice that dH is symmetric by construction and is zero if and only if the two
sets coincide (here we use that these sets are closed, and hence compact, so the
“sup” are actually “max”). Checking the triangle inequality requires a little ex-
tra work. To show that dH(A,B) ≤ dH(A,C) + dH(C,B), note that d(a, b) ≤
d(a, c) + d(c, b) for a ∈ A, b ∈ B, c ∈ C, so taking the infimum over b we get
d(a,B) ≤ d(a, c) + d(c,B) for a ∈ A, c ∈ C. Therefore, d(a,B) ≤ d(a,C) +
supc∈C d(c,B) and supa∈A d(a,B) ≤ supa∈A d(a,C) + supc∈C d(c,B). Like-
wise, one gets supb∈B d(b, A) ≤ supb∈B d(b, C) + supc∈C d(c, A). Adding the
last two inequalities gives the triangle inequality.

PROPOSITION 3.10.2. The Hausdorff metric on the closed subsets of a com-
pact metric space defines a compact topology.

PROOF. We need to verify total boundedness and completeness. Pick a finite
ε/2-net N . Any closed set A ⊂ X is covered by a union of ε-balls centered
at points of N , and the closure of the union of these has Hausdorff distance at
most ε from A. Since there are only finitely many such sets, we have shown that
this metric is totally bounded. To show that it is complete, consider a Cauchy
sequence (with respect to the Hausdorff metric) of closed sets An ⊂ X . If we let
A :=

⋂
k∈N

⋃
n≥k An, then one can easily check that d(An, A) → 0. !

EXERCISE 3.10.1. Prove that for the Cantor set C the space K(C) is homeo-
morphic to C.

EXERCISE 3.10.2. Prove thatK([0, 1]) contains a subset homeomorphic to the
Hilbert cube.

3.10.2. Existence of a minimal set for a continuous map. Any homeomor-
phism of a compact metric space X induces a natural homeomorphism of the col-
lection of closed subsets ofX with the Hausdorff metric, so we have the following:

PROPOSITION 3.10.3. The set of closed invariant sets of a homeomorphism f
of a compact metric space is a closed set with respect to the Hausdorff metric.

PROOF. This is just the set of fixed points of the induced homeomorphism;
hence it is closed. !
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We will now give a nice application of the Hausdorff metric. Brouwer fixed
point Theorem (Theorem 2.5.1 and Theorem 9.3.7) does not extend to continuous
maps of even very nice spaces other than the disc. The simplest example of a
continuous map (in fact a self–homeomorphism) which does not have have fixed
points is a rotation of the circle; if the angle of rotation is a rational multiple of π
all points are periodic with the same period; otherwise there are no periodic points.
However, there is a nice generalization which works for any compact Hausdorff
spaces. An obvious property of a fixed or periodic point for a continuous map is its
minimality: it is an invariant closed set which has no invariant subsets.

DEFINITION 3.10.4. An invariant closed subsetA of a continuous map f : X →
X is minimal if there are no nonempty closed f -invariant subsets of A.

THEOREM 3.10.5. Any continuous map f of a compact Hausdorff space X
with a countable base into itself has an invariant minimal set.

PROOF. By Corollary 3.6.2 the spaceX is metrizable. Fix a metric d onX and
consider the Hausdorff metric on the spaceK(X) of all closed subsets ofX . Since
any closed subset A of X is compact (Proposition 1.5.2) f(A) is also compact
(Proposition 1.5.11) and hence closed (Corollary 3.6.2). Thus f naturally induces
a map f∗ : K(X) → K(X) by setting f∗(A) = f(A). A direct calculation shows
that the map f∗ is continuous in the topology induced by the Hausdorff metric.
Closed f -invariant subsets of X are fixed points of f∗. The set of all such sets
is closed, hence compact subset I(f) of K(X). Consider for each B ∈ I(f) all
A ∈ I(f) such that A ⊂ B. Such A form a closed, hence compact, subset IB(f).
Hence the function on IB(f) defined by dH(A,B) reaches its maximum, which
we denote bym(B), on a certain f -invariant setM ⊂ B.

Notice that the functionm(B) is also continuous in the topology of Hausdorff
metric. Hence it reaches its minimumm0 on a certain set N . Ifm0 = 0, the set N
is a minimal set. Now assume thatm0 > 0.

Take the set M ⊂ B such that dH(M,B) = m(B) ≥ m0. Inside M one
can find an invariant subset M1 such that dH(M1,M) ≥ m0. Notice that since
M1 ⊂ M, dH(M1, B) ≥ dH(M,B) = m(B) ≥ m0.

Continuing by induction we obtain an infinite sequence of nested closed in-
variant sets B ⊃ M ⊃ M1 ⊃ M2 ⊃ · · · ⊃ Mn ⊃ . . . such that the Hausdorff
distance between any two of those sets is at leastm0. This contradicts compactness
ofK(X) in the topology generated by the Hausdorff metric. !

EXERCISE 3.10.3. Give detailed proofs of the claims used in the proof of The-
orem 3.10.5:

• the map f∗ : K(X) → K(X) is continuous;
• the functionm(·) is continuous;
• dH(Mi,Mj) ≥ m0 for i, j = 1, 2, . . . ; i += j.
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EXERCISE 3.10.4. For every natural number n give an example of a homeo-
morphism of a compact path connected topological space which has no fixed points
and has exactly n minimal sets.

3.11. Uniform structures

3.11.1. Definitions and basic properties. Themain difference between a met-
ric topology and an even otherwise very good topology defined abstractly is the
possibility to choose “small” neighborhoods for all points in the space simultane-
ously; we mean of course fixing an (arbitrary small) positive number r and taking
balls B(x, r) for all x. The notion of uniform structure is a formalization of such a
possibility without metric (which is not always possible under the axioms below)

3.11.2. Uniform structure associated with compact topology.

3.12. Topological groups

In this section we introduce groups which carry a topology invariant under
the group operations. A topological group is a group endowed with a topology
with respect to which all left translations Lg0 : g 0→ g0g and right translations
Rg0 : g 0→ gg0 as well as g 0→ g−1 are homeomorphisms. Familiar examples are
Rn with the additive structure as well as the circle or, more generally, the n-torus,
where translations are clearly diffeomorphisms, as is x 0→ −x.

3.13. Problems

EXERCISE 3.13.1. Prove that every metric space is homeomorphic to a bounded
space.

EXERCISE 3.13.2. Prove that in a compact setA in metric spaceX there exists
a pair or points x, y ∈ A such that d(x, y) = diam A.

EXERCISE 3.13.3. Suppose a function d : X×X → R satisfies conditions (2)
and (3) of Definition 3.1.1 but not (1). Find a natural way to modify this function
so that the modified function becomes a metric.

EXERCISE 3.13.4. Let S be a smooth surface inR3, i.e. it may be a non-critical
level of a smooth real-valued function, or a closed subset locally given as a graph
when one coordinate is a smooth function of two others. S carries two metrics: (i)
induced from R3 as a subset of a metric space, and (ii) the natural internal distance
given by the minimal length of curves in S connecting two points.

Prove that if these two metrics coincide then S is a plane.

EXERCISE 3.13.5. Introduce a metric d on the Cantor set C (generating the
Cantor set topology) such that (C, d) cannot be isometrically embedded to Rn for
any n.
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EXERCISE 3.13.6. Introduce a metric d on the Cantor set C such that (C, d) is
not Lipschitz equivalent to a subset of Rn for any n.

EXERCISE 3.13.7. Prove that the set of functions which are not Hölder con-
tinuous at any point is a residual subset of C([0, 1]).

EXERCISE 3.13.8. Let f : [0, 1]R2 be α-Höder with α > 1/2. Prove that
f([0, 1)] is nowhere dense.

EXERCISE 3.13.9. Find a generalization of the previous statement for the maps
of them-dimensional cube Im to Rn withm < n.

EXERCISE 3.13.10. Prove existence of 1/2-Hölder surjective map f : [0, 1] →
I2. (Such a map is usually called a Peano curve).

EXERCISE 3.13.11. Prove that any connected topological manifold is metriz-
able. check!

EXERCISE 3.13.12. Find a Riemannian metric on the complex projective space
CP (n) which makes it a symmetric space.

EXERCISE 3.13.13. Prove that Sn is not self-similar.


