MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK \# 4; October 2, 2006
Manifolds, graphs, beginning homotopy
Due on Monday October 9
16. Consider the torus $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ and let S be the quotient space obtained by identifying orbits of the map $I: x \mapsto-x$. Prove that S is homeomorphic to the sphere \mathbb{S}^{2}.
17. Ex 2.3.1.
18. Ex. 2.12.1.
19. Ex 2.12.2.
20. Ex 2.12.4.

"'Extra credit" problems
You may submit solutions until October 27.

E4. Consider regular $2 n$-gon and identify pairs of opposite side by the corresponding parallel translations. Prove that the identification space is a topological manifold. Prove that the manifolds obtained by this construction from the $4 n$-gon and and $4 n+2$-gon are homeomorphic.

E5. Prove that the manifold of the previous exercise is homeomorphic to the surface of the sphere to which n "handles" are attached, or, equivalently, to the surface of n tori joint into a "chain" (Figure 1.8.1 illustrates this for $n=1$ and $n=3$.

