MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK # 7; October 30, 2006

Differentiable manifolds; diffeomorphisms, submanifolds

Due on Monday, November 6

31. Construct an explicit diffeomorphism between \mathbb{R}^n and the open unit ball B^n .

32. Prove that any convex open set in \mathbb{R}^n is diffeomorphic to \mathbb{R}^n .

33. Prove that the following three smooth structures on the torus \mathbb{T}^2 are equivalent, i.e. the torus provided with any of these structure is diffeomorphic to the one provided with another:

- $\mathbb{T}^2 = \mathbb{S}^1 \times \mathbb{S}^1$ with the product structure;
- $\mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2$ with the factor-structure;
- The embedded torus of revolution in \mathbb{R}^3

$$\mathbb{T}^2 = \left\{ (x, y, z) \in \mathbb{R}^3 : \left(\sqrt{x^2 + y^2} - 2 \right)^2 + z^2 = 1 \right\}$$

with the submanifold structure.

34. Prove that the *n*-dimensional torus in \mathbb{R}^{2n} :

$$x_{2k-1}^2 + x_{2k}^2 = \frac{1}{n}, \quad k = 1, \dots, n$$

is a smooth submanifold of the (2n-1)-dimensional sphere

$$\sum_{i=1}^{2n} x_i^2 = 1$$

35. Prove that the upper half of the cone

$$x^2 + y^2 = z^2, \ z \ge 0$$

is not a submanifold of \mathbb{R}^3 , while the punctured one

$$x^2 + y^2 = z^2, \ z > 0$$

is a submanifold of \mathbb{R}^3 .