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THE FORNI COCYCLE

WILLIAM A. VEECH

1. INTRODUCTION

The present note is occasioned by the award to Giovanni Forni of the inau-
gural Michael Brin Prize in Dynamical Systems. The award reflects the pro-
found contributions to dynamical systems by Giovanni Forni. The existence of
the award reflects the extraordinary generosity of Michael and Eugenia Brin, who
have provided funds for many mathematical and scientific activities, including
the Brin Prize.

Our goal is to indicate in outline, if not in detail, some of the many ideas that
Forni has introduced in two remarkable papers that have appeared in the Annals

of Mathematics, in 1997 and 2002. The default reference will be to the latter, with
references to the former specified as they arise. References listed in braces, e.g.,

{1}, may be found in the bibliography of [3], which is appended to this note for
the convenience of the reader.

2. THE KONTSEVICH–ZORICH COCYCLE

Forni is concerned with the Teichmüller geodesic flow in genus p , p ≥ 2, and
with a cocycle extension thereof, the Kontsevich–Zorich cocycle. The Kontsevich–
Zorich cocycle, which is introduced in the seminal paper {38}, is reminiscent of a
matrix-valued cocycle that arose in early studies of the measure theory of inter-
val exchange maps. The latter cocycle served as a tool for establishing facts about
measure-theoretically generic interval exchanges and about the Teichmüller ge-
odesic flow. In [3] Forni exhibits the Kontsevich–Zorich cocycle as an object of
intrinsic beauty, develops its analytic properties and applies the analysis to ob-
tain striking new results for the ergodic theory of the Teichmüller flow.

The Teichmüller geodesic flow has as its phase space the unit cotangent bun-
dle of the Teichmüller moduli space. The flow is the restriction to the positive di-
agonal subgroup, A, of a natural action of G = SL(2,R). The phase space is parti-
tioned into strata determined by the pattern of zeros of a holomorphic quadratic
differential and the property of being or not being the square of a holomorphic
1-form. A natural complete metric turns each stratum into a finitely connected,
clopen G-invariant set, with each component supporting a unique everywhere
positive, absolutely continuous G-invariant probability measure ({43},{65},{66}).
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For want of a better term, we call this measure a Liouville measure. There are
more G-invariant ergodic probability measures on each stratum, e.g., those sup-
ported on G-homogeneous subspaces of the stratum ({62},{67}), and still more
A-invariant measures supported on closed A-trajectories. Since an ergodic (A-
or G-) invariant probability measure is supported on a component of a stratum,
one is free to restrict attention to a single stratum when an ergodic measure is
at issue. Also, consideration of branched double covers enables one to restrict
attention to components of strata of squares, as Forni does.

One of many subtle insights in this paper is the author’s discovery of the dy-
namical significance of the “determinant locus”. This is a real-codimension two,
real analytic sub-hypersurface of the cotangent bundle whose usable definition
will be given later but which can be defined as follows: Associate to a nonzero
holomorphic quadratic differential q above a point X ∈ Tp (Teichmüller space)
the Teichmüller disc D through X that q determines. The “Riemann matrix”is a
holomorphic complex p×p matrix-valued function R on Tp . The restriction of R

to D is also holomorphic. While the derivative of R on D requires a choice of pa-
rameter, the locus of zeros of the determinant of this derivative is independent of
this choice of parameter. If X (below q) belongs to the zero locus, one says that
q belongs to the determinant locus. The determinant locus is invariant under
the mapping class group and therefore well-defined on the moduli level. Forni’s
strongest results are obtained for ergodic measures which are not supported on
the determinant locus. A rather intricate analysis is used to establish Theorem
4.5, the statement that the determinant locus does not contain a component of
any stratum. In particular, the strongest statements apply to the Liouville mea-
sures. Forni raises the intriguing question (Question 9.8) of whether it is possible
for a closed G trajectory to be contained in the determinant locus.

For a description of the Kontsevich–Zorich cocycle, begin with the unit cotan-
gent bundle, Q1

p , of Teichmüller space and the trivial bundle

Q1
p ×H 1(Mp ,R).

Endow each fiber with the Hodge inner product and norm. The G action on
Q1

p , here denoted q → hq , is extended to the product to be trivial (but not iso-
metric) in the second coordinate. The mapping class group acts on the prod-
uct, commuting with the G action and preserving the fiberwise Hilbert norm.
The quotient is a G action on a Hilbert bundle over the moduli space of unit
norm quadratic differentials. This is the Kontsevich–Zorich cocycle. In terms of
the Teichmüller flow one may think of the cocycle as a function L(h, q) whose
value at (h, q) ∈ G ×Q1

p is a linear operator from the (finite-dimensional real)
Hilbert space above q to the one above hq . (A measurable section of the or-
thonormal frame bundle can be used to convert L to a matrix-valued cocycle.)
Let the subgroup A be identified with R, and for each q consider the function
(L∗(t , q)L(t , q))1/2t as t →∞. For each ergodic A-invariant probability measure
the limit does exist a.e. and is a positive definite operator whose 2p eigenvalues,
counting multiplicities, form a set that is closed under reciprocals and is a.e. in-
dependent of q . The logs of these eigenvalues comprise the Lyapunov spectrum.
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One Kontsevich–Zorich conjecture is that for every Liouville measure the Lya-
punov spectrum is simple and, in particular, does not contain zero. Forni’s main
results in this regard are the statements that (a) the top element (which is 1) of
the Lyapunov spectrum is simple for any ergodic A-invariant probability mea-
sure and (b) for each Liouville measure the Lyapunov spectrum does not con-
tain 0. Part (a) was previously known in the Liouville measure case ({66}). The
statement (b) does not hold for arbitrary, A- (or G-) invariant ergodic probabil-
ity measures. Indeed, for some time after the original, 1976, version of {62}, the
known examples of pseudo-Anosov maps had quadratic expansion coefficients
(cf. {14}, p. 250), and many of these give rise to A-invariant measures with Lya-
punov spectrum {1,0,−1}. Recently, the full Kontsevich–Zorich Conjecture has
been established by Avila–Viana [1].

3. THE FORNI ORDINARY DIFFERENTIAL EQUATION

What follows is a rough description (and paraphrase) of one of Forni’s basic
ideas. Each nonzero holomorphic quadratic differential on a closed Riemann
surface determines a volume form on the surface. Therefore, there is a Hilbert
space, H (q), associated to each q ∈ Q1

p . If h ∈ G , then q and hq are initial
and terminal differentials of a Teichmüller map which, among other things, is
measure–preserving relative to the two volume forms. This means H (q) and
H (hq) are identified by the Teichmüller map. If q is a square, Forni uses [2] to
associate to each hq an R-linear isometry, U (hq), on H (hq). (I shall say more
about the definition later on.) Assuming the indicated identification of H (hq)
with H (q), the function h →U (hq) takes values in R-linear isometries of H (q).
Now identify the subgroup A with R, denoting the A-action by q → t q , and con-
sider the ordinary differential equation for an H (q)-valued function f (t ),

d f

d t
(t )=U (t q) f (t ).

This equation carries much information about the Kontsevich–Zorich cocycle.
Most importantly, Forni proves that if the initial condition f (0) ∈H (q) is a mero-
morphic function on the surface for q , then

1. for each t , f (t ) corresponds, under the identification above, to a meromor-
phic function f ∗(t )∈H (t q) on the surface for t q

2. the cohomology class, c , of the t q-harmonic 1-form Re( f ∗(t )(t q)1/2) is
constant in t .

Using p for genus, let M
+
t and M

−
t be the complex p-dimensional subspaces

of H (q) that are pullbacks of the spaces of meromorphic and conjugate mero-
morphic square integrable functions on the surface for t q . Let π±

t denote the
orthogonal projections of H (q) onto M

±
t . The Hodge norm squared of c at time

t is the H (q) norm squared of f (t ); the differential equation enables Forni to
compute the first two derivatives, along Teichmüller trajectories, of the function
“Hodge norm squared”. These calculations are of fundamental importance for
the main results of the paper. The equations for the first and second derivatives
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take the shape

(3.1)
c

d

d t

∥

∥ f (t )
∥

∥

2
q =−2Re

(

f (t )2,1
)

q

d 2

d t 2

∥

∥ f (t )
∥

∥

2
q = 4

{

∥

∥π−
t f (t )

∥

∥

2
q

}

−Re
(

g+
t , g−

t

)

q

In (3.1), (·, ·)q denotes the inner product with respect to the volume form subor-
dinate to q and g±

t are given by

(3.2)
g+

t = f (t )−π−
t f (t )

g−
t =

d

d t
f (t )+π−

t f (t )

(Forni gives a more direct definition of g±
t in terms of Cauchy–Riemann opera-

tors, ∂±t , associated to t q . The operators will be recalled in Section 5 below.)
Using (3.1), one finds that

(3.3)
d

d t
log

∥

∥ f (t )
∥

∥

q =−
Re

(

f (t )2,1
)

q
∥

∥ f (t )
∥

∥

2
q

When the initial condition, f (0), is the constant function 1 (respectively, i ), the
solution f (·) realizes the top (resp. bottom) Lyapunov exponent, which is 1 (resp.

−1). One is led therefore to consider the space E0
(

q
)

=

{

f (0)
∣

∣

∣

(

f (0),1
)

q = 0
}

.

When f (0) ∈ E0, (3.3) is used to imply

1

T
log

∥

∥ f (T )
∥

∥

q
∥

∥ f (0)
∥

∥

q

≤
1

T

T
∫

0

Λ
+(t q)d t

where

Λ
+(t q)=max







−Re
(

f 2,1
)

q
∥

∥ f
∥

∥

2
q

∣

∣

∣

∣

f ∈ E0
(

t q
)

r {0}







If µ is an ergodic invariant measure, the Multiplicative Ergodic Theorem implies
the second largest Lyapunov exponent satisfies

(3.4) λ
µ
2 ≤

∫

Λ
+(q)µ

(

d q
)

≤ 1

The right hand inequality of (3.4) must be strict. Otherwise, a compactness ar-
gument shows that there exist q and f ∈ E0

(

q
)

r {0} such that
∣

∣

∣

(

f 2,1
)

q

∣

∣

∣=
∥

∥ f
∥

∥

2
q .

The Schwarz inequality then implies f = c f for some constant c . That is, f is
both meromorphic and conjugate meromorphic, thus f is constant. Since f ∈

E0, f = 0. That is,

(3.5) λ
µ
2 < 1 =λ

µ
1

JOURNAL OF MODERN DYNAMICS VOLUME 2, NO. 3 (2008), 375–395



THE FORNI COCYCLE 379

4. SIGNIFICANCE OF THE DETERMINANT LOCUS

Let M
+ = M

+
0 (resp. M

− = M
−
0 ) be the 2p real-dimensional subspaces of

H (q) consisting of meromorphic (resp. conjugate meromorphic) functions and
let J : M

+ → M
− be the restriction of the orthogonal projection of H (q) onto

M
−. That is,

(4.1) J =π−
0 |M+

Let µq be the canonical Beltrami differential associated to q ,

µq =

∣

∣q
∣

∣

q

Forni uses the Rauch formula for the derivative of the Riemann matrix, R , on the
Teichmüller disc D determined by q , to establish, in effect, the relation

(4.2) |det(Q)| =

∣

∣

∣

∣

∣

∣

det( dR
dµq

)

det(Im(R))

∣

∣

∣

∣

∣

∣

2

at the point X ∈ D which corresponds to q . This establishes, for example, that
the determinant locus, which he defines as the locus

(4.3) det

(

dR

dµq

)

= 0,

is coincident with the locus of q such that ker(J) 6= {0}. (We remark that the com-
plex structure on a stratum may be realized in terms of cohomological coordi-
nates, {43}, {65,66,68}, and that, locally, the G-action is given by the coordinate-
wise R-linear action. If σt w = cosh(t )w +sinh(t )w , t ∈R, then for smooth S

(4.4)
d

d t
(S ◦σt )(w ) |t=0 =

N
∑

k=1

(

∂S

∂wk
(w )wk +

∂S

∂wk
(w ) wk

)

.

In particular, if S is the composition of R with the canonical holomorphic projec-
tion of the stratum into the Teichmüller space of genus p unpunctured surfaces,
S is real analytic. So long as the stratum is not contained in the determinant
locus, the locus is a real analytic, real-codimension two hypersurface.)

Forni’s formula (3.1) for the first two derivatives is combined with the analysis

of the determinant locus to obtain the statement that at least
[

p+1
2

]

nonnegative

Lyapunov exponents must be positive for any Liouville measure. An interesting
aspect of this argument is that it turns in part on an extension of a Kontsevich–
Zorich integral formula {38} for the sum of the nonnegative Lyapunov exponents
for a Liouville measure. At the same time, Forni derives an integral formula for
the sum of the first k < p nonnegative Lyapunov exponents for Liouville mea-
sures as a consequence of his still-to-be-proved nonvanishing theorem for all of
the Lyapunov exponents. The reason the argument (at this stage) captures posi-

tivity of only
[

p+1
2

]

Lyapunov exponents is that it turns on a derivation from the

integral formula that if r of the nonnegative exponents are zero, then for a.e. q
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some complex r -dimensional subspace of M
+ is mapped by the injection J in-

side some complex (p − r )-dimensional subspace of M−. Therefore 2r ≤ p . I
shall return to this point below.

What follows is an indication of a computational device that Forni employs
to derive various integral equalities and inequalities. Let K = SO(2). If Gq is a
G trajectory in Q1

p , then K \Gq is identified with the Teichmüller disc Dq that q

determines. Dq is, among other things, a hyperbolic disc with invariant Lapla-
cian ∆. If f , g are (appropriate and) related by the Poisson equation ∆ f = g on
Dq and if Aq ( f , t ) (resp. Bq (g , t )) is the average of f (resp. g ) over the circle of
hyperbolic radius t (resp. hyperbolic disc of radius t ) centered at X (beneath q),
then Forni establishes the relation

(4.5)
d

d t
Aq ( f , t ) ∼ Bq (g , t ), t →∞.

Upstairs in Q1
p , let mq be the normalized Haar measure on K transported to K q ,

i.e., to the circle above the center, X , of Dq . Let at = diag(e
t
2 ,e−

t
2 ), and let νq,t =

at mq . If F and G are functions on Q1
p that are constant on K orbits, then F and

G are lifts of functions f and h, respectively, on Dq . One has

(4.6)

(F,νq,t ) = Aq ( f , t ), t > 0

1

cosh t −1

t
∫

0

(G ,νq,s )sinh(s)d s =Bq

(

g , t
)

Forni’s differential equation is used to compute derivatives of specially chosen
F along A trajectories, and these derivatives are used in turn to compute g in
∆ f = g on Dq . In the application G turns out to be uniformly bounded and, in
particular, integrable with respect to the normalized Liouville measure, µE , on a
component, E , of a stratum. One knows that

(4.7) lim
t→∞

(G ,νq,t ) =
∫

E

G
(

q ′
)

µE (d q ′)

in µE -mean, e.g., by {69}, Theorem 2.6. It follows then that in mean,

(4.8)

lim
t→∞

Bq

(

g , t
)

=

∫

E

G
(

q ′
)

µE (d q ′)

lim
t→∞

Aq ( f , t )− Aq ( f ,0)

t
=

∫

E

G
(

q ′
)

µE (d q ′)

The function F , from which the functions f , g and G , are determined (almost)
has the form

(4.9) F = log
∣

∣det
(

A(q
)∣

∣
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for a certain matrix-valued function of q . If dk is the normalized Haar measure
on K , then in mean

(4.10) lim
t→∞

Aq ( f , t )− Aq ( f ,0)

2t
= lim

t→∞

∫

K

log
(∣

∣det
(

A(at k q
)∣

∣

) 1
2t dk

Actually, the function A depends upon an additional parameter, a point in a
Grassmanian, and for each q one must also average (4.8)-(4.10) over the Grass-
manian. The Multiplicative Ergodic Theorem is finally brought into play to eval-
uate the limit on the right.

To indicate the most elementary example, let N be a Lagrangian subspace of
H 1(Mp ,R), and let ν be a volume form for N . Define M (hq) to be the Hodge
norm of ν on the surface for hq . For fixed N and q , FN (hq) = log(M (hq)) is
well-defined in h, up to an additive constant. Moreover,

FN (khq)= FN (hq), k ∈ K

Therefore, on K \Gq

fN (K hq) := FN (hq)

is also defined up to an additive constant. Forni proves

∆ fN = 2tr(Q)

where Q(hq), the hermitian form which was defined earlier above each hq , is
independent of the Lagrangian subspace. Endow H 1(Mp ,R) with the Hodge
metric over hq and average 1

t

(

Aq ( fN , t )− Aq ( fN ,0)
)

over N in the Grassmanian,
Gp

(

Mp ,R
)

, of Lagrangian subspaces, with respect to normalized Haar measure,
µ

p
q . The result is

(4.11)
Aq

(

f p , t
)

− Aq

(

f p ,0
)

t
=

∫

Gp (Mp ,R)

(

Aq

(

fN , t
)

− Aq

(

fN ,0
)

t

)

µ
p
q (d N )

where

f p
(

K hq
)

=

∫

Gp(Mp ,R)

fN (K hq)µ
p
q (d N )

Next, integrate with respect to the normalized Liouville measure µE on a compo-
nent E of a stratum. The Multiplicative Ergodic Theorem yields the Kontsevich–
Zorich integral formula

lim
t→∞

∫

E

Aq

(

f p , t
)

− Aq

(

f p ,0
)

2t
µE

(

d q
)

=

p
∑

i=1
λi =

∫

E

tr
(

Q
(

q
))

µE

(

d q
)

.

More generally, let I =
{

I1 ⊂ I2 ⊂ · · · ⊂ Ip

}

be a flag of isotropic subspaces of
H 1(Mp ,R) such that

dim Ik = k , 1 ≤ k ≤ p

Choose a set C =
{

c1,c2, · · ·,cp

}

of vectors such that for each k , {c1,c2, · · ·,ck } is a
basis for Ik . Identify H 1(Mp ,R) with the (R−linear) space M

+ at q via the map
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m+ → Re
(

m+q
1
2

)

, and let
{

m+
1 , · · ·,m+

p

}

correspond to
{

c1,c2, · · ·,cp

}

. For each k

define the k ×k matrix Ak
q,C by

(

Ak
q,C

)

i j
=

(

m+
i ,m+

j

)

q
.

The isotropy condition implies that Ak
q,C is real and symmetric. Recalling that C

moves trivially by the Kontsevich–Zorich cocycle, one may view the matrices as
defining a cocycle

B k
C

(

h, q
)

= Ak
hq,C

(

Ak
q,C

)−1
.

Moreover, the function

F k
Ik

(hq)= log
∣

∣

∣detB k
C

(

h, q
)

∣

∣

∣ , F k
C (q)= 0

depends only upon the k t h element of the flag I and is left K−invariant. There-
fore the function

f k
Ik

(K hq)= F k
Ik

(hq), f k
Ik

(K q) = 0

is defined on the Teichmüller disc D that q determines. For each k the Lapla-
cians

(4.12) ∆ f k
Ik

:= 2Φk
Ik

also depend only upon the k t h element of the flag I and not upon the choice
of basis {c1,c2, · · ·,ck } for it. In particular, one may as well choose

{

c1,c2, · · ·,cp

}

to be orthonormal at q . This implies
{

m+
1 , · · ·,m+

p

}

is orthonormal in H
(

q
)

. An

elaborate calculation produces the remarkable formula

(4.13)

Φ
k
Ik

(

q
)

= 2
k

∑

i=1

∥

∥Jm+
i

∥

∥

2
q
−

k
∑

i , j=1

∣

∣

∣

∣

(

m+
i ,m+

j

)

q

∣

∣

∣

∣

2

=

p
∑

i=1

∥

∥Jm+
i

∥

∥

2
q
−

p
∑

i , j=k+1

∣

∣

∣

∣

(

m+
i ,m+

j

)

q

∣

∣

∣

∣

2

= tr
(

Q
(

q
))

−

p
∑

i , j=k+1

∣

∣

∣

∣

(

m+
i ,m+

j

)

q

∣

∣

∣

∣

2

(Recall that J =π−
0 |M+ .) When k = p ,

(4.14) Φ
p

Ip

(

q
)

= tr
(

Q
(

q
))

as above.

Let Gk

(

Mp ,R
)

be the Grassmanian of isotropic k-planes, and let µk
q be the

normalized Haar measure on Gk

(

Mp ,R
)

relative to the Hodge metric above q .
Define

f k
(

K hq
)

=

∫

Gk(Mp ,R)

f k
Ik

(K hq)µk
hq (d Ik) .
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Let the nonnegative Lyapunov spectrum be ordered as

(4.15) 1 =λ1 >λ2 ≥λ3 ≥ · · · ≥λp ≥ 0.

Since Aq ( f k ,0) = 0, the Multiplicative Ergodic Theorem implies

lim
t→∞

∫

E

Aq ( f k , t )

2t
µE (d q)=

k
∑

i=1
λi , k < p, λk >λk+1 ≥ 0

Moreover, if Φk is defined by

Φ
k
(

K q
)

=

∫

Gk(Mp ,R)

Φ
k
Ik

(K q)µk
q (d Ik) ,

one finds that

(4.16)
k
∑

i=1
λi =

∫

E

Φ
k
(

K q
)

µE (d q), k < p, λk >λk+1 ≥ 0

For one application of (4.16), suppose for some k < p that λk > 0 and λk+1 = 0.
From (4.13),

Φ
k
(

K q
)

≤ tr
(

Q(q)
)

Since λk+1 = 0, it is true that
k
∑

i=1
λi =

p
∑

i=1
λi

Therefore, by the Kontsevich–Zorich formula, one has for µE -a.e. q that

Φ
k
(

K q
)

= tr
(

Q(q)
)

For each such q there exists an orthonormal basis
{

m+
1 , · · ·,m+

p

}

such that

p
∑

i , j=k+1

∣

∣

∣

∣

(

m+
i ,m+

j

)

q

∣

∣

∣

∣

2

= 0.

Therefore, J : M
+ →M

− sends the C-linear span of
{

m+
k+1, · · ·,m+

p

}

into the C-

linear span of
{

m+
1 , · · ·,m+

k

}

. Since J is injective for µE -a.e. q , it must be that

2k ≥ p . It follows that the top
[

p+1
2

]

elements of the Lyapunov spectrum are

positive.
More can be obtained from the asymptotic (4.7). For a.e. q there is a flag

I
(

q
)

=

(

I+1 (q), I+2 (q), · · ·, I+p (q)
)

corresponding to the nonnegative Lyapunov spec-

trum. If k < p and λk >λk+1, define

Ψ
k
(

q
)

=Φ
k
I+

k (q)(q)
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Since I+
k

(

q
)

= I+
k

(

t q
)

, t ∈ A, we have as a limit in mean
∥

∥

∥Ψ
k
−Φ

k
∥

∥

∥

1,µE

= lim
t→∞

(∣

∣

∣Ψ
k
−Φ

k
∣

∣

∣ ,νq,t

)

= lim
t→∞







∣

∣

∣

∣

∣

∣

∣

∫

Gk (Mp ,R)

(

Ψ
k
(

q
)

−Φ
k
Ik

(q)
)

µk
q (d Ik)

∣

∣

∣

∣

∣

∣

∣

,νq,t







≤ lim
t→∞

∫

Gk (Mp ,R)

∫

K

∣

∣

∣Ψ
k
(

t k q
)

−Φ
k
Ik

(t k q)
∣

∣

∣dkµk
q (d Ik)

= lim
t→∞

∫

Gk (Mp ,R)

∫

K

∣

∣

∣Φ
k
I+

k (kq)(t k q)−Φ
k
Ik

(t k q)
∣

∣

∣dkµk
q (d Ik)

= 0.

The last line is a consequence of the continuity of Φk
Ik

(q) on Gk

(

Mp ,R
)

×Q1
p and

the Multiplicative Ergodic Theorem. It follows now that

k
∑

i=1
λi =

∫

E

Φ
k
I+

k

(K q)µE (d q), k < p, λk >λk+1 ≥ 0,

which is Forni’s integral formula.

5. INVARIANT DISTRIBUTIONS AND COHOMOLOGY

A reader of Sections 6 and 7 of [3] will be well-advised to keep handy copies
of [2], de Rham {11} and Schwartz {56}, because these sections attach/analyze
a daunting array of spaces of foliation invariant distributions/currents to the
(say) horizontal foliation of a square q . It is worth the effort to follow the con-
structions/analyses, some of which are indicated here. There are parallel tracks
throughout, one for cohomology and one for relative cohomology. I shall focus
on the former.

First, one has to decide on a space of test forms. The space Ωq is defined
in terms of the “atlas”of natural parameters, understood here to mean a collec-
tion of local branched covering “charts”under which d z2 pulls back to q = ω2

(branched covering occurs only at zeros of q). The space Ωq is the set of pull-
backs of smooth forms on the plane under these “charts”. Ω

d
q ⊂Ωq corresponds

to homogeneous forms of dimension d . The dual S ′
q of Ωq (resp.

(

Sd
q

)′

) is the

space of q-tempered currents (resp. homogeneous q-tempered currents of dimen-
sion d ). Also, since q =ω2, we may define ∂ to be the meromorphic vector field
such that ω(∂) ≡ 1 on X rω−1(0). The “charts”above send ∂ (resp. ∂∗) to ∂

∂z (resp.
∂
∂z

) on the plane. Let S = (∂+∂∗) ,T = i (∂−∂∗). S and T are singular vector fields
that are pointwise

∣

∣q
∣

∣-orthonormal and tangent to the horizontal and vertical
foliations away from the zeros of q . One sees readily that Ωq and Ω

d
q are closed

under ∂ and ∂∗ and (the natural interpretation of) the Lie derivative (LS) and
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contraction (iS) with respect to S (and T ). Therefore, it makes sense to define a
q-tempered invariant current C of dimension d for the horizontal foliation by

(5.1) iSC = 0 =LSC in
(

Sd
q

)′

When d = 1, one speaks of basic currents. When d = 2, or by duality d = 0, one
speaks of q−tempered invariant distributions. The spaces of basic currents are

denoted B±q (X ), where +q,−q correspond to S,T respectively.
This is a good place to indicate how the isometry U (q), mentioned in Section

3, is defined. A nice fact from [2] is an identity for the space H
1
0 (q) of mean zero

u, v ∈H
1(q), the Sobolev space relative to the q-volume form, which states

(5.2) P(u, v) := (Su,Sv)q + (Tu,T v)q = (∂u,∂v)q ) = (∂∗u,∂∗v)q ,

where u, v ∈ H
1
0 (q). The identity is not purely formal. It strengthens the state-

ment that the operators commute on the next higher level Sobolev space. With
the help of a Poincaré inequality

(5.3) (u,u)≤ cP(u,u), u ∈H
1
0 (q)

from [2], (5.2) sets up an isometry ∂ (or ∂∗) between H
1
0 (q) ⊂H

1(q) and a codi-
mension p ( = genus) subspace R+ (or R−) of H

0(q) =H (q). The operator

(5.4) V = ∂∗∂−1 : R+
→ R−

is an isometry. The orthocomplements of R+ and R− are, respectively, the spaces
M

+ and M
− from the previous section. Therefore V admits an R-linear exten-

sion to an isometry, U (q), of H
0(q) = H (q). For example, conjugation is an R-

linear isometry of M
+ onto M

−, and this particular choice of extension is useful
for certain calculations.

I shall next indicate how Forni attaches a cohomology class c ∈ H 1(X ,R) to a
q-tempered invariant distribution D of dimension 2. Given D, define C = iSD.
Then C is a q-tempered basic current of dimension one. Forni proves a basic

current satisfies dC = 0 in
(

S1
q

)′

. In particular, C may be assigned by Poincaré

duality a class in H 1(X r q−10,R) ∼= H 1
c (X r q−10,R)∗ (dual of cohomology with

compact supports). The q-tempered condition is used to show this class actually
lies in H 1(X ,R). More precisely, if N is the kernel of the surjective forgetful map

H 1
c (X r q−10,R) → H 1(X ,R)

he proves that the image of C lies in the annihilator of N . The trick is that if
c ∈ N , then c = [d v ] for some function v that is constant on each component
of a neighborhood of q−10. The constants are not necessarily zero, but in any

case v ∈Ωq and d v ∈Ω
1
q . Since dC = 0 in

(

S1
q

)′

, C (d v) = dC (v) = 0. The corre-

spondence D → C = iSD above is also shown to be invertible, and therefore the
spaces of q-tempered invariant distributions and q-tempered basic currents are
naturally isomorphic.

Forni also deals with Sobolev spaces of q-tempered currents of dimension 1.
If q is a square, then, with notations as above, the operators S = (∂+∂∗) and
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T = i (∂−∂∗) are used to define Sobolev spaces H
s(q) relative to the q-volume

form. The test forms are q-tempered 1-forms whose contractions with respect
to the vertical and horizontal vector fields belong to Sobolev function spaces as-
sociated to q and its volume form. That is,

H
s
q =

{

α ∈ S ′
q |(iSα, iT α) ∈H

s (q)×H
s (q)

}

.

Now one speaks of basic currents and cohomology of order s > 0.
The final part of Section 6 is concerned with improvement of the Poincaré in-

equality (5.3). The goal is to incorporate into the constant inverse dependence
on the shortest geodesic length of a connection between cone points for the met-
ric |q |. The proof parallels the proof of Cheeger’s lower bound in {9} for the first
eigenvalue of the Laplacian. The Dirichlet form is P(u, v)= (Su,Sv)q+(Tu,T v)q ,
and the Poincaré inequality is, for mean zero u,

(5.5) ||u||
0
q <Cλ(q)−1P(u,u)1/2, u ∈H

1
0 (q),

where λ(q) is the shortest geodesic length between cone points for |q |. The im-
proved inequality is important for Section 8.

Section 7 is interesting not only for the new results it contains but for its con-
nection to the horse and buggy days of this subject. The first bounds for the
dimension of the linear space of finite invariant signed measures for a quasimin-
imal flow with hyperbolic saddles were obtained, by Katok {29}, by injecting the
space into a cohomology space and observing the image to be isotropic. There-
fore the cone of invariant measures has dimension at most one-half the rank of
the associated cohomology (or form). (The corresponding bound for interval
exchanges was obtained, independently, by the author in a later paper, but the
result is equivalent to Katok’s. The bounds are known to be sharp.)

In Section 6 Forni has shown how to assign cohomology classes to invari-
ant distributions, but there are some key differences from the invariant measure
case. First, the cohomology class of an invariant distribution may be zero. Sec-
ond, there is no reason to expect the image in cohomology to be isotropic. Forni
proves two theorems which address these issues (in reverse order).

The first theorem is an application of an existence theorem from [2]. For a
fixed square q Forni proves that for Lebesgue a.e. θ the distributional cohomol-
ogy of order s ≫ 1 for the horizontal foliation for e iθq1/2 is the nonisotropic
space of real cohomology classes c such that c ∧ [Im(e iθq1/2)] = 0. As above, I
shall focus on H 1 (X ,R), although he also deals with H 1

(

X r q−10,R
)

. The proof
is a variation on a construction of invariant distributions in [2]. Represent a given
class c ∈ H 1 (X ,R) as a real harmonic differential, u = Re( f q1/2). The meromor-

phic function f has its poles in the zero set
(

q1/2
)−1

0. At each zero the order
of the zero is at least as large as the order of the pole. This makes it possi-
ble to construct a smooth real function g such that for S = (∂+∂∗), Re( f )−Sg

has compact support in X r q−10. The condition c ∧ [Im(e iθq1/2)] = 0 implies
Re( f )−Sg has integral zero relative to the q-volume. Assume that the equation
Sh = Re

(

f
)

− Sg admits a real distributional solution h of order s, and express
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F = g +h as F = F∗ωq . where F∗ is a current of dimension 2. Define a current
C by dF∗+Re( f q1/2) = C . Then C is a q-tempered basic current of order s +1,
and C is cohomologous to u = Re( f q1/2). While F may not exist for the given q ,
Theorem 4.1 of [2] implies that for (s ≫ 1 and) Lebesgue a.e. θ, F does exist when
S corresponds to the horizontal foliation for e2iθq .

The second theorem in Section 7 characterizes the basic currents of order s

which are cohomologous to zero in terms of a series of exact sequences

(5.6) 0 →R
i
→B

s−1
q

δs
→B

s
q

j
→ H 1,s

q (X ,R) , s ≥ 1,

in which B
s
q denotes basic currents of order s, i (a) = aηS , a ∈ R, j is the assign-

ment “cohomology class” and δs is defined by

δs (C ) = d
(

−C ∧ Imq1/2)∗ .

Exactness of the sequence (5.6) is valid for all s and is used for s = 1 in Section
8. The important conclusion is: For Lebesgue a.e. θ, the cohomology map, from
the space of invariant distributions of order one for the horizontal foliation of
e2iθq into H 1(X ,R), is injective. Notwithstanding its dependence on θ, this re-
sult extends, in a nontrivial way, the corresponding injectivity result for invari-
ant measures for minimal foliations and interval exchanges mentioned above.
Curiously, the proof uses only the existence of the exact sequence (5.6) and not
the form of the map for the third arrow of (5.6). The space of basic currents of
order zero is known (by Section 6) to be isomorphic to the space of invariant
distributions of order zero. The latter are finite invariant measures. Therefore,
the Kerckhoff–Masur–Smillie Theorem, {35}, implies for Lebesgue a.e. θ that the
space of basic currents of order zero is one-dimensional. Since (5.6) is exact, it
follows for the same θ that the space of invariant distributions of order one in-
jects into H 1(X ,R), under the cohomology map.

6. THE FORNI COCYCLE

In my opinion, the greatest of the many achievements of [3] is the establish-
ment of a deep connection between the Lyapunov spectrum and natural bundles
of (horizontal-, vertical-) invariant distributions of order one. This is the subject
of Section 8. (I shall restrict attention to Liouville measures.) By now we know
there is a Kontsevich–Zorich cocycle, that it has a Lyapunov spectrum symmet-
ric about zero and that at least half of this spectrum is nonzero. The ranks of the
stable/unstable bundles, denoted S/U , of the Kontsevich–Zorich cocycle are the
(equal) cardinalities of the positive/negative subsets, with multiplicities, of the
Lyapunov spectrum. Each of these bundles has Lagrangian fibers in the bundle,
denoted B = S +U , whose fiber at q is the sum of the S and U fibers at q. The
nonvanishing of the Lyapunov spectrum is equivalent to

(6.1) B = B,

where B is the full cohomology bundle. This is also proved in Section 8.
Forni introduces new bundles and cocycles of which I shall indicate but one.

Let Z ′ be the bundle whose fiber at q is the infinite-dimensional space of closed
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currents of dimension 1. Forni observes that Z ′ admits a natural G-action which
is a cocycle extension of the Teichmüller flow and that the map R : Z ′ → B, de-
fined on each fiber to be the cohomology map, is a bundle map which is equi-
variant with respect to this the new cocycle and the Kontsevich–Zorich cocy-
cle on the image. Denote by H and V the finite-dimensional subbundles of Z ′

whose fibers at q are the spaces of basic currents of dimension and order one
for the horizontal and vertical foliations, respectively. Forni proves that H and V

have a.e. constant rank and that R maps the bundles H and V a.e. isomorphically
to the bundles U and S. Moreover, the fibers of H and V are a.e. independent in
the fibers of Z ′. Therefore, R : H +V → B , also isomorphically. (I shall mention
the important structure theorem for Z ′ later.)

The proof that, say, R : H →U isomorphically has two parts, “into”and “onto”.
The “into”part involves a proof that the Lyapunov spectrum is nonzero for H +V

and that H +V is the splitting into unstable/stable subbundles. For the proof
the author employs a device of Burns–Katok ({31}). He defines a.e. on H a func-
tion which is homogeneous of degree two on the fibers, positive on nonzero el-
ements and monotone on A-trajectories. (The construction, which is not at all
obvious, involves another application of Section 7.) The proof of monotonicity
involves an operator ordinary differential equation similar to the one which was
discussed in Section 3 above. Once the constructions are complete, the nonva-
nishing of Lyapunov spectrum for H (and V ) then follows from Burns–Katok. In
particular, R H ⊆U and RV ⊆ S.

For the existence (“onto”) part of the theorem, one should first refer to a strat-
egy which was employed above. I shall paraphrase the strategy here: Represent
a given class c ∈ U as a real harmonic differential, u = Re( f q1/2). Assume that
for S = (∂+∂∗), the equation SF = Re( f ) admits a real distributional solution F

of order one, and express F as F = F∗ωq , where F∗ is a current of dimension 2.
Define a current C by dF∗+Re( f q1/2) = C . Then C is a basic current of order
one for the horizontal foliation, and C is cohomologous to u = Re( f q1/2). The
existence proof (using [2]) above was hard enough, but because the conclusion
required less of F , the proof could be carried out for Lebesgue a.e. θ and the hor-
izontal foliation for e2iθq . This time it will be valid only for a.e. q relative to a
fixed (say) Liouville measure. More precisely, q must be a generic point for the
Multiplicative and Birkhoff Ergodic Theorems.

To get started, we recall the idea, from Section 3 above, that one can study
the A-trajectory of (q,c) in terms of an operator ordinary differential equation
which is defined on the surface for q . (Recall (a) the A =R-action on q is denoted
q → t q and (b) there is fixed a c ∈U above q and (c) c = [u] = [Re( f q1/2)].) First,
solve the Forni equation

d

d t
f (t ) =U (t ) f (t ), f (0) = f

Next, let υ(t ) be the pullback of the form (t q)1/2 from the surface for t q to the
surface for q under the Teichmüller map. Then Re( f (t )υ(t )) is a closed form
(away from the zeros of q) whose cohomology class is also c . It follows that the
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form Re( f (t )υ(t ))−Re( f (0)υ(0)) is exact. Let Ft be the unique solution to dFt =

Re( f (t )υ(t ))−Re( f (0)υ(0)) such that Ft has integral zero with respect to the q-
volume form. The role of the continuing assumption c ∈ U is to guarantee, for
generic q , that

Hodge norm of c at time t =
∥

∥ f (t )
∥

∥

2,q

decreases exponentially to zero as t →−∞. The PoincarŐ inequality combined
with a theorem by Masur will provide the coup de grace.

The first step of the analysis of Ft is to use the special form of the differential
equation to prove that

(6.2)
d

d t
Ft = 2Re (vt )

for a function vt ∈H
1
(

q
)

of the following description: ∂∗t vt is the first summand
in the representation of f (t ) with respect to the splitting H

(

t q
)

= R−
t + (R−)⊥t

which is described for q following (5.4) above. Here H
(

t q
)

is identified with
H

(

q
)

and H
(

t q
)

= R−
t + (R−

t )⊥ is carried along by the identification. Notice
that

||∂∗t vt ||2,q ≤ || f (t )||2,q

and vt can be taken to have integral zero. By the improved Poincaré inequality,

||vt ||t q ≤Cλ(t q)−1Q(vt , vt )1/2

=Cλ(t q)−1
||∂∗t vt ||2,q

≤Cλ(t q)−1
|| f (t )||2,q

≤Cλ(t q)−1eat , a > 0, t →−∞,

whereλ(t q) is the shortest geodesic length function. The last inequality is valid if
q is generic for the Multiplicative Ergodic Theorem. A theorem of Masur implies
the shortest geodesic length factor λ(t q)−1 satisfies

λ(t q)−1
=O(|(log |t |)|).

Using (6.2), and expressing Ft as the integral of its t derivative, it follows that

‖Ft‖2,q =O(1), t →−∞.

Let F be a weak cluster point. It is then an easy matter to conclude that in the
distributional sense (a) SF = −Re( f (0)) and (b) dF +Re( f (0)q1/2) = C is a basic
current of order 1 for the horizontal foliation. This establishes the existence half
of the isomorphism between the fibers of U and of H , above a generic q .

A good bit of work is still required in order to complete the proof of the identity
(6.1). In the context of (4.5)-(4.9), the statement ker(J) = {0} at q is equivalent to
the statement that q does not lie in the determinant locus, i.e., that a certain real
analytic function is not zero at q . The proof that

rank(U ) = rank(S)= k ≥

[

p +1

2

]
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for Liouville measures then requires “only”the fact that this function is nonzero
somewhere on each component of a stratum. This is the role of Forni’s theorem
that the determinant locus contains no component. His proof that rank(U ) =
rank(S)= p for Liouville measures is technically much more difficult. It involves
a proof that for any k < p the function

(6.3) tr
(

Q
(

q
))

−Φ
k
I+

k
(q) =

p
∑

i , j=k+1

∣

∣

∣

∣

(

m+
i ,m+

i

)

q

∣

∣

∣

∣

2

is nonzero on a set of positive (Liouville) measure. This proof does not turn on a
property of the real analytic determinant function. The function on the left-hand
side of (6.3) is only measurable, defined a.e. The proof that it does not vanish a.e.
with respect to Liouville measure is probably the most difficult of many difficult
arguments in [3].

Section 8 ends with an important theorem on the structure of the bundle of
closed currents or order one. This is a three-fold sum, Z ′ = H +V +E , where
H and V are as above and E is the bundle of exact currents of order one. Forni
proves the Lyapunov spectrum for the Forni cocycle on Z ′ is contained in [−1,1]
and for the invariant infinite-dimensional bundle E it is {0}.

7. DEVIATION OF ERGODIC AVERAGES

Forni’s cocycle and the important structure theory he develops for it were
probably motivated, as the title indicates, by the problem of deciding what, if
any, Denjoy–Koksma theory is available for generic measured flows.

For a Liouville measure-generic q , Forni obtains the estimate O(T λ−1), with
a sharp lower bound for λ, for a.e. ergodic averages of mean zero, order one
Sobolev functions f along horizontal trajectories. If there are order one invari-
ant distributions which do not vanish at f , then the largest corresponding value
of the Lyapunov spectrum is the sharp lower bound for λ; when all order one
invariant distributions vanish at f , then

inf{λ|λ> 0 and ergodic averages of f are O(T λ−1)} = 0

The strategy is first to make a dual formulation and then to use his infinite-di-
mensional Oseledec Theorem for Z ′ = H +V +E , mentioned at the end of the
last section, as indicated below.

Let C be the bundle whose fiber at a square q is the (Hilbert) space of cur-
rents (in general nonclosed) of order one and dimension 1 on the surface for q.
There is a bundle map C → Z ′ = H +V +E (above) which is an orthogonal pro-
jection on each fiber. There are also bundle maps Z ′ → H , V , E to the various
subbundles for the Forni cocycle. Considering the test functions which are to
be used, the Forni Theorem amounts to a growth estimate for the (order one,
dimension-one) currents in q-fibers of C which are represented by segments of
q-horizontal trajectories of length T , T → ∞. Using the projection C →Z ′ and
further projecting (not orthogonally) into H ,V and E , the desired growth esti-
mate can be seen to be equivalent to corresponding estimates in H ,V and E . As
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one does in Denjoy–Koksma arguments, one approaches the problem with an
attempt to decompose a trajectory of length T into a sum of trajectories of vary-
ing length in which one has control of individual summands. The bound for the
full sum then becomes a problem of the “number theory”of q . (“Number the-
ory”is not such a bad analogy since there are continued fraction-like expansions
in the background.)

What follows is a crude idea of how a problem about a long trajectory is con-
verted to one about a sum of trajectories, in particular how one decides to cut
a trajectory up. Recall that the trajectory Gq has been studied in terms of Te-
ichmüller maps and objects on the surface for q . An additional property of a
Teichmüller map from q to hq is that it is real affine in the affine structure de-
termined by the atlases of natural parameters for q and hq (away from the zero
sets). Therefore the notion of straight line is independent of location in Gq . At
the same time, the notions of “horizontal”and “vertical”straight lines are not in-
dependent of location because G contains K . It is an important feature of the A-
action that it preserves horizontal and vertical lines. A horizontal (resp.vertical)
line segment of length α for |q | is a segment of the same kind of length e tα

(resp.e−tα) for |t q |, t ∈ A, A ≈R.
A related notion, which is also independent of location in Aq , is the notion

that a point x in the surface for q be regular, meaning that x is not contained
in a horizontal or vertical separatrix. If x is a regular point, Forni attaches to
each t q the vertical segment I (t q, x) with center x and length λ

(

t q
)

(the short-
est |t q |-geodesic length between zeros of t q). Let γ

(

t q, x
)

be the horizontal
segment which begins at x and ends with the first return to I (t q, x). (I’ll call
γ

(

t q, x
)

a coil at x.) The |t q |−length of γ
(

t q, x
)

is uniformly bounded for the
set of t q which project to a fixed compact set in the moduli space. He fixes x

and I (q, x) with q in a fixed “large”compact cross-section Ξ to the Teichmüller
flow and then considers t q, t < 0, along the sequence of times t of backward re-
turns (of the projection of t q) to Ξ. If t < 0 is a return time, the forward (time
−t ) image of the coil γ

(

t q, x
)

is not in general the coil γ
(

q, x
)

because the image
has length e−t

∣

∣γ
(

t q, x
)∣

∣

t q ≫
∣

∣γ
(

q, x
)∣

∣

q for large −t . (That is, while the image
coil ends in I (q, x), it may visit I (q, x) at many times before −t .) Call this length,
i.e., e−t

∣

∣γ
(

t q, x
)∣

∣

t q , a principal return time and the image, i.e., (−t )
(

γ
(

t q, x
))

, a
principal return trajectory (for (q, x) and I (q, x)). Forni partitions a horizontal
segment of q-length T ≫ 0 into one segment of bounded length and a sequence
of segments, each one of which is a principal return trajectory for some point
x ′ ∈ I (q, x). Since the principal return trajectories are images of coils γ

(

t q, x
)

,
t q ∈ Ξ (compact) under time −t ≫ 0 maps, he is able to control their current
norms by (careful) application of the analysis of the Forni cocycle, on H ,V and
E above. Having thus controlled the individual summands, the remainder of the
estimate of the current norm of a long horizontal trajectory from x is governed
by the “number theory”of q .

I shall conclude with mention of one more result because the argument is
such a pretty application of the theory of the Forni cocycle. Forni proves for the
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generic q that there exists a C∞ function f with integral zero and compact sup-
port (away from the zeros of q) such that the equation Su = f , S the horizontal
vector field, has no distributional solution u ∈ L2. The proof is by contradiction:
He shows that if the statement is false, then for each square integrable mero-
morphic function F with integral zero the equation Sg = Re(F ) admits an L2

solution. The idea is to first solve the problem in a neighborhood of the zero set
of q and then to use the partial solution to reduce the equation to Sg ′ = h with
h smooth, compactly supported, with integral zero. Under the assumption that
the latter equation admits an L2 solution it follows that Sg = Re(F ) also admits
an L2 solution. Using a construction which has been indicated above, it follows
that [Re(F q1/2] is the class of a basic current of order one for the horizontal fo-
liation. This implies the image of a.e. fiber of H is a codimension-one subspace
of the corresponding fiber of the cohomology bundle. This contradicts Forni’s
theorem that a.e. q the image of the H-fiber at q under the cohomology map is
Lagrangian.
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