
CHAPTER 5

TOPOLOGY AND GEOMETRY OF SURFACES

Compact (and some noncompact) surfaces are a favorite showcase for various
branches of topology and geometry. They are two-dimensional topological mani-
folds, which can be supplied with a variety of naturally defined differentiable and
Riemannian structures. Their complete topological classification, which coincides
with their smooth (differentiable) classification, is obtained via certain simple in-
variants. These invariants allow a variety of interpretations: combinatorial, analyt-
ical and geometrical.

Surfaces are also one-dimensional complex manifolds; but, surprisingly, the
complex stuctures are not all equivalent (except for the case of the sphere), although
they can be classified. This classification if the first result in a rather deep area at
the junction of analysis, geometry, and algebraic geometry known as Teichmüller
theory, which recently has led to spectacular applications in theoretical physics.

In this chapter we study the classification of compact surfaces (two-dimen-
sional manifolds) from various points of view. We start with a fundamental prepara-
tory result, which we will prove by using a beautiful argument based on combina-
torial considerations.

5.1. Two big separation theorems: Jordan and Schoenflies

The goal of this section is to prove the famous Jordan Curve Theorem, which
we will need in the next section, and which is constantly used in many areas of
analysis and topology. Note that although the statement of the theorem seems
absolutely obvious, it does not have a simple proof.

5.1.1. Statement of the theorem and strategy of proof. Here we state the
theorem and outline the main steps of the proof.

DEFINITION 5.1.1. A simple closed curve on a manifold M (in particular on
the plane R2) is the homeomorphic image of the circle S1 in M , or equivalently
the image of S1 under a topological embedding S1 → M .

THEOREM 5.1.2 (Jordan Curve Theorem). A simple closed curve C on the
plane R2 separates the plane into two connected components.

COROLLARY 5.1.3. A simple closed curve C on the sphere S2 separates the
sphere into two connected components.
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126 5. TOPOLOGY AND GEOMETRY OF SURFACES

PROOF. The proof is carried out by a simple but clever reduction of the Jordan
Curve Theorem to the nonplanarity of the graphK3,3, established in ??

Suppose that C is an arbitrary (not necessarily polygonal) simple closed curve
in the plane R2. Suppose l and m are parallel support lines of C and p is a line
perpendicular to them and not intersecting the curve. Let A1 and A2 be points of
the intersections of C with l andm, respectively. Further, letB3 be the intersection
point of l and p. The pointsA1 andA2 divide the curveC into two arcs, the “upper”
one and the “lower” one. Take a line q in between l and m parallel to them. By
compactness, there is a lowest intersection point B1 of q with the upper arc and a
highest intersection point B2 of q with the lower arc. Let A3 be an inner point of
the segment [B1, B2] (see the figure).
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FIGURE 5.1.1. Proof of the Jordan Curve Theorem

We claim that R2 \ C is not path connected, in fact there is no path joining
A3 and B3. Indeed, if such a path existed, by Lemma ?? there would be an arc
joining these two points. Then we would have nine pairwise nonintersecting arcs
joining each of the points A1, A2, A3 with all three of the points B1, B2, B3. This
means that we have obtained an embedding of the graph K3,3 in the plane, which
is impossible by Theorem 5.2.4. !

5.1.2. Schoenflies Theorem. The Schoenflies Theorem is an addition to the
Jordan curve theorem asserting that the curve actually bounds a disk. We state this
theorem here without proof.

THEOREM 5.1.4 (Schoenflies Theorem). A simple closed curveC on the plane
R2 separates the plane into two connected components; the component with bounded
closure is homeomorphic to the disk, that is,

R2 ! C = D1 ∪D2, where D1 ∩D2 = ∅ and D1 ≈ D2.

COROLLARY 5.1.5. A simple closed curve C on the sphere S2 separates the
sphere into two connected components, each of which has closure homeomorphic
to the disk, that is,

S2 ! C = D1 ∪D2, where D1 ∩D2 = ∅ and Di ≈ D2, i = 1, 2.
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FIGURE 5.2.1. The polygonal lines L1 and L2 must intersect

5.2. Planar and non-planar graphs

5.2.1. Non-planarity ofK3,3. We first show that the graphK3,3 has no polyg-
onal embedding into the plane, and then show that it has no topological embedding
in the plane.

PROPOSITION 5.2.1. [The Jordan curve theorem for broken lines] Any bro-
ken line C in the plane without self-intersections splits the plane into two path
connected components and is the boundary of each of them.

PROOF. Let D be a small disk which C intersects along a line segment, and
thus dividesD into two (path) connected components. Let p be any point inR2\C.
From p we can move along a polygonal line as close as we like to C and then,
staying close to C, move inside D. We will then be in one of the two components
of D \ C, which shows that R2 \ C has no more than two components.

It remains to show that R2 \C is not path connected. Let ρ be a ray originating
at the point p ∈ R2 \ C. The ray intersects C in a finite number of segments and
isolated points. To each such point (or segment) assign the number 1 if C crosses ρ
there and 0 if it stays on the same side. Consider the parity π(p) of the sum S of all
the assigned numbers: it changes continuously as ρ rotates and, being an integer,
π(p) is constant. Clearly, π(p) does not change inside a connected component of
R2 \C. But if we take a segment intersecting C at a non-zero angle, then the parity
π at its end points differs. This contradiction proves the proposition. !

We will call a closed broken line without self-intersections a simple polygonal
line.

COROLLARY 5.2.2. If two broken lines L1 and L2 without self-intersections
lie in the same component of R2 \ C, where C is a simple closed polygonal line,
with their endpoints on C in alternating order, then L1 and L2 intersect.

PROOF. The endpoints a and c of L1 divide the polygonal curve C into two
polygonal arcs C1 and C2. The curve C and the line L1 divide the plane into three
path connected domains: one bounded by C, the other two bounded by the closed
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curves Ci ∪ L, i = 1, 2 (this follows from Proposition 5.2.1). Choose points b and
d on L2 close to its endpoints. Then b and d must lie in different domains bounded
by L1 and C and any path joining them and not intersecting C, in particular L2,
must intersect L1. !

PROPOSITION 5.2.3. The graph K3,3 cannot be polygonally embedded in the
plane.

PROOF. Let us number the vertices x1, . . . , x6 ofK3,3 so that its edges consti-
tute a closed curve C := x1x2x3x4x5x6, the other edges being

E1 := x1x4, E2 := x2x5, E3 := x3x6.

Then, ifK3,3 lies in the plane, it follows from Proposition 5.2.1 that C divides the
plane into two components. One of the two components must contain at least two
of the edges E1, E2, E3, which then have to intersect (by Corollary 5.2.2). This is
a contradiction which proves the proposition. !

THEOREM 5.2.4. The graph K3,3 is nonplanar, i.e., there is no topological
embedding h : K3,3 ↪→ R2.

The theorem is an immediate consequence of the nonexistence of aPL-embedding
ofK3,3 (Proposition 5.2.3) and the following lemma.

LEMMA 5.2.5. If a graphG is planar, then there exists a polygonal embedding
of G into the plane.

PROOF. Given a graphG ⊂ R2, we first modify it in small disk neighborhoods
of the vertices so that the intersection of (the modified graph) G with each disk is
the union of a finite number of radii of this disk. Then, for each edge, we cover
its complement to the vertex disks by disks disjoint from the other edges, choose a
finite subcovering (by compactness) and, using the chosen disks, replace the edge
by a polygonal line. !

5.2.2. Euler characteristic and Euler theorem. The Euler characteristic of
a graph G without loops embedded in the plane is defined as

χ(G) := V − E + F,

where V is the number of vertices andE is the number of edges ofG, while F is the
number of connected components ofR2\G (including the unbounded component).

THEOREM 5.2.6. [Euler Theorem] For any connected graph G without loops
embedded in the plane, χ(G) = 2.
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PROOF. At the moment we are only able to prove this theorem for polygonal
graphs. For the general case we will need Jordan curve Theorem Theorem 5.1.2.
The proof will be by induction on the number of edges. For the graph with zero
edges, we have V = 1, E = 0, F = 1, and the formula holds. Suppose it holds for
all graphs with n edges; then it is valid for any connected subgraphH of G with n
edges; take an edge e from G which is not inH but incident toH , and add it toH .
Two cases are possible.

Case 1. Only one endpoint of e belongs toH . Then F is the same for G as for
H and both V and E increase by one.

Case 2. Both endpoints of e belong to toH . Then e lies inside a face ofH and
divides it into two.1 Thus by adding e we increase both E and F by one and leave
V unchanged. Hence the Euler characteristic does not change. !

5.2.3. Kuratowski Theorem. We conclude this subsection with a beautiful the- small print for parts outside of
the main line: no proofs or too

difficultorem, which gives a simple geometrical obstruction to the planarity of graphs. We do not
present the proof (which is not easy), because this theorem, unlike the previous one, is not
used in the sequel.

THEOREM 5.2.7. [Kuratowski] A graph is nonplanar if and only if it contains, as a
topological subspace, the graph K3,3 or the graph K5.

REMARK 5.2.8. The words “as a topological subspace” are essential in this theorem.
They cannot be replaced by “as a subgraph”: if we subdivide an edge of K5 by adding a
vertex at its midpoint, then we obtain a nonplanar graph that does not contain either K3,3

orK5.

EXERCISE 5.2.1. Can the graphK3,3 be embedded in (a) the Möbius strip, (b)
the torus?

EXERCISE 5.2.2. Is there a graph that cannot be embedded into the torus?

EXERCISE 5.2.3. Is there a graph that cannot be embedded into the Mob̈ius
strip?

5.3. Surfaces and their triangulations

In this section, we define (two-dimensional) surfaces, which are topological
spaces that locally look like R2 (and so are supplied with local systems of coor-
dinates). It can be shown that surfaces can always be triangulated (supplied with
a PL-structure) and smoothed (supplied with a smooth manifold structure). We proof will be added here or later

an easy consequence of PLwill not prove these two assertions here and limit ourselves to the study of trian-
gulated surfaces (also known as two-dimensional PL-manifolds). The main result
is a neat classification theorem, proved by means of some simple piecewise linear
techniques and with the help of the Euler characteristic.

1It is here that we need the conclusion of Jordan curve Theorem Theorem 5.1.2 in the case of
general graphs. The rest of the argument remains the same as for polygonal graphs.
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5.3.1. Definitions and examples.

DEFINITION 5.3.1. A closed surface is a compact connected 2-manifold (with-
out boundary), i.e., a compact connected space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2. In the above definition, con-
nectedness can be replaced by path connectedness without loss of generality (see
??)

A surface with boundary is a compact space each point of which has a neigh-
borhood homeomorphic to the open 2-disk Int D2 or to the open half disk

Int D2
1/2 = {(x, y) ∈ R2|x " 0, x2 + y2 < 1}.

EXAMPLE 5.3.2. Familiar surfaces are the 2-sphere S2, the projective plane
RP 2, and the torus T2 = S1 × S1, while the disk D2, the annulus, and the Möbius
band are examples of surfaces with boundary.

S2 T 2 D2

FIGURE 5.3.1. Examples of surfaces

DEFINITION 5.3.3. The connected sum M1#M2 of two surfaces M1 and M2

is obtained by making two small holes (i.e., removing small open disks) in the
surfaces and gluing them along the boundaries of the holes

EXAMPLE 5.3.4. The connected sum of two projective planes RP 2#RP 2 is
the famous Klein bottle, which can also be obtained by gluing two Möbius bands
along their boundaries (see Fig.??). The connected sum of three tori T2#T2#T2

is (topologically) the surface of a pretzel (see Fig.??).

FIGURE 5.3.2. Klein bottle and pretzel
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5.3.2. Polyhedra and triangulations. Our present goal is to introduce a com-
binatorial structure (called PL-structure) on surfaces. First we we give the corre-
sponding definitions related to PL-structures.

A (finite) 2-polyhedron is a topological space represented as the (finite) union
of triangles (its faces or 2-simplices) so that the intersection of two triangles is
either empty, or a common side, or a common vertex. The sides of the triangles
are called edges or 1-simplices, the vertices of the triangles are called vertices or
0-simplices of the 2-polyhedron.

Let P be a 2-polyhedron and v ∈ P be a vertex. The (closed) star of v in P
(notation Star(v, P )) is the set of all triangles with vertex v. The link of v in P
(notation Link(v, P )) is the set of sides opposite to v in the triangles containing v.

A finite 2-polyhedron is said to be a closed PL-surface (or a closed triangu-
lated surface) if the star of any vertex v is homeomorphic to the closed 2-disk with
v at the center (or, which is the same, if the links of all its vertices are homeomor-
phic to the circle).

Stx Lk y

y
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

FIGURE 5.3.3. Star and link of a point on a surface

A finite 2-polyhedron is said to be a PL-surface with boundary if the star of
any vertex v is homeomorphic either to the closed 2-disk with v at the center or to
the closed disk with v on the boundary (or, which is the same, if the links of all its
vertices are homeomorphic either to the circle or to the line segment). It is easy to
see that in a PL-surface with boundary the points whose links are segments (they
are called boundary points) constitute a finite number of circles (called boundary
circles). It is also easy to see that each edge of a closed PL-surface (and each
nonboundary edge of a surface with boundary) is contained in exactly two faces.

A PL-surface (closed or with boundary) is called connected if any two vertices
can be joined by a sequence of edges (each edge has a common vertex with the
previous one). Further, unless otherwise stated, we consider only connected PL-
surfaces.

A PL-surface (closed or with boundary) is called orientable if its faces can be
coherently oriented; this means that each face can be oriented (i.e., a cyclic order
of its vertices chosen) so that each edge inherits opposite orientations from the
orientations of the two faces containing this edge. An orientation of an orientable
surface is a choice of a coherent orientation of its faces; it is easy to see that that
any orientable (connected!) surface has exactly two orientations.
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A face subdivision is the replacement of a face (triangle) by three new faces
obtained by joining the baricenter of the triangle with its vertices. An edge sub-
division is the replacement of the two faces (triangles) containing an edge by four
new faces obtained by joining the midpoint of the edge with the two opposite ver-
tices of the two triangles. A baricentric subdivision of a face is the replacement
of a face (triangle) by six new faces obtained by constructing the three medians of
the triangles. A baricentric subdivision of a surface is the result of the baricentric
subdivision of all its faces. Clearly, any baricentric subdivision can be obtained
by means of a finite number of edge and face subdivisions. A subdivision of a
PL-surface is the result of a finite number of edge and face subdivisions.

Two PL-surfaces M1 and M2 are called isomorphic if there exists a homeo-
morphism h : M1 → M2 such that each face ofM1 is mapped onto a face ofM2.
Two PL-surfaces M1 and M2 are called PL-homeomorphic if they have isomor-
phic subdivisions.

FIGURE 5.3.4. Face, edge, and baricentric subdivisions

EXAMPLE 5.3.5. Consider any convex polyhedron P ; subdivide each of its
faces into triangles by diagonals and project this radially to a sphere centered in
any interior point of P . The result is a triangulation of the sphere.

If P is a tetrahedron the triangulation has four vertices. This is the minimal
number of vertices in a triangulation of any surface. In fact, any triangulation
of a surface with four vertices is equivalent of the triangulation obtained from a
tetrahedron and thus for any surface other than the sphere the minimal number of
vertices in a triangulation is greater then four.

EXERCISE 5.3.1. Prove that there exists a triangulation of the projective plane
with any given number N > 4 of vertices.

EXERCISE 5.3.2. Prove that minimal number of vertices in a triangulation of
the torus is six.

5.4. Euler characteristic and genus

In this section we introduce, in an elementary combinatorial way, one of the
simplest and most important homological invariants of a surface M – its Euler
characteristic χ(M). The Euler characteristic is an integer (actually defined for a
much wider class of objects than surfaces) which is topologically invariant (and,
in fact, also homotopy invariant). Therefore, if we find that two surfaces have
different Euler characteristics, we can conclude that they are not homeomorphic.
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5.4.1. Euler characteristic of polyhedra.

DEFINITION 5.4.1. The Euler characteristic χ(M) of a two-dimensional poly-
hedron, in particular of a PL-surface, is defined by

χ(M) := V − E + F ,

where V,E, and F are the numbers of vertices, edges, and faces ofM , respectively.

PROPOSITION 5.4.2. The Euler characteristic of a surface does not depend on
its triangulation. PL-homeomorphic PL-surfaces have the same Euler character-
istic.

PROOF. It follows from the definitions that we must only prove that the Euler
characteristic does not change under subdivision, i.e., under face and edge subdi-
vision. But these two facts are proved by a straightforward verification. !

EXERCISE 5.4.1. Compute the Euler characteristic of the 2-sphere, the 2-disk,
the projective plane and the 2-torus.

EXERCISE 5.4.2. Prove that χ(M#N) = χ(M) + χ(N) − 2 for any PL-
surfaces M and N . Use this fact to show that adding one handle to an oriented
surface decreases its Euler characteristic by 2.

5.4.2. The genus of a surface. Now we will relate the Euler characteristic
with a a very visual property of surfaces – their genus (or number of handles).
The genus of an oriented surface is defined in the next section (see ??), where
it will be proved that the genus g of such a surface determines the surface up to
homeomorphism. The model of a surface of genus g is the sphere with g handles;
for g = 3 it is shown on the figure.

≈

FIGURE 5.4.1. The sphere with three handles

PROPOSITION 5.4.3. For any closed surfaceM , the genus g(M) and the Euler
characteristic χ(M) are related by the formula

χ(M) = 2− 2g(M) .
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PROOF. Let us prove the proposition by induction on g. For g = 0 (the sphere),
we have χ(S2) = 2 by Exercise ??. It remains to show that adding one handle
decreases the Euler characteristic by 2. But this follows from Exercise ?? !

REMARK 5.4.4. In fact χ = β2 − β1 + β0, where the βi are the Betti numbers
(defined in ??). For the surface of genus g, we have β0 = β2 = 1 and β1 = 2g, so
we do get χ = 2− 2g.

5.5. Classification of surfaces

In this section, we present the topological classification (which coincides with
the combinatorial and smooth ones) of surfaces: closed orientable, closed nonori-
entable, and surfaces with boundary.

5.5.1. Orientable surfaces. The main result of this subsection is the follow-
ing theorem.

THEOREM 5.5.1 (Classification of orientable surfaces). Any closed orientable
surface is homeomorphic to one of the surfaces in the following list

S2, S1 × S1 (torus), (S1 × S1)#(S1 × S1) (sphere with 2 handles), . . .
. . . , (S1 × S1)#(S1 × S1)# . . .#(S1 × S1) (sphere with k handles), . . .

Any two surfaces in the list are not homeomorphic.

PROOF. By ?? we may assume that M is triangulated and take the double
baricentric subdivision M ′′ of M . In this triangulation, the star of a vertex of M ′′

is called a cap, the union of all faces of M ′′ intersecting an edge of M but not
contained in the caps is called a strip, and the connected components of the union
of the remaining faces ofM ′′ are called patches.

Consider the union of all the edges of M ; this union is a graph (denoted G).
Let G0 be a maximal tree of G. Denote by M0 the union of all caps and strips
surrounding G0. Clearly M0 is homeomorphic to the 2-disk (why?). If we suc-
cessively add the strips and patches fromM −M0 toM0, obtaining an increasing
sequence

M0 ⊂ M1 ⊂ M2 ⊂ · · · ⊂ Mp = M,

we shall recoverM .
Let us see what happens when we go fromM0 toM1.
If there are no strips left, then there must be a patch (topologically, a disk),

which is attached along its boundary to the boundary circle Σ0 ofM0; the result is
a 2-sphere and the theorem is proved.

Suppose there are strips left. At least one of them, say S, is attached along
one end to Σ0 (because M is connected) and its other end is also attached to Σ0

(otherwise S would have been part ofM0). Denote byK0 the closed collar neigh-
borhood of Σ0 in M0. The collar K0 is homoeomorphic to the annulus (and not
to the Möbius strip) because M is orientable. Attaching S to M0 is the same as
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FIGURE 5.5.1. Caps, strips, and patches

attaching another copy of K ∪ S to M0 (because the copy of K can be homeo-
morphically pushed into the collar K). But K ∪ S is homeomorphic to the disk
with two holes (what we have called “pants”), because S has to be attached in the
orientable way in view of the orientability ofM (for that reason the twisting of the
strip shown on the figure cannot occur). ThusM1 is obtained fromM0 by attaching
the pantsK ∪ S by the waist, andM1 has two boundary circles.

FIGURE ??? This cannot happen

Now let us see what happens when we pass fromM1 toM2.
If there are no strips left, there are two patches that must be attached to the two

boundary circles ofM1, and we get the 2-sphere again.
Suppose there are patches left. Pick one, say S, which is attached at one end

to one of the boundary circles, say Σ1 ofM1. Two cases are possible: either
(i) the second end of S is attached to Σ2, or
(ii) the second end of S is attached to Σ1.
Consider the first case. Take collar neighborhoods K1 and K2 of Σ1 and Σ2;

both are homoeomorphic to the annulus (becauseM is orientable). Attaching S to
M1 is the same as attaching another copy ofK1∪K2∪S toM1 (because the copy
ofK1 ∪K2 can be homeomorphically pushed into the collarsK1 andK2).
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FIGURE ??? Adding pants along the legs

But K − 1 ∪K2 ∪ S is obviously homeomorphic to the disk with two holes.
Thus, in the case considered, M2 is obtained from M1 by attaching pants to M1

along the legs, thus decreasing the number of boundary circles by one,
The second case is quite similar to adding a strip toM0 (see above), and results

in attaching pants toM1 along the waist, increasing the number of boundary circles
by one.

What happens when we add a strip at the ith step? As we have seen above,
two cases are possible: either the number of boundary circles ofMi−1 increases by
one or it decreases by one. We have seen that in the first case “inverted pants” are
attached toMi−1 and in the second case “upright pants” are added toMi−1.

FIGURE ??? Adding pants along the waist

After we have added all the strips, what will happen when we add the patches?
The addition of each patch will “close” a pair of pants either at the “legs” or at the
“waist”. As the result, we obtain a sphere with k handles, k " 0. This proves the
first part of the theorem.

cup upsidedown pants

cap pants (right side up)

FIGURE 5.5.2. Constructing an orientable surface

To prove the second part, it suffices to compute the Euler characteristic (for
some specific triangulation) of each entry in the list of surfaces (obtaining 2, 0,−2,−4, . . . ,
respectively). !
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5.5.2. Nonorientable surfaces and surfaces with boundary. Nonorientable
surfaces are classified in a similar way. It is useful to begin with the best-known
example, the Möbius strip, which is the nonorientable surface with boundary ob-
tained by identifying two opposite sides of the unit square [0, 1]× [0, 1] via (0, t) ∼
(1, 1− t). Its boundary is a circle.

Any compact nonorientable surface is obtained from the sphere by attaching
severalMöbius caps, that is, deleting a disk and identifying the resulting boundary
circle with the boundary of a Möbius strip. Attaching m Möbius caps yields a
surface of genus 2−m. Alternatively one can replace any pair of Möbius caps by
a handle, so long as at least one Möbius cap remains, that is, one may start from a
sphere and attach one or two Möbius caps and then any number of handles.

All compact surfaces with boundary are obtained by deleting several disks
from a closed surface. In general then a sphere with h handles, m Möbius strips,
and d deleted disks has Euler characteristic

χ = 2− 2h−m− d.

In particular, here is the finite list of surfaces with nonnegative Euler characteristic:

Surface h m d χ Orientable?
Sphere 0 0 0 2 yes
Projective plane 0 1 0 1 no
Disk 0 0 1 1 yes
Torus 1 0 0 0 yes
Klein bottle 0 2 0 0 no
Möbius strip 0 1 1 0 no
Cylinder 0 0 2 0 yes

5.6. The fundamental group of compact surfaces

Using the Seifert–van Kampen theorem (see ???), here we compute the funda-
mental groups of closed surfaces.

5.6.1. π1 for orientable surfaces.

THEOREM 5.6.1. The fundamental group of the orientable surface of genus
g can be presented by 2g generators p1,m1, . . . , pn,mn satisfying the following
defining relation:

p1m1p
−1
1 m−1

1 . . . pnmnp−1
n m−1

n = 1.

PROOF. +++++++++++++++++++++++++++++++++++ !
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5.6.2. π1 for nonorientable surfaces.

THEOREM 5.6.2. The fundamental group of the nonorientable surface of genus
g can be presented by the generators c1, . . . cn, where n := 2g + 1, satisfying the
following defining relation:

c2
1 . . . c2

n = 1.

PROOF. +++++++++++++++++++++++++++++++++++ !

5.7. Vector fields on the plane

The notion of vector field comes from mechanics and physics. Examples: the
velocity field of the particles of a moving liquid in hydrodynamics, or the field
of gravitational forces in Newtonian mechanics, or the field of electromagnetic
induction in electrodynamics. In all these cases, a vector is given at each point of
some domain in space, and this vector changes continuously as we movefrom point
to point.

In this section we will study, using the notion of degree (see??) a simpler
model situation: vector fields on the plane (rather than in space).

5.7.1. Trajectories and singular points. A vector field V in the plane R2 is
a rule that assigns to each point p ∈ R2 a vector V (p) issuing from p. Such an
assignment may be expressed in the coordinates x, y of R2 as

X = α(x, y) Y = β(x, y),

where α : R2 → R and β : R2 → R are real-valued functions on the plane, (x, y)
are the coordinates of the point p, and (X, Y ) are the coordinates of the vector
V (p). If the functions α and β are continuous (respectively differentiable), then
the vector field V is called continuous (resp. smooth).

A trajectory through the point p ∈ R2 is a curve γ : R → R2 passing through
p and tangent at all its points to the vector field (i.e., the vector V (q) is tangent to
the curve C := γ(R) at each point q ∈ C). A singular point p of a vector field V
is a point where V vanishes: V (p) = 0; when V is a velocity field, such a point
is often called a rest point, when V is a field of forces, it is called an equilibrium
point.

5.7.2. Generic singular points of plane vector fields. We will now describe
some of the simplestf singular points of plane vector fields. To define these points,
we will not write explicit formulas for the vectors of the field, but instead describe
the topological picture of its trajectories near the singular point and give physical
examples of such singularities.

The node is a singular point contained in all the nearby trajectories; if all the
trajectories move towards the point, the node is called stable and unstable if all
the trajectories move away from the point. As an example, we can consider the
gravitational force field of water droplets flowing down the surface z = x2 + y2

near the point (0, 0, 0) (stable node) or down the surface z = −x2 − y2 near the
same point (unstable node).
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The saddle is a singular point contained in two transversal trajectories, called
separatrices, one of which is ingoing, the other outgoing, the other trajectories
behaving like a family of hyperbolas whose asymptotes are the separatrices. As
an example, we can consider the gravitational force field of water droplets flowing
down the surface z = x2 − y2 near the point (0, 0, 0); here the separatrices are the
coordinates axes.

saddle focus center node

FIGURE 5.7.1. Simplest singular points of vector fields

The focus is a singular point that ressembles the node, except that the trajec- topology of the node is right but
geometry is wrong: in general

“parabolas” tangent to the
horizontal line plus horizontal

and vertical lines

tories, instead of behaving like the set of straight lines passing through the point,
behave as a family of logarithmic spirals converging to it (stable focus) or diverging
from it (unstable focus).

The center is a singular point near which the trajectories behave like the family
of concentric circles centered at that point; a center is called positive if the trajecto-
ries rotate counterclockwise and negative if they rotate clockwise. As an example,
we can consider the velocity field obtained by rotating the plane about the origin
with constant angular velocity.

REMARK 5.7.1. From the topological point of view, there is no difference be-
tween a node and a focus: we can unfurl a focus into a node by a homeomorphism
which is the identity outside a small neighborhood of the singular point. However,
we can’t do this by means of a diffeomorphism, so that the node differs from the
focus in the smooth category.

A singular point is called generic if it is of one of the first three types described
above (node, saddle, focus). A vector field is called generic if it has a finite number
of singular points all of which are generic. In what follows we will mostly consider
generic vector fields.

REMARK 5.7.2. Let us explain informally why the term generic is used here.
Generic fields are, in fact, the “most general” ones in the sense that, first, they
occur “most often” (i.e., as close as we like to any vector field there is a generic
one) and, second, they are “stable” (any vector field close enough to a generic one
is also generic, has the same number of singular points, and those points are of the
same types). Note that the center is not generic: a small perturbation transforms it
into a focus. These statements are not needed in this course, so we will not make
them more precise nor prove them.
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REMARK 5.7.3. It can be proved that the saddle and the center are not topo-
logically equivalent to each other and not equivalent to the node or to the focus;
however, the focus and the node are topologically equivalent, as we noted above.

5.7.3. The index of plane vector fields. Suppose a vector field V in the plane
is given. Let γ : S1 → R2 be a closed curve in the plane not passing through any
singular points of V ; denoteC := γ(S1). To each vector V (c), c ∈ C, let us assign
the unit vector of the same direction as V (c) issuing from the origin of coordinates
O ∈ R2; we then obtain a map g : C → S1

1 (where S1
1 ⊂ R2 denotes the unit

circle centered atO), called the Gauss map corresponding to the vector field V and
to the curve γ. Now we define the index of the vector field V along the curve γ as
the degree of the Gauss map g : S1 → S1 (for the definition of the degree of circle
maps, see section 5, §3): Ind(γ, V ) := deg(g). Intuitively, the index is the total
number of revolutions in the positive (counterclockwise) direction that the vector
field performs when we go around the curve once.

REMARK 5.7.4. A simple way of computing Ind(γ) is to fix a ray issuing
from O (say the half-axis Ox) and count the number of times p the endpoint of
V (c) passes through the ray in the positive direction and the number of times q in
the negative one; then Ind(γ) = p− q.

THEOREM 5.7.5. Suppose that a simple closed curve γ does not pass through
any singular points of a vector field V and bounds a domain that also does not
contain any singular points of V . Then

Ind(γ, V ) = 0 .

PROOF. By the Schoenflies theorem, we can assume that there exists a home-
omorphism of R2 that takes the domain bounded by C := γ(S1) to the unit disk
centered at the origin O. This homeomorphism maps the vector field V to a vector
field that we denote by V ′. Obviously,

Ind(γ, V ) = Ind(S1
0 , V ),

where S1
O denotes the unit circle centered at O. Consider the family of all circles

S1
r of radius r < 1 centered at O. The vector V ′(O) is nonzero, hence for a small
enough r0 all the vectors V ′(s), s ∈ S1

r0
, differ little in direction from V ′(O), so

that Ind(S1
r , V ) = 0. But then by continuity Ind(S1

r , V ) = 0 for all r # 1. Now
the theorem follows from (1). !

Now suppose that V is a generic plane vector field and p is a singular point of
V . Let C be a circle centered at p such that no other singular points are contained
in the disk bounded by C. Then the index of V at the singular point p is defined as
Ind(p, V ) := Ind(C, V ). This index is well defined, i.e., it does not depend on the
radius of the circle C (provided that the disk bounded by C does not contain any
other singular points); this follows from the next theorem.


