MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK \# 7; October 30, 2006
Differentiable manifolds; diffeomorphisms, submanifolds
Due on Monday, November 6
31. Construct an explicit diffeomorphism between \mathbb{R}^{n} and the open unit ball B^{n}.
32. Prove that any convex open set in \mathbb{R}^{n} is diffeomorphic to \mathbb{R}^{n}.
33. Prove that the following three smooth structures on the torus \mathbb{T}^{2} are equivalent, i.e. the torus provided with any of these structure is diffeomorphic to the one provided with another:

- $\mathbb{T}^{2}=\mathbb{S}^{1} \times \mathbb{S}^{1}$ with the product structure;
- $\mathbb{T}^{2}=\mathbb{R}^{2} / \mathbb{Z}^{2}$ with the factor-structure;
- The embedded torus of revolution in \mathbb{R}^{3}

$$
\mathbb{T}^{2}=\left\{(x, y, z) \in \mathbb{R}^{3}:\left(\sqrt{x^{2}+y^{2}}-2\right)^{2}+z^{2}=1\right\}
$$

with the submanifold structure.
34. Prove that the n-dimensional torus in $\mathbb{R}^{2 n}$:

$$
x_{2 k-1}^{2}+x_{2 k}^{2}=\frac{1}{n}, \quad k=1, \ldots, n
$$

is a smooth submanifold of the $(2 n-1)$-dimensional sphere

$$
\sum_{i=1}^{2 n} x_{i}^{2}=1
$$

35. Prove that the upper half of the cone

$$
x^{2}+y^{2}=z^{2}, \quad z \geq 0
$$

is not a submanifold of \mathbb{R}^{3}, while the punctured one

$$
x^{2}+y^{2}=z^{2}, \quad z>0
$$

is a submanifold of \mathbb{R}^{3}.

