MATH 527: GEOMETRY/TOPOLOGY I

FALL 2006

A.Katok

HOMEWORK # 8; November 10, 2006

Tangent bundles, examples of Lie groups, orientability Due on Monday November 20

36. Prove that the tangent bundle to the three-dimensional sphere \mathbb{S}^3 is diffeomorphic to the direct product $\mathbb{S}^3 \times \mathbb{R}^3$.

37. Find a natural smooth group structure on the sphere \mathbb{S}^3 .

38. Prove that real projective spaces $\mathbb{R}P(n)$ are orientable for odd n and non-orientable for even n.

39. Prove that complex projective spaces $\mathbb{C}P(n)$ are orientable.

40. Prove that there exists a non-vanishing smooth vector field on any odd-dimensional sphere \mathbb{S}^{2n-1} .

41. Prove that the group $SL(2, \mathbb{R})$ of 2×2 matrices with determinant one is homotopy equivalent to the circle.