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1 Survey of hyperbolic dynamics

1.1 Definitions and Hadamard-Perron Theorem

Definition 1 Let 0 < λ < µ. A sequence of invertible linear maps Lm : Rl → Rl, m ∈ Z,
is said to admit a (λ, µ)-splitting if there exist decompositions Rl = E+

m ⊕ E−
m such that

LmE
±
m = E±

m+1 and
‖Lm|E−

m
‖ ≤ λ, ‖L−1

m |E+
m+1

‖ ≤ µ.

Consider now M a l-dimensional smooth manifold, U ⊂ M an open set, f : U → M a
C1 diffeomorphism onto its image, Λ ⊂ U a compact f -invariant set. We identify TxM with
Rl via the Riemannian metric.

Definition 2 The set Λ is called a hyperbolic set for f if there exists a Riemannian metric
(called a Lyapunov metric) in an open neighborhood of Λ and 0 < λ < 1 < µ such that
for any point x ∈ Λ the sequence of differentials (Df)fn(x) : Tfn(x)M → Tfn+1(x)M , n ∈ Z,
admits a (λ, µ)-splitting.

Definition 3 A C1-diffeomorphism f : M → M of a compact manifold M is called an
Anosov diffeomorphism if M is a hyperbolic set for f .

Let A ∈ SL(n,Z) be an n × n matrix with determinant one and integer entries. A is
called hyperbolic if it has no eigenvalue of absolute value one. In this case, the automorphism
of the n-dimensional torus Tn = Rn/Zn induced by A is an Anosov diffeomorphism.
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We want to introduce now the stable and unstable manifolds which play a central role in
the theory of hyperbolic dynamical systems.

For Rl = Ek ⊕ F l−k define the standard horizontal γ-cone by:

Hγ = {(x, y) ∈ E ⊕ F |‖y‖ ≤ γ‖x‖}

and the standard vertical γ-cone by:

Vγ = {(x, y) ∈ E ⊕ F |‖x‖ ≤ γ‖y‖}.

Proposition 1 A compact f -invariant set Λ is hyperbolic if there exist 0 < λ < 1 < µ such
that for every x ∈ Λ there is a decomposition TxM = Sk

x ⊕T
n−k
x , a family of horizontal cones

Hx ⊃ Sx and a family of vertical cones Vx ⊃ Tx associated with that decomposition such that

DfxHx ⊂ IntHf(x), Df
−1
x Vx ⊂ IntVf−1(x)

and
‖Dfxξ‖ ≥ µ‖ξ‖, ξ ∈ Hx, ‖Df−1

x ξ‖ ≥ λ‖ξ‖, ξ ∈ Vx.

Remark 1 Actually, the decomposition {TxM = Sx ⊕ Tx}x∈M and the fields of cones H =
{Hx}x∈M and V = {Vx}x∈M are continuous in an appropriate sense.

Consider now the continuous fields {Ex}x of k-dimensional subspaces inside H. Then f
acts on these fields by:

(f∗E)x = Dff−1(x)(Ef−1(x)).

Theorem 1 The action of f has a unique fixed point, denoted by E+ = {E+
x }x. E

+ is called
the unstable distribution.

The idea of the proof is the following: consider each subspace Ex ⊂ Hx as a graph of
some linear map φx : Sx → Tx, with ‖φx‖ ≤ γ. Define ‖E‖ = supx∈Λ ‖φx‖. Then the action
of f∗ is a contraction!

Consider the decreasing sequence of cones: H+
x,n = Dfn(C+

f−n(x)) in TxM . Then E+
x =

∪∞
n=0C

+
x,n.

One can show that E+ is a Hölder continuous distribution. The idea is to show that, for
some 0 < α < 1, the space of bounded α-Hölder fields of k-dimensional subspaces inside H
is invariant under f∗.

Something similar about E−.
We can state now the stable and unstable manifolds theorem (or Hadamard-Perron The-

orem).

Theorem 2 Let Λ be a hyperbolic set for a C1-diffeomorphism f : U → M such that Df
admits on Λ a (λ, µ)-splitting with 0 < λ < 1 < µ. Then for each x ∈ Λ there is a pair of
embedded C1-disks W s(x), W u(x), called the local stable and local unstable manifolds of x,
respectively, such that:

2



1. TxW
s(x) = E−

x , TxW
u(x) = E+

x ;

2. fW s(x) ⊂ W s(f(x)), f−1W u(x) ⊂ W u(f−1(x));

3. For every δ > 0 there exist C(δ) such that for n ∈ N

dist(fnx, fny) < C(δ)(λ+δ)ndist(x, y) for y ∈ W s(x), dist(f−nx, f−ny) < C(δ)(λ−δ)−ndist(x, y) for y ∈ W u(x);

4. There exists β > 0 and a family of neighborhoods Ox containing the ball around x ∈ Λ
of radius β such that

W s(x) = {y|fn(y) ∈ Ofnx, n = 0, 1, 2, . . .}W u(x) = {y|f−n(y) ∈ Of−nx, n = 0, 1, 2, . . .};

5. If y ∈ W s(x) and is closed to x, then W u(x) ∪W u(y) is open in both.

1.2 Structural stability and topological classification

Definition 4 A hyperbolic set Λ is called locally maximal if there exists an open set V ,
Λ ⊂ V , such that

Λ = ∪∞
n=−∞f

nV.

Open problem 1 Assume that f : U →M is as before and Λ ⊂ U is hyperbolic set. Does
there exist a locally maximal hyperbolic set Λ′ such that Λ ⊂ Λ′?

Locally maximal hyperbolic sets are important in several places: to define the local
product structure, for Closing lemma, specification, Gibbs measures etc.

Theorem 3 Anosov diffeomorphisms are structurally stable via a uniquely defined (bi-Hölder)
homeomorphism close to identity.

Idea of proof Want h−1fg = g, or a fixed point for the equation h = ghf−1. This leads to
a hyperbolic linear operator in a Banach space with an almost invariant point. Hence it has
a fixed point.

Theorem 4 Any topological conjugacy between Anosov diffeomorphisms is Hölder.

Proof

Theorem 5 Anosov flows are structurally orbit stable via a bi-Hölder homeomorphism close
to identity, unique up to a time change.

Problem 1 Construct (or prove existence) of a C∞-diffeomorphism f : T2 → T2, area

preserving, which is topologically conjugate to

(
2 1
1 1

)
, but the conjugacy is not Hölder.

Hintx→ 2x and x→ x + x3 on R are conjugated around zero, but not Hölder.
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Conjecture 1 If f is C∞ and Hölder conjugate to

(
2 1
1 1

)
, then f is Anosov.

General problem 1 Classify Anosov diffeomorphisms up to topological (hence Hölder) con-
jugacy.

The most important results toward a solution of this problem were obtained (after the
work of Smale) by Franks and Manning between 1968-1974.

Theorem 6 (Franks&Manning) Suppose M is a compact manifold which is known to have
an Anosov diffeomorphism. Then any two Anosov diffeomorphisms which induce the same
map on the fundamental group π1(M) are topologically conjugate by a unique homeomorphism
homotopic to identity.

A nilmanifold is the quotient of a connected, simply connected nilpotent Lie group N by
a cocompact lattice Γ (i.e. N/Γ is a compact manifold). For example H/Γ where H is the
Heisenberg group and Γ is a lattice in H is a nilmanifold.

An infranilmanifold is finitely covered by a nilmanifold. More precisely, consider N a
connected simply connected nilpotent Lie group and C a compact group of isometries of N .
Let Γ be a torsion free cocompact discrete subgroup of the semidirect product CN . By a
result of Auslander [?], Γ∩N is a cocompact discrete subgroup ofN and Γ∩N has finite index
in Γ. An element of NC is a pair (x, c) with x ∈ N, c ∈ C and it act on N by first applying
a and then left translating by x. Γ acts freely on N . Indeed, if γ ∈ Γ, x ∈ N , γ(x) = x
implies γn(x) = x, for all n. But for some n, γn is left translation by an element of N . Hence
γn(x) = x implies γn is the identity of Γ. But Γ is torsion free. Thus the quotient space N/Γ
is a compact manifold called an infranilmanifold. Let f̄ : CN → CN be an automorphism
for which f̄(Γ) = Γ, f̄(N) = N . Then it induces a diffeomorphism f : N/Γ → N/Γ. If the
derivative of f̄ |N is hyperbolic, then f will be an Anosov diffeomorphism.

The only known examples of manifolds supporting Anosov diffeomorphisms are the tori,
nilmanifolds and infranilmanifolds. It is now an outstanding conjecture that these are the
only ones.

1.3 Differentiable conjugacy and moduli

Since Anosov systems are structurally stable (via Hölder homeomorphisms), it would be an
interesting problem to classify a small neighborhood in Diff1(M) of an Anosov system up to
smooth conjugacy.

Definition 5 A map φ : Diff(M) → R such that φ(hfh−1) = φ(f) for any h ∈ Diff(M) is
called a modulus of smooth conjugacy.

Open problem 2 Suppose g is Cr or C∞ close to f and g = hfh−1 for some h ∈ Diffr(M),
r ≥ 1. Is h close to identity in Ck, 1 ≤ k ≤ r?
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Open problem 3 Are there always enough moduli of smooth conjugacy to classify the
smooth conjugacy classes?

This is true in some cases, and in those cases the answer is YES for the previous question.
The known examples are C∞ Anosov diffeomorphisms on two dimensional torus and C∞

volume preserving Anosov flows on three dimensional manifolds. This follows from the next
result.

Theorem 7 Suppose f and g are Anosov and have invariant Hölder splitting of TM into 1-
dimensional subbundles, which are C∞-integrable and h carries the corresponding 1-dimensional
foliations over. Then, if h matches the eigenvalues at the periodic points, h is C∞.

We discuss an example given by de la Llave which shows that the previous theorem does
not have an immediate generalization in higher dimension.

Assume that A ∈ SL(2,Z) and B ∈ SL(d,Z) are hyperbolic matrices such that B has
real eigenvalues in the interval (1,∞). Let 0 < λ < 1 be one of the eigenvalues of A (hence
the other one is λ−1), and µ > 0 be an eigenvalue of B. We denote the corresponding
normalized eigenvectors as follows:

Av− = λv−Av+ = λ−1v+Beµ = µeµ.

Consider the actions on T2 × Td

f(x, y) = (Ax,By)f̃(x, y) = (Ax,By + ϕ(x)eµ).

(Wesee the quantity ϕ(x)eµ as its image in Td = Rd/Zd, which is an abelian group.)

Note that f is hyperbolic, hence for C1-small ϕ f̃ is hyperbolic too, and there is a
homeomorphism h ∈ Homeo(T2 × Td) close to identity such that:

hf̃ = fh (∗).

Moreover, this homeomorphism is unique among the homeomorphisms which are homo-
topic to identity. The unique solution to (*) homotopic to identity is given by:

h(x, y) = (x, y + ψ(x)eµ),

provided that ψ satisfies the equation:

µψ(x) − ψ(Ax) = ϕ(x). (∗∗)

Equation (**) admits a unique bounded solution, namely:

ψ(x) = µ−1
∞∑

k=0

µ−kϕ(Akx).

It remains to find how smooth is ψ, assuming ϕ is C∞.
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By choosing ϕ to be a trigonometric polynomial and using Fourier series, R. de la Llave
shows that:

ψ ∈ Cr−ε, forany r < αc

and
ψ /∈ Cr+ε, forany r > αc

where

αc =
lnµ

lnλ−1
.

Note that αc can take a dense set of values in (0,∞) if we replace A and B by powers in

the definitions of f and f̃ . In particular, if αc < 1, ψ is only Hölder and so h is only Hölder.

2 Commuting Anosov diffeomorphisms and rigidity

2.1 Rigidity of Zn−1 actions on Tn

One can study similar regularity questions for the action generated by a family of commuting
Anosov diffeomorphisms. A first result in this direction was obtained by Katok and Lewis.
Before stating the result, we give a few more definitions which will put the result in a more
general perspective.

If Γ is a finitely-generated discrete group and G is any topological group, we denote
by R(Γ, G) the space of homomorphisms of Γ into G with the compact open topology. A
homomorphism ρ0 ∈ R(Γ, G) is said to be locally rigid if there exist a neighborhood U of
ρ0 in R(Γ, G) such that for every ρ ∈ U there exists g ∈ G such that ρ(γ) = gρ0(γ)g

−1 for
every γ ∈ Γ.

In our case Γ will be the group Diff∞(Tn) of C∞ diffeomorphisms of Tn under the C1

topology.

Theorem 8 Suppose A ⊂ SL(n,Z), n ≥ 3, is a free abelian group of rank n− 1, generated
by n − 1 hyperbolic matrices. Then the standard action of A on Tn is locally rigid on
R(A,Diff∞(Tn)).

2.2 Non-stationary normal forms for one-dimensional contractions

One of the main tool in the proof of Theorem is the following generalization of Sternberg
linearization lemma for contracting diffeomorphisms. (Define first the topology on C∞ and
Cω.)

Theorem 9 (Nonstationary Poincare-Sternberg Linearization)Let X be a compact metric
space, f : X → X homeomorphism and let F : X × R → X × R given by F (x, t) =
(f(x), Fx(t)) such that:

(i) Fx is a C∞-diffeomorphism (Cω-diffeomorphism) of R for each x ∈ X;
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(ii) Fx(0) = 0 for each x ∈ X (F preserves the zero section);

(iii) 0 < F ′
x(t) < 1, for each x ∈ X, t ∈ R;

(iv) x→ Fx is a continuous map X → C∞(R) (X → Cω(R)).

Then there exists a unique reparametrization G : X × R → X × R, G(x, t) = (x,Gx(t))
such that:

(v) each Gx is a C∞- diffeomorphism (Cω- diffeomorphism) of R;

(vi) Gx(0) = 0, G′
x(0) = 1 for every x ∈ X;

(vii) x→ Gx is a continuous map X → C∞(R) (X → Cω(R));

(viii) GFG−1(x, t) = (f(x), F ′
x(0)t) for every x ∈M , t ∈ R.

Furthermore, such G is unique even among continuous maps X → C1(R).

We show uniqueness of G first. If G1 and G2 are like in Theorem, then G1FG
−1
1 is linear,

G2G
−1
1 satisfies (v)-(vii) in Theorem and

(G2G
−1
1 )G1FG

−1
1 = G1FG

−1
1 (G2G

−1
1 ).

So is enough to prove:

Lemma 1 (Lemma 1) Assume that A : X×R → X×R is linear, i.e. A(x, t) = (f(x), αxt)
where x → αx is a continuous map X → (0, 1) and suppose that GA = AG. Then G is the
identity map on X × R.

Proof For this argument it is sufficient to assume that the map x → Gx is only C1-
continuous.

The condition GA = AG becomes:

Gf(x)(αxt) = αxGx(t)

so
Gx(t) = α−n

x Gfn(x)(α
n
xt), forn ≥ 1.

Since x → αx is continuous and X is compact, there exists ε > 0 with αx ≤ 1 − ε for
x ∈ X. Since Gx varies continuously with x in C1-topology, one has that Gx(δ)/δ converges
uniformly in x to G′

x(0) = 1. Hence

Gx(t) = lim
n→∞

Gfn(x)(α
n
xt)

αn
x

= t.

Remark 2 The previous argument does not work if x → Gx is continuous only in the
Lipschitz topology.
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We establish now the existence of G, solving the problem for formal power series at the
zero section.

Lemma 2 (Lemma 2) Suppose F : (x, t) → (f(x), Fx(t)), Fx(t) =
∑∞

i=1 ai(x)t
i is a formal

power series based at the zero section in X × R, with ai : X → R continuous for each i and
0 < a1(x) < 1. Then there exists a formal power series

G : (x, t) → (x,Gx(t)), Gx(t) = t +
∞∑

i=2

bi(x)t
i

with bi : X → R continuous for each i, such that:

GFG−1(x, t) = (f(x), a1(x)t) (∗)

Proof It follows from equation (*) that

Gf(x)(Fx(t)) = a1(x)Gx(t). (∗∗)

Now we find b′is inductively. For b2 one has the equations:

b2(f(x))a1(x)
2 + a2(x) = a1(x)b2(x)b2(x) =

a2(x)

a1(x)
+ a1(x)b2(f(x)).

Since X is compact, there exists ε > 0 such that ε < a1(x) < 1− ε for every x ∈ X, and
the series

b2(x) =
a2(x)

a1(x)
+

∞∑

i=1

(
a1(x)a1(f(x)) · · ·a1(f

i−1(x))
a2(f

i(x))

a1(f i(x))

)

converges uniformly to a continuous solution for b2.
Assume now that we have continuous solutions for b2 through bn−1 such that the first

n− 1 coefficients in (**) agree. Then, from the n-th term in (**) it follows

bn(f(x))an
1 (x) + r(x) = a1(x)bn(x), bn(x) =

r(x)

a1(x)
+ a

n−1(x)
1 bn(f(x)),

where r : X → R is a polynomial in bi(f(x)), 2 ≤ i ≤ n− 1 and ai(x), 1 ≤ i ≤ n. Since r is
continuous and X is compact, r is uniformly bounded, so

bn(x) =
r(x)

a1(x)
+

∞∑

i=1

(
a1(x)a1(f(x)) · · ·a1(f

i−1(x))
r(f i(x))

a1(f i(x))

)

converges uniformly to a continuous solution for bn.

Remark 3 Finding bi’s is equivalent to solving twisted cocycle equations of the type

φ(x) = ψ(x) + λ(x)φ(f(x)) (∗ ∗ ∗)

where ψ, λ and f are known, 0 < λ(x) < 1, and φ is unknown. If f is Anosov, (***) is
much easy to solve when 0 < λ(x) < 1, then when λ(x) = 1. The last case is solved by the
Livsic’s theorem. Anyhow, here we get only that φ is Hölder, if f is Hölder, but f ∈ C 1 does
not imply φ ∈ C1. A counterexample can be found in de la Llave paper [5].
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We prove now the existence of G as a C∞ function (respectively real analytic). The
majorisation method used in the analytic case was introduced by David De Latte. See also
[3], Proposition 2.1.3.

Case I. Fx : X → Diffω(R).
We show first that the formal power series obtained in Lemma 2 is uniformly convergent

on X × R. Since Fx : X → Diffω(R) is continuous, there exist 0 < a < 1, c > 0 and a
positive integer n0 such that:

‖an(x)‖ ≤ can, andfor n ≥ n0 also‖an(x)‖ ≤ an.

One determines now the coefficients bi(x) inductively using (*). Denote An = supx∈X ‖an(x)‖ <
1 and Bn = supx∈X ‖bn(x)‖. The following inequalities are similar with the formulas for b′is
and follows easily:

B2 ≤
A2

A1 − A2
1

B3 ≤
A3 + 2B2A1A2

A1 − A3
1

· · · · · · · · ·Bn ≤ (A1−A
n
1 )−1(An+

n−1∑

k=2

Bkk!F
k
n (A1, A2, . . . , Ar(n,k))

where F k
n is the sum of all the monomials of the form

As1
1 A

s2
2 . . . Asr

r (∗)

such that
s1 + 2s2 + · · ·+ rsr = ns1 + s2 + . . .+ sr = k. (∗∗)

The value of any product (*) satisfying (**) does not exceed cn0an.
Fix now b ∈ (0, 1). We will show inductively that there exists a number d such that for

all n
Bn ≤ dbn.

Let Nn be the total number of monomials (*) in the expression (*) for Bn taken with
multiplicities. By the inductive assumption we have ‖Bk‖ ≤ d for k < n and thus

‖Bn‖ < (A1 − An
1 )−1d(1 +Nn)an.

To estimate Nn note that Nn =
∑n−1

k=0 Ck, where Ck is the coefficient of xn in

( ∞∑

i=1

xi
)k

=
( x

1 − x

)k

=
xk

(k − 1)!

dk−1

dxk−1

( 1

1 − x

)
= =

xk

(k − 1)!

( ∞∑

i=0

(k + i− 1)!xi

i!

)
,

which is the coefficient corresponding to i = n− k and thus we have:

Ck =
(k + n− k − 1)!

(n− 1)!(n− k)!
=

(
n− 1

k − 1

)
.

Using
∑l

j=0

(
i
j

)
= 2l yields

Nn =

n−l∑

k=2

Ck =

n−l∑

k=2

(
n− 1

k − 1

)
= 2n−1 − 2 ≤ 2n.
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Thus ‖hn‖ ≤ ‖λ − λn‖−1d2nλ−n. This is bounded by d if we take n0 such that ‖λ −
λn0‖−12n0λ−n0 ≤ 1 and d = maxn<n0 ‖hn‖.

Case II. Fx : X → Diff∞(R)

Lemma 3 (Lemma 3) For F as in Theorem 2, there exists H : X × R → X × R,
(x, t) → (x,Hx(t)), such that

1. each Hx is a C∞-diffeomorphism of R;

2. Hx(0) = 0, H ′
x(0) = 1 for each x ∈ X;

3. x→ Hx is a continuous map x→ C∞(R);

4. Hf(x)FxHx : R → R has a tangency of infinite order with the identity map on R at 0
for every x ∈ X.

Proof Fix α ∈ C∞(R, [0, 1]) such that α(t) = 1 for |t| < 1/4 and α(t) = 0 for |t| > 3/4.
Let

∑∞
i=1 ai(x)t

i be the Taylor series expansion for Fx at 0. Then take:

Hx(t) = t +

∞∑

i=2

bi(x)t
iα(i!bi(x)t),

with bi as in Lemma 1.
So far, we can assume in Theorem 2 that

Fx(t) = F ′
x(0)t+ β(x, t)

with ∂n

∂tn
β(x, t)|t=0 = 0, for any n ≥ 0.

Because 0 < F ′
x(0) < 1, we can choose ε0 > 0 small enough such that:

sup
|t|≤ε

|
∂Fx(t)

∂t
| < λ1 < 1.

Consider now the space Sk of functions α : X × (−ε, ε) → X × R, (x, t) → (x, αx(t)),
where αx is C∞ and Di

2α|t=0 = 0, for any 0 ≤ i ≤ k. (Here D2 = ∂
∂t

.)
On Sk consider the operator Φ : Sk → Sk, Φ(α) = DF−1 ◦ α ◦ F , where DF : X × R →

X × R, DF (x, t) = (f(x), F ′
x(0)t). For any k ≥ 0, ε > 0 introduce on Sk the norm:

‖α‖Ck,ε = max
x∈X,|t|≤ε

max
0≤i≤k

‖Di
2α(x, t)‖.

Lemma 4 (Lemma 4) If k ≥ 2, there exist ε > 0, 0 < λ < 1 such that:

‖Φ(α)‖Ck,ε ≤ λ‖α‖Ck,ε.
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Proof Assume first that φ : R → R, φ(r)(0) = 0 for r = 0, 1, . . . , k. Then

‖φ(i)(t)‖ = ‖

∫ t

0

φ(i+1)(s)ds‖ ≤ t max
s∈[0,t]

‖φ(i+1)(s)‖.

Hence, if ε < 1
max
|t|≤ε

max
0≤i≤k

‖φ(r)(t)‖ ≤ εmax
|t|≤ε

‖φ(k+1)(t)‖.

Consider now
Φ(α)(x, t) = (x,D−1

2 F (f(x), 0)(αf(x) ◦ Fx)(t)).

Then
∂k

∂tk
(αf(x) ◦ Fx) =

∂k

∂tkαf(x)

|Fx
(
∂Fx

∂t
)k + Pk(x, t),

with Pk(x, t) polynomial in ∂l

∂tl
αf(x)|Fx

, 1 ≤ l ≤ k − 1, and in the first k-derivatives of Fx.
Now, since Fx(0) = 0 and 0 < F ′

x(0) < 1, for ε > 0 small enough we have:

sup
|t|≤ε

‖
∂k

∂tk
αf(x)|Fx

‖ ≤ sup
|t| ≤ε

‖
∂k

∂tk
αf(x)‖ sup

|t|≤ε

‖
∂Fx(t)

∂t
‖ ≤ λ1 < 1 sup

x∈X,|t|≤ε

‖Pk(x, t)‖ ≤ C(k, F )‖α‖Ck−1,ε ≤ C(k, F )ε‖α‖Ck,ε.

So

‖Φ(α)‖Ck,ε ≤ ‖α‖Ck,ε

[maxx∈X,|t|≤ε ‖D2F (x, ε)‖k + C(k, F )]

minx∈X ‖D2F (x, 0)‖
.

The last quotient is less than 1 for k ≥ 2 and ε small enough.
We can find now the reparametrization G in a small neighborhood X × (−ε, ε) of the

zero section. For H as in Lemma 3, H − ΦH is in Sk, for k ≥ 2 and ε small enough. The,
by Lemma 4, the sequence of maps

Gn = ΦnH =

n−1∑

i=1

Φi(ΦH −H) +H

converges uniformly on X×(−ε, ε) and the limit G, which is a Ck-function, satisfies (vi)-(viii)
in Theorem. Uniqueness of G follows from Lemma 1.

To finish the proof of Theorem, observe that the Ck-reparametrization G can be extended
from X × (−ε, ε) to X × R. Indeed, since F is contraction fiberwise, for any compact
neighborhood K of the zero section F r(K) ⊂ X × (−ε, ε) for large enough r, so we can
extend G to K by setting Ḡ = ΦrG.

Since the Ck solution is unique, it coincide with the solution in Ck+1 for each k ≥ 2,
hence Gx is C∞ for each x ∈ X. �
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2.3 Proof of the rigidity theorem

We start now the proof of Theorem ,i.e., the C∞-rigidity of the the standard linear action
of Zn−1 on Tn. First we introduce some algebraic preliminaries.

Lemma 5 Let Γ = SL(n,Z), n ≥ 2. Then there exists a Cartan subgroup H of SL(n,R)
such that the quotient H/(H ∩ Γ) is compact. In particular, there exists a subgroup A ⊂ Γ
such that

1. the elements of A are simultaneously diagonalizable over R;

2. A is isomorphic to a free abelian group of rank n− 1.

This follows from a more general result of Prasad and Ragunathan.
Let v1, . . . , vn ∈ Rn be a basis of simultaneously eigenvectors for the group A, and

λi : A → R0 the character on A defined via Avi = λi(A)vi, A ∈ A. To simplify the
notation we pass to a subgroup of finite index and assume that each λi takes values in R+.
Then H0=the identity component in H, above, is a maximal R-split torus in SL(n,R) with
eigenvectors vi and λi extendes to λi : H0 → R+ so that

λ1 × · · · × λn : H0 → {(x1, . . . , xn) ∈ (R+)n|x1 . . . xn = 1}

is an isomorphism of analytic groups and H/A is compact. From the compactness of A in
H0, we have that for each i, 1 ≤ i ≤ n, there exists Ai ∈ A such that λi(ai) < 1, λj(A−i) > 1
for each j 6= i.

By standard results, the torus H0 is Q-anisotropic. Equivalently, none of the eigenspaces
Rvi is a rational line. If π : Rn → Tn denote the natural projection, then π(Rvi) is the stable
manifold through 0 for the hyperbolic diffeomorphism Ai on the torus. In particular, π(Rvi)
is dense in Tn for each i.

Lemma 6 Suppose A ∈ A, A 6= 1. Then λi(A) 6= 1 for each 1 ≤ i ≤ n. In particular,
A− {1} contains only hyperbolic elements.

Proof Otherwise Avi = vi. So A fixes each point of ¯π(Rvi) = Tn. So A = 1. �

Lemma 7 Fix generators B1, . . . , Bn−1 for A ' Zn−1. Then there is no nontrivial relation
of the form λi(B1)

p1 . . . λi(Bn−1)
pn−1 = 1, with 1 ≤ i ≤ n, pj ∈ Z, and at least one pj 6= 0.

In particular, for each 1 ≤ i ≤ n, {λi(A)|A ∈ A} is a dense subgroup in R+.

Proof Otherwise Bp1

1 . . . B
pn−1

n−1 6= 1 and λi(B
p1

1 . . . B
pn−1

n−1 ) = 1, contradicting the previous
lemma. �

For each 1 ≤ i ≤ n, fix Ai ∈ A such that λi(Ai) < 1, λj(Ai) > 1 for j 6= i. Let W s
i ,W

u
i

denote the stable and unstable foliations, respectively, for the hyperbolic diffeomorphism Ai
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of Tn. The leaves of W s
i are the images under π of lines in Rn parallel to vi, those of W u

i

the images of hyperplanes parallel to the span of the remaining vj, j 6= i.

For suitable ρ, each ρ(Ai) is Anosov and W̃ s
i = h(W s

i ) and W̃ u
i = h(W u

i ) are the stable
and unstable foliations of ρ(Ai).

Fix an index i0, 1 ≤ i0 ≤ n. Set A = Ai0 , F = W s
A, F̃ = Ãs. The leaves of both F and

F̃ inherit natural Riemanian metrics as submanifolds of Tn. For each x ∈ Tn, denote by
φx : R → F(x) the arc length parametrization based at x, oriented so that vi0 points in the
positive direction. I.e., φx(0) = x, the distance along F(x) betwwen x and φx(t) ∈ F(x) is

〈vi0(φx)∗(
d
dt
〉 > 0 (standard inner product on TxTn = Rn). Define φ̃x : R → F̃(x) similarly,

oriented so that φ̃−1
h(x) ◦ h ◦ φx : R → R is an orientation preserving (monotone increasing)

homeomorphism. We want to show that h is smooth along the leaves of F . More precisely
we show that x→ φ̃−1

h(x) ◦ h ◦ φx is a continuous map M → C∞(R).
Let f be the automorphism of Tn induced by A. Extend f and h to transformations on

L , namely, define

F : L → L, (x, t) → (f(x), Fx(t)), H : L → L, (x, t) → (h(x), Hx(t))

so that
φ̃(F (x, t)) = f(φ̃(x, t)) and φ̃(H(x, t)) = f(φ(x, t)).

Then F and H are continuous, Fx ∈ C∞(R) and each x ∈ Tn, 0 < F ′
x(x) < 1 for every

x ∈ Tn, t ∈ R, and x → Fx is a continuous map Tn → C∞(R). We must show that
Hx ∈ C∞(R) and x→ Hx is continuous.

By construction, φx : R → F(x) and φ̃x : R → F̃(x) are diffeomorphisms for every
x ∈ M . Let L = Tn × R denote the trivial line bundle over Tn. It follows easily from (?)

that φ : L → Tn, (x, t) → φx(t) and φ̃ : L → Tn, (x, t) → φ̃x(t) are continuous, and that

x→ φx, x→ φ̃x are continuous maps Tn → C∞(R,Tn).
By the nonstationary Sternberg linearization described above, there exist a unique con-

tinuous linearization
G : L → L, (x, t) → (x,Gx(t))

such that

1. Gx ∈ C∞(R) with G′
x(0) = 1 for all x ∈ Tn,

2. Tn → C∞(R), x→ Gx is continuous,

3. GFG−1(x, t) = (f(x), F ′
x(0)t) for every x ∈ Tn and t ∈ R.

Lemma 8 Suppose p ∈ Tn is rational, and hence a periodic point for the standard action of
every matrix in SL(n,Z). Then Gh(p) ◦Hp|R+ : R+ → R+ has the form Gh(p) ◦Hp(t) = cpt

µp

for some cp, µp > 0.

Proof Since A is abelian, it follows from the uniqueness (?) that G simultaneously
linearizes the transformations on L corresponding to A for each a ∈ A. By (?), we acn find
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B,C ∈ A such that λi0(B) = β, λi0(C) = γ withβ, γ > 1 such that β and γ generate a dense
subgroup in R+. By replaceing B and C with appropriate powers, we may assume that p is
a fixed point for the action of both B and C.

Denote by r and s the the automorphisms induced by B, respectively C, on Tn, and
define R, S : L → L as above, so that φ̃R = rφ̃ and φ̃S = sφ̃. Then

GRG−1(x, t) = (r(x), β̃xt), GSG
−1(x, t) = (s(x), γ̃xT ),

where β̃x = R′
x(0), γ̃x = S ′

x(0). In particular, since h(p) is fixed by r and s,

Gh(p) ◦Rh(p) = β̃Gh(p) and Gh(p) ◦ Sh(p) = γ̃Gh(p),

with β̃ = β̃h(p), γ̃ = γ̃h(p). Also, since h intertwines ρ and the standard action,

Rh(p) ◦Hp(t) = Hp(βt) and sh(p) ◦Hp(t) = Hp(γt).

Let
ψ = Gh(p) ◦Hp|R+ : R+ → R+.

Then we have shown that for every t ∈ R+,

ψ(βt) = β̃ψ(t) and ψ(γt) = ψ̃(t).

By construction ψ is an orientation preserving homeomorphism.
Let c = ψ(1). Then ψ(βkγl) = cβ̃kγ̃l for every k, l ∈ Z. Hence

{βkγl|k, l ∈ Z} → {β̃kγ̃l|k, l ∈ Z}, βkγl → β̃kγ̃l

is an order preserving map between these two subsets of R+. It follows easily that

log β

log γ
=

log β̃

log γ̃
,

hence
ψ(t) = ctµ forevery t ∈ {βkγl},

where

µ =
log β̃

log β
=

log γ̃

log γ
.

But this set is dense in R+ and ψ is continuous, hence ψ(t) = ctµ for every t ∈ R+. �

Now for each x ∈ Tn, set ψx = Gh(x) ◦Hx|I : I → R+, I = [0, 1]. Since I is compact and
G ◦H|Tn×I is continuous it follows that Tn → C0(I), x → ψx is continuous with respect to
the uniform topology on C0(I). By (?), ψp(t) = cpt

µp is a dense set of indexed by p ∈ Tn.
It follows that p → cp and p → µp can be extended to continuous functions Tn → R+ such
that ψx(t) = cxt

µx for every x ∈ Tn. An analogous argument works with −I = [−1, 0] in
place of I and R− in place of R+. Also, we can replace I with any compact interval [0, T ].

Thus we have proved the following:
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Lemma 9 There exist continuous functions c±, µ± : Tn → R+ such that for every x ∈ Tn,
Gh(x) ◦Hx : R → R has the form

Gh(x) ◦Hx(t) =

{
c+x t

µ+
x t ≥ 0

−c−x |t|
µ−

x t ≤ 0.

For each x ∈ Tn, Gh(x) ◦Hx is smooth away from 0, and Gh(x) is a C∞ diffeomorphism,
hence Hx is smooth away from 0. But φ maps Tn × (R−{0}) onto Tn, so this implies that h

is C∞ along each leaf of F , more precisely, h|F(x) : F(x) → F̃(h(x)) is C∞ for every x ∈ Tn.
Thus Gh(x) ◦ Hx must be smooth at 0 as well, hence c+x = c−x , and µ+

x = µ−
x = 1 for every

x ∈ Tn. We have shown that x → Gh(x) ◦Hx defines a continuous map Tn → C∞(R). The
same is true for x → Gh(x), and each Gh(x) is a diffeomorphism. Since the diffeomorphisms
of R form a topological group with respect to the subspace topology inherited from C∞(R),
we conclude that Tn → C∞(R), x → Hx = G−1

h(x) ◦ (Gh(x) ◦Hx) is continuous.

The foliation F is smooth (in fact the leaves of W s
i , 1 ≤ i ≤ n, constitute a smooth

parallelism on Tn) and the smooth foliation charts determine a uniformly C∞ structure long

the leaves. For each x ∈ Tn, we can construct a continuous foliation chart for F̃ centered at
x as follows. First fix a small transverse slice with continuous coordinates centered at x, e.g.
a smooth coordinate chart centered at x in Fu

i0(x). Then extend along the leaves of F̃ via
the arc length parameter to obtain a continuous foliation chart centered at x with C∞ leaves
and such that the C∞ coordinate charts along the leaves vary continuously with respect to
the transverse coordinate. In particular, This determines a uniform C∞ structure along the
leaves of F̃ . We summarize the proceding discussion as follows, again making use of the fact
that inversion defines a continuous involution on the C∞ diffeomorphisms R.

Lemma 10 For each i, 1 ≤ i ≤ n, the one dimensional foliations W s
i , W̃

s
i have uniformly

C∞ leaves, and h, h−1 : Tn → Tn are uniformly C∞ along the leaves of W s
i , W̃

s
i , respectively.

We are now in position to apply Journe theorem and deduce the regularity of h.
For 1 ≤ j ≤ n, define C∞ j-dimensional foliations Gj of Tn as follows. The leaves of Gj

are the images under π of j-planes in Rn parallel to the span of the first j basis vectors vi,
1 ≤ i ≤ n, so that G1 = W s

1 and Gn is the trivial foliation with one leaf. Then Gj−1 ans W s
j

restrict to transverse foliations on each leaf of Gj. Let G̃j = h(Gj). Since A is cocompact
in H0, there exists Ci ∈ A, 1 ≤ j ≤ n − 1, such that λi(ci) < 1, i ≤ j, and λ(Cj) > 1,
i > j, i.e., so that Gi is the stable foliation of the standard action of Ci on Tn. For ρ C1-close
enough to the linear representation, each of the diffeomorphisms ρ(Ci) is Anosov, and G̃j

is the stable foliation for the Anosov diffeomorphism ρ(Cj). Thus we can apply the stable

manifold theorem to conclude that the foliation G̃j is Hölder continuous with continuously
varying C∞ leaves.

Now apply Journe theorem inductively. Suppose that we have shown that h−1 is uni-
formly C∞ along the leaves of G̃j. Then the restrictions of G̃j, W̃

s
j+1, and h−1 to the leaves

of G̃j+1 satisfy the hypotheses of (?), and we can conclude that h−1 is C∞ along the leaves

of F̃j+1. Also Journe’s argument yields uniform bounds on the derivatives of h−1 along the
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leaves of G̃j+1 which depends only on the bounds on the derivatives of h−1 along the leaves

of G̃j+1 and W̃ s
j+1 and the uniform Hölder constants associated to the foliations. Thus h−1

is uniformly C∞ along the leaves of G̃j+1, the induction go through, and we conclude that
h−1 is C∞. A similar argument shows that h is C∞. Thus h is a C∞ diffeomotphism and
the proof of Theorem (?) is complete. �

3 Invariant measures and conditional measures

Let (X,B, µ) be a complete measure space, i.e. B ∈ B, A ⊂ B and µ(B) = 0 implies A ∈ B.
(X,B, µ) is called separable if the metric d(A,B) = µ(A∆B) defined on B/{setsofmeasure0}
makes it a separable metric space. This is equivalent with L1(X,B, µ) separable. Define
Ω := {0, 1}N. A family {Ak}k of subsets in X is called a basis if for any sequence {ωk}k ∈ Ω,
there is at most one point in ∩k≥1A

ωk

k , where A0
k = Ak, A

1
k = X�Ak.

We recall that an isomorphism mod 0 of two measurable spaces X and Y is a bijective
map F : X ′ → Y ′, X ′ ⊂ X, Y ′ ⊂ Y , X = X ′(mod0), Y = Y ′(mod0), which is bi-measurable
and F and F−1 are measure preserving.

(X,B, µ) is called a Lebesgue space if µ is a probability measure and if X is isomorphic
mod 0 with (I, C, λ), where I consists of an interval [0, α], α ≤ 1, and at most a countable
number of atoms, C is generated by the Borel sets in [0, α] and the atoms, λ is the Lebesgue
measure on [0, α] and λ(I) = 1.

Theorem 10 (Rokhlin 1947-1948) A probability measure space (X,B, µ) is Lebesgue if and
only if:

1. (X,B, µ) is complete;

2. (X,B, µ) is separable;

3. (X,B, µ) has a basis and the image HX of the map H : X → Ω given by x →
(ω1, ω2, . . .) with ∩k≥1A

ωk

k = {x}, is measurable.

Theorem 11 (Rokhlin) If (X,B, µ) satisfies (3) for some basis, it satisfies it for any basis.

Let (X,B, µ) be a Lebesgue space and ξ be a partition of X with measurable equivalence
classes. ξ is called a measurable partition if the measure space X/ξ is a Lebesgue space. The
measure on X/ξ is the induced measure and is denoted by µξ. Denote by B(ξ) the σ-algebra
generated by ξ.

Assume now that on each element C of the partition we introduce a measure µC . We say
that {µC} is a system of conditional measures with respect to ξ if:

1. µC is a Lebesgue measure for every mod ) point C of the factor space X/ξ;

2. for every measurable set A ⊂ X a) A ∩ C is measurable in C for every mod 0 point
C ∈ X/ξ; b) µC(A ∩ C) is a measurable function of the point C ∈ X/ξ; c) µ(A) =∫

X/ξ
µC(A ∩ C)dµxi.
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Remark 4 A system of conditional measures with respect to ξ is unique mod 0.

Theorem 12 (Rokhlin) A partition ξ has a system of conditional measures if and only if it
is measurable.

Remark 5 For measurable partition the correspondence between the decomposition ξ and the
σ-algebra B(ξ) is bijective. More precisely, if B(ξ1) = B(ξ2) for two measurable partitions ξ1
and ξ2, then, up to a set of measure zero, the partitions ξ1 and ξ2 are identical. Furthermore,
for each subalgebra B there exist a measurable decomposition ξ such that B = B(ξ).

For an arbitrary partition ξ, not necessarily measurable, we can form the σ-algebra B(ξ)
and find a measurable partition ξ ′ such that B(ξ) = B(ξ ′). The partition ξ ′ is called the
measurable hull of ξ. For example, if we have a measure preserving group action and consider
the partition of the measurable space given by orbits, then the measurable hull coincides with
the ergodic decomposition.

Consider now X and F complete metric spaces, W a continuous foliation of X with leaves
modeled on F . The partition into the leaves of W is not a measurable partition in general.
We denote by m(W ) the measurable hull of W . It is the finest measurable partition whose
elements consist a.e. from the entire leaves of W .

We call a measurable partition ξ subordinate to W if for µ-a.e. X we have ξ(x) ⊂ W (x)
and ξ(x) contains a neighborhood of x open in the submanifold topology of W (x). Two
different partition subordinate to the same foliation determine conditional measures that are
scalar multiples when restricted to the intersection of an element of one partition with an
element of the other partition. Hence there is a locally finite measure µW

x on W (x) uniquely
defined up to rescaling that restricts to a scalar multiple of a conditional measure for each
partition subordinate to W . The measures µW

x form the system of conditional measures on
the leaves of W .

4 Invariant geometric structures on continuous folia-

tions

4.1 Invariant measures

LetM be a smooth Riemannian compact manifold, let f : M →M be a C1+α diffeomorphism
of M . Assume the following:

1. there exists a continuous f -invariant f−1-contracting C1-foliation W of M , i.e. the
leaves are C1-submanifolds of M , the distribution TW (x) depends continuously on the
point x ∈M and ‖Df−1|TW‖ < λ < 1;

2. the distribution TW (x) is Hölder.

A measure µ is called W -absolutely continuous if the conditionals on the leaves of W are
absolutely continuous w.r.t. the Lebesgue measure.
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Theorem 13 (Pesin-Sinai) There exists a Borel probability f -invariant measure µ whose
conditional measures on the leaves of W are absolutely continuous w.r.t. the Lebesgue mea-
sure. Moreover, the density on W (x) is given by

y → C(x, y) =

∞∏

n=0

JW (f−n(x))

JW (f−n(y))
, (∗)

which is a continuous function in x and y and as smooth as f and the leaves.

Theorem 14 (Theorem 2) The density of any Borel probability f -invariant measure that
has absolutely continuous conditional measures on the leaves of W is given by (*).

Theorem 15 (Theorem 3) Let f and g be Anosov maps. Denote by Ju
f ( respectively

Ju
g ) the Jacobians of f and g along their unstable foliations. Suppose h is a homeomorphism

such that g = h−1fh. Suppose also that for any g-periodic point p Ju
g (p) = Ju

f (h(p)).
Then for any g-invariant W u

g -absolutely continuous measure, (h∗)µ is a W u
f -absolutely

continuous measure.

Remark 6 Assume that dimW = 1. Then the invariant measure which is absolutely con-
tinuous on W gives a smooth parametrization of W . One can show that this is an affine
parametrization.( Compare with the previous section.)

Theorem 16 (Theorem 4)Let f and g be two Anosov C∞-diffeomorphisms of T2 and
let h be a homeomorphism such that g = hfh−1. Suppose that for any g-periodic point p
(gnp = p), (Dgn)p has the same eigenvalues as (Dfn)h(p). Then h is C∞.

Theorem 17 (Theorem 5)Let f and W be like above. Let g be a diffeomorphism which
preserves W and such that fg = gf . Then there exists a W -absolutely continuous measure,
invariant for both f and g.

We start now the proof of Theorem 1.

Lemma 11 For any x ∈M , y ∈ W (x) define

Cn(x, y) =

n−1∏

k=0

JW (f−k(x))

JW (f−k(y))
.

Then the following limit exists

C(x, y) = Cn(x, y) =

∞∏

k=0

JW (f−k(x))

JW (f−k(y))
.

Moreover, the function C(x, y) is continuous and for any x ∈M , y, z ∈ W (x)

C(x, y)C(y, z) = C(x, z).
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Proof The Jacobian is a uniformly bounded Hölder function on M , so:

|
JW (f−k(x))

JW (f−k(y))
− 1| ≤ Cd(x, y)αλαk.

Then lemma follows using a well known criterion for the convergence of an infinite prod-
uct. �

Let dν be the Riemannian volume on M . We define a sequence of functionals on C(M)
by

µn(h) = 1/n

n−1∑

k=0

∫

M

h(f k(x))dν(x), for h ∈ C(M).

The sequence {µn}n is precompact in weak*-topology, so there exists a weak*-limit µ which
is normalized and f -invariant.

We define a rectangle to be an open set in M bounded by
Consider now Π a rectangle and define Πn := f−n(Π). Denote by η the partition of Π

into local leaves of W , by ηn the partition of Πn into leaves and by Xn (respectively X)
the measurable space Πn/ηn (respectively Π/η). Let νn,y be the measure induced by the
Riemannian metric on the leaf Cη(y) and dν̄n be the induced measure on Xn. Take now a
continuous function h with the support in Π. Then

∫

M

h(fn(x))dν =

∫

Πn

h(fn(x))dν =

∫

Xn

dν̄n(y)

∫

Cηn(y)

h(fn(z))dνn,y(z). (∗)

We have dν̄n(y) = J
(n)
X (y)dν̄X(y) where J

(n)
X (y) is the Jacobian of the map fn|X at y, ν̄X(y)

is the measure on X, induced by the Riemannian metric, and

dνn,y(z) =
n−1∏

k=0

JW (f−k(z))dνy(z),

where νy(z) is the measure on Cη(y) induced by the Riemannian metric. Then the last integral
in (*) becomes

∫

X

J
(n)
X (y)dν̄X(y)

∫

Cη(y)

h(z)
n−1∏

k=0

JW (f−k(z))dνy(z) =

∫

X

J
(n)
X (y)

n−1∏

k=0

Ju(f−k(y))dν̄X(y)

∫

Cη(y)

h(z)
n−1∏

k=0

JW (f−k(z))

JW (f−k(y))
dνy(z).

To finish the proof of Theorem 1 we use now the following lemma.

Lemma 12 Let νn be a sequence of measures in Π with the following properties:
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1. if (δn, νn(y, z)) is the system of conditional measures for νn with respect to the partition
η so that δn(y) is the measure on X and νn(y, z) is the measure on Cη(y), then

dνn(y, z) = Pn(y, z)dνy(z)

where Pn(y, z) is a continuous function on Π;

2. the sequence of functions Pn(y, z) converges uniformly in Π to a continuous function
P (y, z);

3. the sequences of measures µni
= 1/ni

∑ni−1
k=0 νk converges weakly in Π to a measure µ.

Then the system of conditional measures for the measure µ in Π with respect to the
partition η has the form (δ(y), ν(y, z)), where δ is the measure on X and ν(y, z) is the
measure on Cη for which

dν(y, z) = P (y, z)dνy(z).

Proof For any continuous function h supported on Π we have that

∫

Π

h(w)dµni
(w) = 1/ni

ni−1∑

k=0

∫

X

dδk(y)

∫

Cη(y)

h(z)Pk(y, z)dνy(z) =

∫

X

dψni

∫

Cη(y)

h(z)P (y, z)dνy(z) + εni
, (∗)

where ψni
= 1/ni

∑ni−1
k=0 δk and

εni
= 1/ni

ni−1∑

k=0

∫

X

dδk(y)

∫

Cη(y)

h(z)(Pk(y, z) − P (y, z))dνy(z).

Denote c = maxz∈Π ‖h(z)‖ and ck = max(y,z)∈Π ‖Pk(y, z)− P (y, z)‖, and using condition
(2) we have

‖εni
‖ ≤

c

ni

ni−1∑

k=0

ck → 0 as ni → ∞.

Consider now on Π the sequence of measures µ̃ni
, where

µ̃ni
(A) =

∫

X

dψni

∫

Cη(y)

χA(y, z)P (y, z)dνy(z),

for A ⊂ Π Borel set.
It follows from condition 3 and (*) that {µ̃ni

}i converges weakly to the measure µ. So
the family {ψni

}i is weakly compact. So {ψni
}i has a subsequence {ψn′

i
}i weakly convergent

to a measure δ in X. For any continuous function h supported on Π we have
∫

Π

h(w)dµ̃n′

i
(w) =

∫

X

dψn′

i
(y)

∫

Cη(y)

h(z)P (y, z)dνy(z) →
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→n′

i→∞

∫

X

dδ(y)

∫

Cη(y)

h(z)P (y, z)dνy(z)

and ∫

Π

h(w)dµ̃n′

i
(w) →

∫

Π

h(w)dµ(w).

So the result follows. �

We will call an f -invariant measure with absolutely continuous conditionals along the
leaves a SBR-measure.

We start now the proof of Theorem 2. Let µ be any SBR-measure.
Denote by Λ+ the set of all points x ∈M such that there exists the limit:

lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(x)).

By Birkhoff theorem, µ(Λ+) = 1.
Let η be the partition of Λ+ defined by the following condition: points x, y belong to the

same element of

lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(x)) = lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(y)).

Denote by Cη(x) the element of η which contains x.

Lemma 13 W (x) ⊂ Cη(x).

ProofIf y ∈ W (x), then dm(f−nx, f−ny) ≤ Cλ−n. So for any continuous function ϕ

lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(x)) = lim
n→∞

1

n

n−1∑

k=0

ϕ(f k(y))

and y ∈ Cη(x).

Lemma 14 Let ξ be the partition of M into ergodic components w.r.t. µ. Then ξ = η (mod
0).

Proof This follows easily from Birkhoff theorem.

Lemma 15 Let µ1, µ2 be two f -invariant SBR-measures. Let F be an element of η such
that µ1(F ) > 0 and µ2(F ) > 0. Then, up to a scalar normalization, µ1|F = µ2|F .

Proof We renormalize µ1|F and µ2|F to be probability measures. Then, from Lemma (?)
they are both ergodic. If µ1|F has a singular component w.r.t. µ2|F there exists A ⊂ F such

that µ1(A) = 0, µ2(A) > 0. Define Ã = ∪∞
n=−∞f

n(A). Then Ã is f -invariant, µ1(A) = 0
and µ2(A) > 0. Consider now the measure µ = (µ1 + µ2)/2, which is also an f -invariant

ergodic SBR-measure (see Lemma). So 0 < µ(Ã) < 1 is impossible. We conclude that µ1|F
is absolutely continuous w.r.t. µ2|F . Since µ2|F is ergodic it follows that µ1|F = µ2|F .

Using now Lemma and Lemma it follows that nontrivial conditionals along the leaves of
W are uniquely determined, finishing the proof of Theorem 2.
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4.2 Invariant affine structures for contracting foliations with pinch-

ing

Local statement 1 Let U be a neighborhood of 0 in Rn, f : U → Rn be a diffeomorphism
onto its image, f(0) = 0. Let {λ1, . . . , λn} be the spectrum of D0f , and χi = log|λi| the
corresponding Lyapunov exponent. Assume that |λi| and χi < 2χj for all i, j. Then there
exists a C∞ local coordinate change h : U0(⊂ U) → Rn which linearizes f at the origin, i.e.:

f = h−1Df0h, h(0) = 0.

Remark 7 There are finite smoothness and analytic counterparts.

Remark 8 The pinching condition is sharp. Consider the following example:

f(x, y) = (
x

2
,
y

4
+ ax2)

which has χ2 = 2χ1.
Assume by contradiction that there is a local coordinate change h which linearize f at

the origin. It is easy to see that Df0 has an infinite family of invariant C1-curves which are
tangent in 0 to the x-axis, namely y = cx2. We will show that the image of any of these
curves under h can not be invariant under f . Indeed, let (x0, y0) = h(x′, y′) be a point on
such a curve, distinct from the origin. Denote (xn, yn) := fn(x0, y0). Then xn → 0 and
yn = O(xn) (because (xn, yn) = h(Df0(x

′, y′)). On the other hand, we have the following
recurrence relation:

xn =
x0

2n
, yn =

yn−1

4
+

ax0

2n−1
,

so
yn = nx2

n +
y0

4n
.

Hence yn is not O(xn) and we have a contradiction. The problem appears from the existence
of the resonance χ2 = 2χ1.

We show now a global version of the previous theorem.
Let M be a smooth Riemannian compact manifold, f : M → M a C∞ diffeomorphism

of M . Let W be a continuous foliation of M with C∞ leaves, such that f(W ) = W . Assume
also that W is a contracting foliation for f , i.e.

‖Df |TW‖ < λ < 1.

Definition 6 The function f satisfies the 1/2-pinching condition along W if for any u,
v ∈ TW :

‖Df(v)‖2 < ‖Df(u)‖.

It is obvious that a 1-dimensional foliation satisfies the 1/2-pinching condition.
Take now δ > 0 small enough and consider the canonical germ extension F : TδW → TδW

of f . In local coordinates the formula for F is

F (x, t) = (f(x), (ϕf(x)−1 ◦ f ◦ ϕx)(t)),

where ϕx : (TδW )x →W (x) is the exponential map.(Maybe picture.)
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Theorem 18 Let f , F and W be as before and assume that f satisfies the 1/2-pinching
conditions along W . Then there exists H : TδW → TδW a germ extension of the identity
map of M such that:

1. H is identity along the zero section of TδW ;

2. H is C∞ along the fibers of TδW ;

3. DtH|(x,o) = Id;

4. H is continuous on TδW ;

5. H is C∞ along the leaves of W ;

6. H ◦ F ◦H−1 is linear in the fibers.

Moreover, the affine connection induced on W by the linearization in the fibers is inte-
grable. So we have a flat affine connection on TW .

Proof The plan of the proof is similar with the proof of Theorem(?). First we find a
formal power series linearization, then we show the C∞-linearization up to a C∞-flat error,
and finally eliminate the C∞-flat error.

Step I. We want to conjugate F formally to elliminate the nonlinear terms. We procced
by induction.

Assume that for 2 ≤ k < n there are H(k) such that

F(n) := H−1
(2) ◦H

−1
(3) ◦ · · · ◦H

−1
(n−1) ◦ F ◦H(n−1) ◦ · · ·H(2)

is linearized up to order n along the zero section, so the Taylor series expansion of F(n) is:

F(n)(x, t) = (f(x), Lxt+ Fn(x, t) + Fn+1(x, t) + · · ·)

where Fk(x, t), k ≥ n, are homogenous of order k in t, and Lx is the linear part along the
zero section.

We want to find H(n)(x, t) with Taylor series expansion:

H(n)(x, t) = (x, t+Hn(x, t))

such that F(n) ◦H(n) −H(n) ◦DtF(n) has the n-homogenous term zero.
So the equation for the n-homogenous term is:

LxHn(x, t) + Fn(x, t) = Hn(f(x), Lxt).

Denote
Lm

x := Lfm−1(x) ◦ · · · ◦ Lf(x) ◦ Lx.

Using the compactness of M and making v = L−1
x u/‖L−1

x ‖ in (*), the pinching condition
can be restated as
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1. ” ” there is 0 < γ < 1 such that ‖Lx‖
2 < ‖L−1

x ‖−1γ.

Hence

‖Lm
x ‖

2‖(Lm
x )−1‖ ≤

m−1∏

k=0

‖Lfk(x)‖
2‖L−1

fk(x)
‖ ≤ γm (∗∗)

for any positiv integer m.
From (*) follows:

Hn(x, t) = −L−1
x Fn(x, t) + L−1

x (Hn(f(x), Lxt)),

so

Hn(x, t) = −

∞∑

m=0

(Lm
x )−1Fn(fm(x), Lm

x t).

The last sum is uniformly convergent in norm because Fn is homogenous of degree n in
the second variable.

The formal power series linearization H is given by:

H = · · · ◦H(n) ◦ · · · ◦H(3) ◦H(2).

Note that for each n, the n-homogenous term in the second variable of H is determined as
a finite sum.

Remark As the reader can see from the last proof, in order to elliminate the n-homogenous
part of F we need the following condition, which is weaker then 1/2-pinching for W con-
tracting foliation:

‖Lx‖
n < ‖L−1

x ‖, forallx ∈M. (∗)

Since the foliation W is contracting, this condition is true for some n big enough. So, even
if we can not linearize F along the zero section, at least we can reduce F to a normal form.

Theorem 19 Assume that (*) is true. then there exists H formal power series such that
F ◦H −H ◦ FnCF−1 is zero up to arbitrary order along the zero section, where:

Fn−1(x, t) = Lxt+ F2(x, t) + · · ·Fn−1(x, t).

H can be choosen such that DtH|(x,0) = 1, Dl
tH|(x,0) = 0 for 2 ≤ l ≤ n− 1 and any x ∈M .

Step II. The linearization H exists now as a formal power series:

H(x, t) = (x, t+
∞∑

k=2

Kk(x, t)).

But the formal series might not converge. We use now a cut-off function to construct a
C∞-linearization up to a C∞ flat part.
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Proposition 2 Let b : [0, 1] → [0, 1] be a C∞ function, such that b(t) = 1 for t ∈ [0, 1/2]
and b(0) = 0. Consider the function

K̃(x, t) = (x, t +

∞∑

k=2

Kk(x, t)b(k!‖t‖
2)).

Then K̃(x, t) satisfies the conditions in Theorem(?) except (6) which is true up to a C∞-flat
term.

Proof Note that b(k!‖t‖2) 6= 0 implies that ‖t‖2 < 1/k!. Hence for each t 6= 0 only

finitely many terms are non-zero and the series which defines K̃(x, t) is convergent. Same is

true for the derivatives, so K̃(x, t) is a C∞ function. It is also easy to check that K̃(x, t) has
the right derivatives at t = 0.

Step III. The ellimination of the C∞-flat term follows from the following theorem.

Theorem 20 Let F , G : TδM → TδM be two C∞ germ extensions of f and let α : TδM →
TδM be a C∞ germ extension such that Dk

t α|(x,0) = 0, k ≥ 1 and such that G + F + α.
Assume that F is a linear contraction fiberwise. Then there is H : TδM → TδM C∞ germ
extension of IdM such that Dk

tH|(x,0) = 0, k ≥ 1, and G = H ◦ F ◦H−1.

Proof We use here the homotopy method. For any τ ∈ [0, 1], consider Fτ the germ
extension of f :

Fτ = F + τα,

and try to find Hτ the germ extension of IdM such that:

F = H−1
τ ◦ Fτ ◦Hτ . (∗)

To find the family {Hτ}τ is equivalent to find the nonstationary vector field:

t→ vτ =
d

dσ
(Hσ ◦H−1

τ )|σ=τ .

Using (*) we have
(Hσ ◦H−1

τ ) ◦ Fτ = Fσ ◦ (Hσ ◦H−1
τ )

and differentiating w.r.t. σ at σ = τ we find:

vτ ◦ Fτ −DtFτ (vτ ) =
dFτ

dσ
|σ=τ ,

or equivalently
vτ = (DtFτ )

−1(vτ ◦ Fτ ) − (DtFτ )
−1α. (∗∗)

Formally, (**) is solved by:

vτ =
∞∑

n=0

(DtFτ )
−n−1(α ◦ F n

τ ). (∗ ∗ ∗)
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Because F is contraction fiberwise, there is 0 < λ < 1 such that

‖DτFτ‖ < λ.

Also, using Taylor formula and the fact that Dn
Tα|(x,0) = 0, n ≥ 0, we find positive constants

Cn such that:
‖α(x, t)‖ ≤ Cn‖t‖

n, forall (x, t) ∈ TδM.

Now, the last two estimates and the fact that α is C∞ fiberwise can be used to show that
the sum *** gives a C∞-function in all the variables x, t, τ . So we can integrate {vτ} to
obtain {Hτ} which is C∞-fiberwise, flat and G = H ◦ F ◦H−1.

5 Cocyles

Let G be a group and let α : G ×M → M a G action on a space X. Let Γ be a group
with unit 1Γ. To simplify the notation we write gx instead of α(g)x. A cocycle over α is a
function β(g, x) : G×M →M such that:

β(g1g2, x) = β(g1, g2x)β(g2, x),

for all g1, g2 ∈ G, x ∈M .
Two cocycles β1 and β2 are called cohomologous if there exists a function P : M → Γ,

called coboundary, such that:

β1(g, x) = P (gx)β2(g, x)P (x)−1.

A cocycle β is called cohomologous to a constant cocycle if there is a representation
π : G→ Γ which is cohomologous with β, i.e.

β(g, x) = P (gx)π(x)P (x)−1.

We say that a cocycle β satisfies the closing conditions if gx = x for some x ∈ X and
g ∈ G implies that β(g, x) = 1.

If π is the trivial morphism, then we say that P trivializes β, or β is null-cohomological.
In the case G = Z the cocycle is determined by the function β̄(x) := β(1, x).
We discuss first some facts about continuous cocycles.

Proposition 3 Let f : X → X be a homeomorphism of a complete metric space and ϕ :
Z ×X → R a continuous real valued cocycles over the Z-action induced by F . Suppose that
there is C > 0 such that for all n and x:

|ϕ(x, n)| < C.

Then φ(x) := − supn∈Z
ϕ(x, n) trivializes ϕ. The set of discontinuities of φ is a countable

union of nowhere dense f -invariant closed sets. In particular, is f is minimal (i.e. any orbit
of f is dense), then φ is continuous.
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More interesting for us are Hölder cocycles over hyperbolic actions on compact manifolds.
The first important result belongs to Livsic:

Theorem 21 (Livsic) Let f be a topologically transitive Anosov C1 diffeomorphism of a
compact manifold M . Let β̄ : M → R be an α-Hölder function. Then the Z- cocycle β(g, x)
over α determined by β̄ is null-cohomological if and only if β satisfies the closing conditions.
The trivialization P is α-Hölder.

The definitive results about the regularity of P belong to de la Llave, Marco and Moryion.

Theorem 22 (de la Llave-Marco-Moryion) If β is C∞ (analytic), then P is C∞ (analytic).

The proof of this theorem is done in two steps. One shows first the regularity along the
stable and unstable foliations. Second, one shows the that the regularity of P along stable
and unstable foliations implies the regularity of P .

The first step is standard and not very difficult. For the second step, which can be viewed
as a regularity result independent of the theory of hyperbolic systems, there are, by now,
several proofs. The original proof in [4] is done using elliptic theory. Necessary assumptions
are the regularity of the Jacobian along the stable and unstable foliations and the continuity
of the foliations. Same assumptions are used by Hurder and Katok in [1], but the proof,
which uses now only Fourier analysis, is simplified. Yet other proof is presented by Journe
in [2]. His proof uses the Hölder continuity of the foliations, but makes no assumption on
the Jacobian.

Theorem 23 (Journe) Let M be a C∞ manifold and F and F ′ be two Hölder foliations,
transverse and with uniformly C∞ leaves. If a function f is uniformly C∞ along the leaves
of the two foliations, then it is C∞ on M . �

Livsic proved also an analog of Theorem 22 for small Z-cocycles with values in finite
dimensional Lie groups. Small means that the function β(1, ·) has the range in a small
enough neighborhood of the identity. Regularity results for cocycles with values in finite
dimensional Lie groups which are cohomologous to identity are proved in [6].

Proving an analog of Livsic theorem for general Z-cocycles with values in Lie groups is
an outstanding open problem. We note also that, as was remarked by A. Katok, de la Llave
conterexample mentioned in Chapter 1 provide a couterexample for the folowing regularity
problem:

Problem 2 Let G be a finite dimensional Lie group and β : Z ×M be a C∞ cocycle over
an Anosov C∞. Assume that β is cohomologous to a constant cocycle and let P : M → G
be the coboundary. Assume also that P is continuous. Does it follow that P is C∞?

Indeed, let Aff(Rd) be the Lie group of affine autuomorphisms of Rd. Then f and f̃
define Aff(Rd)-valued cocycles over the hyperbolic action x ∈ T2 → Ax ∈ T2. f corresponds

to β(1, x)(y) = By and f̃ to

β̃(1, x)(y) = By + ϕ(x)eµ.
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Since h−1 is a bundle map, it corresponds to a cohomology between β and β̃ given by

x ∈ T2 → P (x)(·) = · − ψ(x)eµ ∈ Aff(Rd).

If αc < 1, ψ is only Hölder and so P is only Hölder.

6 Totally nonsymplectic abelian actions

In this section we will continue the study of Anosov Zk-actions. We already proved in section
(?) the C∞-structural stability of a Zn−1-action generated by n − 1 commuting hyperbolic
matrices acting on the torus Tn. In order to obtain further rigidity results, we need the
action to be rich enough. This is described in a formal way below.

As we already remarked in Chapter 1, the only manifolds which are known to admit
Anosov diffeomorphisms are tori, nilmanifolds and infranilmanifolds. In these chapter we
consider only Anosov Zk-actions on these manifolds. We call the action α linear if it can
be lifted to a Zk-action on the universal cover of M (which is an euclidean space) induced
by linear hyperbolic automorphisms. For a linear hyperbolic automorphism a, we denote by
E−

a and E+
a the stable and unstable subspaces of a.

Because the linear automorphisms which implement the Zk-action commute one with
each other, they have the same invariant subspaces. Let m be the dimension of M . So
we can write TxM = Rm = ⊕`

i=1Ei, where each Ei’s is included into a stable or unstable
subspaces for each hyperbolic element in Zk. Moreover, we assume that Ei’s are maximal
with this property, meaning that if Ei ⊂ F , F linear subspace and if for each hyperbolic
element Ei and F are both included either in the stable, or unstable subspace, then Ei = F .
We call Ei’s minimal subspaces. Our richness condition, called totally nonsymplectic (TNS)
is the following:

1. ”(TNS)” for any two minimal subspaces there is a hyperbolic element a in Zk such
that both minimal subspaces are included in the stable subspace of a.

Lyapunov subspaces determine integrable distributions. We cal the corresponding foli-
ations on M minimal foliations and denote them by Fi. We can restate (TNS) condition
using minimal foliations:

1. ”(TNS)” for any two minimal foliations there is a hyperbolic element a in Zk such that
both minimal foliations are included in the stable foliation of a.

The minimal foliations and the notion of (TNS) action can actually be introduced for
general hyperbolic Zk-actions.

6.1 Cocyles Over Zk-Actions

Assume now that β : Zk ×M → R is a real valued cocycle over α

β(n1 + n2, x) = β(n1, n2x) + β(n2, x) , for all n1, n2 ∈ Zk, x ∈M.
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We want to show that under certain regularity condition on β, β is cohomologous with
a constant cocycle, i.e. there is P : M → R and a morphism π : Zk → R such that

β(n, x) = P (nx) + π(n) − P (x).

Theorem 24 Let M be a torus, a nilmanifold or an infranilmanifold. Let α : Zk ×M →M
be a linear (TNS) Zk-action. Let β : Zk ×M → R be a C∞ cocycle over α. Then β is
cohomologous with a constant cocycle and the coboundary P : M → R is C∞.

Proof The idea is to construct first a C∞ form on M , which is invariant under the group
action. Then we show that the form is closed and we are able to construct a foliation of
M×R with leaves of dimension m. Using a holonomy argument and the hyperbolicity of the
action follows that the leaves of the foliation are closed. We can then deduce the morphism
π and the coboundary P using the invariance of the foliation.

Assume now that x ∈ M , a ∈ Zk hyperbolic and y ∈ W s
a (x) the stable leaf of a though

x. Then the following sum is convergent

P−
a (y; x) = −

∞∑

n=0

[β(a, (na)y) − β(a, (na)x)],

and we can define a form ω−
a on Es

a(x) taking the derivative of P−
a along the stable leaf.

Note that the sum is convergent even if β is only Hölder. This fact will be used later when
we show an alternative proof of Theorem 1 which works even for Hölder cocycles.

Similarly, we can define, for x, z ∈ W u
a (x) = W s

−a(x)

P−
−a(z; x) = −

∞∑

n=0

[β(−a, (−na)z) − β(−a, (−na)x)]

and obtain a form ω+
a on Eu

a (x). So we have a form on TxM given by ωa = ω+
a ⊕ ω−

a .
We show now that the form is the same for a big set of hyperbolic elements in Zk used

to construct it, that is smooth and closed.

Lemma 16 There is a subset S ⊂ Zk, which contains elements from each Weil chamber
and which generates Zk, such that if a, b ∈ S are both hyperbolic, then

ωa|Es
a(x)∩Es

b
(x) = ωb|Es

a(x)∩Es
b
(x).

Proof We assume first that λb, the contraction coefficient along W s
b , is made smaller

than the norm of α(a− b), and prove lemma in this case.
Take now z ∈ W s

a (x) ∩W s
b (x). Using the cocycle relation we find that:

n−1∑

k=0

β(a, (ka)z) = β(na, z)
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and
β(na, z) − β(nb, z) = β(n(a− b), (nb)z),

and similar for x instead of z.
So, in order to show P−

a (z; x) = P−
b (z; x), and consequently ωa|Es

a(x)∩Es
b
(x) = ωb|Es

a(x)∩Es
b
(x),

is enough to show that

lim
n→∞

(β(n(a− b), (nb)z) − β(n(a− b), (nb)x)) = 0.

But

|β(n(a− b), (nb)z) − β(n(a− b), (nb)x)| = (1)

=
∣∣∑n−1

k=0 (β(a− b, [nb + k(a− b)]z) − β(a− b, [nb + k(a− b)]x))
∣∣ ≤ (2)

≤ ‖β(a− b, ·)‖Hoelder

[∑n−1
k=0 dM(α(nb+ k(a− b))(z), α(nb + k(a− b))(x))α

]
(3)

≤ ‖β(a− b, ·)‖Hoelder · λ
nα
b · C · (dM(z, x))α

∑n−1
k=0 ‖α(a− b)‖kα. (”) (4)

∗” (5)

Here C is a constant independent of n and dM is the Lyapunov metric for b on M .
Since ‖α(a − b)‖ ≥ 1, it follows that

∑n−1
k=0 ‖α(a − b)‖k ≤ C ′ · ‖α(a − b)‖n where C ′ is

also a constant independent of n. So (*) is convergent to 0 when n→ ∞ because λb is much
smaller than ‖α(a− b)‖.

We show now how to construct the set S ⊂ Zk. We consider first a finite set F of
elements in Zk close to the origin, which contains a motion in each direction. Obviously,
there is M > 0 such that ‖α(c)‖ ≤ M , for all c ∈ F . Consider now λj : Rr → R be the
j’s Lyapunov exponent and denote by Hj the hyperplane in Rk determined by the kernal
of λj. Then there exists a cone C(Hj) in H−

j , which does not exclude any Weil chamber
in Hj, and a ball B around the origin, of size independent of j, such that for any element
b ∈ C(Hj) ∩ (Rk − B) we have

λj(b) < M−1. (∗)

Consider two elements a, b in C(Hj) ∩ (Rk − B). We can join a and b by a sequence of
elements in C(Hj) ∩ (Rk − B) adding at each step an element from F . Formula (*) allows
us to apply the first part of the proof recurently and deduce that

ωa|Fj
= ωb|Fj

. (∗∗)

Because of the definition of ω, (**) is also true if a and/or b are in the opposite cone −C(Hj).
Define the set S to be

S =
[
∩m

j=1C(Hj) ∪ (−C(Hj))
]
∩ (Rk − B).�

Choose now an element a ∈ S, an open set U in M and a C∞-coordinate system in U
such that in each point dx1, . . . , dxm is the dual basis of a basis in TxM consisting of vectors
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along the Lyapunov directions. We can do this because the action α is linear. So, in local
coordinates ω := ωa becomes

ω(x) =

m∑

i=1

fi(x)dxi

where fi are obviously continuous functions on U and C∞ along the stable direction of the
hyperbolic element used to define the form. Using the (TNS) and Lemma 1 condition it
follows that each fi is C∞ along a full set of directions so is C∞ (see [1] or [3]). So ω is a
smooth form.

To show that ω is closed, we use again (TNS) condition and Lemma 1. Any two directions
i, j are included into the stable subspace of some hyperbolic element a. But then fi(x) =
∂P−

a (y;x)
∂yi

|y=x and fj(x) = ∂P−

a (y;x)
∂yj

|y=x and because P−
a (·; x) is smooth we have ∂fi

∂xj
=

∂fj

∂xi
, so

ω is closed.
We construct a foliation of M ×R with m-dimensional leaves . Since ω is closed, we can

find locally a C∞ function F : U → R such that dF = ω. Then the graphs of the functions
{F + t : U → R}t∈R define a smooth foliation F of U × R and using a cover of M by open
disks we find a smooth foliation of M × R.

We show that the foliation F is invariant under the Z- action

α̃ : Zk × (M × R) 7→M × R, α̃(a, (x, t)) = (ax, β(a, x) + t).

Consider first a ∈ S hyperbolic. Let L be an open set in a leaf of F which sits over an open
set U in M , x ∈ U , (x, t) ∈ L. Then the lift of W s

a (x) to L is the graph of P−
a (·, x) + t. The

following computation shows that the image of the graph of P−
a (·, x) under α̃(a) is the graph

of P−
a (·, ax) + t + β(a, x) restricted to W s

a (ax), so belongs to the leaf of F passing through
α̃(a)(x, t):

α̃(a)(y, P−
a (y, x) + t) = (6)

= α̃(a)(y,−
∑∞

n=0[β(a, (na)y) − β(a, (na)x)] + t) = (7)

= (ay, β(a, y)−
∑∞

n=0[β(a, (na)y) − β(a, (na)x)] + t) = (8)

= (ay, P−
a (ay, ax) + t + β(a, x)). (9)

Similar is true for the lift of W u
a (y), for any y ∈ U .

Consider the leaf L foliated by the lifts of W u
a (y), y ∈ W s

a(x). The image of each of them

belongs to the leaf of F passing through α̃(a)(x, t), so α̃(a)(L) is part of a leaf of F , so F is
invariant under α̃(a).

The fact that F is invariant under the full Zk action follows from the fact that S contains
a set of generators of Zk.

We show now that F has closed leaves. Take a fixed point x ∈ M for the action of
a hyperbolic element a and consider the holonomy map H : π1(M) → R of the foliation
F . Because F is invariant under α̃, the holonomy map is invariant under the action of a
on π1(M), i.e. H(aγ) = H(γ), for any γ ∈ π1(M). The foliation F has all leaves closed
manifolds if H is the trivial morphism. We prove that H is the trivial morphism in three
steps: we consider first that M is a tori, than a nilmanifold and finally an infranilmanifold.
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Assume first that M = Tm . Then π1(M) ' Zm and H is a morphism from Zm into R,
so is linear. There is ψ = (ψ1, . . . , ψm) ∈ Rm such that

H((γ1, . . . , γn)) = ψ1γ1 + · · ·+ ψmγm, where(γ1, . . . , γm) ∈ Zm.

We extend H by linearity to Rm. Then H(x) = 〈x, ψ〉, whose 〈·, ·〉 is the standard scalar
product on Rm, and H is still a invariant. So

H(ax) = H(x) (∀)x =⇒ 〈(a− Id)x, ψ〉 = 0 (∀)x =⇒ (10)

=⇒ 〈x, (a− Id)tα〉 = 0 (∀)x, (11)

i.e. (a− Id)tα = 0. But a is hyperbolic and does not have 1 in the spectrum, so α = 0 and
H is trivial.

Assume now that M is a nilmanifold. Then M = N/Γ, where N is a connected simply
connected nilpotent Lie group and Γ is a cocompact lattice, Γ = π1(M). The rigidity theorem
of Malcev allows us to extend H : Γ → R to a homomorphism H̄ : N → R. The action of a
on π1(M) can also be extended to an automorphism of N . Then, by the uniqueness of the
extension H̄, which follows also from Malcev theorem, the extension H̄ is also invariant under
the action of a, i.e. H̄(ax) = H̄(x), for all x ∈ N . Consider N ′ = [N,N ] the commutator
group of N . Then a(N ′) = N ′ and N ′ ⊂ KerH̄, so H̄ induces a homomorphism on the
abelianization N/[N,N ] of N which is still a invariant to the action induced by a on the
abelianization. But now we can apply the same method used when M was a tori to deduce
that H is trivial.

Finally, assume that M is an infranilmanifold. Then M = G/Γ, where G = NC, N a
connected simply connected nilpotent Lie group, C a compact group of isometries of N and
Γ a cocompact lattice. It is well known that Ω := Γ ∩G is a cocompact lattice in N and a
subgroup of finite index in Γ. The homomorphism H|Ω is trivial because of the discussion
done when M was a nilmanifold. So Ω ⊂ KerH. But the morphism induced by H on Γ/Ω
is trivial, because Γ/Ω is finite, so H is trivial.

So F has all leaves closed manifolds and there is a function F : M → R such that the
leaves of F are the graphs of the functions {F + t}t∈R.

We show that the cocycle β is cohomologous to a constant cocycle. This will follow from
the invariance of F under α̃(a), for any a ∈ Zk.

Take (x, F (x) + t), (y, F (y) + t) two points on the same leaf of F . Then

α̃(a)(x, F (x) + t) = (ax, β(a, x) + F (x) + t)

and
α̃(a)(y, F (y) + t) = (ay, β(a, y) + F (y) + t)

are again on the same leaf of F , or there is t′ ∈ R such that

β(a, x) + F (x) + t = F (ax) + t′ (12)

β(a, y) + F (y) + t = F (ay) + t′ (13)

(14)
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So
β(a, y) + F (y) − F (ay) = β(a, x) + F (x) − F (ax).

Since the last relation is true for any a, x and y, it follows that

π(a) := β(a, x) + F (x) − F (ax)

does not depend on x. We show now that a→ π(a) is a morphism. Indeed

π(a+ b) = π(a) + π(b) ⇐⇒ (15)

⇐⇒ β(a+ b, x) + F (x) − F ((a+ b)x) = (16)

= β(a, x) + F (x) − F (ax) + β(b, x) + F (x) − F (bx) ⇐⇒ (17)

⇐⇒ β(a, bx) − F (a(bx)) + F (bx) = β(a, x) + F (x) − F (ax) (18)

and the last equality follows because π(a) is independent of x.
So β(a, y) = F (ay) − F (y) + C(a) is cohomologous with a constant. �

We show now an alternativ method for constructing the invariant foliation which can be
applied even to Hölder cocycles. We present the proof only for linear (TNS) actions, but the
arguments can be applied to more general hyperbolic Zk-actions, and even to non-uniformly
hyperbolic Zk-actions.

Theorem 25 (Theorem 2) Let M be a torus, a nilmanifold or an infranilmanifold. Let
α : Zk ×M → M be a linear (TNS) Zk-action. Let β : Zk ×M → R be a Hölder cocycle
over α. Then β is cohomologous with a constant cocycles and the coboundary P : M → R is
Hölder.

The idea of the proof is similar with the C∞ case. The difference appears only at the
construction of the invariant foliation.

For x ∈ M , a ∈ Zk hyperbolic and y ∈ W s
a (x) we define P−

a (y; x) using again formula
(?). Similarly, for z ∈ W u

a (x) we can define P−
−a(z; x).

Lemma 17 (Lemma 2) Let a ∈ Zk be a hyperbolic element. Let x ∈M and x1, x2, . . . , xn ∈
W s

a (x). Then:

P−
a (xn; x1) =

n−1∑

k=1

P−
a (xk+1; xk).

Proof This follows immediately from formula (?), the definition of P−
a (y; x). �

Consider U an open set included into a coordinate chart. Then U is foliated by the local
unstable manifolds of a hyperbolic element a and for any x ∈ U , the local stable manifold
W s

a (x) intersects any local unstable manifold foliating U (not necessary in a point in U).
This is just the local product structure determined by the stable and the unstable foliations.
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We define a function Fx : U → R. If z ∈ U , then there is a unique point u := W s
a (x) ∩

W u
a (z), and we define:

Fx(z) = P−
a (u; z) + P−

−a(z; u).

Note that F is continuous and even Hölder.
We want to construct a continuous foliation of M×R such that the leaves are determined

locally by the graphs of the functions {Fx+t}t∈R. Let y ∈ U , y 6= x. It is enough to show that
if the graphs of the functions Fx + t1 and Fy + t2 has a common point, then the functions
coincide on U . Then the definition of the local leaves does not depend on x and we can
extend them to a global foliation. We will assume, without lossing from generality, that
t1 = 0 and t2 = Fx(y), i.e. the common point of the local leaves is (y, Fx(y)).

w

y

u

w

x

z

1

2

fig. 3

Denote w1 := W u
a (y)∩W s

a (x) and w2 := W s
a (y)∩W u

a (x). See fig. (?) above. Then, using
Lemma 2 we have:

Fx(z) = P−
a (u; x) + P−

−a(z; u) = P−
a (w1; x) + P−

a (u;w1) + P−
−a(w2, u) + P−

−a(z, w2).

and, by definition of Fx:

Fx(y) = P−
a (w1; x) + P−

−a(y;w1), Fy(z) = P−
a (w2; y) + P−

−a(z;w2).

We see now that in order to have Fx = Fy + Fx(y) is enough to prove:

P−
−a(y;w1) + P−

a (w2; y) = P−
a (u;w1) + P−

−a(w2; u). (?)

We prove formula (?), and therefore the existance of a global foliation, in Lemma 7 below.
First we prove some necessary technical lemmas. The proof of the following lemma is already
done in the proof of Lemma 1.

Lemma 18 (Lemma 3) If a, b are hyperbolic elements from S and z ∈ W s
a ∩W s

b , then
P−

a (z; x) = P−
b (z; x). �
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Notation Let F1,F2, . . . ,Fk be k distinct minimal foliations such that their distributions
generate a distribution integrable to a foliation F . Because the action is linear, this is true
for any family of minimal foliations. Then we write:

F = {F1,F2, . . . ,Fk}.

Is Fi is a minimal foliation, denote by F loc
i (x) the intersection of Fi(x) with a ball of size

r around x in M . Because we can choose the size of the stable and unstable manifolds to
be uniform w.r.t. all elements a ∈ Zk and x ∈ M , it follows that, if r is small enough, F loc

i

is included in any local stable or unstable manifold which contains Fi.
The following lemma follows easily because the action α is linear.

Lemma 19 (Lemma 4) Take now two disjoint families F1,F2, . . . ,Fk and G1,G2, . . . ,Gl

of minimal foliations such that F = {F1,F2, . . . ,Fk} and G = {G1,G2, . . . ,Gl}. Then the
following local product structure property is true:

1. ”” for any x ∈M , y ∈ F loc(x), z ∈ Gloc(x), there is a unique w := F loc(x) ∩ Gloc(x).

�

Lemma 20 (Lemma 5) Let a, b, c ∈ Zk be hyperbolic elements. Let F1 and F2 be minimal
foliations such that F1 ⊂ W s

a , F2 ⊂ W s
b , F1 ⊂ W s

c , F2 ⊂ W s
c . Then for any x ∈ M ,

y ∈ F loc
1 (x), z ∈ F loc

2 (x) and w = F loc
2 (y) ∩ F loc

1 (z) we have:

P−
c (w; x) = P−

a (y; x) + P−
b (w; y) = P−

b (z; x) + P−
a (w; z).

Proof Apply first Lemma 2 for the families of points {x, y, w} and {x, z, w} and then
use Lemma 3. �

Lemma 21 (Lemma 6) Let a ∈ Zk be a hyperbolic element, x ∈ M and z ∈ W s
a (x).

Assume that W s
a = {F1,F2, . . . ,Fk}. Then there exist y1 ∈ F loc

1 (x), y2 ∈ F loc
2 (y1), . . .,

yk−1 ∈ F loc
k−1(z) such that z ∈ Fk(yk−1).

Proof We find the points yi recurrently. Assume that we know y1, y2, . . . , yi−1. The
families of foliations F1,F2, . . . ,Fi and Fi+1,Fi+2, . . . ,Fk are both integrable and let G1 =
{F1,F2, . . . ,Fk} and G2 = {Fi+1,Fi+2, . . . ,Fk}. Then Gloc

1 (x) and Gloc
2 (z) are transverse

submanifolds of complementary dimension in W s
a (x), so they intersect in a unique point yi.

To see that yi ∈ F loc
i (yi−1), note first that F loc

i (yi−1) is included in Gloc
1 (x) and second

that F loc
i (yi−1) and Gloc

2 (z) intersect in a unique point by a similar transversality argument. �

We are now in position to prove relation (*) and finish the proof of Theorem 2.

Lemma 22 (Lemma 7) Let a ∈ Zk be a hyperbolic element, y, u ∈ M , w1 = W u
a (y)∩W s

a (x)
and w2 = W s

a (y) ∩W u
a (x). Then:

P−
−a(y;w1) + P−

a (w2; y) = P−
a (u;w1) + P−

−a(w2; u).
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Proof Let {F1,F2, . . . ,Fk} and {G1,G2, . . . ,Gl} be two disjoint families of minimal foli-
ations such that W s

a = {F1,F2, . . . ,Fk} and W u
a = {G1,G2, . . . ,Gl}.

Use now Lemma 6 to find x11 = w1, x12, . . . , x1k+1 = u such that

x12 ∈ F loc
1 (w1), x13 ∈ F loc

2 (x12), . . . , x1k+1 ∈ F loc
k (x1k).

Use again Lemma 6 to find x21, . . . , x2l = y such that

x21 ∈ Gloc
1 , x31 ∈ Gloc

2 , . . . , xl+11 ∈ Gloc
l (xl1).

We define now recurrently the points xij for all 1 ≤ i ≤ l + 1 and 1 ≤ j ≤ k + 1. See
figure (?) below which shows what happens for l = 2 and k = 3.
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If we know the points xij, xi+1j and xij+1, then we can apply Lemma 4 to find xi+1j+1 :=
F loc

j (xi+1j) ∩ Gloc
i (xij+1).

We explain why xl+1k+1 = w2. The family of local leaves

F1(xl+11),F2(xl+12), . . . ,Fk(xl+1k)

are all contained in W s
a (y) and the family of local leaves

G1(x1k+1),G2(x2k+1), . . . ,Gl(xlk+1)

are all contained in W u
a (u). It is clear that the families determine two pathes which have

nontrivial intersection xl+1k+1. But W s
a (y) and W u

a (u) has a unique point of intersection w2,
so xl+1k+1 = w2.

Because the action is (TNS), for each pair of foliations Fj, Gi there is a hyperbolic element
containing both of them in its stable manifold. So each quadruple {xij, xi+1j , xij+1, xi+1j+1}
satisfies the hypotesis in Lemma 5, so we have:

P−
a (xij+1; xij) + P−

−a(xi+ij+1; xij+1) = P−
−a(xi+1j ; xij) + P−

a (xi+1j+1; xi+1j). (∗)
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We consider now formula (*) for all 1 ≤ i ≤ l and 1 ≤ j ≤ k. We add member
by member all resulting relations and simplify all equal terms. The terms which can be
simplified correspond to the interior segments in fig. 4. The simplified formula is:

k∑

i=1

P−
a (x1i+1; x1i)+

l∑

j=1

P−
−a(xj+11; xj1) = =

k∑

i=1

P−
a (xl+1i+1; xl+1i)+

l∑

j=1

P−
a

(xj+1k+1; xjk+1). (∗)

We use Lemma 2 to compute each sum in (*). Then (*) becomes:

P−
a (x1k+1; x11) + P−

a (xl+11; x11) = P−
a (xl+1k+1; xl+11) + P−

a (xl+1k+1; x1k+1),

and Lemma 7 follows. �

The only thing left to finish the proof of Theorem 2 along the line used in the proof of
Theorem 1 is to show that the foliation of M × R is invariant under the full group action.
It is enough to check that it is invariant under the action of all element in S. We show that
in formula (?), which defines Fx, we obtain the same result, independent of the element a.

6.2 Invariant measures for abelian actions

In this section we show that invariant Borel probability measures are quite rare. This
phenomenon is somehow related with the following famous conjecture.

Conjecture 2 (Furstenberg’s Conjecture) The only ergodic invariant measures for the
semigroup of circle endomorphisms generated by multiplications by p and q where pn 6= qm

unless n = m = 0 are Lebesgue measure and atomic measures concentrated on periodic orbits.

Rudolph and Johnson proved this result under the additional assumption that some
element of the action has positive entropy.

Consider now a simple model case of (TNS) action. Let A, B ∈ SL(3,Z) be two hyper-
bolic matrices, AB = BA, which generate a genuine Z2-action on T3, i.e. An 6= Bm unless
n = m = 0. Denote the action of AkBl by FAkBl : T3 → T3.

Lemma 23 The Z2 action F satisfies the (TNS) condition.

Theorem 26 Let f be a C1 Anosov diffeomorphism of M . µ Borel invariant probability
measure. Then the metric entropy hµ(f) = 0 if and only if µ-a.e. x, the conditional measures
on W s are nonatomic.

Theorem 27 If a ∈ Rk is Anosov, then ξ(W+
a ) = ξ(W−

a ).

Theorem 28 (Hopf argument)Let f be a C1 diffeomorphism, µ a Borel invariant probability
measure and W a contracting foliation which is invariant by f . Then ξf ≤ ξ(W ).
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Proof If ψ is a continuous function on M , then the forward averages

Ψ+(x) = lim
n→∞

1

n

n−1∑

k=0

f(anx),

which exist from Birkhoff theorem, are constant along the stable manifolds of f as they
contract exponentially under f . The continuous functions are dense in L2(m,µ), so any
invariant L2-function is constant a.e. on W (x) with respect to the conditional measure
induced by µ.
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