MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK # 5: October 9, 2006

Fundamental group, covering spaces Due on Monday October 16

21.Prove that for any path connected topological space X we have $\pi_1(\text{Cone}(X)) = 0.$

22. Consider the following map f of the torus \mathbb{T}^2 into itself:

 $f(x,y) = (x + \sin 2\pi y, 2y + x + 2\cos 2\pi x) \pmod{1}.$

Describe the induced homomorphism f_* of the fundamental group.

23. Let $X = \mathbb{R}^2 \setminus \mathbb{Q}^2$. Prove that $\pi_1(X)$ is uncountable.

24. Let X be the quotient space of the disjoint union of S^1 and S^2 with a pair of points $x \in S^1$ and $y \in S^2$ identified. Calculate $\pi_1(X)$.

25. Describe two-fold coverings of

(1) the (open) Möbius strip by the open cylinder $\mathbb{S}^1 \times \mathbb{R}$;

(2) the Klein bottle by the torus \mathbb{T}^2 .

26. Prove that the real projective space $\mathbb{R}P(n)$ is not simply connected.

Hint: Use the fact that $\mathbb{R}P(n)$ is the sphere \mathbb{S}^n with diametrically opposed points identified.