MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK # 6; October 23 2006

Hopf fibration, Cantor sets, differentiable manifolds Due on Monday October 30

26.For any finite cyclic group C there exists a compact connected three-dimensional manifold whose fundamental group is isomorphic to C.

Hint: Use the Hopf fibration.

27.For any abelian finitely generated group A there exists a compact manifold whose fundamental group is isomorphic to A.

Hint: Use the fact that any finitely generated abelian group is the direct product of cyclic groups (finite and infinite).

28. Prove that complex projective space $\mathbb{C}P(n)$ is simply connected for every n.

29.Introduce a metric d on the Cantor set C (generating the Cantor set topology) such that (C, d) cannot be isometrically embedded to \mathbb{R}^n for any n.

30. Construct a smooth atlas of the projective space $\mathbb{R}P(3)$ with as few charts as possible.

"Extra credit" problems

You may submit solutions until November 14.

E6. Introduce a metric d on the Cantor set C such that (C, d) is not Lipschitz equivalent to a subset of \mathbb{R}^n for any n.

E7. Prove that for any finite graph G, $\pi_n(G) = 0$ for any $n \ge 2$.