SMOOTH GROUP ACTIONS AND RIGIDITY

A.Katok

PROBLEM SET # 1

1. Let n be a natural number and $E_n: S^1 \to S^1$ be the endomorphism of of degree $n, E_n x = nx \pmod{1}$. Denote by \mathcal{E} the action of the multiplicative semigroup of positiove integers \mathbb{Z}_+ by these endomorphisms. Prove that the only invariant Borel probability measures for \mathcal{E} are the combinations of Lebesgue and the δ -measure at zero.

2. Find all invariant Borel probability measures for the action \mathcal{E}' of \mathbb{Z}_+ , $\mathcal{E}'(n) = E_{n^2}$. Consider possible generalizations of your argument to other semi-groups of circle endomorphisms.

3. Prove that the standard projective action \mathcal{P} of the group $SL(n,\mathbb{Z})$ on $S^{n-1}, n \geq 2$ does not have any Borel probability invariant measure.

4. Find all Borel probability ergodic invariant measures for the standard action \mathcal{A}_n of the group $SL(n,\mathbb{Z})$ by automorphisms of the torus $\mathbb{T}^n, n \geq 2$. Extend your argument to any subgroup $\Gamma \subset SL(n,\mathbb{Z})$ of finite index.

5. Construct uncountably many non-conjugate smooth actions of $SL(2,\mathbb{Z})$ on the two-torus close to the standard action \mathcal{A}_2 .

6. Prove that for an open dense set of actions of $SL(2,\mathbb{Z})$ on the two-torus close to the standard action \mathcal{A}_2 there is no Borel probability invariant measure.

Hint to Problems 5 and 6: You may first consider actions of a particular subgroup of finite index.

7. Prove that $SL(n, \mathbb{Z})$ does not contain a subgroup isomorphic to \mathbb{Z}^n which consists of diagonalizable matrices.

8. Classily up to the real-analytic conjugacy all effective real-analytic actions of \mathbb{Z}^2 on the unit interval such that the endpoints are the only fixed points of the action. Consider a generalization of your argument to arbitrary effective real-analytic actions.

SMOOTH GROUP ACTIONS AND RIGIDITY

A.Katok

PROBLEM SET #2

9. Let G be a discrete abelian group, \mathcal{R} be its *regular* representation in $l^2(G)$ is the representation induced by the action of G on itself by translations. Describe the decomposition of \mathcal{R} into irreducible representations.

10. Prove that the topological conjugacy with a linear map E_n holds for any C^0 expanding map of the circle onto itself, is a map f such that for some $\epsilon > 0$, $0 < dist(x, y) < \epsilon$ implies dist(fx, fy) > dist(x, y).

11^{*}). Prove that every C^2 non-singular map of the circle of degree m, $|m| \ge 2$ has an expanding periodic point, is a point for which the derivative over the period has absolute value greater than one.

Remark: I do not know a proof of the similar statement for C^1 maps.

12. Prove that any C^{∞} action on the circle generated by maps of degree two and three which is topologically conjugate to the linear action is in fact C^{∞} conjugate to it. *Hint:* Use previous problem.

13. Construct an example of a C^{∞} action on the circle generated by non-singular maps of degree two and three which is not topologically conjugate to the linear action.

14. The same statement as in the previos problem but for real-analytic actions.

15. Let $A \in SL(n,\mathbb{Z})$ be any non-hyperbolic matrix. Prove that there exists an arbitrary small C^{∞} perturbation f of the automorphism F_A such that there is no continuous map $h: \mathbb{T}^n \to \mathbb{T}^n$ homotopic to identity and satisfying $F_A \circ h = h \circ f$.

16. Suppose that $A \in SL(n, \mathbb{Z})$ is such that no positive power of the automorphism F_A preserve any rational subtorus of positive dimension. Prove that all eigenvalues of A are simple and non of them is a root of unity.

SMOOTH GROUP ACTIONS AND RIGIDITY

A.Katok

PROBLEM SET # 3

17.Construct an example of a totally irreducible free action of \mathbb{Z}^2 on the fourdimensional torus \mathbb{T}^4 which contains a non-hyperbolic (but naturally partially hyperbolic) element.

18.Construct an example of a totally irreducible free action of \mathbb{Z}^2 on the fourdimensional torus \mathbb{T}^4 by hyperbolic symplectic automorphisms.

19. Prove that no hyperbolic automorphism of the three-dimensional Heisenberg group preserving Haar measure preserves a lattice.

20.Construct am example of an irreducible \mathbb{Z}^2 action by hyperbolic aoutomorphisms of a compact nilmanifold. *Hint:* Use a proper modification of a construction described in [KH,Section 17.3]

21.Let $A \in SL(n, \mathbb{Z})$. Show that the following four conditions are equivalent:

- (1) A is ergodic with respect to Lebesgue measure;
- The set of periodic points of the toral automorphism defined by A coincides with the set of points in Tⁿ with rational coordinates;
- (3) None of the eigenvalues of the matrix A are roots of unity;
- (4) A has at least one eigenvalue of absolute value greater than one and has no eigenvectors with rational coordinates.

22. Let $\mathcal{A} \in SL(n, \mathbb{R})$ be a maximal connected (non-split) Cartan subgrop generated by matrices with k positive real eigenvalues and l pairs of complex-conjugate eigenvalues, $\mathcal{A}' \subset \mathcal{A}$, the subgroup of matrices with positive real eigenvalues, Ka maximal compact subgroup in the centralizer of \mathcal{A}' , Γ a cocompact lattice in $SL(n, \mathbb{R})$. Consider the rigth action of \mathcal{A}' on the double coset space $\Gamma \setminus SL(n, \mathbb{R})/K$. Show that it is not an Anosov action and find the number of zero Lyapunov exponents.

23. Prove that the Weyl chamber flow on a (double) coset space of a semi-simple Lie group G has simple Lyapunov exponents if and only if G is *split*, it if the dimension of the maximal split Cartan subgroup is equal to the comlex rank of the complecification of G.

24. Consider an action of \mathbb{Z}^k by partially hyperbolic (ie ergodic, cf Problem 21) automorphisms of \mathbb{T}^n . Calculate the spectrum of the corresponding group of unitary operators in $L_2(\mathbb{T}^n)$, λ where λ is Lebesgue measure.