MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK \# 8; November 10, 2006
Tangent bundles, examples of Lie groups, orientability
Due on Monday November 20
36. Prove that the tangent bundle to the three-dimensional sphere \mathbb{S}^{3} is diffeomorphic to the direct product $\mathbb{S}^{3} \times \mathbb{R}^{3}$.
37. Find a natural smooth group structure on the sphere \mathbb{S}^{3}.
38. Prove that real projective spaces $\mathbb{R} P(n)$ are orientable for odd n and non-orientable for even n.
39. Prove that complex projective spaces $\mathbb{C} P(n)$ are orientable.
40. Prove that there exists a non-vanishing smooth vector field on any odd-dimensional sphere $\mathbb{S}^{2 n-1}$.
41. Prove that the group $S L(2, \mathbb{R})$ of 2×2 matrices with determinant one is homotopy equivalent to the circle.

