
CHAPTER 10

SMOOTHMANIFOLDS REVISITED

We return to the general discussion of differentiable manifolds started in Chap-
ter 4.

10.1. Basics, notation

Here, for the reader’s convenience, we recall the main notions related to smooth
manifolds that we studied in Chapter 4, but only to refresh the terminology and fix
the notation.

LetM be a smooth manifold of dimension n. Then by

AM =
{(

Ui; hi = (x1, . . . , xn) : Ui → Rn
)}

we denote some atlas ofM ; here the hi are the charts (local coordinates) of the atlas
(we assume that each hi is a homeomorphism of Ui onto Rn); by ϕi,j we denote
the transition functions (coordinate transformations) given by ϕi,j = hj ◦ h−1

i .
Further we denote the tangent bundle ofM by τ : TM → M ; if p ∈ M , then

TpM = τ−1(p) is the tangent space at p. The space TpM is an n-dimensional
vector space with basis

∂p,1 =
∂

∂x1

∣∣∣
p
, . . . , ∂p,n =

∂

∂xn

∣∣∣
p
;

we will use the shorter notation ∂p,i rather than the cumbersome (but more often
used) notation (∂/∂xi)

∣∣
p
. Recall that any element (vector) vp of TpM is a deriva-

tion, i.e., an R-valued linear functional defined on functions (given near p) and
satisfying the local Leibnitz rule:

vp(f · g) = f(p) · vp(g) + vp(f) · g(p).

The value of a given vector on a given function can be calculated as the linear
combination of the partial derivatives of the function f ◦ h−1 : Rn → R at the
point h−1(p).

The set of smooth sections of the tangent bundle τ : TM → M , i.e., smooth
maps V : M → TM such that τ ◦ X = IdM , is denoted by Γ(M); its elements
are called (smooth) vector fields. The value of the vector field V at the point
p ∈ M is a tangent vector at p that we will denote by Vp (rather than V (p)).
The set Γ(M) of all smooth vector fields has the natural structure of a module
over C∞(M). Locally, in a fixed coordinate system

(
U, (x1, . . . , xn)

)
, the module
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Γ(U) is finitely generated with basis

∂1 =
∂

∂x1
, . . . , ∂n =

∂

∂xn
.

Of course, as a topological space, Γ(M) (and even the space Γ(Rn) is infinite-
dimensional.

The trajectory of a vector field V is a smooth map α : R → M whose tangent
vector at each point p ∈ M coincides with Vp.

We denote the algebra of smooth functions on a manifold M by FM . Recall
that in the local coordinates (U, h = x1, . . . , xn) any function f ∈ F can be
expressed locally (in the neighborhood U ) in coordinate form; we write f(q) =
f
(
x1(q), . . . , xn(q)

)
for any q ∈ U . For any f ∈ F , the function f◦h−1 : Rn → R

is infinitely differentiable.
The algebra FM is a commutative associative infinite-dimensional (provided

n = dim M ≥ 1) algebra over R with unit. It has numerous zero divisors: the
product of two nonzero functions f and g can be zero (this occurs if their supports
do not intersect: supp f ∩ supp g = ∅).

10.2. Vector fields, flows and differential operators

By the theorems of existence, uniqueness, and smooth dependence for solu-
tions of ordinary differential equations a C1 vector field onM induces a local flow,
that is, for every p ∈ M there is a curve cv,p : (−ε, ε) → M such that cv,p(0) = p

and ċv,p(t):=
d

dt
cv,p(t) = v(cv,p(t)). Here ε can be chosen to depend continuously

on p. Where defined the map ϕv : (p, t) '→ ϕt(p) := cv,p(t) is as smooth as v. By
continuity of ε it is bounded on any compact manifold and hence by the group prop-
erty cv,p(t+s) = cv(cv,p(t)),cv,p(t)(s) (which follows from uniqueness) every vector
field on a compact manifold induces a complete flow, that is, ϕt

v is defined for all
times. If ϕt

v and ϕs
w are the flows for vector fields v and w, respectively, then usu-

ally the diffeomorphisms ϕt
v and ϕt

w do not commute, that is, ϕt
v ◦ ϕs

w (= ϕs
w ◦ ϕt

v.
If they do, the vector fields v and w are said to commute. The extent to which two
vector fields v, w fail to commute is measured by their Lie bracket [v, w] which
can be computed as [v, w](p) = limt→0

(
w − dϕt

vw
)
(ϕt

v(p))/t.
Let us now show briefly how these invariant notions appear in local coordi-

nates. If (U, h) is a chart then we say that we have coordinates (x1, . . . , xn) on
U . For p ∈ U the canonical basis of TpM is the set of derivations ∂/∂xi induced
by the curves ci(t) := h−1(h(p) + tei), where ei is the ith standard basis vector
in Rn. A tangent vector v ∈ TpM can then be written as v =

∑n
i=1 vi∂/∂xi

and if f : M → R is smooth then vf =
∑n

i=1 vi∂(f ◦ h−1)/∂xi. Thus the in-
duced coordinates of TM are (x1, . . . , xn, v1, . . . , vn), where the vi are the com-
ponents we just defined. Likewise a vector field is locally given by a represen-
tation v(p) =

∑n
i=1 vi(p)∂/∂xi and it is smooth if and only if the vi are. To

see that the Lie bracket of two vector fields v, w defines a derivation, that is, a
vector field, we calculate in local coordinates. Namely, write v =

∑n
i=1 vi∂/∂xi,
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w =
∑n

i=1 wi∂/∂xi and for convenience write f for f ◦h. Then using the theorem
of H. A. Schwarz that second partial derivatives commute we obtain

(vw − wv)f = v
n∑

i=1

wi ∂f

∂xi
− w

n∑

i=1

vi ∂f

∂xi

=
n∑

i,j=1

vj ∂wi

∂xj

∂f

∂xi
+

n∑

i,j=1

vjwi ∂2f

∂xi∂xj
−

n∑

i,j=1

wj ∂vi

∂xj

∂f

∂xi
+

n∑

i,j=1

viwj ∂2f

∂xj∂xi

=
n∑

i,j=1

(
vj ∂wi

∂xj
− wj ∂vi

∂xj

) ∂f

∂xi
,

that is, [v, w] is indeed a vector field given locally by vj ∂wi

∂xj
−wi ∂vj

∂xi
. In particular

[∂/∂xi, ∂/∂xj ] = 0. There are several important properties of Lie brackets that are
not hard to check in local coordinates. By definition we obviously have [v, w] =
−[w, v] and [·, ·] is R-bilinear, that is, [αv + βw, z] = α[v, z] + β[w, z] for α, β ∈
R. Next observe that for functions as coefficients we get [fv, gw] = fg[v, w] +
f(vg)w − g(wf)v by a coordinate calculation similar to the preceding one. This
means in particular (for f ≡ 1) that the Lie derivative is a derivation, that is,
satisfies the product rule £v(gw) = g£vw + £vg w. Furthermore there is the
fundamental Jacobi identity

(10.2.1) [v, [w, z]] + [w, [z, v]] + [z, [v, w]] = 0.

This is straightforward in coordinates. Namely, we know that only first-order
derivatives occur, so we may simplify the calculation by discarding all higher-order
derivatives. The symmetry then makes the remaining terms cancel. Alternatively
write [v, w] = vw − wv and expand (10.2.1) accordingly to see that all terms
cancel.

Differentiating differentiable maps between manifolds is also straightforward
calculus on local coordinates: If f : M → N and (U, h), (V, k) are local charts
around p ∈ M and f(p) ∈ N , respectively, then the differential of f at p is
represented by the matrix of partial derivatives of the map k ◦ f ◦h−1 in Euclidean
space with respect to the standard bases.

10.3. Tensor bundles

The tangent bundle is an example of the following:

DEFINITION 10.3.1. A differentiable vector bundle with structure group G, a
subgroup of GL(m, R), over M (the base space) is a manifold P , called the total
space or bundle space, such that the projection π : P → M is differentiable and
furthermore locally P = M × Rm, that is, every x ∈ M has a neighborhood U
such that there is a diffeomorphism h : π−1(U) → U×Rm, u '→ (π(u),ϕ(u)) and
such that for any point x in the intersection U1∩U2 of two such neighborhoods the
trivialization differs by an element of G. A subbundle or distribution is a bundle
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whose fibers are contained in those of P . For two distributions E, F we define the
Whitney sum E + F to be the distribution with (E + F )p = Ep + Fp. We use “⊕”
if the sum is (pointwise) direct, that is, Ep ∩ Fp = {0} for all p ∈ M . A section of
P is a map v : M → P such that π ◦ v = IdM .

EXAMPLE 10.3.2. The tangent bundle TM of M is of this form: Here m is
the dimension of M and G = GL(m, R) acts by the linear coordinate changes in
the tangent fibers induced by coordinate change in the base. The sections are the
vector fields. If there is a nonvanishing vector field onM then the one-dimensional
subspaces it spans at every point define a one-dimensional distribution.

Note that the differentiable manifold TM has in turn a tangent bundle TTM .
This is an important object. On one hand it allows us to differentiate vector fields.
On the other hand classical mechanics involves second-order differential equations
and the natural setting for second derivatives is the second (or double) tangent
bundle TTM .

The second tangent bundle TTM is obviously a vector bundle over TM , but
it is, in fact, a vector bundle over M as well. To that end notice that coordinate
changes in M change coordinates in TTM by a coordinate change determined
again by the linear part of the coordinate change inM . We will return to this in the
setting of Riemannian manifolds.

From the linear structure in the tangent spaces arise linear objects other than
vectors and linear maps (for example, differentials). Namely, it is often important
to consider multilinear maps. The easiest examples, and a building block, are 1-
forms.

DEFINITION 10.3.3. We denote by T ∗M the cotangent bundle consisting of
the spaces T ∗p M = (TpM)∗ of linear maps (covectors) TpM → R. A section of
T ∗p M is called a 1-form. A multilinear map T ∗p M ⊕ · · ·⊕ T ∗p M

︸ ︷︷ ︸
k times

⊕TpM ⊕ · · ·⊕ TpM︸ ︷︷ ︸
l times

→

R (that is, linear in each entry independently) is called a (k, l)-tensor. A section of
the bundle TM ⊗ · · ·⊗ TM ⊗ T ∗M ⊗ · · ·⊗ T ∗M = (TM)⊗k ⊗ (T ∗M)⊗l is a
(k, l)-tensor field (or tensor). A tensor is called smooth if its values on smooth vec-
tor and covector fields define a smooth function. (Alternatively, if its coefficients
in local coordinates are smooth.)

Thus a vector is a (1, 0)-tensor, a 1-form is a (0, 1)-tensor, and the Riemannian
metrics defined in Definition 13.2.1 are (0, 2)-tensors. A basis for the space of
1-forms on TpM is given by the forms dxi which are given by the derivatives

of the coordinate functions xi, that is, dxi(∂/∂xj) = δi
j :=

{
0 if i (= j,

1 if i = j.
The

derivative of a function f is a 1-form Df(v) := vf =
∑n

i=1 ∂f/∂xi dxi. If T

is a (k, l)-tensor then T = T j1,...,jk
i1,...,il

∂/∂xj1 ⊗ · · · ⊗ ∂/∂xjk ⊗ dxi1 ⊗ · · · ⊗ dxil

with T j1,...,jk
i1,...,il

= T (dxj1 , . . . , dxjk , ∂/∂xi1 , . . . , ∂/∂xil). There is a natural way to
extend the Lie derivative to tensors. Namely, note first that for (1, 0)-tensors (vector
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fields) it is already defined and that for (0, 0)-tensors (functions) we can define
£vf := vf . Now extend to (0, 1)-tensors ξ by setting £v(ξ(w)) = £v(ξ)(w) +
ξ(£vw). Likewise one can extend£v to any tensor field by postulating the product
rule £v(ξ ⊗ η) = £vξ ⊗ η + £vη ⊗ ξ. If ω is a (0, 1)-tensor on N and f : M →
N differentiable then we can define the pullback f∗ω of ω on M by f∗ω(v) :=
ω(Dfv). This, of course, works for (0, k)-tensors just as well. Likewise one can
send vectors fromM toN viaDf , but this can be expected to send vector fields to
vector fields only if f is injective (if f(p) = f(q) and v is a vector field such that
Dfv(p) (= Dfv(q) then there is no well-defined vector field “f∗v” on f(M)). If
f is a diffeomorphism then this is no problem, however. Using pullbacks the Lie
derivative of a (0, k)-tensor can be computed by using the flow ϕt defined by the
vector field v to write

£vω = lim
t→0

(1/t)((ϕt)∗ω − ω).

The Lie derivative of any (k, l)-tensor can be computed similarly.
An important special class of tensors is that of alternating ones:

DEFINITION 10.3.4. A (0, k)-tensor ω on a linear space is said to be an al-
ternating tensor or an (exterior) form if ω(v1, . . . , vk) = 0 whenever vi = vj for
some i (= j. A (0, k)-tensor field is said to be alternating if it is alternating at every
point. Alternating (0, k)-tensor fields are called k-forms, and the space of k-forms
is denoted by Γ(

∧k T ∗M). In analogy to the asymmetric part of a matrix the al-
ternating part Aη of a (0, k)-tensor η is defined by Aη = 1/k!

∑
π∈Sk

sgn π η ◦ π,
where π permutes the entries and sgn π is its sign, that is, −1 if π is odd, 1 oth-
erwise. Thus A is a projection of (T ∗M)⊗k to

∧k T ∗M . We define the wedge
product or exterior product of ω ∈

∧k T ∗M and η ∈
∧l T ∗M by

ω ∧ η :=
(k + l)!

k! l!
A(ω ⊗ η) ∈

∧k+l
T ∗M.

Nonzero elements of Γ(
∧n T ∗M) are called volume elements and two volume

elements Ω,Ω′ are said to be equivalent if Ω′ = fΩ for some f ∈ C∞(M), f > 0.
An equivalence class of volume forms is called an orientation of M and M is
called orientable if there exists an orientation onM .

With these definitions one gets the following standard facts: ω∧η is R-bilinear
in ω and η, η ∧ ω = (−1)klω ∧ η (hence ω ∧ ω = 0 for odd k), f∗(ω ∧ η) =
(f∗ω)∧ (f∗η), and ω∧ (η∧λ) = (ω∧η)∧λ=:ω∧η∧λ. A basis for

∧k T ∗p M is
given by {dxi1∧· · ·∧dxik 1 ≤ ij ≤ n}, where {dxi 1 ≤ i ≤ n} is the dual basis
for {∂/∂xi 1 ≤ i ≤ n}. Thus dim

∧k T ∗p M =
(n
k

)
. In fact, β1 ∧ · · ·∧ βk (= 0 if

and only if {β1, . . . ,βk} ⊂ T ∗p M is linearly independent.
A manifold is orientable if and only if Γ(

∧n T ∗M) is one-dimensional over
C∞(M). (Namely, there exists a volume, hence the dimension is at least one,
and for two volumes Ω and Ω′ the function ϕ := Ω′/Ω is well defined, since
Γ(

∧n T ∗p M) is one-dimensional, and smooth as well.) One can also check that
orientability is equivalent to the existence of an oriented atlas, that is, an atlas
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where h ◦ h′ preserves the orientation of Rn for any two charts h, h′. On a com-
pact manifold a volume form can be integrated to give the total volume. This is
done via charts as follows. In Rn we define

∫
Ω :=

∫
Ω1,...,ndx1 · · · dxn for any

volume Ω = Ω1,...,ndx1 ∧ · · · ∧ dxn. For orientation-preserving diffeomorphisms
f we get

∫
f∗Ω =

∫
Ω. Thus we can define

∫
Ω for a manifold M by taking a

partition of unity {Ui,ψi} subordinate to a covering by charts (Vi, hi) and define∫
Ω :=

∑
i

∫
(hi)∗(ψiΩ), and this definition via charts is coordinate independent.

10.4. Exterior calculus and de Rham differential

Next we want to study the calculus of exterior forms, also called exterior cal-
culus.

DEFINITION 10.4.1. The exterior derivative d : Γ(
∧k T ∗M) → Γ(

∧k+1 T ∗M)
(for any k) is defined by the following axioms (which uniquely determine d):
df = Df for functions, d is R-linear and d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη,
d ◦ d = 0, and d is locally defined, that is, if two forms coincide on an open set O
then their derivatives coincide on O as well.

By induction on dimension one sees that this is well defined. Namely, if ω =
ϕdψ1∧ · · ·∧dψk then necessarily dω = dϕ∧dψ1∧ · · ·∧dψk. The last property is
also satisfied inductively since it holds for functions: ddϕ =

∑n
i,j=1(DDϕ)ijdxi∧

dxj =
∂2ϕ

∂xi∂xj
dxi ∧ dxj = 0. Furthermore d commutes with pullback and the Lie

derivative: f∗dω = d(f∗ω) (and f∗dω = d(f∗ω) if f is a diffeomorphism) and
£v(ω1∧ · · ·∧ωk) = £vω1∧ · · ·∧ωk + · · ·+ω1∧ · · ·∧£vωk, whence d£v = £vd.

We occasionally use the convenient notation of the contraction of ω with a
vector v defined by v!ω :=ω(v, ·, . . . , ·). This is R-linear and C∞(M)-linear in v.
Furthermore v!(ω ∧ η) = (v!ω) ∧ η + (−1)kω ∧ (v!η) and v!df = £vf and
(10.4.1) £vω = v!dω + d(v!ω).

Finally f∗v!f∗ω = f∗(v!ω) and f∗v!f∗ω = f∗(v!ω) for any diffeomorphism f .

10.5. De Rham cohomology

Associated with forms is a cohomology theory which is based on the following
notion and theorem:

DEFINITION 10.5.1. ω ∈ Γ(
∧k T ∗M) is said to be closed if dω = 0 and exact

if ω = dη for some η ∈ Γ(
∧k−1 T ∗M).

Since d2 = 0 every exact form is closed. Locally the converse holds:

THEOREM 10.5.2 (Poincaré Lemma). If ω is closed then for all p ∈ M there
is a neighborhood U of p on which ω is exact.

PROOF. We use the homotopy trick (see ??, ??): Assume p = 0 ∈ Rn and
let vt(x) = x/t. vt generates the flow ϕt(x) = tx for t > 0, so d/dt(ϕt)∗ω =
(ϕt)∗£vtω = (ϕt)∗(d(vt!ω)) = d((ϕt)∗(vt!ω)) since dω = 0, and ω−(ϕt0)∗ω =


