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Introduction

The study of growth of groups has a long and remarkable history spanning over
much of the twentieth century, and goes back to Alphors, Hilbert, Poincare, etc.
In 1968 it became apparent that all known classes of groups have either polynomial or
exponential growth, and John Milnor formally asked whether groups of intermediate
growth exist. The first such examples were introduced by the first author two decades
ago [4] (see also [3, 5]), and since then there has been an explosion in the number of
works on the subject. While new techniques and application have been developed,
much of the literature remains rather specialized, accessible only to specialists in the
area. This paper is an attempt to present the material in an introductory manner, to
the reader familiar with only basic algebraic concepts.

We concentrate on study of the first construction, a finitely generated group G

introduced by the first author to resolve Milnor’s question, and which became a pro-
totype for further developments. Our Main Theorem shows that G has intermediate
growth, i.e. superpolynomial and subexponential.

Our proof is neither the shortest nor gives the best possible bounds. Instead, we
attempt to simplify the presentation as much as possible by breaking the proof into
a number of propositions of independent interest, supporting lemmas, and exercises.
Along the way we prove two ‘bonus’ theorems: we show that G is periodic (every
element has a finite order) and give a nearly linear time algorithm for the word
problem in G. We hope that the beginner readers now have an easy time entering
the field and absorbing what is usually viewed as unfriendly material.

1



2

Let us warn the reader that this paper neither gives a survey nor presents a new
proof of the Main Theorem. We refer to extensive survey articles [1, 2, 6] and a recent
book [7] for further results and references. Our proofs roughly follow [5, 9], but the
presentation and details are mostly new.

The paper is structured is as follows. We start with some background informa-
tion on the growth of groups (Section 1) and technical results for bounding the
growth function (Section 2). These technical results have elementary analytic na-
ture; their proofs are moved to the Appendix (Section 13). In Section 3 we study
the group Aut(T) of automorphisms of an infinite binary (rooted) tree. The ‘first
construction’ group G is introduced in Section 4, while the remaining sections 5–11
prove the intermediate growth of G and two ‘bonus’ theorems. We conclude with
final remarks and few open problems (Section 12).

Notation. Throughout the paper we use only left group multiplication. For
example, a product τ1 · τ2 of automorphisms τ1, τ2 ∈ Aut(T) is given by [τ1 · τ2](v) =
τ2(τ1(v)). We use notation gh = h−1gh for conjugate elements, and I for the identity
element. Finally, let N = {0, 1, 2, . . .}.

1. Growth of groups

Let S = {s1, . . . , sk} be a generating set of a group G = 〈S〉. For every group
element g ∈ G, denote by `(g) = `S(g) the length of the shortest decomposition
g = s±1

i1
· · · s±1

i`
. Let γS

G(n) be the number of elements g ∈ G such that `(g) ≤ n.

Function γ = γS
G is called the growth function of the group G with respect to the

generating set S. Clearly, γ(n) ≤ ∑n
i=0 (2k)n ≤ (2k + 1)n.

Exercise 1.1. Let G be an infinite group. Prove that the growth function γ is mono-
tone increasing: γ(n+ 1) > γ(n), for all n ≥ 1.

Exercise 1.2. Check that the growth function γ is submultiplicative:
γ(m+ n) ≤ γ(m) γ(n), for all m,n ≥ 1.

Consider two functions γ, γ ′ : N → N. Define γ 4 γ ′ if γ(n) ≤ C γ ′(αn), for all
n > 0 and some C, α > 0. We say that γ and γ ′ are equivalent, write γ ∼ γ ′, if γ 4 γ ′

and γ′ 4 γ.

Exercise 1.3. Let S and S ′ be two generating sets of G. Prove that the corresponding
growth functions γS

G and γS′

G are equivalent.

A function f : N → R is called polynomial if f(n) ∼ nα, for some α > 0. A

function f is called superpolynomial if there exists a limit ln γ(n)
ln n
→∞ as n→∞. For

example, nπ is polynomial, nn is superpolynomial, while exp
(
nsin n

)
is neither.

Similarly, a function f is called exponential if f(n) ∼ en. A function f is called

subexponential if there exists a limit ln γ(n)
n
→ 0 as n →∞. For example, exp

(
n/2−

| sinn|√n log2 n) is exponential, en/ log n and nπ are subexponential, while exp
(
nsin n

)

and nn are neither.
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Finally, a functions f is said to have intermediate growth if f is both subexponential
and superpolynomial. For example, nlog log n, e

√
n, and en/ log n all have intermediate

growth, while functions e
√

log n and n! ∼
(

n
e

)n ∼ en log n do not.
Exercise 1.3 implies that we can speak of groups with polynomial, exponential and

intermediate growth. By a slight abuse of notation, we denote by γG the growth
function with respect to any particular set of generators. Using the equivalence of
functions, we can speak of groups G and H as having equivalent growth: γG ∼ γH .

Exercise 1.4. Let G be an infinite group with polynomial growth. Prove that the
direct product Gm = G × G× . . . × G also has polynomial growth, but γG � γGm for
all m ≥ 2. Similarly, if G has exponential growth then so does Gm, but γG ∼ γGm.

Exercise 1.5. Let H be a subgroup of G of finite index. Prove that their growth
functions are equivalent: γH ∼ γG.

Exercise 1.6. Let S be a generating set of a group G, and let γ = γS
G(n) be its growth

function. Show that the the limit

lim
n→∞

ln γ(n)

n

always exist. This limits is called the growth rate of G. Deduce from here that every
group G has either exponential or subexponential growth.

2. Tools for proving the growth

The following two technical results are key is our analysis of growth of groups.
Their proofs are based on straightforward analytic arguments and have no group
theoretic content. For convenience of the reader we move the proof into Appendix
(Section 13).

Lemma 2.1 (Lower Bound Lemma). Let f : N → R+ be a monotone increasing
function, such that f(n) → ∞ as n → ∞. Suppose f < fm for some m > 1. Then
f(n) < exp(nα) for some α > 0.

For the upper bound, we need to introduce a notation. Let f : N → R+ be a
monotone increasing function, and let:

f ? k(n) :=
∑

(n1,...,nk)

f(n1) · · · f(nk),

where the summation is over all k-tuples (n1, . . . , nk) ∈ Nk such that n1+. . .+nk ≤ n.

Lemma 2.2 (Upper Bound Lemma). Let f(n) be a nonnegative monotone increasing
function, such that f(n)→∞ as n→∞. Suppose f(n) ≤ C f ? k(αn) for some k ≥ 2,
C > 0, and 0 < α < 1. Then f(n) 4 exp(nβ) for some β < 1.

Let us note that f ? k(n) ≤ fk(n), but the Upper Bound Lemma does not hold if
we substitute function f ? k with a power f k.
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3. Group automorphisms of a tree

Consider an infinite binary tree T as shown in Figure 1. Denote by V the set of
vertices v in T, which are in a natural bijection with finite 0-1 words v = (x0, x1, . . .) ∈
{0,1}∗. Note that the root of T, denotes r, corresponds to an empty word ∅. Let
E be the set of (oriented) edges in T, which are oriented away from the root. By
definition, (v, w) ∈ E if w = v0 or w = v1. Denote by |v| the distance from the root r

to vertex v; we call it the level of v. Finally, denote by Tv a subtree of T rooted
in v ∈ V . Clearly, Tv is isomorphic to T.

PSfrag replacements

0 1

00 1101 10

r

Figure 1. Infinite binary tree T.

The main subject of this section is the group Aut(T) of automorphisms of T, i.e.
bijections τ : V → V which map edges into edges. Note that the root r is always a
fixed point of τ , i.e. τ(r) = r. Furthermore, all automorphisms τ ∈ Aut(T) preserve
the level of vertices: |τ(v)| = |v|, for all v ∈ V . Denote by I ∈ Aut(T) a trivial
(identity) automorphism of T.

An example of a nontrivial automorphism a ∈ Aut(T) is given in Figure 2. This
is the most basic automorphism which will be used throughout the paper, and can
be formally defined as follows. Denote by T0 and T1 the left and right subtrees
(branches) of the tree T, with roots at 0 and 1, respectively. Let a be an automor-
phism which maps T0 into T1 and preserves the natural order on vertices:

τ : (0, x1, x2, . . .)←→ (1, x1, x2, . . .).

Clearly, automorphism a is an involution: a2 = I.

PSfrag replacements
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Figure 2. Automorphism a ∈ Aut(T).
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Similarly, one can define an automorphism av which exchanges two branches Tv0

and Tv1 of a subtree Tv rooted in v ∈ V . These automorphisms will be used in the
next section to define the subgroup G ⊂ Aut(T).

More generally, denote by Aut(Tv) the subgroup of automorphisms in Aut(T)
which preserve subtree Tv and are trivial on the outside of Tv. There is a natural
graph isomorphism ιv : T→ Tv which extends to a group isomorphism ιv : Aut(T)→
Aut(Tv).

By definition, every automorphism τ ∈ Aut(T) maps two edges leaving vertex v
into two edges leaving vertex τ(v). Thus we can define a sign εv(τ) ∈ {0, 1} as follows:

εv(τ) =

{
0, if τ(v0) = τ(v)0, τ(v1) = τ(v)1,

1, if τ(v0) = τ(v)1, τ(v1) = τ(v)0.

In other words, εv(τ) is equal to 0 if the automorphism maps the left edge leaving
vertex v into the left edge leaving τ(v), and is equal to 1 if the automorphism maps
the left edge leaving v into the right edge leaving τ(v).

Observe that the collection of signs {εv(τ)} can take all possible values, and uniquely
determines the automorphism τ ∈ Aut(T). As a corollary, the group Aut(T) is un-
countable and cannot be finitely generated.

To further understand the structure of Aut(T), consider a map

ϕ : Aut(T)× Aut(T) → Aut(T),

defined as follows. If τ0, τ1 ∈ Aut(T), let τ = ϕ(τ0, τ1) be an automorphism defined
by τ := ι0(τ0) · ι1(τ1) ∈ Aut(T). Here ι0(τ0) ∈ Aut(T0) and ι1(τ1) ∈ Aut(T1) are
the automorphisms of subtrees T0 and T1, respectively, defined as above. Pictorially,
automorphism τ is shown in Figure 3.

PSfrag replacements

0 1
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Figure 3. Automorphism τ = ϕ(τ0, τ1) ∈ Aut(T).

For any group G, the wreath product G o Z2 is defined as a semidirect product
(G×G) o Z2, with Z2 acting by exchanging two copies of G.

Proposition 3.1. Aut(T) ' Aut(T) o Z2.

Proof. Let us extend the map ϕ to an isomorphism

ϕ :
(
Aut(T)× Aut(T)

)
o Z2 −→ Aut(T)
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as follows. When σ = I, let ϕ(τ0, τ1;σ) := ϕ(τ0, τ1), as before. When σ 6= I, let
ϕ(τ0, τ1;σ) := ϕ(τ0, τ1) · a, where a ∈ Aut(T) is defined as above. Now check that
multiplication of automorphisms ϕ(·) coincides with that of the semidirect product,
and defines the group isomorphism. We leave this easy verification to the reader. �

We denote by ψ = ϕ−1 the isomorphism ψ : Aut(T)→ Aut(T) o Z2 defined in the
proof above. This notation will be used throughout the paper.

Exercise 3.2. Let Am ⊂ Aut(T) be a subgroup of all automorphisms τ ∈ Aut(T)
such that εv(τ) = 0 for all |v| ≥ m. For example, A1 = {I, a}. Use the idea above to
show that

Am ' Z2 o Z2 o · · · o Z2 (m times).

Conclude from here that the order of Am is |Am| = 22m−1.

Exercise 3.3. Consider a (unique) tree automorphism τ ∈ Aut(T) with signs given
by: εv(τ) = 1 if v = 1k = 1 . . . 1 (k times), for k ≥ 0, and εv(τ) = 0 otherwise. Check
that τ has infinite order in Aut(T).
Hint: Consider elements τm ∈ Am with signs as in the definition of above, and k < m.
Show that the order ord(τm)→∞ as m→∞, and deduce the result from here.

4. The first construction

In this section we define a finitely generated group G ⊂ Aut(T) which we call the
first construction. Historically, this is the first example of a group with intermediate
growth [4].

Let us first define group G implicitly, by specifying the necessary conditions on
generators. Let G = 〈a, b, c, d〉 ⊂ Aut(T), where a is the automorphism defined as in
Section 3, and automorphisms b, c, d satisfy the following conditions:

(◦) b = ϕ(a, c), c = ϕ(a, d), d = ϕ(I, b).

Observe that the automorphisms b, c, and d are defined through each other. Since
the generator d is acting as identity automorphism on the left subtree T0, and as b
on the right subtree T1, one can recursively compute the action of all three automor-
phisms b, c, d ∈ Aut(T).

Here is a direct way to define automorphisms b, c, d :

(∗)
b := (a0 · a130 · a160 · . . .) (a10 · a140 · a170 · . . .),
c := (a0 · a130 · a160 · . . .) (a120 · a150 · a180 · . . .),
d := (a10 · a140 · a170 · . . .)(a120 · a150 · a180 · . . .),

where 1m is short for 1 . . .1 (m times). Note that the automorphisms a1m0 used in (∗)
commute with each other, and thus elements b, c, d ∈ Aut(T) are well defined.

Theorem 4.1 (Main Theorem). Group G = 〈a, b, c, d〉 has intermediate growth.

The proof of Theorem 4.1 is quite involved and occupies much of the rest of the
paper.
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Exercise 4.2. Check that elements b, c, d ∈ Aut(T) defined by (∗) satisfy condi-
tions (◦).
Exercise 4.3. Check that elements b, c, and d are involutions (have order 2), commute
with each other, and satisfy b · c · d = I. Conclude from here that 〈b, c, d〉 ' Z2

2 and
that the group G = 〈a, b, c, d〉 is 3-generated.

Exercise 4.4. Check the following relations in G : (ad)4 = (ac)8 = (ab)16 = I.
Deduce from here that 2-generator subgroups 〈a, b〉, 〈a, c〉, 〈a, d〉 ⊂ G are finite.

While these exercises have straightforward ‘verification style’ proofs, they will prove
useful in the future. Thus we suggest the reader studies them before proceeding to
read (hopefully) the rest of the paper.

5. Orders of elements

An element g ∈ G is said to have a finite order d = ord(g) if gd = I for some
integer d < ∞. A group is called periodic if every element has a finite order. Below
we prove that G is periodic. Interestingly, this was the original motivation for the
study of G. Although the result is somewhat tangential to the Main Theorem, the
proof reveals some interesting information on the structure of G.

Theorem 5.1. Group G is periodic. Moreover, every element g ∈ G has order d = 2m

for some integer m ≥ 0.

Before proving the theorem let us first justify the claim. Clearly, all finite groups
are periodic, and we have yet to show that G is infinite; we do this in the next
section. Now, recall that the full group of tree automorphisms contains an element
of infinite order (Exercise 3.3), so not every finitely generated subgroup of Aut(T) is
periodic. Note also that all generators in G are involutions (Exercise 4.3), and so are
the products bc, bd and cd. Finally, the products ab, ac, and ad have orders which
are powers of 2 (Exercise 4.4).

Proof. First, let us prove the following technical result. Define

τv := τ |Tv
∈ Aut(Tv) ⊂ Aut(T), τ̂v = ι−1

v (τv) ∈ Aut(T).

Here the automorphism τv of the subtree Tv is obtained by keeping all signs εw
for w ∈ Tv and setting εw = 0 otherwise. Similarly, the automorphism τ̂v of the
subtree T is obtained from τ by the group isomorphism ι−1

v induced by the graph
isomorphism ι−1

v : Tv → T.
We claim that for every τ ∈ G there exists an integer n = n(τ) such that τ̂v ∈ S =

{a, b, c, d} for every vertex v ∈ T with |v| ≥ n. We prove the claim by induction on
the length `(g) of elements g ∈ G. The claim is trivial for the generators: n(a) =
n(b) = n(c) = n(d) = 0 works in this case.

Suppose the claim holds for g ∈ G. Then one can take n(ga) = max{n(g), 1} since
ĝav = ĝv for all v 6= r. Similarly, one can take n(gb) = n(gc) = n(gd) = n(g) + 1
since multiplication by an element ∗ ∈ {b, c, d} either changes no signs in Tv, or only
the ‘top’ sign εv, or it changes infinitely many signs as follows: ĝ∗ = ĝ · ∗′ for some
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∗′ ∈ {b, c, d} which depends on element ∗ and the level |v| mod 3. This completes
the step of induction and proves the claim.

Now we can prove directly that every element g ∈ G has has power of 2 order.
First, consider an element h = gN where N = 22n−1, and n = n(g). By Exercise 3.2,
N = |An|, so the element h has signs εv = 0 for all |v| < n. Therefore,

h =
∏

|v|=n

τv ,

and all elements τv ∈ Aut(Tv) commute with each other and lie in the generating
set S. This implies that g2N = h2 = I and finishes the proof. �

Exercise 5.2. Use the proof above to show that the order of every element τ ∈ Aut(T)
is either infinite or a power of 2.

This exercise will not be used in the paper. Basically, it shows that the first part
of Theorem 5.1 implies the second part.

6. Group G is infinite

We have yet to establish that G is infinite. Although one can prove this directly, the
proof below introduces definitions and notation which will be helpful in the future.

Let StG(n) denote a subgroup of G stabilizing all vertices with level n. In other
words, StG(n) consists of all automorphisms τ ∈ G such that τ(v) = v for all ver-
tices v ∈ T with |v| = n:

StG(n) =
⋂

|v|=n

StG(v).

The subgroup H := StG(1) is called the fundamental subgroup of G.

Lemma 6.1. Let H ⊂ G be the fundamental subgroup defined above. Then:

H = 〈b, c, d, ba, ca, da〉, H � G, and [G : H] = 2.

Proof. From Exercise 4.3 we conclude that every reduced decomposition w can is a
product w = (a) ∗ a ∗ a ∗ . . . ∗ a ∗ (a), where each ∗ is either b, c, or d, while the first
and last a may or may not appear. Denote by |w| the length of the word w, and
by |w|a the number of occurrences of a in w. Note that w ∈ H if and only if |w|a is
even. This immediately implies the third part of the lemma. Since every subgroup of
index 2 is normal this also implies the second part.

For the first part, suppose |w|a is even. Join subsequent occurrences of a to obtain w
as a product of ∗ and (a ∗ a). Since a2 = I, we have (a ∗ a) = ∗a, which implies the
result. �

This following exercise generalizes the second part of Lemma 6.1 and will be used
in Section 10 to prove the upper bound on the growth function of G.

Exercise 6.2. Check that the stabilizer subgroup Hn := StG(n) has finite index in G :
[G : Hn] ≤ |An| = 22n−1 (see Exercise 3.2).
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Let ψ = ϕ−1 : Aut(T)→
(
Aut(T)× Aut(T)

)
o Z2 be the isomorphism defined in

Section 3. By definition, H ⊂ G ⊂ Aut(T).

Lemma 6.3. The image ψ(H) is a subgroup of G×G, such that projection of ψ(H)
onto each component is surjective.

Proof. By definition, H stabilizes 0 and 1, so ψ(H) ⊂ Aut(T) × Aut(T). From
Exercise 4.2 we have

ψ :





b→ (a, c) , ba → (c, a) ,

c→ (a, d) , ca → (d, a) ,

d→ (I, b) , da → (b, I) .

Now Lemma 6.1 implies that ψ(H) ⊂ G × G. On the other hand, the projection
of ψ(H) onto each component contains all four generators a, b, c, d ∈ G, and is there-
fore surjective. �

Corollary 6.4. Group G is infinite.

Proof. From Lemma 6.1 and Lemma 6.3 above, we have H is a proper subgroup
of G which is mapped surjectively onto G. If |G| < ∞, then |G| > |H| ≥ |G|, a
contradiction. �

Here is a different application of Lemma 6.3. Let G ⊂ Aut(T) be a subgroup of the
group automorphisms of the binary tree T. Denote by Gv = StG(v)|Tv

⊂ Aut(Tv)
the subgroup of G of elements which fix vertex v ∈ T with the action restricted only
to the subtree Tv. We say that G has (strong) self-similarity property if Gv ' G for
all v ∈ T.

Corollary 6.5. Group G has self-similarity property.

Proof. Use the induction on the level |v|. By definition, Gr = G, and by Lemma 6.3
we have G0,G1 ' G. For general v ∈ T we similarly have Gv0,Gv1 ' Gv. This
implies the result. �

7. Superpolynomial growth of G

In this section we prove the first half of Theorem 4.1, by showing that the growth
function γ of group G satisfies conditions of the Lower Bound Lemma.

Two groups G1 and G2 are called commeasurable, denotes G1 ≈ G2, if they contain
isomorphic subgroups of finite index:

H1 ⊂ G1, H2 ⊂ G2, H1 ' H2, and [G1 : H1], [G2 : H2] <∞.
For example, group Z is commeasurable with the infinite dihedral group D∞ ' ZoZ2.
Of course, all finite groups are commeasurable to each other. Another example is
H ≈ G, since H is a subgroup of finite index in G. Note also that commeasurability
is an equivalence relation.

Proposition 7.1. Groups G and G×G are commeasurable: G ≈ G×G.
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Proposition 7.1 describes an important phenomenon which can be formalized as
follows. The group G is called multilateral if G is infinite and G ≈ Gm for somem ≥ 2.
As we show below, all such groups have superpolynomial growth.

To prove the proposition, consider the subgroups H ⊂ G and H̃ := ψ(H) ⊂ G×G.
By Lemma 6.1 we have [G : H] < ∞. Since ψ is a group isomorphism, we also

have H̃ ' H. If we show that [G × G : H̃] < ∞, then G ≈ G × G, as claimed in
Proposition 7.1.

Denote by B = 〈b〉G the normal closure of b ∈ G, defined as B := 〈g−1bg | g ∈ G〉.
Lemma 7.2. Subgroup B has a finite index in G. More precisely, [G : B] ≤ 8.

Proof. By Exercise 4.4, we have a2 = d2 = (ad)4 = I. It is easy to see now that the 2-
generated subgroup 〈a, d〉 ⊂ G is a dihedral group D4 of order 8. By Exercise 4.3, we
have G = 〈a, b, d〉. Therefore, G/B is a quotient of 〈a, d〉, and [G : B] ≤ |D4| = 8. �

Lemma 7.3. Subgroup H̃ = ψ(H) contains B× B ⊂ G×G.

Proof. By Lemma 6.1, we know that H̃ ⊃ 〈ψ(d), ψ(da)〉 = 〈(1, b), (b, 1)〉. Let x ∈ H

and ψ(x) = (x0, x1). We have:

ψ(dx) = ψ(x−1dx) = ψ(x−1)ψ(d)ψ(x) = (x−1
0 , x−1

1 ) (I, b) (x0, x1)

= (I, x−1
1 bx1) = (I, bx1).

By Lemma 6.3, here we can take any element x1 ∈ G. Therefore, the image ψ(H)
contains all elements of the form (I, bg), g ∈ G. By definition, these elements generate

a subgroup 1× B. In other words, H̃ = ψ(H) ⊃ 1× B. Similarly, by conjugating the

element da we obtain H̃ ⊃ B× 1. Therefore, H̃ ⊃ B× B, as desired. �

Now Proposition 7.1 follows immediately once we note that B× B ⊂ H̃ ⊂ G×G,
and by Lemma 7.2 the index

[G×G : H̃] ≤ [G×G : B× B] = [G : B]2 = 64.

Since G is infinite (Corollary 6.4) this implies that group G is multilateral. �

Lemma 7.4. Every multilateral group G has superpolynomial growth. Moreover, the
growth function γG(n) < exp(nα) for some α > 0.

Proof. By definition, G is infinite, and G ≈ Gm for some m > 1. In other words,

there exist H ⊂ G, H̃ ⊂ Gm such that H ' H̃ and [G : H], [Gm : H̃] < ∞. From
Exercise 1.5 we obtain γG ∼ γH ∼ γH̃ ∼ γGm . Thus γG < γGm , and the Lower Bound
(Lemma 2.1) implies the result. �

Now Proposition 7.1 and Lemma 7.4 immediately imply the first part of Theo-
rem 4.1:

Corollary 7.5. Group G has superpolynomial growth. Moreover, the growth function
γG(n) < exp(nα) for some α > 0.
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8. Length of elements and rewriting rules

To prove the second half of Theorem 4.1 we derive sharp upper bounds on the
growth function γ = γS

G
of the group G with the generating set S = {a, b, c, d}. In this

section we obtain some recursive bounds on the length `(g) = `S
G
(g) of elements g ∈ G

in terms of S. Note that although G is 3-generated, having the fourth generator is
convenient for technical reasons.

We begin with a simple classification of reduced decompositions of elements of G

following the approach in the proof of Lemma 6.1. We define four types of reduced
decompositions:

(i) if g = a ∗ a ∗ a · · · ∗ a ∗ a,
(ii) if g = a ∗ a ∗ a · · · ∗ a ∗,
(iii) if g = ∗ a ∗ a ∗ · · · a ∗ a,
(iv) if g = ∗ a ∗ a ∗ · · · a ∗ a ∗.

Of course, element g can have many different reduced decompositions. On the other
hand, the type of a decomposition is almost completely determined by g.

Lemma 8.1. Every group element g ∈ G has all of its reduced decompositions of the
same type (i), or of type (iv), or of type (ii) and (iii).

Proof. Recall that the number of a’s in a reduced decomposition of g ∈ G is even if
g ∈ H, and is odd otherwise. Thus g cannot have decompositions of type (i) and (iv)
at the same time. Noting that decompositions of type (i) and (iv) have odd length
while those of type (ii) and (iii) have even length implies the result. �

It is easy to see that one cannot strengthen Lemma 8.1 since some elements can have
decompositions of both type (ii) and (iii). For example, adad = dada by Exercise 4.3,
and both are reduced decompositions. From this point on we refer to elements g ∈ G

as of type (i), (ii/iii), or (iv) depending on the type of their reduced decompositions.

For the next lemma recall the isomorphism ψ = ϕ−1 : Aut(T) → Aut(T) o S2,
where S2 = {I, a} ' Z2.

Lemma 8.2. Let `(g) be the length of g ∈ G in generators S = {a, b, c, d}. Suppose
ψ(g) = (g0, g1;σ), where g0, g1 ∈ G and σ ∈ S2. Then:

`(g0), `(g1) ≤ 1
2
(`(g)− 1) if g has type (i),

`(g0), `(g1) ≤ 1
2
`(g) if g has type (ii/iii),

`(g0), `(g1) ≤ 1
2
(`(g) + 1) if g has type (iv).

Proof. Fix an element g ∈ G, and let g0, g1, σ be as in the lemma. Recall that σ = I

if g ∈ H and σ = a otherwise (see the proof of Lemma 6.1). For every reduced
decomposition w = (a) ∗ a ∗ a · · · ∗ a ∗ (a) of g we shall construct decompositions of
elements g0, g1 with lengths as in the lemma. As before, we use ∗ to denote either
of the generators b, c, d. Also, for every ∗ in a reduced decomposition denote by π(∗)
the number of a’s preceding ∗.
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Consider the following rewriting rules :

Φ0 :





a→ I,

b→ a, c→ a, d→ I if π(∗) is odd,

b→ c, c→ d, d→ b if π(∗) is even,

and

Φ1 :





a→ I,

b→ a, c→ a, d→ I if π(∗) is even,

b→ c, c→ d, d→ b if π(∗) is odd.

These rules act on words w in generators S, and substitute each occurrence of a letter
with the corresponding letter or I.

Let Φ0(w), Φ1(w) be the words obtained from the word w = (a) ∗ a · · · a ∗ (a) by
the rewriting rules as above, and let g′0, g

′
1 ∈ G be group elements defined by these

products. Check by induction on the length `(g) that ψ(g) = (g ′0, g
′
1;σ). Indeed, note

that the rules give the first and second components in the formula for ψ in the proof
of Lemma 6.3. Now, as in the proof of Lemma 6.1 subdivide the product w into
elements (a) and (∗ a∗), and obtain the induction step. From here we have g0 = g′0,
g1 = g′1, and by construction of rewriting rules the lengths of g0, g1 are as in the
lemma. �

As we show below, the rewriting rules are very useful in the study of group G, but
also in a more general setting.

Corollary 8.3. In conditions of Lemma 8.2 we have: `(g0) + `(g1) ≤ `(g) + 1.

The above corollary is not tight and can be improved in certain cases. The fol-
lowing exercise give bounds in the other direction, limiting potential extensions of
Corollary 8.3.

Exercise 8.4. In conditions of Lemma 8.2 we have: `(g) ≤ 2`(g0) + 2`(g1) + 50.

This result can be used to show that γG < exp(
√
n). The proof is more involved

that of other exercises; it will not be used in this paper.

9. Word problem

The classical word problem can be formulated as follows: given a word w = si1 · · · sin

in generators sj ∈ S, decide whether this product is equal to I in G = 〈S〉. To set
up the problem carefully one would have to describe presentation of the group and
allowed operations [7]. We skip these technicalities in hope that the reader has an
intuitive understanding of the problem.

Now, from the algorithmic point of view the problem is undecidable, i.e. there is
no Turing machine which can resolve it in finite time for every group. On the other
hand, for certain groups the problem can be solved very efficiently, in time polynomial
in the length n of the product. For example, in the free group Fk = 〈x±1

1 , . . . , x±1
k 〉

the problem can be solved in linear time: take a product w and repeatedly cancel
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every occurrence of xix
−1
i and x−1

i xi, 1 ≤ i ≤ k; the product w = I if and only if the
resulting word is empty. Since every letter is cancelled at most once and new letters
are not created, the algorithm takes O(n) time.

The class of groups where word problem can be solved in linear time is called word
hyperbolic; it has a simple description and many group theoretic applications. The
following result shows that word problem can be resolved in G in nearly linear time1.

Theorem 9.1. Word problem in G can be solved in O(n log n) time.

Proof. Consider the following algorithm. First, cancel products of b, c, d to write the
word as w = (a) ∗ a ∗ · · · ∗ a ∗ (a). If the number π(w) of a’s is odd, then the
product w 6=G I. If the π(w) is even, use the rewriting rules (proof of Lemma 8.2)
to obtain words w0 = Φ0(w) and w1 = Φ1(w). Recall that the product w =G I if
and only if w0, w1 =G I. Now repeat the procedure for the words w0, w1 to obtain
words w00, w01, w10, w11, etc. Check that w =G I if and only if eventually all the
obtained words are trivial.

Observe that the length of each word wi is at most (n+1)/2. Iterating this bound,
we conclude that the number of ‘rounds’ in the algorithm of constructing smaller and
smaller words is O(log n). Therefore, each letter is replaced at most O(log n) times
and thus the algorithm finishes in O(n log n) time. �

Remark 9.2. For every reduced decomposition as above one can construct a binary
tree of nontrivial words wi1i2...ir . The distribution of height and shape (profile) of
these trees is closely connected to the growth function γG. Exploring this connection
is of great interest, but lies outside the scope of this paper.

10. Subexponential growth of G

In this section we prove the second half of Theorem 4.1, proving the upper bound
on the growth function γ of group G with generators S = {a, b, c, d}. The proof relies
on the technical Cancellation Lemma which will be stated here, but proved in the
next section.

Let H3 := StG(3) be the stabilizer of vertices on the third level, and recall that the
index [G : H3] ≤ 27 = 128 (Exercise 6.2). There is a natural embedding

ψ3 : H3 −→ G000 ×G001 × . . .×G111

(see Section 6), and by self-similarity each of the eight groups in the product is
isomorphic: Gijk ' G, where i, j,k ∈ {0,1}. These isomorphisms are obtained by
restrictions of natural maps: ι−1

v : Aut(Tv)→ Aut(T), where v ∈ T. Now combine ψ3

with the map (ι−1
000, ι

−1
001, . . . , ι

−1
111) we obtain a group homomorphism χ : H3 → G8

written as χ(h) = (g000, g001, . . . , g111), where h ∈ H3 and gijk ∈ G.
It follows easily from Corollary 8.3 that `(g000) + `(g001) + . . .+ `(g111) ≤ `(h) + 7.

The following result is an improvement over this bound:

1In computer science literature nearly linear time usually stands for O(n logk
n), for some fixed k.
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Lemma 10.1 (Cancellation Lemma). Let h ∈ H3. In the notation above we have:

`(g000) + `(g001) + . . .+ `(g111) ≤
5

6
`(h) + 8.

We postpone the proof of Cancellation Lemma till next section. Now we are ready
to finish the proof of the Main Theorem.

Proposition 10.2. Group G has subexponential growth. Moreover, γG(n) 4 exp(nν)
for some ν < 1.

Proof. All elements g ∈ G can be written as g = u · h where h ∈ H3 and u is a coset
representative of G/H3. Since [G : H3] ≤ 128, there are at most 128 such elements u.
Note that we can choose elements u which have length at most 127 in S = {a, b, c, d},
since all prefixes of a reduced decomposition can be made to lie in distinct cosets.
The decomposition h = u−1g then gives `(h) ≤ `(g) + 127.

Now write g = ug000g001 · · · g111. The Cancellation Lemma gives:

∑

ijk

`(gijk) ≤
5

6
`(h) + 8 ≤ 5

6

(
`(g) + 127

)
+ 8 <

5

6
`(g) + 114.

Putting all this together we conclude:

γ(n) ≤ 128
∑

(n1,...,n8)

γ(n1) · · · γ(n8),

where the summation is over all integer 8-tuples with n1 + . . . + n8 ≤ 5
6
n + 114.

Let m = n + 137 so that 5
6
n + 114 < 5

6
m, and note that γ(n + 137) ≤ γ(n) · |S|137.

We have:

γ(m) ≤ 4137 γ(n) ≤ (128 · 4137) γ(m)? 8.

Applying the Upper Bound (Lemma 2.2) we obtain the result. �

Recall that subexponential growth of G is shown in Corollary 7.5. This completes
the proof of Theorem 4.1. �

11. Proof of the Cancellation Lemma

Fix a reduced decomposition (a) ∗1 a ∗2 a · · · ∗m (a) of h ∈ H3, and denote this
decomposition by w. Apply rewriting rules Φ0 and Φ1 to w obtain words w0 and w1.
Do not make any cancellations except remove all identities I. Then apply these
rules again to obtain w00, w01, w10 and w11, and cancel the identities I. Finally,
repeat this once again to obtain words w000, w001, . . . , w111. Following the proof of
Theorem 9.1, all these words give decompositions of elements g0, g1, then g00, . . . , g11,
and gijk ∈ Gijk, respectively. Note that these decompositions are not necessarily
reduced, so for the record:

(z) `(gi) ≤ |wi|, `(gij) ≤ |wij|, `(gijk) ≤ |wijk|, for all i, j, k ∈ {0, 1},
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where |u| denotes the length of the word u. Also, by Corollary 8.3 we have:

(♦)

`(g0) + `(g1) ≤ `(h) + 1,

`(g00) + . . .+ `(g11) ≤ `(g0) + `(g1) + 2,

`(g000) + `(g001) + . . .+ `(g111) ≤ `(g00) + . . .+ `(g11) + 4.

To simplify the notation, consider the following concatenation of these words:

w′ = w0 · w1, w′′ = w00 · · ·w11, and w′′′ = w000 · w001 · · ·w111.

By construction of the rewriting rules, since the only possible cancellation happens
when d → I we have: |w′| ≤ |w| + 1 − |w|d, where |w|d is the number of letters d
in w. Indeed, simply note that each letter d in w is cancelled by either Φ0 or Φ1.
Unfortunately we cannot iterate this inequality as the words wi are not reduced. Note
on the other hand, that each letter c in w produces one letter d in w′ and each of the
latter is cancelled again by either Φ0 or Φ1. Finally, each letter b in w produces one
letter c in w′, which in turn produces letter d in w′′, and each of the latter is cancelled
again by either Φ0 or Φ1. Taking into account the types of decompositions we obtain:

(♥)

|w′| ≤ |w|+ 1− |w|d ,
|w′′| ≤ |w|+ 3− |w|c ,
|w′′′| ≤ |w|+ 7− |w|b .

Since |w|b + |w|c + |w|d ≥ (|w| − 1)/2, at least one of the numbers |w|∗ > |w|/6− 1.
Combining this with (♥), (♦), and (z) we conclude:

`(g000) + `(g001) + . . .+ `(g111) ≤ max
{
|w′|+ 2 + 4, |w′′|+ 4, |w′′′|

}

≤ |w|+ 7− max
∗∈{b,c,d}

|w|∗ ≤ |w|+ 7− (|w|/6− 1) =
5

6
`(h) + 8,

as desired. �

12. Further developments, conjectures and open problems

Much about groups of intermediate growth remains open. Below we include only
the most interesting results and conjectures which are closely connected to the ma-
terial presented in this paper. Everywhere below we refer to surveys [1, 2, 6] and a
book [7] for details and further references.

Let us start by saying that the Upper and Lower Bound lemmas can be used to
obtain effective bounds on the growth function of G. Although considerably sharper
bounds are known, the exact asymptotic behavior remain an open problem. Unfortu-
nately, we do not even know whether it makes sense to say that γG has growth exp(nα)
for some fixed α > 0:

Conjecture 12.1. Let γ = γG be the growth function of group G. Prove that there
exists a limit α = limn→∞ logn log γ(n).
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The extend to which results for G generalize to other groups of intermediate growth
remains unclear. Although there are now constructions of groups with subexponen-
tial growth function γ(n) ∼ en(1−o(1)), there are no known examples of groups with
superpolynomial growth function γ(n) ∼ exp(no(1)). The following result has been
established for a large classes of groups, but not in general:

Conjecture 12.2. Let G be a group of intermediate growth, and let γG(n) be its
growth function. Then γS(n) < exp(nα) for some α > 0.

Moving away from the bounds on the growth, let us mention that group G is not
finitely presented. Existence of finitely presented groups of intermediate growth is a
major open problem in the field, and the answer is believed to be negative:

Conjecture 12.3. There are no finitely presented groups of intermediate growth.

Our final conjecture may seem technical and unmotivated as stated. If true it
resolves positively Benjamini and Schramm’s “pc < 1” conjecture on percolation on
Cayley graphs.

Conjecture 12.4. Every group G of intermediate growth contains two infinite sub-
groups H1 and H2 which commute with each other: [h1, h2] = I for all h1 ∈ H1

and h2 ∈ H2.

We refer to [8] for an overview of this conjecture and its relation to groups of
intermediate growth.
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13. Appendix

Proof of the Lower Bound Lemma. To simplify the notation, let us extend
definition of f to the whole line f : R+ → R+ by setting f(x) := f(bxc). Let
π(n) = ln f(n). Clearly, π(n) is monotone increasing, and π(n)→∞ as n→∞. By
definition, condition f < fm gives f(n) ≥ C fm(αn) for some C, α > 0. Write this as

(>) π(n) ≥ c + mπ(αn) ,

where c = logC. Let us first show that α < 1. Indeed, if α ≥ 1, we have:

(>>) mπ(αn) − π(n) > mπ(n) − π(n) = (m− 1)π(n) → ∞ as n→∞.
On the other hand, (>) implies that the l.h.s. of (>>) is ≤ −c, a contradiction.

Applying (>) repeatedly to itself gives us:

π(n) ≥ c+mπ(αn) ≥ c+m(c+mπ(αn)) ≥ . . .

≥ mkπ(αkn) + c(1 +m+ . . .+mk−1).

Suppose c ≥ 0. Take k = b(log n− 1)/ log 1/αc. Then π(αkn) ≥ log(αkn) ≥ 1 and
π(n) ≥ mk ≥ Anν , where m1/ log α ≥ A ≥ m(1/ log α)−1 and ν = (logm)/(log 1/α) > 0.

Suppose now c < 0 and recall that m ≥ 2. Then π(n) ≥ mk
(
π(αkn) + c

)
. Take

k = b(log n + c − 1)/ log 1/αc. Then π(αkn) + c ≥ log(αkn) + c ≥ 1, and π(n) ≥
mk ≥ Anν , where m−(c−1)/ log α ≥ A ≥ m−1−(c−1)/ log α and ν as above.

Therefore, in both cases we have f(n) = exp π(n) ≥ exp(Anν) for some A, ν > 0,
as desired. �

Proof of the Upper Bound Lemma. We prove the result by induction on n.
Suppose π(n) := log f(m) ≤ Anν . We have:

f(n) ≤ Cf ? k(αn) = C
∑

(n1,...,nk)

f(n1) · · · f(nk),

where the summation is over all n1 + . . .+ nk ≤ αn. Clearly, the number of terms of
the summation is at most (αn)k. Also, for each product in the summation we have
by induction:

log
(
f(n1) · · · f(nk)

)
≤ π(n1) + . . .+ π(nk) ≤ A(nν

1 + . . .+ nν
k)

≤ Ak(αn/k)ν ≤ Anν ·
[
k

(α
k

)ν]
= Anν · (1− ε),

where ε = ε(k, α) > 0, and where ν < 1 is large enough. Therefore,

(�)
π(n) = log f(n) ≤ logC + log(αn)k + Anν · (1− ε)

≤ (logC + k logα + k log n) + Anν · (1− ε) ≤ Anν

for A large enough. Setting A large enough to satisfy (�) and the base of induction,
we obtain the result. �


