MATH 527: GEOMETRY/TOPOLOGY I.

FALL 2006

A.Katok

HOMEWORK #1; September 11, 2006

Topological Spaces

Due on Monday September 18

1. Write complete proof of Proposition 1.1.13: For any set X and any collection \mathcal{C} of subsets of X there exists a unique weakest topology for which all sets from \mathcal{C} are open.

2.(Ex. 1.1.1.) How many different (non-homeomorphic) topologies are there on the 2–element set and on the 3–element set?

3.(Ex. 1.3.2.)Prove that the sphere \mathbb{S}^2 with two points removed is homeomorphic to the infinite cylinder $C := \{(x, y, z) \in \mathbb{R}^3 | x^2 + y^2 = 1\}.$

4.(Example 1.3.3.+ Ex. 1.3.4 & 1.3.5.) Prove that the following three constructions of the *n*-torus \mathbb{T}^n produce homeomorphic topological spaces:

- Product of *n* copies of the circle
- The following subset of \mathbb{R}^{2n} :

$$\{(x_1, \dots, x_{2n}) : x_{2i-1}^2 + x_{2i}^2 = 1, i = 1, \dots, n.\}$$

with the induced topology.

• The identification space of the unit n-cube I^n :

$$\{(x_1, \ldots, x_n) \in \mathbb{R}^n : 0 \le x_i \le 1, i = 1, \ldots n\}.$$

where any two points are identified if all of their coordinates but one are equal and the remaining one is 0 for one point and 1 for another.

5.(Ex. 1.10.4 & 1.10.5.) Consider the *profinite* topology on \mathbb{Z} in which open sets are defined as unions (not necessarily finite) of non-constant arithmetic progressions

a) Prove that this defines a topology.

b) Let \mathbb{T}^{∞} be the product of countably many copies of the circle with the product topology. Define the map $\varphi : \mathbb{Z} \to \mathbb{T}^{\infty}$ by

$$\varphi(n) = (\exp(2\pi i n/2), \exp(2\pi i n/3), \exp(2\pi i n/4), \exp(2\pi i n/5), \dots)$$

Show that the map φ is injective and that the pullback topology on $\varphi(\mathbb{Z})$ coincides with its profinite topology.

 $\mathbf{2}$