Introduction to Modern Topology and Geometry

Anatole Katok Alexey Sossinsky

Contents

Chapter	1. BASIC TOPOLOGY	3
1.1.	Topological spaces	3
1.2.	Continuous maps and homeomorphisms	6
1.3.	Basic constructions	9
1.4.	Separation properties	14
1.5.	Compactness	19
1.6.	Connectedness and path connectedness	22
1.7.	Totally disconnected spaces and Cantor sets	26
1.8.	Topological manifolds	28
1.9.	Orbit spaces for group actions	32
1.10.	Problems	35
Chapter	2. ELEMENTARY HOMOTOPY THEORY	39
2.1.	Homotopy and homotopy equivalence	39
2.2.	Contractible spaces	42
2.3.	Graphs	44
2.4.		46
2.5.	Brouwer fixed point theorem in dimension two	50
2.6.	Index of a point w.r.t. a curve	52
2.7.	The fundamental theorem of algebra	53
2.8.	The fundamental group; definition and elementary properties	55
2.9.	The first glance at covering spaces	62
2.10.	Definition of higher homotopy groups	65
2.11.	Hopf fibration	67
2.12.	Problems	69
Chapter	3. METRICS AND RELATED STRUCTURES	71
3.1.	Definition of metric spaces and basic constructions	71
3.2.	Cauchy sequences and completeness	75
3.3.	The <i>p</i> -adic completion of integers and rationals	78
3.4.	Maps between metric spaces	80
3.5.	Role of metrics in geometry and topology	84
3.6.	Separation properties and metrizability	85
3.7.	Compact metric spaces	86
3.8.	Metric spaces with symmetries and self-similarities	90
3.9.	Spaces of continuous maps	92
3.10.	Spaces of closed subsets of a compact metric space	93

2 CONTENTS

3.11.	Uniform structures	95
3.12.	Topological groups	96
3.13.	Problems	96
Chapter	4. REAL AND COMPLEX SMOOTH MANIFOLDS	99
4.1.	Differentiable manifolds, smooth maps and diffeomorphisms	99
4.2.	Principal constructions	103
4.3.	Orientability and degree	105
4.4.	Paracompactness and partition of unity	105
4.5.	Embedding into Euclidean space	107
4.6.	Derivatives and the tangent bundle	108
4.7.	Smooth maps and the tangent bundle	112
4.8.	Manifolds with boundary	114
4.9.	Complex manifolds	115
4.10.	Lie groups: first examples	117
4.11.	Problems	120
Chapter	5. TOPOLOGY AND GEOMETRY OF SURFACES	123
5.1.	Two big separation theorems: Jordan and Schoenflies	123
5.2.	Planar and non-planar graphs	125
5.3.	Surfaces and their triangulations	127
5.4.	Euler characteristic and genus	130
5.5.	Classification of surfaces	132
5.6.	The fundamental group of compact surfaces	135
5.7.	Vector fields on the plane	136
5.8.	Smoothing surfaces	139
5.9.	Vector fields on surfaces	139
5.10.	The geometry of Riemannian metrics	143
5.11.	Gauss–Bonnet theorem	143
5.12.	Complex structure on surfaces	144
Chapter	6. COVERING SPACES AND DISCRETE GROUPS	145
6.1.	Coverings associated with discrete group actions	145
6.2.	The hierarchy of coverings, universal coverings	149
6.3.		151
6.4.	Classification of coverings with given base via π_1	153
6.5.	Coverings of surfaces and the Euler characteristic	159
6.6.	Branched coverings of surfaces	161
6.7.	Riemann-Hurwitz formula	164
6.8.	Problems	169
Chapter	7. SIMPLICIAL AND CW SPACES	171
7.1.	Simplicial spaces and maps	171
7.2.	Simplicial approximation	181
7.3.	Triangulating manifolds	185
7.4.	CW-spaces, cellular maps	190