
CHAPTER 4

REAL AND COMPLEX SMOOTHMANIFOLDS

The notion of smooth or differentiable manifold is one of the central concepts
of modern mathematics and its applications, and is also of fundamental importance
in theoretical mechanics and physics. Roughly speaking, a smooth manifold is a
topological space which may have a complicated global structure, but locally is
like Euclidean space, i.e. it is a topological manifold as in Section 1.8 (it possesses
“local coordinates”), with the transition from one system of local coordinates to a
neighboring one being ensured by smooth functions. The fact that the transition
functions are smooth allows the use of the whole machinery of the multivariable
differential and integral calculus, which interacts very efficiently with geometric
and topological tools in that setting.

This chapter is only a first introduction to real (and complex) smooth mani-
folds. We will return to this topic in Chapter 10, where, after having further devel-
oped some of these tools, in particular homology theory, we will have a glance at
deep connections between algebraic and differential topology.

4.1. Differentiable manifolds, smooth maps and diffeomorphisms

4.1.1. Definitions.

DEFINITION 4.1.1. A Hausdorff topological space M with countable base is
said to be an n-dimensional differentiable (or smooth) manifold if it is covered
by a family A = {(Uα, hα)}α∈A of open sets Uα called charts and supplied with
homeomorphisms into Rn,

⋃

α

Uα = M, hα : Uα → Rn

(the index set A may be finite, countable or uncountable) that satisfy the compati-
bility condition: for any two charts (U1, h1) and (U2, h2) inAwith hi : Ui → Bi ⊂
Rn the coordinate change h2 ◦ h−1

1 (also sometimes called transition function) is
differentiable on h1(U1 ∩ U2) ⊂ B1.

Here “differentiable” can be taken to mean Cr for any r ∈ N∪∞, or analytic.
A collection of such charts covering M is called an atlas of M . Any atlas defines
a unique maximal atlas obtained by taking all charts compatible with the present
ones. A maximal atlas is called a differentiable (or smooth) structure.

DEFINITION 4.1.2. A smooth or differentiable map of one smooth manifold
to another is a map f : M → N which is expressed by differentiable functions in
the local coordinates of any chart. More precisely, for any charts (U, h), U ( x

101



102 4. REAL AND COMPLEX SMOOTH MANIFOLDS

h2 ◦ h1 ∈ C∞
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FIGURE 4.1.1. Definition of a smooth manifold

and (V, k), V ( f(x), the map k ◦ f ◦ h−1 is a differentiable map of one domain
of Euclidean space into another.

In view of the compatibility condition, in order to check the smoothness of a
map f : M → N it suffices to check that it is smooth on any cover ofM by charts
and not on all charts of the maximal atlas.

DEFINITION 4.1.3. A diffeomorphism between smooth manifolds is a bijective
smooth map with smooth inverse.

Obviously, any diffeomorphism is a homeomorphism,

EXERCISE 4.1.1. Give an example of a homeomorphism which is not a dif-
feomorphism.

The notion of diffeomorphism provides the natural concept of isomorphism of
the smooth structures of manifolds: diffeomorphic manifolds are undistinguishable
as differentiable manifolds. 1

REMARK 4.1.4. In the definition above the local model for a differentiable
manifold is Rn with its differentiable structure. It follows form the definition that
any manifold diffeomorphic to Rn may serve as an alternative model. Two useful
special cases are an open ball in Rn and the open unit disc (0, 1)n. This follows
from the fact that all those models are diffeomorphic smooth manifolds, see Exer-
cise 4.1.2 and Exercise 4.1.3.

The Inverse Function Theorem from multi-variable calculus provides the fol-
lowing criterion which can be checked on most occasions.

PROPOSITION 4.1.5. A map f : M → N between differentiable manifolds is a
diffeomorphism if and only if (i) it is bijective and (ii) there exists atlases A and B
for the differentiable structures inM andN correspondingly such that for any x ∈
M there exist (U, h) ∈ A, x ∈ U with h(x) = p ∈ Rn and (V, k) ∈ B, f(x) ∈ V
such that det A )= 0 where A the matrix of partial derivatives of h−1 ◦ f ◦ k at p.

1However, the same manifold may have different representations which, for example, may carry
different geometric structures.
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PROOF. Necessity follows directly from the definition.
To prove sufficiency first notice that by the chain rule for the coordinate changes

in Rn condition (ii) is independent from a choice of (U, h) and (V, k) from the
maximal atlases providing x ∈ U and f(x) ∈ V .

The Inverse Function Theorem guarantees that h−1 ◦f ◦k is a diffeomorphism
between a sufficiently small ball around p and its image. Taking such balls and
their images for covers of M and N correspondingly we see that both f and f−1

are smooth. !

PROPOSITION 4.1.6. LetM be a differentiable manifold, A ⊂ M an open set.
Then A has a natural structure of differentiable manifold compatible with that for
M .

PROOF. Let x ∈ A ant let (U, h) be an element of the atlas for M such that
x ∈ U . Then since A is open so is h(U ∩ A ⊂ Rn. Hence there is an open ball
B ⊂ U ∩A centered at h(x). let V := h−1(B) and h′ be the restriction of h to V .
By Remark 4.1.4 pairs (V, h′) obtained this way from various points x ∈ A form
an atlas compatible with the differentiable structure onM . !

Smooth manifolds constitute a category, whose morphisms are appropriately
called smooth (or differentiable) maps. An important class of smooth maps of a
fixed manifold is the class of its maps to R, or smooth functions. We will see
that smooth functions form an R-algebra from which the manifold can be entirely
reconstructed.

A real-valued function f : M → R on a smooth manifoldM is called smooth
(or differentaible) if on each chart (U, h) the composition f ◦h−1 is a differentiable
function from Rn to R. Using the compatibility condition, it is easy to verify that
it suffices to check differentiability for any set of charts covering M (rather than
for all charts of its maximal atlas). maybe we should do this at

least once?The set of all smooth functions onM will be denoted by C∞(M) (or Cn(M),
n ∈ N, depending on the differentiability class under consideration).

One of the remarkable mathematical discoveries of the mid-twentieth century
was the realization that a topological manifold can have more than one differen-
tiable structure: even the sphere (e.g. in dimension 7) can have several different
smooth structures. Further, certain topological manifolds have no smooth structure
compatible with their topology. These delicate questions will not be discussed in
this course.

4.1.2. First examples.

EXAMPLE 4.1.7. Rn is a smooth manifold with an atlas consisting of a single
chart: the identity of Rn.

Any open subset of Rn is also an n-dimensional differentiable manifold by
Proposition 4.1.6. However, it may not be diffeomorphic to Rn and hence in gen-
eral would not possess an atlas with single chart.
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EXAMPLE 4.1.8. An interesting specific example of this kind is obtained by
viewing the linear space of n × n matrices as Rn2 . The condition det A )= 0 then
defines an open set, hence a manifold (of dimension n2), which is familiar as the
general linear group GL(n, R) of invertible n× n matrices.

EXERCISE 4.1.2. Construct an explicit diffeomorphism between Rn and the
open unit ball Bn.

EXERCISE 4.1.3. Prove that any convex open set in Rn is diffeomorphic to
Rn.this exercise is better turned

into a proposition; at least it
requires an extensive hint

EXAMPLE 4.1.9. The standard sphere S2 ⊂ R3 is a differentiable manifold.
As charts modeled on the open ball one can take six appropriately chosen parallel
projections of hemispheres to the coordinate planes. More economically, one gets
a cover by two charts modeled on R2 by the two stereographic projections of the
sphere from its north and south poles. As a forward reference we notice that if
R2 is identified with C the latter method also provides S2 with the structure of
one-demansional complex manifold (see Section 4.9.1).

EXAMPLE 4.1.10. The embedded torus

T2 =
{

(x, y, z) ∈ R3 :
(√

x2 + y2 − 2
)2

+ z2 = 1
}

can be covered by overlapping pieces of parametrized surfaces
W ( (u, v) ,→

(
x(u, v), y(u.v), z(u, v)

)
∈ U ⊂ T2

whose inverses U → W (see the figure) constitute an atlas of T2, so it has the
structure of a two-dimensional smooth manifold.

FIGURE ??? Chart on the embedded torus

EXERCISE 4.1.4. Using the square with identified opposite sides as the model
of the torus, construct a smooth atlas of the torus with four charts homeomorphic
to the open disk.

EXERCISE 4.1.5. Construct a smooth atlas of the projective space RP (3) with
as few charts as possible.
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EXAMPLE 4.1.11. The surface of a regular tetrahedron can be endowed with
the structure of a two-dimensional smooth manifold by embedding it into 3-space,
projecting it from its center of gravityG onto a 2-sphere of large radius centered at
G, and pulling back the charts of the sphere to the surface.

Intuitively, there is something unnatural about this smooth structure, because
the embedded tetrahedron has “corners”, which are not “smooth” in the everyday
sense. We will see below that a rigorous definition corresponds to this intuitive feel-
ing: the embedded tetrahedron is not a “submanifold” of R3 (see Definition 4.2.1).

4.1.3. Manifolds defined by equations. Joint level sets of smooth functions
into R or Rm corresponding to regular values are an interesting general class of
manifolds. This is the most classical source of examples of manifolds.

Charts are provided by the implicit function theorem. Due to importance of
this method we will give a detailed exposition here.

THEOREM 4.1.12 (Implicit Function Theorem). Let O ⊂ Rn × Rm be open
and f : O → Rn a Cr map. If there is a point (a, b) ∈ O such that f(a, b) = 0
and D1f(a, b) is invertible then there are open neighborhoods U ⊂ O of (a, b),
V ⊂ Rm of b such that for every y ∈ V there exists a unique x =: g(y) ∈
Rn with (x, y) ∈ U and f(x, y) = 0. Furthermore g is Cr and Dg(b) =
−(D1f(a, b))−1D2f(a, b).

Proof of this theorem can be found in ??.
Examples are the sphere in Rn (which is the level set of one function, e.g.

F (x, y, z) = x2 + y2 + z2, for which 1 is a regular value) and the special linear
group SL(n, R) of n × n matrices with unit determinant. Viewing the space of
n×nmatrices asRn2 , we obtain SL(n, R) as the manifold defined by the equation
det A = 1. One can check that 1 is a regular value for the determinant. Thus this
is a manifold defined by one equation.

4.2. Principal constructions

Now we will look at how the notion of smooth manifold behaves with respect
to the basic constructions. This will provide as with two principal methods of
constructing smooth manifolds other than directly describing an atlas: embeddings
as submanifolds, and projections into factor-spaces.

4.2.1. Submanifolds. In the case of a topological or a metric space, any sub-
set automatically acquires the corresponding structure (induced topology or met-
ric). For smooth manifolds, the situation is more delicate: arbitrary subsets of a
smooth manifold do not necessarily inherit a differentiable structure from the am-
bient manifold. The following definition provides a natural generalization of the
notion described in the previous subsection.

DEFINITION 4.2.1. A submanifold V of M (of dimension k ≤ n) is a differ-
entiable manifold that is a subset ofM such that the maximal atlas forM contains
charts {(U, h)} for which the restrictions h"U∩V

map U ∩ V to Rk × {0} ⊂ Rn

define charts for V compatible with the differentiable structure of V .
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EXAMPLE 4.2.2. An open subset of a differentiable manifold M with the in-
duced atlas as described in Proposition 4.1.6 is a submanifold of dimension n.

EXAMPLE 4.2.3. Let C be simple closed polygonal curve in R2 and let h :
C → S1 be a homeomorphism; then C acquires a smooth structure (via the at-
las Ah, the pullback by h of the standard atlas of S1). The curve C with this
smooth structure is not a submanifold of the smooth manifold R2 (because of the
“corners”). The same can be said of the tetrahedron embedded in 3-space, see
Exercise 4.1.11.

EXERCISE 4.2.1. Prove that the n-dimensional torus in R2n:

x2
2k−1 + x2

2k =
1
n

, k = 1, . . . , n

is a smooth submanifold of the (2n− 1)-dimensional sphere
2n∑

i=1

x2
i = 1.

EXERCISE 4.2.2. Prove that the upper half of the cone

x2 + y2 = z2, z ≥ 0

is not a submanifold of R3, while the punctured one

x2 + y2 = z2, z > 0

is a submanifold of R3.

Conversely, every smooth n-manifold can be viewed as a submanifold of RN

for a large enough N (see Theorem 4.5.1 and ??).

4.2.2. Direct products. The Cartesian product of two smooth manifolds M
andN of dimensionsm and n automatically acquires the structure of an (n + m)–
dimensional manifold in the following (natural) way. In the topological spaceM×
N , consider the atlas consisting of the products Ui × Vj of all pairs of charts ofM
and N with the natural local coordinates

lij := hi × kj : Ui × Vj → Rm+n.

It is easy to see that these charts are compatible and constitute an atlas ofM ×N .

EXERCISE 4.2.3. Show that the smooth structure obtained on the torus T2 =
S1×S1 in the above way coincides with that induced from the standard embedding
of the torus in 3-space.
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4.2.3. Quotient spaces. Identification spaces can also be smooth manifolds,
for example, the unit circle viewed as R/Z, the torus as Rn/Zn, or compact factors
of the hyperbolic plane ??.properly discontinuous actions

by diffeomorphisms (discrete);
examples with continuous
fibers (implicit function)

Note that, conversely, given a covering map of a smooth manifold, its smooth
structure always lifts to a smooth structure of the covering space.

EXERCISE 4.2.4. Prove that the following three smooth structures on the torus
T2 are equivalent, i.e. the torus provided with any of these structure is diffeomor-
phic to the one provided with another:

• T2 = S1 × S1 with the product structure;
• T2 = R2/Z2 with the factor-structure;
• The embedded torus of revolution in R3

T2 =
{

(x, y, z) ∈ R3 :
(√

x2 + y2 − 2
)2

+ z2 = 1
}

with the submanifold structure.

4.3. Orientability and degree

4.3.1. Orientation and orientability.

4.3.2. Easy part of Sard theorem.

4.3.3. Degree for maps of compact orientable manifolds.

4.3.4. Calculation of πn(Sn).

4.4. Paracompactness and partition of unity

An important result for analysis on manifolds is the fact that (using our as-
sumption of second countability, that is, that there is a countable base for the topol-
ogy) every smooth manifold admits a partition of unity (used below, in particular,
to define the volume element of a manifold), which is defined as follows.

DEFINITION 4.4.1. A partition of unity subordinate to a cover {Ui} of a smooth
manifold M is a collection of continuous real-valued functions ϕi : M → [0, 1]
such that

• the collection of functions ϕi is locally finite, i.e., any point x ∈ M has a
neighborhood V which intersects only a finite number of sets supp(ϕi) (recall that
the support of a function is the closure of the set of points at which it takes nonzero
values);

•
∑

i ϕi(x) = 1 for any x ∈ M ;
• supp(ϕ) ⊂ Ui for all i.

PROPOSITION 4.4.2. For any locally finite cover of a smooth manifold M ,
there exists a partition of unity subordinate to this cover.
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PROOF. Define the functions gi : M → [0, 2−i] by setting if we need a SMOOTH
partition of unity, I can give

another proofgi := min{d(x,M \ Ui, 2−i},
where d(· , ·) denotes the distance between a point and a set and {Ui} is the given
cover ofM . Then we have gi(x) > 0 for x ∈ Ui and gi(x) = 0 for x /∈ Ui. Further
define

G(x) := lim
N→∞

GN (x) = lim
N→∞

N∑

i=1

fi(x).

Since {Ui} is a cover, it follows that G(x) > 0 for all x ∈ M .
Now put

fi(x) := max
{

gi(x)− 1
3
G(x), 0

}
.

It is then easy to see that supp(fi) ⊂ Ui, and, since the cover {Ui} is locally finite,
so is the system of functions {fi}.

Now let us show that

F (x) :=
∞∑

i=1

fi(x) > 0 for allx ∈ M,

i.e., for any x ∈ M there is an i for which fi(x) > 0. We do know that gj(x > 0)
for some j and gn(x) < 2−n, hence supj∈N gj(x) = gi0(x) for a certain i0 such
that gi0 > 0. The definition of the function G(x) implies

G(x) =
∞∑

j=0

2−jgj(x) ≤
∞∑

j=0

2−jgi0(x) = 2gi0 .

Therefore
fi0(x) ≥ gi0(x)− 2gi0(x)

3
=

gi0(x)
3

> 0.

Now we can define the required partition of unity by setting

ϕ(x) := fi(x)/F (x).

The proof of the facts that the ϕi are continuous, form a locally finite family, and
add up to 1 at any point x ∈ M is a straightforward verification that we leave to
the reader. !

A topological spaceX is called paracompact if a locally finite open cover can
be inscribed in in any open cover of X .

PROPOSITION 4.4.3. Any smooth manifold M is paracompact.

PROOF. Let {Ui} be an open cover ofM , which we assume countable without
loss of generality. Then the interiors of the supports of the functions ϕi obtained
by the construction (which does not use the local finiteness of the covering {Ui})
in the proof of the previous proposition will form a locally finite open cover ofM
subordinated to {Ui}. !
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COROLLARY 4.4.4. Any smooth manifold possesses a locally finite cover with
a partition of unity subordinate to it.

4.5. Embedding into Euclidean space

In this section we will prove that any compact differentiable manifold is dif-
feomorphic to a submanifold of a Euclidean space of a sufficiently high dimension.

THEOREM 4.5.1. Any smooth compact manifold Mn can be smoothly embed-
ded in Euclidean space RN for sufficiently large N .

Why only compact here? This
is true for any manifold

PROOF. Since the manifold Mn is compact, it possesses a finite family of
charts fi : Ui → Rn, i = 1, . . . , k, such that

(1) the sets fi(Ui) are open balls of radius 2 centered at the origin of Rn;
(2) the inverse images (denoted Vi) by fi of the unit balls centered at the origin

of Rn coverMn.
We will now construct a smooth “cut off” function λ : Rn → R such that

λ(x) =

{
1 for ‖y‖ ≤ 1,

0 for ‖y‖ ≥ 2,

and 0 < λ(y) < 1 for 1 < ‖y‖ < 2. To do this, we first consider the function

α(x) :=

{
0 for ‖x‖ ≤ 0,

e−1/x for ‖x‖ > 0,

and then put β(t) := α(x − 1)α(2 − x); the function β is positive on the open
interval (1, 2). Finally, we define

γ(τ) :=
( ∫ 2

τ
β(t)dt

)/( ∫ 2

1
β(t)dt

)

and put λ(y) := γ(‖y‖). This function obviously satisfies the conditions listed
above.

We set λi(x) := λ(fi(x)) (see the figure).

FIGURE ??? The cut off function λi

Now let us consider the map h : Mn → R(n+1)k given by the formula

x ,→
(
λ1(x), λ1(x)f1(x), . . . , λk(x), λk(x)fk(x)

)
.
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The map h is one-to-one. Indeed, let x1, x2 ∈ Mn. Then x1 belongs to Vi for
some i, and two cases are possible: x2 ∈ Vi and x2 /∈ Vi. In the first case, we have
λi(x1) = λi(x2) = 1, and therefore the relation

λi(x1)fi(x1) = λi(x2)fi(x2)

is equivalent to fi(x1) = fi(x2) and so x1 = x2. In the second case (when
x2 /∈ Vi), we have λi(x1) = 1 while λi(x2) < 1, and so h(x1) )= h(x2).

Now the restriction of the map x ,→ λi(x)fi(x) to Ui is an immersion (i.e., at
any point its Jacobian is of rank n), because the inclusion x ∈ Ui implies λi(x) =
1), while the map x ,→ fi(x) is a local diffeomorphism. Hence the map h is also
an immersion.

But we know (see ??) that any one-to-one map of a compact space into a
Hausdorff space (in our case h : MnR(n+1)k) is a homeomorphism onto its image.
Thus h is a smooth embedding into R(n+1)k. !

4.6. Derivatives and the tangent bundle

4.6.1. Derivations as classes of curves. Recall that the derivative of a func-
tion f : Rn → R in the direction of a vector v = (v1, . . . , vn) is defined in calculus
courses as

Dv(f) := v1
∂f

∂x1
+ · · · + vn

∂f

∂xn
.

Derivations form a linear space of dimension nwhose canonical basis is constituted
by the partial derivatives

∂

∂x1
, . . . ,

∂

∂xn
.

In order to give a similar definition of the derivative of a function on a smooth
manifold, we must, first of all, define what we mean by the direction along which
we differentiate. We will do this by defining tangent vectors as equivalence classes
of curves. The underlying intuitive consideration is that curves passing through
a point are viewed as trajectories, two curves being regarded as equivalent if the
“velocity of motion” at the chosen point is the same.

DEFINITION 4.6.1. Let M be a C∞ manifold and p ∈ M . Consider curves
c : (a, b) → M , where a < 0 < b, c(0) = p such that h ◦ c is differentiable at 0 for
one (hence any) chart (U, h) with p ∈ U . Each such curve c passing through the
point p assigns to each function f ∈ C∞(M) the real number

Dc,p(f) :=
d

dt

(
f(c(t)

)∣∣
t=0

,

the derivative of f at p along c. Two curves c′ and c′′ are called equivalent if in
some chart (U, h) (and hence, by compatibility, in all charts) containing p, we have

d

dt

(
h(c′(t)

)∣∣
t=0

=
d

dt

(
h(c′′(t)

)∣∣
t=0

.

An equivalence class of curves at the point p is called a tangent vector to M at
p and denoted by v = v(c), where c is any curve in the equivalence class. The
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derivative of f in the direction of the vector v can now be (correctly!) defined by
the formula

Dv,p(f) :=
d

dt

(
f(c(t)

)∣∣
t=0

, for any c ∈ v.

The space of all the derivations at p (i.e., equivalence classes of curves at p)
obtained in this way, has a linear space structure (since each derivation is a real-
valued function) which turns out to have dimension n. It is called the tangent space
at p ofM and denoted TpM .
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FIGURE 4.6.1. Tangent spaces to a manifold

Given a specific chart (U, h), we define the standard basis
∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

of TpM by taking the canonical basis {e1, . . . , en} of Rn and setting
∂

∂xi

∣∣∣
p
(f) :=

d

dt

(
f(ci(t)

)∣∣∣
t=0

, where ci(t) = h−1(h(p) + tei)

for all i = 1, . . . , n.

4.6.2. Derivations as linear operators. Another intrinsic way of defining
derivatives, more algebraic than the geometric approach described in the previous
subsection, is to define them by means of linear operators satisfying the Leibnitz
rule.

DEFINITION 4.6.2. Let p be a point of a smooth manifold M . A derivation
of C∞(M) at the point p is a linear functional D : C∞(M) → R satisfying the
Leibnitz rule, i.e.,

D(f · g) = Df · g(p) + f(p) · Dg.

The derivations at p (in this sense) obviously constitute a linear space. If we choose
a fixed chart (U, h) with coordinates (x1, . . . , xn) containing p, then we can deter-
mine a basis (∂1, . . . , ∂n) of this space by setting

D1(f) :=
∂

∂x1
(h ◦ f)

∣∣∣
f(p)

, . . . , Dn(f) :=
∂

∂x2
(h ◦ f)

∣∣∣
f(p)

;

here ∂/∂xi denotes the usual partial derivative in the target space Rn of our chart
h.
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EXERCISE 4.6.1. Prove that the linear space of derivations can be identified
with the tangent space Tp(M) defined in the previous subsection, so that the deriva-
tions defined above are nothing but tangent vectors and the basis {Di} can be iden-
tified with the basis {(∂/∂xi)|p}.

REMARK 4.6.3. Note that the definition of derivation given in this subsection
yields a purely algebraic approach to the differential calculus on smooth manifolds:
none of the classical tools of analysis (e.g. limits, continuity via the ε−δ language,
infinite series, etc.) are involved.

4.6.3. The tangent bundle. We define the tangent bundle of M to be the
disjoint union

TM :=
⋃

p∈m

TpM

of the tangent spaces with the canonical projection π : TM → M given by π(TpM) =
{p}. Any chart (U, h) ofM then induces a chart

(
U ×

⋃

p∈U

TpU,H
)
, where H(p, v) := (h(p), (v1, . . . , vn)) ∈ Rn × Rn;

here the vi are the coefficients of v ∈ TpM with respect to the basis
{ ∂

∂x1

∣∣∣
p
, . . . ,

∂

∂xn

∣∣∣
p

}

of TpM . In this way TM is a differentiable manifold (of dimension 2) itself.
A vector field is a map X : M → TM such that π ◦ X = IdM , that is, X

assigns to each p a tangent vector at p. We denote by Γ(M) the space of smooth
vector fields on M , i.e., vector fields defined by a smooth map of the manifold M
to the manifold TM . Thus smooth vector fields determine operators (that we will
sometimes denote by DX ) on C∞(M) by acting on functions via derivations, i.e.,
DX(f) := X(p)(f).

We shall see later that £vw := [v, w] := vw − wv also acts on functions by
derivations, that is, as a vector field, and we call [v, w] the Lie bracket of v and w
and £v the Lie derivative .

4.7. Smooth maps and the tangent bundle

As we already noted, smooth manifolds, like any other self-respecting mathe-
matical objects, form a category: we defined their morphisms (called smooth maps)
and their “isomorphisms” (called diffeomorphisms) at the beginning of the present
chapter. We now return to these notions and look at them from the perspective of
tangent bundles.
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4.7.1. Main definitions. We now define the morphisms of the differentiable
structure.

DEFINITION 4.7.1. Let M and N be differentiable manifolds. Recall that a
map f : M → N is said to be smooth if for any charts (U, h) of M and (V, g) of
N the map g ◦ f ◦ h−1 is differentiable on h(U ∩ f−1(V )).

A smooth map f acts on derivations by sending curves c : (a, b) → M to
f ◦c : (a, b) → N . Differentiability means that curves inducing the same derivation
have images inducing the same derivation. Thus we define the differential of f to
be the map

Df : TM =
⋃

p∈M

TpM → TN =
⋃

q∈N

TqN

that takes each vector v ∈ TpM determined by a curve c to the vector w ∈ Tf(p)

given by the curve f ◦ c. It is easy to deduce from the definition of equivalence
of curves (see ??) that the definition of w does not depend on the choice of curve
c ∈ v. The restriction of Df to TpM (which takes TpM to Tf(p)N ) is denoted by
Df

∣∣
p
.
A diffeomorphism is a differentiable map with differentiable inverse. Twoman-

ifolds M,N are said to be diffeomorphic or diffeomorphically equivalent if and
only if there is a diffeomorphism M → N . An embeddingof a manifold M in
a manifold N is a diffeomorphism f : M → V of M onto a submanifold V of
N . We often abuse terminology and refer to an embedding of an open subset of
M into N as a (local) diffeomorphism as well. An immersion of a manifold M
into a manifold N is a differentiable map f : M → V onto a subset of N whose
differential is injective everywhere.

4.7.2. Examples. Smooth maps must be compatible, in a sense, with the dif-
ferentiable structure of the source and target manifolds. As we shall see, not all
naturally defined maps (e.g. some projections) have this property.

EXAMPLE 4.7.2. The orthogonal projection on the (x, y)-plane of the standard
unit sphere x2 + y2 + z2 = 1 is not a smooth map.

Further, even injectively immersed manifolds may fail to be smooth submani-
folds.

EXAMPLE 4.7.3. Choose a point on the standard embedding of the torus T2

and consider a curve passing through that point and winding around T2 with ir-
rational slope (forming the same irrational angle at all its intersections with the
parallels of the torus). In that way, we obtain a (dense) embedding of R into T2,
which is a smooth map locally, but is not a smooth map of R to T2.

Clearly, diffeomorphic manifolds are homeomorphic. The converse is, how-
ever, not true. As we mentioned above, there are “exotic” spheres and other mani-
folds whose smooth structure is not diffeomorphic to the usual smooth structure.
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α is irrational
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FIGURE 4.7.1. Dense embedded trajectory on the torus

EXAMPLE 4.7.4. In the space R9 with coordinates (x1, . . . , x9), consider the
cone C given by

x7
1 + 3x4

7x
3
2 + x6

5x6 = 0
and take the intersection of C with the standard unit 8-sphere S8 ⊂ R9. The
intersection Σ := C ∩S8 is clearly homeomorphic to the 7-sphere. It turns out that
Σ with the smooth structure induced on from R9 is not diffeomorphic to S7 with
the standard smooth structure. (The proof of this fact lies beyond the scope of the
present book.)

4.8. Manifolds with boundary

The notion of real smooth manifold with boundary is a generalization of the
notion of real smooth manifold obtained by adding the half-space

Rn
+ := {(x1, . . . , xn ∈ Rn |xn ≥ 0}

to Rn as the possible target space of the charts (Ui, hi); we must also appropriately
modify the compatibility condition: we now require that, whenever Ur ∩ Us )= ∅,
there must exist two mutually inverse diffeomorphisms ϕr,s and ϕs,r of open sets
in Rn whose restrictions are hr ◦ h−1

s and hs ◦ h−1
r . (The necessity of such a

version of the compatibility condition is in that smooth maps are defined only on
open subsets of Rn, whereas an open set in Rn

+, e.g. hi(Ui), may be non open in
Rn.)

If M is a smooth manifold with boundary, then it has two types of points: the
interior points (those contained in only in those charts (Ui, hi) for which Ui ⊂ M
is open) and the boundary points (those not contained in any such charts). It seems
obvious that the boundary ∂M of a manifold with boundary (i.e., the set of its
boundary points) coincides with the set

⋃

j

h−1
j ((x1, . . . , xn−1, 0)),

where the intersection is taken over only those hj whose target space is Rn
+. How-

ever, this fact is rather nontrivial, and we state it as a lemma.
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LEMMA 4.8.1. The two definitions of boundary point of a manifold with bound-
ary coincide.

PROOF. We need to prove that any point contained in an open chart Ui cannot
be mapped by hi to a boundary point (x1, . . . , xn−1, 0) ∈ Rn

+. This can be done
by using the inverse function theorem. We omit the details. !

Sometimes, in order to stress that someM is an ordinary manifold (not a man-
ifold with boundary), we will say thatM is a “manifold without boundary”. It may
happen that the set of boundary points of a manifold with boundary M is empty.
In that case, all the charts of its maximal atlas targeted to Rn

+ are in fact redundant;
deleting them, we obtain a smooth manifold without boundary.

PROPOSITION 4.8.2. The set of boundary points ∂M of a manifold with bound-
ary has the natural structure of a smooth (n − 1)-dimensional manifold (without
boundary).

PROOF. An atlas for ∂M is obtained by taking the restrictions of the charts hi

to the sets h−1
i (hi(Ui) ∩ Rn

+). !

4.9. Complex manifolds

4.9.1. Main definitions and examples. Complex manifolds are defined quite
similarly to real smooth manifolds by considering charts with values in Cn instead
of Rn and requiring the coordinate changes between charts to be holomorphic.
Since holomorphic maps are much more rigid that differentiable maps, the result-
ing theory differs from the one above in several aspects. For example the one–
dimensional complex manifolds (Riemann surfaces) is a much richer subject than
one- and even two-dimensional differentiable manifolds.

Complex manifolds form a category, the natural notion of morphism ϕ : M →
N being defined similarily to that of smooth map for their real counterparts, except
that the maps k ◦ ϕh−1 (where h and k are charts in M and N ) must now be
holomorphic rather than differentiable.

In this course, we do not go deeply into the theory of complex manifolds,
limiting our study to some illustrative examples.

EXAMPLE 4.9.1. The Riemann sphere, C ∪ {∞}, which is homeomorphic to
S2, becomes a one–dimensional complex manifold by considering an atlas of two
charts (C, Id) and (C ∪ {∞} \ {0}, I), where

I(z) =

{
1/z if z ∈ C
0 if z = ∞

.

EXERCISE 4.9.1. Identify R2 with C and define the torus T2 as the quotient
space C/Z2.
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EXERCISE 4.9.2. Describe a complex atlas for the complex projective space
CPn.

EXERCISE 4.9.3. Describe a complex atlas for the group U(n) of unitary ma-
trices

4.9.2. Riemann surfaces. An attractive showcase of examples of complex
manifolds comes from complex algebraic curves (or Riemann surfaces, as they
are also called), which are defined as zero sets of complex polynomials of two
variables in the space C2.

More precisely, consider the algebraic equation
(4.9.1) p(z, w) := a0(z)wn + a1(z)wn−1 + · · · + an(z) = 0, a0(z) )= 0,

where the ai(z) are polynomials in the complex variable z ∈ C with complex
coefficients and w = w(z) is an unknown complex-valued function.

Already in the simplest cases (e.g. for w2−z = 0), this equation does not have
a univalent analytic solution w : C → C defined for all z ∈ C. However, as Rie-
mann noticed, such a solution exists provided we replace the domain of definition
of the solution by an appropriately chosen surface that we will now define.

To do this, it will be convenient to replace C by its natural compactification
C̄ := C ∪ {∞}, the Riemann sphere, which is of course homeomorphic to the
ordinary sphere S2). We now regard equation (4.5.1.) as given on C̄× C̄ and define
the corresponding Riemann surface Sp as the set of zeros of this equation, i.e., as

Sp :=
{
(z, w) ∈ C̄× C̄ | p(z, w) = 0

}
.

Now the projection (given by the assignment (z, w) ,→ w) of Sp on the second
factor of the product C̄ × C̄ is by definition univalent, so that on the Riemann
surface Sp equation (4.5.1.) defines a single-valued function w = w(z).

It is of course difficult to visualize Riemann surfaces, which are two-dimensional
objects embedded in a four-dimensional manifold homeomorphic to S2 × S2, but
we will see that there is an effective geometric construction that, given p(z, w),
specifies the topological structure of Sp.

We will now consider several examples of this construction.
EXAMPLE 4.9.2. Consider the equation

p(z) := w2 − z = 0.

Obviously, there are two values of w that satisfy this equation for a fixed (nonzero)
value of z = reϕ, namelyw1 = +

√
r eiϕ/2 andw2 = −

√
r eiϕ/2. These determine

the two “sheets” of the solution; when we go around the origin of the z-plane, we
“jump” from one sheet to the other. Let us cut the z-plane along the real axis,
or more precisely cut the Riemann sphere C̄ along the arc arc of the great circle
joining the points 0 and ∞. Take another copy of C̄ (which will be the second
sheet of our Riemann surface), make the same cut joining 0 and ∞, and identify
the “shores” of the cuts (see the figure below).

Thus we see that the Riemann surface of the equation under consideration is
the sphere.
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FIGURE 4.9.1. The Riemann surface of a polynomial linear in z

EXERCISE 4.9.4. Show that the Riemann surface of the quadratic equation

w2 − (z − a1)(z − a2) = 0,

where a1 and a2 are distinct complex numbers, is the sphere §2b .

EXAMPLE 4.9.3. Consider the cubic equation

q(z, w) := w2 − (z − a1)(z − a2)(z − a3) = 0,

where a1, a2, a3 are distinct complex numbers. This function also has two sheets,
but the passage from one sheet to the other is more complicated than in the previous
example: if we circle around one of the points a1, a2, a3, or∞, we pass from one
sheet to the other, if we circle around any two of them, we stay on the same sheet,
if we circle around three, we switch sheets again. To obstruct these switches, we
perform cuts along the arcs a1a2 and a3∞ on two copies of the Riemann sphere
and glue the two copies along the shores of the cuts. The construction is shown on
the figure.

The result will clearly be homeomorphic to the torus.

EXERCISE 4.9.5. Find a polynomial whose zero set is a complex curve home-
omorphic to the sphere with two handles.
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FIGURE 4.9.2. The Riemann surface of a polynomial cubic in z

4.10. Lie groups: first examples

DEFINITION 4.10.1. An n-dimensional Lie group is an n-dimensional smooth
manifoldGwith a group operation such that the product mapG×G → G : (x, y) ,→
xy and the inverse map G → G : x ,→ x−1 are differentiable.

Lie groupsG andH are isomorphic is there exists a group isomorphism i : G →
H which is at the same time a diffeomorphism between smooth manifolds.

A Lie subgroup of a Lie group G is a smooth submanifold H of G which is
also a subgroup. 2

Lie groups form one of the most important and interesting classes of smooth
manifolds. Here we discuss few examples of the classical Lie groups and mention

2In fact, any closed subgroup of a Lie group is a Lie subgroup. This is one of the fundamental
results of the Lie group theory which is used quite often. Its proof is far from elementary.
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some of their properties. More systematic study of Lie groups in their connection
to geometry and topology will be presented in Chapter 11.

Notice that any groups with discrete topology is a zero-dimensional Lie group.
Direct product of Lie groups also has natural Lie group structure. Thus in the
structural theory of Lie groups interest in concentrated primarily on connected Lie
groups. However discrete subgroups of connected Lie groups are of great interest.

Abelian Lie groups have rather simple structure. First, Rn with addition as
the group operation is a Lie group. All its closed subgroups and factor-groups
by closed subgroups are also Lie groups. Proofs of those facts will be given in
Chapter 11. Now we consider natural examples.

EXAMPLE 4.10.2. Any linear subspace of Rn is a Lie subgroup isomorphic to
Rk for some k < n.

The integer lattice Zk ⊂ Rk ⊂ Rn is a discrete subgroup and the factor group
Rn/Zk is isomorphic to Tk × Rn−k and is a Lie group. In particular the torus
Tn = Rn/Zn is a compact connected abelian Lie group.

EXERCISE 4.10.1. Prove that the groupC∗ of non-zero complex numbers with
multiplication as group operation is isomorphic to R× S1.

The group GL(n, R) is the group of all invertible n × n matrices with dif-
ferentiable structure inherited from its representation as the open subset of Rn2

determined by the condition det A )= 0 as in Example 4.1.8. Those groups play
in the theory of Lie groups role somewhat similar to that played by the Euclidean
spaces in the theory of differentiable manifolds. Many manifolds naturally appear
as submanifolds of Rn and many more are diffeomorphic to submanifolds of Rn

(see Theorem 4.5.1). The situation with Lie groups is similar. Most Lie groups nat-
urally appear as Lie subgroups of GL(n, R); such groups are called linear groups.

EXAMPLE 4.10.3. The orthogonal group O(n) consists of all matrices A sat-
isfying AAt = Id. Here the superscript t indicates transposition. It consists of two
connected components according to the value of the determinant: +1 or -1. The
former is also a group which is usually called the special orthogonal group and is
denoted by SO(n).

EXERCISE 4.10.2. Prove that SO(2) is isomorphic to S1.

EXERCISE 4.10.3. Prove that O(n) consist of matrices which represent all
isometries of the Euclidean space Rn fixing the origin, or, equivalently, all isome-
tries of the the unit sphere S2 ⊂ R3.

Many geometric structures naturally give rise to Lie groups, namely groups of
transformations preserving the structure. In the example above the structure was
the standard symmetric Riemannian metric on the sphere with O(n) as the group
of isometries. An even more basic example is given by GL(n, R), the group of
automorphisms of Rn, the structure being that of linear space.

However, one needs to be cautious: this happens if for the group of transforma-
tions preserving the structure is finite–dimensional. For example, if one considers
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Rn as a smooth manifold its automorphism group, the group of all diffeomor-
phisms, is not a Lie group.

EXERCISE 4.10.4. Identify isometries of the Euclidean plane with certain 3×3
matrices and prove that they form a linear group. Calculate its dimension.

For representation of groups of Euclidean isometries and affine transformations
as linear groups see Exercise 4.11.14 and Exercise 4.11.15.

Notice that projective structure does not give as much new it terms of its group
of automorphisms: projective transformations ofRP (n) are simply linear transfor-
mations of Rn+1. However, scalar matrices act identically on RP (n) so the group
of projective transformations is not simply GL(n + 1, R) but its factor group.

If n is even and hence n + 1 is odd one can find unique transformation with
determinant one in each equivalence class, simply my multiplying all elements of
a given matrix by the (n + 1) root of its determinant. hence in this case the group
of projective transformations is isomorphic to SL(n + 1, R).

If n is odd the above procedure only works for matrices with positive deter-
minant but it still leaves one non-identity matrix acting as identity, namely − Id
which has determinant one in this case. On the other hand, matrices with nega-
tive determinant can be reduced to those with determinant -1, again with a similar
identification. Thus the group of projective transformations in this case has a factor
goup of index two which is isomorphic to PSL(n+1, R):=SL(n+1, R)/{± Id}.

EXAMPLE 4.10.4. The groupGL(n, C) of invertible n×nmatrices with com-
plex entries is a Lie group since it is an open subset det A )= 0 in the space of all
n× n complex matrices which is isomorphic to R2n2 .

It is also a linear group since every complex number a + bi can be identified

with 2× 2 real matrix
(

a b
−b a

)
and any n× n complex matrix can be associated

with an 2n × 2n real matrix by substituting each matrix element with the corre-
sponding 2×2matrix. This correspondence preserves addition and multiplication.

Its Lie subgroup SL(n, C) consists of matrices with determinant one.

The group GL(n, C) can be interpreted as the group of linear automorphisms
of R2n preserving and extra structure which in complex form corresponds to the
multiplication of all coordinates of a vector by i.

EXAMPLE 4.10.5. The groupU(n) appears as groups of transformations of the
space Cn preserving the Hermitian product

∑n
i=1 ziw̄i for z = (z1, . . . , zn), w =

(w1, . . . , wn). It is embedded into GL(n, C) as the Lie subgroup of matrices A
such that AA∗ Id. Here A∗ is the matrix conjugate to A: its (i, j) matrix element
is equal to the complex conjugate to the (j, i) element of A.

EXAMPLE 4.10.6. The symplectic group of 2n × 2n consists of matrices A
satisfying

AJAt = J, where J =
(

0 Id
− Id 0

)
,
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4.11. Problems

The next exercises are examples of smooth manifolds. Many examples of
manifolds are given by configuration and phase spaces of mechanical systems.
One can think of the configuration space of a mechanical system as a topologi-
cal space whose points are different “positions” of the system, and neighborhoods
are “nearby” positions (i.e., positions that can be obtained from the given one by
motions of “length” smaller than a fixed number). The phase space of a mechani-
cal system moving in time is obtained from its configuration space by supplying it
with all possible velocity vectors.

EXERCISE 4.11.1. Describe the configuration space of the mechanical system
consisting of a rod rotating in space about a fixed hinge at its extremity. What
configuration space is obtained if the hinge is fixed at the midpoint of the rod?

EXERCISE 4.11.2. The double pendulum consists of two rods AB and CD
moving in a vertical plane, connected by a hinge joining the extremities B and C,
while the extremityA is fixed by a hinge in that plane. Find the configuration space
of this mechanical system.

EXERCISE 4.11.3. On a round billiard table, a pointlike ball moves with uni-
form velocity, bouncing off the edge of the table according to the law saying that
the angle of incidence is equal to the angle of reflection. Find the phase space of
this system.

EXERCISE 4.11.4. Show that the configuration space of an asymetric solid
rotating about a fixed hinge in 3-space is RP 3.

EXERCISE 4.11.5. In R9 consider the set of points satisfying the following
system of algebraic equations:

x2
1 + x2

2 + x2
3 = 1; x1x4 + x2x5 + x3x6 = 0;

x2
4 + x2

5 + x2
6 = 1; x1x7 + x2x8 + x3x9 = 0;

x2
1 + x2

8 + x2
9 = 1; x4x7 + x5x8 + x6x9 = 0.

Show that this set is a smooth 3-dimensional submanifold of R9 and describe it.
(Solution sets of systems of algebraic equations are not necessarily smooth mani-
folds: they may have singularities.)

EXERCISE 4.11.6. Show that the topological spaces obtained by identifying
diametrically opposed points of the 3-sphere S3 and by identifying diametrically
opposed boundary points of the 3-disk

D3 :=
{
(x1, x2, x3) ∈ R3 |x2

1 + x2
2 + x2

3 ≤ 1
}

have a natural smooth manifold structure and are homeomorphic to each other.

EXERCISE 4.11.7. Seven rods of length 1 in the plane are joined end to end by
hinges, and the two “free” ends are fixed to the plane by hinges at the distance 6.5
from each other. Find the configuration space of this mechanical system.
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EXERCISE 4.11.8. Five rods of length 1 in the plane are joined end to end by
hinges, and the two “free” ends are fixed to the plane by hinges at the distance 1
from each other. Find the configuration space of this mechanical system.

EXERCISE 4.11.9. Prove that the groupO(2) of orthogonal transformations of
the plane is not isomorphic to S1 × C2.define standard notation for

cyclic groups

EXERCISE 4.11.10. Prove that the Lie group SO(3) is diffeomorphic to the
real projective space RP (3).

EXERCISE 4.11.11. Prove that the Lie group SU(2) is diffeomorphic to the
sphere S3.

EXERCISE 4.11.12. Represent the torus Tn as a linear group.

EXERCISE 4.11.13. What is the minimal value ofm such thatTn is isomorphic
to a Lie subgroup of GL(m, R)?

EXERCISE 4.11.14. Prove that the group of Euclidean isometries of of Rn is
isomorphic to a Lie subgroup of GL(n + 1, R). Calculate its dimension.

EXERCISE 4.11.15. Prove that the group of affine transformations of Rn is
isomorphic to a Lie subgroup of GL(n + 1, R). Calculate its dimension.


