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INTRODUCTION 

The theory of dynamical systems with invariant measure, or ergodic theory, is one of 
those domains of mathematics whose form changed radically in the last 15-20 years. This has 
to do both with the internal problems of ergodic theory End with its connections with other 
parts of mathematics. In ergodic theory itself, there arose the theory of entropy of dynami- 
cal systems, whose origin was in the papers of A. N. Kolmogorov. Recently, remarkable pro- 
gress has been made by Ornstein and his collaborators in the problem of metric isomorphism 
of Bernoulli automorphisms and K-automorphisms, i.e., dynamical systems with very strong mix- 
ing properties. Another important event of recent times is a new, profound connection of 
ergodic theory with statistical mechanics, not only enriching ergodic theory itself, but also 
leading to new progress in the mathematical problems of statistical mechanics. Both of the 
circles of problems mentioned occupy a significant place in this survey. On the other hand, 
a series of applications of ergodic theory is intentionally excluded from our survey. This 
has to do in the first place with physics papers, which do not contain strictly mathematical 
results. Also, we shall not dwell on many mathematical papers connected in one way or an- 
other with ergodic theory, but not relating directly to it. Such, for example, are the pa- 
pers of G. A. Margulis and Mostow on quasiconformal mappings of manifolds of negative curva- 
ture, in which the ergodicity of flows on such manifolds is used, or the papers of Glimm and 
Jaffe, which can be partially interpreted as investigations of the mixing properties of some 
dynamical systems which arise in quantum field theory. 

The development of ergodic theory up to 1967 is reflected in the survey of A. M. Ver- 
shik and S. A. Yuzvinskii [48], published in "Itogi Nauki" for 1967. In this connection, in 
the present survey, one considers basically papers that have appeared since 1967, but in 
connection with earlier papers, give reference to the survey of Vershik and Yuzvinskii. How- 
ever, where this requires substantial exposition, we shall deviate from this rule. 

Various results and even entire directions in ergodic theory are considered by us with 
quite different degrees of detail, while the distribution of volume among sections is far 
from proportional to the number of published papers. We realize that here there are neces- 
sarily assumptions in such situations, and possibly, a quite considerable subjectivity. 

Since 1967 a series of more or less systematic accounts of various parts of ergodic 
theory have appeared. Relevant here are the books of Billingsley [22] and Friedman [351] and 
the lectures of Ya. G. Sinai [167], devoted to the foundations of ergodic theory, the lec- 
tures of Ya. G. Sinai [670], devoted to a wider circle of qu=stions, the monograph of Parry 
[597], devoted to a systematic account of the theory of generators and entropy theory, the 
fundamental monograph of Ornstein [584], in which he summarizes the recent progress in the 
problem of metric isomorphism, the book of V. I. Arnol'd and Avez [221], on the applications 
of ergodic theory to problems of classical mechanics, and also the surveys of Ornstein [578] 
and Weiss [719]. 

The progress in ergodic theory in the last 20 years was greatly promoted by the small 
book of Halmos "Lectures on Ergodic Theory," which at the time of its appearance could serve 
simultaneously as an elementary textbook on ergodic theory and a monograph (although not en- 
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tirely exhaustive). At the present time, a book of this character apparently could not be 
written. Unfortunately, there are also no textbooks in which the basic ideas and methods of 
ergodic theory in its contemporary state are expounded intelligibly and sufficiently sys- 
tematically. 

We have tried to give in the text complete definitions of the most important of those 
concepts which have appeared in ergodic theory in the last decade. The basic, long estab- 
lished concepts are not defined in the survey. The reader can find the corresponding defi- 
nitions in the already mentioned book of Billingsley [22] or in the first paragraphs of the 
paper of Rokhlin [145], published in "Uspekhi Matematicheskii Nauk." One can also recom- 
mend the already mentioned book of Halmos in combination with the survey of Vershik and Yuz- 
venskii [48]. 

CHAPTER i 

ENTROPY AND THE ISOMORPHISM PROBLEM 

The entropy theory of metric automorphisms and flows showed and continues to show a 
stimulating influence on the development of ergodic theory on the whole. The reader can 
acquaint himself with the foundations of entropy theory in the lectures of V. A. Rokhlin 
[145] and the book of Billingsley [22]. The development of this theory in the period from 
1957 to 1967 is completely reflected in the survey of A. M. Vershik and S. A. Yuzvinskii 
[48]. 

w Generating Partitions and Abstract Entropy Theory 

i.i.A.A. Kirillov [96] formulated a general approach to the definition of entropy of 
group actions. In connection with the problem of statistical mechanics, the entropy of an 

action of the group Z n was considered by Robinson and Ruelle [626]. In connection with the 

problem of classification of decreasing sequences of partitions (cf. [173]), B. S. Pitskel' 
and A. M. Stepin [140] considered the entropy of actions of commutative groups. For the ac- 
tion of countable periodic subgroups on circles, in [140] the existence almost everywhere of 
the speed of refinement of subdivisions with finite entropy was proved, and for ergodic ac- 

tions of the group Z n the asymptotic property of uniform distribution was proved. The lat- 

ter is also proved in [429, 692]. 

FSllmer [342] proved Breiman's theorem for Gibbsian stationary fields on Z n (cf. Chap. 

8). In the general case of stationary fields on Z n, n>l, this question remains open. The 

paper of Conze [302] is devoted to the entropy of an action of a commutative group with a 
finite number of generators. In it is introduced the concept of a group action with the K- 
property (cf. Paragraph 3), and it is proved that such an action has completely positive en- 
tropy, and a multidimensional analogue of Abramov's formula for the entropy of a flow is ob- 
tained. 

We shall call a subset P of the group G informationally past if for each action T of the 

group G, h(T)-=H(~ V Tg~, where $ is a generator of a subdivision. B. S. Pitskel' [139] 

proved that the set of negative elements of an ordered amenable group is informationally 
past; for commutative groups, the converse of this fact is also proved. 

1.2. It is known (cf., for example, [145, 597]) that each aperiodic automorphism T ad- 

mits a representation by a shift in the space of infinite sequences A z with a no more than 

countable set A z. This representation is connected with the existence of a partition ~ of 

the space X with ]A] elements, all motions of which generate a o-algebra of measurable sets; 
such a partition is called generating for the automorphism T. The entropy of a transforma- 
tion does not exceed the entropy of a generating partition. V. A. Rokhlin [145] proved that 
an aperiodic automorphism with finite entropy has a generating partition with finite entropy. 
For ergodic automorphisms, Krieger [472] strengthened this result, proving the existence of 
finite generating partitions. The condition of ergodicity here is essential. 
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The number of elements of a partition, which is generating for T, must satisfy the in- 

equality ]~I~2 h(T). It turns out that there are no other entropy restrictions on the number 

of elements of a generating partition. Krieger [475] proved that a partition ~, generating 

with respect to T and satisfying the condition l~i<21*(T)+l, can be chosen to be measurable 

with respect to a previously given subalgebra which is exhausting with respect to T. By 
other methods, A. N. Livshits [116] and Smorodinsky [678] constructed generating partitions 

with no more than 2h(T)q-2, elements. Finally, Denker [312] strengthened Krieger's theorem 

in the following way: For an ergodic automorphism T with finite entropy and each probability 

distribution (Pl ..... p~), k= [2h(r']-~l, whose entropy is greater than h(T), 8>0, there exists 

a generating partition ~= (CI ..... C~), satisfying the condition ]~(Ci)--p,I<8, /=l ..... k. The 

paper of B. A. Rubenshtein [149] is devoted to generating partitions of Markov endomorphisms. 

The case of flows was considered by Krengel [459, 461]. He proved for an ergodic flow 

{Tt} with exhaustive o-algebra ~, the density in ~ of the collection of sets A, for which 

the family {TtA, t 70} generates a full a-algebra. 

1.3. The entropy of generalized powers (i.e., transformations of the form T ~(~) of an 

automorphism T was calculated by R. M. Belinskii [19] and Neveu [553]. For example, if T n(x! 

is an ergodic automorphism, and the function n(x) is positive and bounded, then h(Tn(x)) -- 

h(T)Ilz(x)d~(x ). R. M. Belinskii [21] and Newton [560] calculated the entropy of a skew prod- 

uct with fibers {T~ 

B. S. Pitskel' [136] established a connection of A-entropy with the spectrum of the auto- 
morphism. Newton [561, 562] proved that for an ergodic automorphism the A-entropy is com- 
pletely determined by the entropy if h(T) # 0. This dependence was made more precise in 
[483, 484]. On the connections of entropy with other invariants, cf. [389, 238]. 

w Entropy and Bernoulli Shifts 

2.1. The question of isomorphism of Bernoulli shifts with the same entropy arises at the 
very beginning of the development of entropy theory (cf., for example, the survey of V. K. 
Rokhlin [144]). The first result in this direction belongs to L. D. Meshalkin. He con- 
structed an explicit code, establishing the isomorphism of Bernoulli shifts with equal en- 
tropy and probability states of the form k//, where p is a prime (cf. [48]). 

Ya. G. Sinai [157] proved that for each ergodic automorphism with positive entropy, 
there eixsts a Bernoulli factor-automorphism with the same entropy. In particular, Bernoulli 
shifts with the same entropy are homomorphic images of one another (weak isomorphism). 

2.2. The complete solution of the problem was obtained by Ornstein [573, 574]: Bernoul- 
li shifts with the same entropy are isomorphic. He proved a strengthened variant of the theo- 
rem on weak isomorphism, which allows a weak isomorphism to be rebuilt as an isomorphism. 

In order to formulate the basic approximation lemma of Ornstein, we introduce an appro- 
priate metric in the set of finite measurable partitions. The distance d(~, n) between the 

finite (ordered) partitions ~=(A~ . . . . .  A~) and N = (BI . . . . .  Bh) is defined by the formula 

k 

d (6, ~) = ~ I ~ (A~)-- ~ (B,)I. 
i = 1  

We shall call the distance d between sequence of finite partitions {$i}~ and {~i}~ of the 

space (X, ~), the number 

n 

- llm 1 inf t P ~i, Unt), 
r ~  ~ U 
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where and the infimum is taken over all automorphisms of the space 

(X, F). P(~ ~)~7~f{~l~-- , a pair (T, ~), consisting of an automorphism T and a finite par- 

tition ~. As the distan'~)between processes (T, ~) and , we take the number d({T~}~, 

;S'~}T). 

In a free account, Ornstein's approximation lemma appears like this. Let T be a Ber- 

noulli shift, ~ be its Bernoulli generator, S be an ergodic automorphism, and h(T, $)< h(S). 

If for a partition n the distance between the processes (T, ~) and (S, N) is sufficiently 

small, then close to n (with respect to the metric p) one can find a partition n', such that 

p((T, ~), (S, lq')) is less than a previously given positive number. 

Inductive application of the approximation lemma leads to the following fundamental 
proposition: If the distance between processes (T,~) and 'S, N) is sufficiently small, then 

close to n one can find a partition ~ such that the processes (T, ~) and (S, ~) are isomorphic. 

This is a strengthened variant of the theorem of Ya. G. Sinai formulated at the beginning of 
this paragraph. 

2.3. In the general case, there are no methods for calculating (or estimating) the dis- 
tance between processes. Ornstein isolated a class of processes, which he called finitely 
determined, for which the distance to any other process depends on a finite number of parame- 

ters. More exactly, a process (T, ~) is finitely determined if for any s>0 there exists a 

>0 and a natural number n such that each process (S, N), satisfying the conditions 

[h(S, ~)--h(T', ~)[<~ and d Sk~, < 

A Bernoulli process has this property for n = i. Whence it follows that the fundamen- 
tal proposition can be formulated in this way: Let T be a Bernoulli shift, ~ be its Bernoul- 

li generator, S be an ergodic automorphism, and h(T, $)<h(S); if the entropy of the processes 

(T, ~) and (S, ~) is sufficiently close and the distance d(~, ~) is small, then close to n 

one can find a partition ~, such that the processes (T, ~) and (S, ~) are isomorphic. The fun- 

damental proposition in this formulation allows a weak isomorphism of Bernoulli shifts to be 
rebuilt as an isomorphism. 

Lemma on reconstruction. Let (T, $) be a Bernoulli process, n be a partition with in- 

dependent shifts with respect to T, and h(Y, $)-----h(T, 7). Then for any s>0 there exists a 

partition n, such that p(~, ~)<~, the processes (Y,~) (T, ~) ar~ isomorphic, and the o-algebra 

of S-measurable sets with exactness to ~ is contained in the o-algebra corresponding to the 

partition ~ Y~. 

In view of the exceptional importance of this assertion in the theory of metric isomor- 
phism, we shall outline its proof. We choose k so that the partition ~ is sufficiently well 

approximated by some enlargement of the partition VT~, which we shall denote by L T~$ .* 

In addition~, we choose a kl such that the partition n is approximated by some enlargement of 
kl 

V Ti$ with considerably greater precision. Applying the Halmos--Rokhlin lemma (cf. Paragraph 
--k I 

2.1 of Chap 5), we choose a set F, measurable with respect to the partition ~ T~N and such 

k 
*Here L denotes some operation of enlargement of the lexicographically ordered partition V T~. 

--k 

(We recall that the partition ~ is ordered.) 
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that the sets TiE, i=--n .... ,n, are pairwise disjoint (here the ratio k/n is small) and the 

n 

measure of X\[JTiF is sufficiently small. There exists a partition ~'<VTI~ such that 
--n --oo 

,)I >I and Ti(~V~) have the same distribution of measures of ele- the partitions I T~(~'V~ e p 

ments. Whence it follows that the partition n is sufficiently well approximated by the 

enlargement L T~ ' of the partition V T~ ". Here and in what follows the symbol L denotes the 
--k 

enlargement operation as above, but applied to other partitions. In addition, the h(T, ~) is 

( 

bounded above with sufficient precision by hiT, k, ,\ Z$ ), which is equal to h(T, E'). Thus, the 

entropies h(T, ~i and ~(T, $') are close. Since in the construction of $' one can guarantee 

the equality d(~, ~')==0, according to the fundamental proposition, close to ~' one can find 

a partition ~< ~ TIN such that the processes (r, ~) and (T, $) are isomorphic. Since the 
--oo 

p a r t i t i o n s  ~ and ~v a r e  s u f f i c i e n t l y  c l o s e ,  t h e  d i s t a n c e  b e t w e e n  t h e  p a r t i t i o n  n and L _ TrY) 

is small. 

Now we choose a number I such that the partition ~ is sufficiently well approximated by 

I 

an enlargement of the partition V TiN. Then we choose a sufficiently large m, a set G, mea- 
--! 

surable with respect to the partition ~Tq and such that TiONT/G=O,i,j=--n ..... n,i=/=j, 

n 

and the measure of X\ U TiG is sufficiently small. We construct a partition n' such that 

:- ti ( i ) 1  the partitions V Ti(~V~ ") and Tt(~V~) have the same distribution of measures of ele- 
k - - m  / I G  - -  O 

ments. The parameters of this construction can be chosen so that the entropies h(T, ~) and 

h(T, ~') will be close (cf. above). Since one can assume that d~', ~)~-0, according to the 

fundamental proposition, close to the partition ~' one can find a partition ~ such that the 

the process (T, ~) is Bernoulli, while d(~, ~)----0. Further, from the choice of the partition 

:~ ) 
n' it follows that the partitions n' and L[V Ti~ are close, and hence ~ and n are also 

--k 

close. Finally, from the fact that the partition ~ is approximated by some enlargement of 

t 
V TiN ", it follows in our situation that ~ is also approximated by an enlargement of the par- 
--! 

l 

tition V T ~  �9 
- - l  

Inductive application of the lemma on reconstruction leads to the following important 
result: Finitely determined processes with the same entropy are metrically equivalent. In 
particular, Bernoulli shifts with the same entropy are isomorphic. In Ornstein's paper [575] 
it is proved that the property of being finitely determined is possessed by each process 

(T, ~), where T is a Bernoulli shift and ~ is a finite partition. Whence it follows that a 

factor-automorphism of a Bernoulli shift is a Bernoulli shift. 

2.4. In the paper of Friedman and Ornstein [353], for a stationary process with a finite 
number of states, a condition is found on the character of the mixing, called by the authors 
weak Bernoullianness, under which the process is metrically equivalent to a sequence of in- 
dependent stochastic quantities. 
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Partitions ~.={Ai} and N-----{B I} are called e-independent if ~I~(A,,QBj)--~(AI)~(B])[<e. 
t,] 

A partition ~ is called weakly Bernoulli with respect to the automorphism T if for each e>0 

0 n+/e(~) 
there exists a k(~), such that for all n~O the partitions VT'~ and k/ TiC are e-in- 

- - n  k (e )  

dependent. A partition on the states in an aperiodic, ergodic Markov chain with a finite 
nubmer of states serves as an example of a weak Bernoulli partition. 

The basic result of Friedman and Ornstein is state& as follows: An automorphism that 
has a weak Bernoulli generating partition is ~ ~omorphic to a Bernoulli shift with the same 
entropy. 

In [57'6] Ornstein proved that a Bernoulli shift can be included in a flow. For this 
he introduced a special class of finitely determined partitions. A partition ~ is called 

very weakly' Bernoulli with respect to T if for each e>O there exists an No such that for 
N' 

all N'>~N>TVo, all n>O and e-almost all elements of A, the partition VT~: satisfies 
N 

the condition 

The question of isomorphism of some Bernoulli shifts or others reduces, thus, to the 
verification of the property of being weakly Bernoulli or very weakly Bernoulli. The first 
criterion is more effective for Markov automorphisms, and the second for application to flows. 

2.5. Using the Friedman-Ornstein theorem [353] on the isomorphism of mixing Markov 
shifts and Bernoulli shifts, Adler, Shields, and Smorodinsky [196] proved that the shift 
transformation corresponding to a Markov chain with n subclasses is isomorphic with the di- 

rect product of a Bernoulli shift and a shift on Zn. Ornstein and Shields [585] considered 

Markov chains having transient density with respect to a stationary distribution. If the 
shift transformation corresponding to such a chain is mixing, then it is isomorphic with a 
Bernoulli shift. Azencott [237] proved that the Markov partition of a ~ -diffeomorphism is 
weakly Bernoulli with respect to the measures ~+ and ~_ (cf. Paragraphs 4.2 and 6.3 of Chap. 
2). 

In [529] Maruyama considered the relations among various regularity properties of sta- 
tionary stochastic processes: The condition of being weakly Bernoulli occupies an inter- 
mediate position between the conditions of being mixing proposed by Ibragimov and Rozenblatt 
(cf., for example, [80]). It was proved by him that if the Markov operator T in the separa- 

ble space LI(Q,~) satisfies the condition lIT--PI]<l, where P is the averaging operator with 

respect to ~, then the corresponding Markov chain has the property of being uniformly strong- 
ly mixing, and consequently, is metrically equivalent with a sequence of independent stochas- 
tic quantities (result obtained earlier by McCabe and Shields [531]). 

In connection with the fact that Markov shifts are isomorphic with Bernoulli shifts, the 
question arises: Do shifts that are well approximated by Markov shifts with finite memory 
have this property? Suitable candidates for this are Gibbsian stochastic fields (cf. Chap. 8). 
Gallavotti [359] proved that one-dimensional Gibbsian fields, generated by potentials with 
finite first moment (as was proved by Ruelle and R. L. Dobrushin, this property guarantees 
the absence of phase transitions) are Bernoulli. In [512] the same thing was proved in a 
special case when the Gibbs distribution is unique. In [515], Markovian stochastic fields 
corresponding to the Ising model with attraction were considered. It was proved that for 
some values of the thermodynamic variables, including as cases uniqueness of the Gibbs dis- 
tribution as well as coexistence of phases, ergodic fields are isomorphic with Bernoulli 
ones. 

In connection with the consideration of stochastic fields on n-dimensional lattices 
arising from statistical mechanics, and also in connection with problems of metric classifi- 
cation of decreasing sequences of partitions, a series of papers is devoted to Bernoulli 
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shifts with the same entropy on a countable periodic subgroup of the circle are isomorphic. 

Katznelson and Weiss [429] proved this for Bernoullian actions of the group Z n (cf. also 

[720, 699]). Then A. M. Stepin [177] proved a theorem about isomorphisms of Bernoulli shifts 
for groups with elements of infinite order, and also for periodic groups, having a countable 
locally finite subgroup. For countable periodic groups with a finite number of generators, 
the question remains open. 

2.6. Ornstein [576] proved that for special flows {St}, constructed from Bernoulli shifts, 
and functions with incommensurable values, depending only on a finite number of coordinates, 
there exists a partition $, very weakly Bernoulli with respect to St for all t and generating 
for small t. Whence it follows that all St are Bernoulli automorphisms. Such flows are 
called Bernoullian. L. A. Bunimovich [34, 36] proved that the special flows constructed 
from shift automorphisms in spaces realizing stationary stochastic processes, well approxi- 
mated by Markov chains and by functions depending only on the past and well approximated by 
functions of a finite number of coordinates are Bernoullian. In this class appear the transi- 

tive ~-flows with Gibbsian measures (cf. Secs. 3, 4 of Chap. 2). Ornstein and Weiss [588] 

established that the geodesic flows on compact manifolds of negative curvature are Bernoul- 
lian. Feldman and Smorodinsky [333] proved that a Bernoulli shift with finite entropy is 
included in a flow. This flow is generated by shifts in the realization space of a station- 
ary Markov process with a finite set of states and an irreducible matrix of transition prob- 
abilities. Ornstein [584] proved that Bernoullian flows with the same entropy are isomor- 
phic. 

Katznelson [427] proved that for an ergodic automorphism T of a finite-dimensional torus 
a partition of the cube is very weakly Bernoullian, and hence, T is isomorphic with a Ber- 
noulli shift. For an automorphism of the torus satisfying condition ~, the latter follows 

from the existence of a Markovian partition (cf. Chap. 2). We note that the first result in 
this direction was obtained by Adler and Weiss [197]. They proved that the entropy is a com- 
plete invariant for ergodic automorphisms of the two-dimensional torus. Lind [517] proved 
that ergodic automorphisms of an infinite-dimensional torus are isomorphic with Bernoulli 
shifts. 

Using the technique of [576], Adler and Shields [195] proved that the skew product U: 

(X, y)-"(Tx, S~(xo)y), where T is a Bernoulli shift with states i = 0, i, S=(i) is rotation of 

the circle by ~i, while (do--~i) is an irrational number, is Bernoullian. An automorphism 
derived from a Bernoulli shift may not be a Bernoulli shift; however, the collection of thos~ 
sets for which this is so is everywhere dense in the o-algebra of measurable sets (cf. [351, 
352]). Salesky [639] gave explicit conditions for the derived shift and special automor- 
phisms constructed from Bernoulli shifts to be Bernoullian (cf. also Paragraph 1.5, Chap. 6). 

Methodical refinements of the proof of Ornstein's theorem about isomorphisms are pre- 
sented in the papers of Maruyama [528], Smorodinsky [680], and Ito, Murata, and Totoki [407]. 

w K-Automorphisms and K-Flows 

3.1. A. N. Kolmogorov [i00] introduced a class of transformations T, now called K-auto- 
morphisms, for which each process (T, ~) is regular. This class contains the Bernoulli 
shifts, and also many transformations arising in applications of ergodic theory to algebra, 
probability theory, and mechanics. 

Ornstein [581] showed by example that the class of K-automorphisms is wider than the 
class of Bernoullian shifts. His example is itself a shift in the space of sequences of four 
symbols. The invariant measure in this space is such that some sequential combinations of 
symbols (n-blocks) almost uniquely determine the position of the first symbol of this sequence 
in the full trajectory. Simplifying the construction of Ornstein, S. A. Yuzvinskii [189] 
proved for any completely ergodic automorphism T the existence of an ergodic automorphism R 
such that there exists a K-automorphism S, whose derivative is T • R. 

Ornstein and Shields [586] constructed a continuum of pairwise nonisomorphic K-automor- 
phisms with the same entropy, each of which is not isomorphic with its inverse. In [582, 
583] Ornstein modified his construction of a K-automorphism which is not a Bernoulli shift, 
and constructed a counterexample to the conjecture of Pinsker on the decomposition of any 
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ergodic automorphism into a diregt product of a K-automorphism and an automorphism with zero 
entropy. 

3.2. A series of papers is devoted to discovering conditions under which automorphisms 
or flows possess the K-property. B. M. Gurevich [61] gave conditions for the existence of a 
K-partition for special flows, constructed from K-automorphisms and functions f, in terms of 
the incommensurability of its values in the discrete case and its smoothness in the case of 
a continuous set of values. Totoki [701] considered special automorphisms S, constructed 
from Bernoulli shifts and functions f, depending only on the zero coordinates. It turned 
out that the automorphisms S has the K-property if and only if f # const n(x), where n(x) is 
an integer-valued function. In the proof, probability theory is used. 

A transformation Y~=f(X,,) of a stationary Markov chain with finite or countable set of 
states is considered by Robertson [625]. He proved that a shift in the realization space of 
Yn has the K-property if it is completely c~godic. 

It is known (cf., for example, Parry [597]) that if a stationary process X t with dis- 
crete time and a finite number of states is regular, then the process X t has the same pro- 

n 

perty. In other words, the partitions ~+=A V TL~ and =_~A V Tit coincide for each 

finite partition ~. B. M. Gurevich [66] proved that the partition ,, V T~, in general, 
n ] l l > n  

is different: from ~+. Krengel [461] discovered that for processes with continuous time the 

equation ~+=~_ can be violated. More exactly, for each K-flow, there exists a representa- 
tion by shifts in the realization space of a stationary process which is deterministic for- 
ward and absolutely indeterministic backward. 

Kolmogorov automorphisms in spaces with o-measures were considered by Dugdale [318]. 

~4. Endomorphisms and Decreasing Sequences of Partitions 

We shall now consider the isomorphism problem for endomorphisms of a Lebesgue space. 
Here there arises a new metric invariant in comparison with the case of automorphisms. Such 
an invariant of an endomorphism T is the sequence of partitions {T-he} on the pre-image of 

a point under the map T n. V. K. Vinokurov [49] proved that this invariant is not complete 
in the class of strict endomorphisms. 

4.1. A. M. Vershik considered the problem of metric classification of decreasing se- 

quences of partitions {~k}~, possessing the following homogeneity property: Elements of the 

partition ~k consist (mod 0) of the same number n k of points with uniform conditional mea- 

sure. We shall call the numerical sequence {~k} the type of the sequence {$k}. The basic 

result of A. M. Vershik is the theorem on lacunary isomorphisms: If sequences (~k} and {~k} 

have the same type and A~=A~k=,~ , then one can find a sequence of natural numbers {k~}, such 
k k 

that the sequences {~} and {~} are isomorphic. 

It turned out that lacunary isomorphisms, in general, do not extend to isomorphisms. A. 
M. Vershik [42] constructed an example of two nonisomorphic homogeneous sequences of partitions 
and on the basis of this example obtained a negative solution to the problem of Levi--Rozen- 
blat on the existence of a Markov shift which is not representable as a factor of a Bernoulli 
shift. Later, A. M. Vershik [44] and A. M. Stepin [173] independently introduced for homo- 
geneous sequences of partitions invariants of entropy type. These invariants allowed one to 
distinguish a continuum of pairwise nonisomorphic sequences of partitions. The approach to 
the construction of metric invariants of decreasing sequences of measurable partitions pro- 
posed in [173], consists of the following. For each homogeneous decreasing sequence of par- 

titions {~k} one can construct an action of the inductive limit G of finite groups Gk, such 

that ~k is partition on the orbits of the group G k. It is defined in a nonunique way. We 

~enote by ~(E) the class of actions of the group G, generated by sequences E={~k}. 

If the value of some metric invariant of an action of the group G does not coincide on the 
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classes F{E) and Y(E'), then the sequences E and E ' are not isomorphic. The character of 

the spectrum of the action changes strongly on the class 7(E). In contrast to this for some 

numbers nk, bounded in growth, the entropy of the action is constant on the class /(E), and 

this gives the possibility of defining the entropy of a decreasing sequence of partitions. 
The approach of A. M. Vershik consists of considering the group of automorphisms of the Le- 
besgue space, leaving the partitions ~k invariant and some fixed partition ~ fixed. 

4.2. Decreasing sequences of partitions with finite positive entropy are not generated 
by endomorphisms (cf. [173]). S. A. Yuzvinskii [188] proved that the entropy of the sequence 

of partitions {T-7~e} is equal to zero if T is an endomorphism with finite entropy. A.M. 

Stepin [173] proved that sequences of partitions with the same entropy, induced by Bernoul- 
lian actions, are isomorphic and each decreasing sequence with positive entropy has a Ber- 
noullian factor-sequence with the same entropy. 

The problem of metric classification of inhomogeneous decreasing sequences of parti- 
tions was considered by V. G. Vinokurov and B. A. Rubshtein [50, 146]. They isolated the 
class of completely inhomogeneous sequences of partitions and obtained a complete descrip- 
tion of the sequences of this class. B. A. Rubshtein [148] gave a complete classification 
of strict endomorphisms, generated by a given completely inhomogeneous sequence of parti- 
tions, and strengthened the result of [49], constructing a continuum of nonisomorphic strict 
endomorphisms, generated by one and the same homogeneous sequence of partitions. In [147] 
the two-point extension of an inhomogeneous diadic sequence of partitions T-ns, where T is 
a Bernoulli endomorphism is considered. 

Using the technique of extension, Parry and Walters [606] constructed an example of two 

nonisomorphic strict endomorphisms: T and S, for which the sequences {T-'~}, {S-he} are iso- 

morphic and T 2 = S 2 For an extension of this paper, cf. [712]. 

The problem of metric classification of endomorphisms of a Lebesgue space can be con- 
sidered as a problem of classifying automorphisms with respect to a coding, independent of 
the future. From this point of view the classification was considered by Parry and Walters 
[606, 712]. 

V. G. Vinokurov and V. K. Tsipuridu [52] isolated a class of semigroup endomorphisms, 
for which a complete invariant is given in a natural way. In [498] a class of Markov endo- 
morphisms is described where the conjugacy problem is completely solved. 

The question of how one can construct partitions of the form T-IE, where s is a strict 
endomorphism is studied in the papers of V. G. Sharapov [181, 182]. He proved that a par- 
tition with discrete elements, for which the functions of conditional measure are piecewise 
constant, has the form T-I~. In the general case the solution of this probelm was obtained 
by A. M. Vershik in his doctoral dissertation "Approximation in Measure Theory" (Leningrad 
University, 1974). 

4.3. A series of papers is devoted to the conjugacy problem for number-theoretic endo- 
morphisms and their generalizations. We note that one can speak of the property of a par- 
tition ~ being weakly Bernoullian with respect to an endomorphism T. If ~ is a weakly Ber- 
noullian generating partition, then a natural extension of the endomorphism T is the Ber- 
noulli shift. In [60], [681] under some conditions on the function f it is proved that the 

endomorphism T]~=f(~)--[f(~)] is weakly Bernoullian. Smorodinsky [682] and Takahashi [692] 

proved that the endomorphism T~ :x-+{~x}, ~>I, has a weakly Bernoullian generating partition. 

Adler, in the survey [193] established that the last result actually follows from results of 
Renyi and Deblin. 

In [497] it is proved that the endomorphisms T~ and T~,~:x-+{~x@ ~} (~2, 0~I) are 

not Bernoulli endomorphisms in the case of nonintegral B. If B is an integer, then the trans- 
formations T B and Ta,~ are Bernoulli endomorphisms. Takahashi [691] gave an explicit con- 
struction of an isomorphism between a B-automorphism and a mixing Markov shift. 
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In [496] conditions are found under which a Markovian endomorphism is isomorphic with a 
Bernoulli endomorphism. N. N. Ganikhodzhaev [54] proved that some power of an expanding 
group endomorphism of a two-dimensional torus is isomorphic with a Bernoulli endomorphism 
with equiprobable states. 

The ergodic properties of number-theoretic endomorphisms and also their multidimensional 
and complex analogues were studied in [661, 335, 336, 716]. The multidimensional central 
limit theorem for number-theoretic endomorphisms was obtained by Dubrovin [74]. In [52, 252, 
708] the question of the existence of roots of endomorphisms is considered. 

CHAPTER 2 

ERGODIC THEORY OF DYNAMICAL SYSTEMS OF HYPERBOLIC TYPE 

The title of this chapter can serve as an approximate definition for a rich~ but not en- 
~tirely precisely drawn circle of ideas an~ results, determined over the last 10-15 years. 
The subject of the theory is continuous and smooth dynamical systems, some of whose trajec- 
tories behave asymptotically in an unstable fashion, while this instability in some sense or 
other is "exponential" in time. Such dynamical systems are important both from the point of 
view of the general theory (they form an open set in many natural spaces of dynamical sys- 
tems), and for applications, because they arise in many concrete problems of varied origins -- 
from the theory of numbers to celestial mechanics. 

A central place in the circle of questions considered is occupied by the theory of Gibb- 
sian measures for two of the most important classes of dynamical systems -- topological Mar- 
kov chains (Sec. 3) and locally maximal hyperbolic sets of smooth dynamical systems (Secs. 2, 
4). The theory of Markovian partitions (Sec. 4) allows one to establish a close connection 
between these classes and to carry over results from the symbolic case to the smooth. The 
theory of Gibbsian measures allows one to look in a new way at the question of metric prop- 

erties of ~ -systems with smooth invariant measures [9, 16]. Contiguous to the theory of 

Gibbsian measures and partially following from it are results on the asymptotic behavior of 
smooth measures in a neighborhood of a hyperbolic attracting set and on necessary and suffi- 
cient conditions for the existence of an absolutely continuous invariant measure for a ~- 
system (Sec. 6). 

At the same time, the indefiniteness of the concept of "dynamical systems of hyperbolic 
type" should be noted. First of all, the basic results of the theory of Gibbsian measures 
can be obtained, starting only from a series of axiomatic properties of dynamical systems in 
which exponential instability does not figure explicitly (Sec. 5). Secondly, the approach, 
lying at the foundation of the theory of Gibbsian measure, turns out to be partially applica- 
ble to arbitrary dynamical systems. We have placed a survey of the corresponding results in 
Sec.! of the present chapter, although here no "hyperbolicity" is implied. Finally, there 
exists a series of interesting problems in which one has a weaker "hyperbolic" property than 
that from which the axioms of Sec. 5 follow. Roughly speaking, in these problems the proper- 
ty of exponential instability is either completely nonuniform in time and not for all but 
only for almost all points (Sec. 8), or one has this instability not in all directions (Sec. 
9). We note that for now in the study of ergodic properties with respect to smooth invariant 
measures in these cases one does not use "Gibbsian methods," but techniques based on the con- 
cept of absolutely continuous fibers, generalizing the initial methods of study of ~ -systems 
[9]. 

w Topological Entropy and the Variational Principle for Dynamical Systems 

Ergodic theory applies to the study of continuous and smooth dynamical systems in two 
ways. First of all, it is used to study the behavior of almost all trajectories with respect 
to some "good" invariant measure, whose existence is postulated or follows directly from prop- 
erties of the class of dynamical systems considered (for example, the measure induced by 
the phase volume in classical mechanical systems). The other direction is the description 
of some properties of all collections of invariant measures of dynamical systems, finding 
in this collection of measures those having some remarkable properties. In this paragraph 
we set forth some general results on properties of collections of invariant measures for con- 
tinuous dynamical systems. 

I.I. Let X be a compact metric space, f:X-+X be a continuous map, U be a finite cover- 
ing of X by open sets, U nbe the covering whose elements are the nonempty intersections of the 
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form UoAf-IU1n ... Nf-n+IUn_1, where U0 ..... Jn_16U, and f-kA denotes the complete preimage 

of the set A. 

We denote by Zn(U , f) the minimal number of elements in a subcovering of the covering 

U n. Then there exists a finite limit h(U,f)- lim iIogZn(U, f). The topological entropy 

h(f) of the map f is the least upper bound (finite or equal to ~-oo) of the quantities h(U, 

f) for all finite coverings U. Let U (n) be a sequence of finite coverings such that the maxi- 

mal diameter of elements of U (n) tends to zero as tz-+oo. Then 

h (0 --- l~m h (u  ~'~, f ) .  
t / ~ o o  

The concept of topological entropy was introduced by Adler, Konheim, and McAndrew in 
1965 [194] by analogy with the metric entropy of a transformation with invariant measure. 

Goodwyn [366] (cf. also [368]) proved that for any Borel invariant measure the metric 
entropy does not exceed the topological entropy h(f). A simpler proof of this fact was given 
later by Denker [310]. E. I. Dinaburg [72, 73], in the case when the topological dimension 
of X is finite and f is a homeomorphism, proved that h(f) is equal to the least upper bound 
of h~(f) over all Borel invariant measures U. 

Finally, Goodman [363] proved the equation h(/)=sup~(]~ without any restriction on 

the compactum X (cf. also [369]). In connection with these results there is natural in- 
terest in the question of the existence and uniqueness of an invariant measure with maximal 
entropy, i.e., a measure ~, such that h~(f) = h(f). Such a measure does not always exist. 
An example of a homeomorphism that does not have a measure with maximal entropy was con- 
tructed by B. M. Gurevich [63], and the corresponding example of a diffeomorphism of a com- 
pact manifold by Misiurewicz [541]. In the latter paper it is also shown that the topologi- 
cal entropy as a function on the space of diffeomorphisms of the compact manifold with the 
C r topology is not upper semicontinuous. 

However, if the homeomorphism f has the property of separating trajectories, i.e., one 
can find an so such that for any two distinct points x, YE X one can find a integer N for 
which the distance from fNx to fNy is greater than eo then an invariant measure with maxi- 
mal entropy exists (T. Goodman [346]). A measure with maximal entropy may not be unique even 
for a topologically transitive system. Examples of this kind with positive topological en- 
tropy were found for example by M. S. Shtil'man [185] and I. P. Kornfel'd [i01]. We shall 
speak about those situations in which a measure with maximal entropy exists and is unique in 
Secs. 3, 4, and 5. We still note that for a C1-diffeomorphism f of a compact n-dimensional 
manifold M the topological entropy is finite and admits the upper bound 

h (f) < n In (max I Net Ofx I), 
x~M 

where the norm is induced by an arbitrary Riemannian metric on M [405]. This result is anal- 
ogous to the upper bound for the metric entropy with respect to a smooth invariant measure, 
which was proved earlier by A. G. Kushnirenko [112]. Some other results, connected with 
topological entropy are in the papers [30, 63, 71, 75, 123, 260-262, 367, 722]. 

1.2. The construction and extremal properties of topological entropy admit a generaliza- 
tion, expansive statistical mechanics. 

1.2.1. Let ~ be a continuous function on X and zn(U, [, ~) be equal to the greatest low- 

er bound over all subcoverings F of the covering U n of the quantity 

~ ) 

Then there exists a finite limit 
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1 
P (f, ~, U)= l im  ~ l g Z . ( f ,  V, U). 

n ~ o o  

The q u a n t i t y  P (f, ~ ) = s u p P ( f ,  ?, U ) =  lira P ( f ,  ?, U) i s  c a l l e d  the  t o p o l o g i c a l  p r e s su re  ( a l -  
U diam U~O 

though from the point of view of the analogy with statistical mechanics it would be more 
proper to call it the free energy). 

Obviously, h(f) = P(f, 0). The results of Goodwyn, Dinaburg, and Goodman generalize in 

the following way: 

1 .2 .2 .  P ( f ,  ~)=sup (hr~(f)--}-l~a~)" 

The least upper bound, as before, is taken over the set of all Borel invariant measures of 
the map f. 

The assertion 1.2.2 is called the variational principle for the topological pressure. 

The idea of the approach expounded in this point belongs to Ruelle. In [634, 635] Ru- 
elle defined the pressure for homeomorphisms with the property of separating trajectories some- 
what differently than this was done above (a similar construction will be set forth in Sec. 
5) and proved the variational principle in this case, and also the existence of a measure ~, 
for which 

h~ (f) + i ~a~ = P (f, v). 

The d e f i n i t i o n  of p r e s s u r e  and the  proof of the  v a r i a t i o n a l  p r i n c i p l e  in  the  gene ra l  
case  was given by Wal ters  [174]. S t i l l  another  p roo f ,  c l o s e  to the  ideas  of See. 5, i s  due 
to Misiurewicz. 

1.2.3. Let ft be a continuous flow on X, i.e.~ a one-parameter group of homeomorphisms 
1 

of X. For continuous function ?, we write ~l(x)=i~(ftx)d~ and we define the topological 
0 

pressure P(ft, ~) of the flow ft with respect to the function ~ as P~I,~I). The defini- 

tion of topological pressure in the form of [634] carries over immediately to the case of 
continuous time and coincides with that given in [270]. 

The variational principle 1.2.2 carries over in a natural way to the case of flows. 
Namely (cf. [270]): 

(~, y,) = sup (h~ (A) + f ~a~). P 

w Hyperbolic Sets 

2.1. Let M be a smooth (of class C OO ) manifold, UcM be open subset, f iU.+M be a map 

of class C I, mapping the set U diffeomorphically onto f(U). For brevity, we shall call f 
simply a diffeomorphism. In a series of cases one has to require somewhat more smoothness 

of f: usually C 2 or even C I+6, where ~>0 is sufficient. A subset ACU is called in- 

variant with respect to f, if A belongs to the domain of definition of f_1 and from x~A it 

follows that f(x)EA, f-a(x)EA. The differential Df acts on the tangent bundle Df:T[ff-+TJFi, 
or (pointwise for xcU ), Dfx:TxM-+Ti(x)i~1. An invariant compact set A of the diffeomor- 

phism f:U-+~J is called a hyperbolic set of f, if at each point xCA the tangent space 
S 

TxM splits into the direct sum of subspaces E x and E u, with the following properties: 

2.1.I. The dimensions of the spaces E s and E u depend continuously on x. 

2.1.2. DfxE~c=E~(x), DfxE~.~=E~(x ). 
2.1.3. There exist a Riemannian metric on M and constants c, ),, c>0, 0~(I, such that 

for any natural number n and any xCA, uEE~, VtEx 
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i j  n j l~D/x~t!J ~ cX~ ijull, !iD y;~ vll < cX~ jlvjl, 

where the norm of a tangent vector is defined by the Riemannian metric. 

The corresponding definition for the case of continuous time looks like this: Let X be 
a vector field of class C x, defined on an open subset U of the smooth manifold M; it, t6R, 

is the map of translation in time t along trajectories of the vector field X. A compact set 

AcU is called a hyperbolic set of the vector field X if for each point xEA and each 

~R , ftx is defined and belongs to A, X(x)~O and the tangent space TxM splits into a 

direct sum 

0 8 u TxM = Ex + Ex + Ex, 

where E ~ is the one-dimensional subspace generated by the vector X(x) and for E~ and E u 
' X 

the conditions i.i.i, 2.1.2 are satisfied. 

For 0~ ~ < 1 

(Dft)xEx=E},~, (Dft)xEx-- t,x 

and 2.1.3 is satisfied with the natural number n replaced by the real number t > 0. 

If 2.1.3 is satisfied for one Riemannian metric, then it is satisfied for any other 
Riemannian metric~ possibly with other coefficients c and %. Moreover, one can always choose 
a Riemannian metric for which c = i. Such a metric is called Lyapunovian. 

2.1.4. The subspaces E s and E u depend on the point xEA continuously. Moreover, if 
X X 

the diffeomorphism or the vector field belong to the class C I -s, ~ ~0, then these subspaces 

satisfy a Holder condition in the following sense. The Riemannian metric induces for any k, 

O<k<n, a metric in the Grassman bundle Gk(TM) of k-dimensional tangent planes to M (this 

metric is defined by the stationary angle between subspaces). The maps associating with a 
point x the subspaces E~ and E~, satisfy a Holder condition with exponent ~(~) ~0 with re- 

spect to this metric. 

2.2. If the compact manifold M is a hyperbolic set of the diffeomorphism f:~-+7~ (re- 
spectively, of the flow it, generated by the vector field X), then f (respectively it) is 

called a ~ -diffeomorphism, or an Anosov diffeomorphism (respectively, a ~ -flow, or an 

Anosovian flow). 

All known examples of ~ -diffeomorphims act on manifolds of quite special form -- tori, 

nilmanifolds and some of their generalizations (infranilmanifolds) -- and are topologically 
conjugate to diffeomorphims generated by some group automorphisms of the universal covering 
spaces. 

Classical examples of ~-flows are the geodesic flows on manifolds of negative curva- 

ture. A hyperbolic set of a vector field remains such under a smooth, nonvanishing change 
of time. Finally, each ~-diffeomorphism can be made to correspond to a ~ -flow with the 

help of the suspension construction. The complete topological classification of ~-diffeo- 

morphisms and ~ -flows is unsolved, and evidently is a quite difficult problem. 

There is also interest in the class of irreversible maps, analogous to ~ -diffeomor- 

phisms. Namely, a regular map f:J}/~J~ is called an expanding endomorphism if one can find 

c~0,~ I and a Riemannian metric on M such that for any natural number n, u~TM, 

IIDf"ull >cA.  IluH. 
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Expanding endomorphisms are in many ways simpler than ~ -diffeomorphisms and many im- 
portant results, for example the existence of Markovian partitions (cf. Sec. 4 of this Chap- 
ter), become quite transparent in this case. 

A hyperbolic set A of a diffeomorphism or a vector field is called locally maximal 

(basic in the terminology of R. Bowen), if one can find an open neighborhood V~A, such that 

A~ N fnV. In other words, h is a maximal f-invariant closed set, entirely lying in some 
n~z 

open subset of M. 

In contrast to V-systems, of which, in essence, there are known not to be too many (up 

to topological equivalence), locally maximal hyperbolic sets occur in quite a variety and one 
meets them in many problems. 

2.3. The definition of ~-systems was introduced by D. V. Anosov (cf. [48]) in 1962, 

starting from properties of the variational equations for geodesic flows on manifolds of nega- 
tive curvature, which were noted and used in papers of Madamard, Cartan, Morse, Hedlund, and 
Hopf. Besides the classical papers of these authors, a large role in the development of the 
theory was played by Thom's conjecture on the structural stability of hyperbolic automorphisms 
of the torus and especially by the nontrivial example of a hyperbolic set constructed by 
Smale [170, 676] in 1961 ("horseshoe"). The general definition of hyperbolic set is ale 
due to Smale [675]. Smale considered an important class of dynamical systems on compact 
manifolds, distinguished by the so-called "axiom A": The set of nonwandering points is hy- 
perbolic and coincides with the closure of the set of periodic points. The definition of a 
locally maximal set was introduced somewhat later by D. V. Anosov [i0]. Expanding endomor- 
phisms were first considered from the point of view of dynamical systems by Shub [664]. The 
HSider condition for the distribution E s and E u was also proved by D. V. Anosov [9, ii] (cf. 
also [36]). Rather important examples of locally maximal hyperbolic sets in dynamical sys- 
tems, connected with the problems of celestial mechanics, were constructed in a series of 
papers of V. M. Alekseev [2-8]. Consult also the book of Moser [544]. Essential progress 
in the problem of the topological classification of ~ -systems was achieved by Franks [348, 

349], Newhouse [556], and Manning [522]. 

2.4. We shall not, in the present survey, systematically illuminate subsequent progress 
in the study of hyperbolic sets, since a fundamental role here is played by questions relat- 
ing to the topological theory of smooth dynamical systems (differential dynamics) and not 
by ergodic theory. A bibliography and historical remarks can be found in [9], the survey 
of Smale [675], the lectures of A. B. Katok [86] and V. M. Alekseev [8], and the recent sur- 
vey of Shub [665]. We shall restrict ourselves to the enumeration of those topological prop- 
erties of hyperbolic sets which turn out to be useful in the study of properties of in- 
variant measures, concentrated on these sets. 

2.4.1. In the interest of brevity, we shall formulate this property only for the case 
of discrete time. There exists a neighborhood V of the hyperbolic set A of the diffeomor- 
phism f, such that for any 6>0 one can find an e>0, for which from 

Xo, xl . . . . .  xn-1, x,~=XoE V, d ( f ( x l ) ,  x~+i)<e ,  i = 0  . . . . .  n - - l ,  

follows the existence of a point x', for which 

[~x '=x ' ,  d (Vx ' ,  x r  i = 0  . . . . .  n - -1 .  

In particular, if A is a locally maximal set, then the neighborhood V can be chosen so 
that the point x' will belong to A. 

2.4.2. The restriction of the diffeomorphism or the flow to a hyperbolic set has the 
property of separating trajectories. 

2.4.3. The periodic points are dense in the set ~(T[A) of nonwandering points of the 

restriction of the diffeomorphism f to A. 

The periodic trajectories are dense in the set ~(ft[A) of nonwandering points of the 

flow ft, acting on A. 
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2.4.4. Let A be a locally maximal hyperbolic set of the diffeomorphism f or the flow 

ft. The set e(flA) [or ~([~IA)] can be represented as a union of a finite number of pairwise 

disjoint subsets ~i ..... ~k, on each of which f (or ft) is topologically transitive, i.e., 

has an everywhere dense trajectory. 

2.4.5. In the case of diffeomorphism, each of the sets ~i can be represented as a 
union of pairwise disjoint subsets 

where /~{=Q/+I y=l ..... n i-l,~7~+1=Q~ and the restriction /"il~ has the property of mixing 

domains. The latter property for the homeomorphism f:X-+X means that for any open sets 

U, VcX one can find an N such that for ~>N one can find a point ' x@U such that /~@V. 

2.4.6. If the restriction /[A has the property of mixing domains, then from 2.4.1 fol- 

lows the following specification property: For any ~ >0 one can find a natural number 

p=p(~) with the following property: If al ..... an are integers, ai+1>=i3cp, i=| ..... n--l, 

then for any x I ..... xn_I6X one can find a point xEX such that /an-a'x=x and d(/ai+kX, 
f ~ x t ) < ~ ,  k = O ,  1 . . . . .  a i+ l - -a i - -p ,  i = 1  . . . . .  u - - 1 .  

In other words, the specification means that any finite collection of finite segments 
of trajectories can be approximated by periodic trajactories so that the size of the "lacu- 
nae" will depend only on the exactness of the approximation. We shall omit the precise for- 
mulation for the case of continuous time. 

2.5. Properties 2.4.1 and 2.4.2 for V-systems were proved by D. V. Anosov [9]. In the 

general case, both of these properties are special cases of Anosov's theorem "on families of 
e-trajactories" [I0, 86]. However the property of separating trajectories for hyperbolic 
sets first appeared in Smale [675]. There too the spectral decomposition theorem, which is 
the special case of 2.4.4 when f is a diffeomorphism satisfying axiom A and A = g(f), was 
proved. Properties 2.4.3, 2.4.4, 2.4.5 for locally maximal hyperbolic sets appeared in [i0]. 
The specification was introduced for diffeomorphisms [259] and flows [263] by Bowen. 

2 6. The stable and unstable spaces E s and E u from the definition of hyperbolic sets 
" X X 

can be "omitted" from the tangent bundle of the manifold M. This fact, which carries the 
appellation "stable manifold theorem" is a natural generalization to the case of hyperbolic 
sets of the classical theorem of Hadamard--Perron on stable and unstable manifolds of hyper- 
bolic fixed points. We shall present here one of the variants of the formulation of the sta- 
ble manifold theorem [86]. 

2.6.1. Let A be a hyperbolic set of a C1-diffeomorphism /:U~M, p be the metric on 

M induced by a Lyapunovian Riemannian metric. One can find an a 0>0, such that for O< e<% 

and x6A there exists a map ~x,~ of the ball D k(x) into M [k(x) = dim E~] with the following 

property: Px,~ is a CX-imbedding of D k<x) into M; TxW~(x)=E~, where W~(x)=:lm?x, ~, /W~(x)c 

cW~(?x) ; if y~W~(x), then pOfnx, fny)-~O, as n-~ ~; W~(x)={y@M:p(fnx, fny)<s; n>O}; the 

correspondence X~px.e determines a continuous map of A into the space Cl(Dk(X), M). 

The sets W[(x) are called the local stable manifolds of the point x, and the analogous 

sets constructed for the diffeomorphism f-x, are denoted by W~(x) and are called the local 

unstable manifolds of x. 

By the global stable and unstable manifolds of a point x6A are meant the sets 

au v.,', (x) = u / - . ~ v ~ ( / . x ) ,  w'~ (x) = u / w'~ (y- .x) .  
n~O n~O 
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Each of these manifolds is the image of a Euclidean space under a C1-immersion, which, as a 
rule, is not an imbedding. 

2~ For any sufficiently small ~>0 , one can find a e(~)>O such that for any points 

x,yCA, p(x, y)~e(~), the intersection W/~(x)AW/~(y) is nonempty and consists of a unique point, 

which we denote by rs(x, g). The property of local maximality of a hyperbolic set is equiv- 

alent with the following property, which is called "the local product structure." One can 

find a ~0, such that for x, yEA, p(x,y)<s(~), it follows that W~(x)AW~(y)EA. We shall 

give an almost obvious reformulation of this ~roperty: Some neighborhood Ux of the point 

xCA in the set A has the structure of the canonical direct product of UxNW~(x) and 

Ux N W~ (x). 

The literature relating to stable and unstable manifolds is sufficiently extensive, but 
not in relation to the subject of our survey. We note that the stable manifold theorem for 

~systems was proved by Anosov (cf. [9]), for hyperbolic sets the formulation is due to 

Smale [675], the first published proof is that of Hirsch and Pugh [398]. We have borrowed 
the formulation from [86]. The results of Paragraph 2.6.2 are proved in [86, 397]. 

w Topological Markov Chains and Gibbsian Measures 

3.1. We consider an alphabet of k symbols ~=(a~,...,ak} and we construct the space E~ 

of sequences ~-----(~s}~, infinite in both directions, where each coordinate us, s@Z, assumes 

values from the alphabet ~. In the space E~ there is a natural topology as the Tikhonov 

product of a countable set of copies of the k-point space ~. In this topology the space E~ 

is compact. It is convenient to introduce in E~ a family of metrics p~, 0<%< I, each of 

which generates the Tikhonov topology. Namely, we set d(a~, al)=~,], i, j=l, .... k, and for 

~, ~@E~ we define the distance 

CO 

In the space Ek , the shift transformation oh, (ok~)~z~s+1, meek, sEZ, acts as a homeo- 

morphism. This transformation is sometimes called a topological Bernoulli scheme with k con- 
stants. 

The restrictions of the homeomorphism a k to closed invariant subsets of the space ~k 
generate a rich and interesting class of dynamical systems, which are sometimes called sym- 
bolic maps. The domain of the theory of dynamical systems devoted to symbolic maps is called 
symbolic dynamics. In a known sense, symbolic maps serve as models for arbitrary dynamical 
systems both in topological dynamics as well as in ergodic theory (cf. Chap. 4). In "hyper- 
bolic" theory the role of such models is played by one special class of symbolic maps. Let 

A=1[awH be a square matrix of the k-th order, whose elements a~j assume the values i and 0, 

while in each column there is only one unit. We write 

EA = {r k :a%_~co s = 1, SGZ}. 

Obviously, ~A is a closed subset of Ek,, invariant with respect to the shift %. We write 

OA~-%/EA. The transformation ~ in the Russian literature is usually called a topological 

Markov chain (abbreviated as t.m.c.), the term "subshift of finite type" is applied. The 

elements of the alphabet ~ are usually called states of the t.m.c. 
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3.1.1. For the states of a t.m.c, one has a classification, analogous to the classifica -~ 

tion of states of Markov chains in probability theory. Let A~=Ha~/il. The state a~ is 

called recurrent if for some n, a~>0. 

We shall call recurrent states a i and a i equivalent, if for some n, aTj>0, a~ >0. 
7L 

With the help of the concepts of recurrence and equivalence, one can formulate and prove for 
t.m.c, a "symbolic" analogue of the theorem of 2.4.4 (cf. [7]). 

3.1.2. For ergodic theory one can restrict oneself to the case when all states are re- 
current and equivalent to one another, which is equivalent to topological transitivity. 

If for some n, A n is a matrix with positive elements, then Y A has the property of 

mixing domains (the converse is obvious). In this case the t.m.c, is called transitive and 
for it one has the property of specification of 2.4.6. In the general case there is a par- 

tition ~---~'~iU..- U~ m, such that the corresponding partition 

Ea=E IU...UE m, E ~ m, 

where 

has the following property: 

E ~ = {~EA, ~0E~l}, 

aaE~=E i+I, i-----I ..... m, 

and the restriction of ~ to each of the sets E i has the property of mixing domains. This 

is an analogue of the property of 2.4.5. 

3.1.3. A natural generalization of the sets EA is a subset of the space Ek, , defined 

by restriction to a fixed finite number of steps. Let B be a subset of ~ and EB----{X@Ek: 

(~s ..... ~s+t_1)EB, s~Z}. However, actually, such a generalization does not give anything new, 

because passing from the alphabet ~ to the alphabet ~t-l, it is easy to represent the restric- 

tion ~IB as a t.m.c, with k I-I states. 

Weiss [721] considered the minimal class of symbolic systems containing t.m.c, and 
closed with respect to passage to factor-systems. This class, which Weiss called sofic sys- 
tems, does not reduce to t.m.c., but from the point of view of ergodic theory has just as 
nice properties. 

3.2. There is a rather close connection between topological Markov chains and locally 
maximal hyperbolic sets of diffeomorphisms. 

3.2.1. For points ~EA one defines an analogue of the local stable manifold: 

WL(~)={~'=(... ,02,4~i ...), A ----~, k>0}. 

3.2.2. For any matrix A of zeros and ones and any manifold M, dim M>l, one can give 

an open set UcM and a diffeomorphism f:U-+M such that the set A~ N f~U is hyper- 
nEz 

bolic and the restriction fll is topologically conjugate to the t.m.c. ~A (generalization 

of the "horseshoe" construction of Smale; cf. in this connection [8, 265]). 

3.2.3. Any locally maximal invariant subset A of the shift % has the form ZB from 

Paragraph 3.1.3 and hence, the restriction ~kl• is topologically conjugate to some t.m.c. 

3.2.4. If A is a zero-dimensional locally maximal hyperbolic set of the diffeomorphism 

f, then the restriction fIA is topologically conjugate to some t.m.c. [265]. A more profound 
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connection between locally maximal hyperbolic sets and t.m.c, is given by the theory of Mar- 
kov partitions (cf. Sec. 4). 

3.3. Let Nr be the number of periodic points of oa of period r. Obviously, Nr=trNr. 

In the transitive case we can use the known theorem of Frobenius, according to which the ma- 

trix A has a unique eigenvector e = (el, ..., e k) with positive components and positive 
Ar 

eigenvalue k. It is easy to show that limlnNr=limtr--=Ink. It turns out that the periodic 
r r-~oo r-~oo 

points in some sense uniformly fill the space EA. 

The confirmation of this is the following theorem: Let f(~) be a continuous function 

on the space EA. There exists a measure P0 on EA, such that 

1 
3.3.1. l i m E -  r Z f(co)=If(co)dF~o" 

r 
C0 i :~A(0~O 

We shall describe the measure ~0" Let e-----(e I .... , e~) be the above-mentioned eigenvec- 

tor of the matrix A, i.e., ~_~aljej=ke i. We consider the homogeneous Markov chain in the 
7 

_ atjej 
space Za with transition probabilities pij---~i. By virtue of the transitivity, for these 

transition probabilities the stationary distribution is unique. Then ~0 is the measure in 

the space EA, corresponding to the stationary Markov chain with transition probabilities Pij" 

This measure also has other remarkable properties. 

3.4. We denote by 7~n(A ) the number of distinct words of the alphabet ~ of length n 

of the form (~0 ..... con), where ~1%+I=I, i=0 ..... n--l. From the definition of Ea it fol- 

k 

lows that 7Pln(A)= ~ a~j. From the already mentioned theorem of Frobenius it follows that 
t , j=l  

limJnJ j =Ink for any i, j; and  consequently, limlnM~ (A) Ink. It follows from the form of 

of the measure that k~,(oA)=Ink, and from the definition of Mn(A) it is easy to deduce that 

for any invariant with respect to ~A Borelian measure ~ , h~(oA) ~<Ink and, on the other hand, 

h ( o A ) = l n k .  Thus, ~0 is a measure with maximal entropy for ~A" Parry [594] proved that for 

a transitive t.m.c., ~0 is the unique measure with maximal entropy. Another proof of the 

theorem of Parry was given by Adler and Weiss [197]. 

3.5. Gibbsian measure in the space EA- Some mathematical methods of statistical me- 

chanics can be applied to obtain other invariant measures for the shift aA in the space Y'a 

[671, 164]. The space EA will be represented as the space of states of a one-dimensional 

lattice model of statistical mechanics. Each point sGZ can be found in one of k states, 

while two states: COs_l, co s , can be met by a row only if a%_~,c%=l.  

We denote by S A the class of continuous functions on r,A, satisfying a Holder condi- 

tion with some exponent in some metric P~ (cf. Paragraph 3.1). It is easy to see that this 

class is independent of k. We fix a function ~6~A. 

From the point of view of statistical physics the function ~(co) plays the role of the 

potential of interaction of the point 0 with all other points of the lattice. Having the 

function ~, we define the energy of the word co-n ..... coo ..... con for fixed coordinates cos, [Sl>n, 
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as I-I(m_n ...... %)-- ~ ~(~). In statistical mechanics the Gibbs distribution is constructed 
k=--n 

e-H 
in the form --~-, where E is a normalizing factor. We shall also deal in our case with a 

given probability distribution on the words ~Oln ..... ~n for fixed states %,is] >n, in the 
form 

v ':'') ("-,, . . . . .  ",,I%, t,,l>,,)= e-"v("-;~ .... %0, 

where En is a normalizing factor. We fix remote coordinates equivalent to given boundary 

conditions. The probability distribution ~(n) as n->oo converges weakly to a limit, which 

is independent of the fixed boundary conditions. This limit is an invariant measure for the 

t.m.c. ~A' denoted by ~ and called the Gibbsian measure constructed from the function p. 

The shift ~A ' considered as an automorphism of the space EA with the measure ~, is 

a K-automorphism. For the natural generating partition ~(CI ..... C~), where Ct={~a, %=a~} 

one has the condition of being Bernoullian, so that OA is conjugate with a Bernoulli auto- 

morphism (cf. Sec. 2 Chap. i). 

In the case of a topological Bernoulli scheme, the existence of the measure ~ and the 
K-property was proved by Ruelle [633]. This proof carries over directly to the case of a 
transitive t.m.c.; later this was done by Bowen [269], who also verified the condition of 
being weakly Bernoullian. Ya. G. Sinai [164, 671] introduced the Gibbsian measures for tran- 
sitive t.m.c, in another way than Ruelle, and proved the existence of these measures and the 
K-property. Ya. G. Sinai started from a measure with maximal entropy ~0 and a function 

~E~a and constructed measures ~m,n(~)=pm,nDO, where the density 

pnl,rt (( .0)~- 

n 

k ~ - - m  

~exp k=-ra~ q~'~Ad~t~ 

The weak limit of the measures ~m,n(~) as n,m--+oo exists and coincides with the mea- 

sure ~, described above. With the help of the theory of Markovian partitions, Ya. G. Sinai 

carried over his results to the case of ~-systems (cf. Sec. 4 of the present chapter). In- 

dependently of Bowen, the condition of being weakly Bernoullian was verified by Bunimovich 
[36], Ratner [620], and Ruelle. 

3.6. Just as the measure ~0 is the unique measure with maximal entropy, other measures 

can also be characterized by their extremal properties from the point of view of the varia- 

tional principle, (cf. Paragraph 1.2.2 of the present chapter). Namely, ~ is the unique 

oA-invariant Borelian measure ~ , for which 

P 

For topological Bernoulli schemes this fact was proved by Lanford [507]. For transitive 
t.m.c, there are several proofs. Two of them are due to Bowen: one generalizes the proof 
of Adler and Weiss of the theorem of Parry [269], the other [266] relates to a wider class of 
dynamical systems than t.m.c, and we shall speak about it in Sec. 5 of this chapter. Yet 
another proof was given by Ruelle [634, 635]. 
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3.7. Ya. G. Sinai [164] considered the question of conditions for coincidence of Gibb- 

sian measures constructed from various functions. If ~, ~ZG~A , then p~=p~, if an only if 

one can find a function gE~a such that 

This fact is used in the theory of ~-systems (cf. Sec. 6). 

3.8. In conclusion, we shall touch on the basic results in the case of continuous time. 

Let FEr be a positive function. We denot~ by Y A,F the suspension over Z A , constructed 

from the t.m.c., =A and the function ~, i,e., 

Ea,p----((co, t)GEAXR, O~<t~<F(| 

@, F @)) ~ (oa| 0)}. 

t 
In this space there acts naturally the one-parameter group of homeomorphisms ~A,F. This 

action consists of moving the point (~, t) along the segment {~}X[0, F(~)] with unit speed, 

and attaining the end, it turns out in correspondence with the definition at the point "YAm, 
0), whence it extends the motion analogously. 

t One has sn obvious correspondence between invariant measures of the flow ~A,F and 

homeomorphi sms ~. ~(x) 

be a continuous function on EA,F, such that ~A, where ~(x)= I ~(~' ~)dt, Let 
0 

:C@EA. Then the measure p~ on Za.~ corresponds to the Gibbsian measure for =A, constructed 

by the function @--P t t (~A,F, ~)F. Here p~ is the unique Borelian, ~.r, -invariant measure 

p, for which P(~,F, ~)=h~(~,F)-~ipdp (cf. Paragraph 1.2.3 of this chapter). 

The connection between Gibbsian measures of t.m.c, and suspension over t.m.c, is due to 
Ya. G. Sinai [164], who used another definition of Gibbsian measure (cf. here Paragraph 3.6) 
and did not explicitly introduce the topological pressure. The property of uniqueness of 
Gibbsian measures for flows was proved by Ruelle and Bowen [270]. 

w Markovian Partitions and Symbolic Representations of Hyperbolic Sets 

4.1. Topological Markov chains serve as models for the behavior of diffeomorphisms on 
locally maximal hyperbolic sets. If the dimension of the hyperbolic set A is equal to zero, 
then there exists a homeomorphism ~ of some space Z A onto A such that: 

4.1.1. ~ooA=/IAo~ (cf. Paragraph 3.2.4). In the general case, a homeomorphism sat- 

isfying 4.1.i~ of course does not exist, but one can construct a continuous map ~:EA-+A, 

which, from the point of view of ergodic theory, differs slightly from being one-one. In 
some rough sense even an arbitrary hyperbolic set can be approximated by t.m.c. 

4.1.2, Let A be a hyperbolic set of the diffeomorphism [: U-+M. For any neighborhood 

V~A there exists a t.m.c, and a continuous map ~:EA-~V such that ~ oaa=~[Ao'~ Im~A. 

In particular~ the restriction of a diffeomorphism to a locally maximal hyperbolic set is a 
continuous image of a t.m.c. (V. S. Alekseev [7]; cf. also [90]). 

4.2. A subtler approximation of a diffeomorphism by topological Markov chains is effected 
with the help of Markovian partitions. 

4,2.1. A closed subset R of a locally maximal hyperbolic set A of a diffeomorphism f is 

80 (cf. Paragraph 2.6.1 of this chap- called a parallelogram if the diameter of R is less than 

ter), A=I-nt---A, and for some 8>0 from x,y~R and p(x, y)<~(~) follows r~(x, Y)ER (cf. 

Paragraph 7.6.2) We write for x~,~)Ys(x,@)=W s (x) NR, Wu(x,R)--W~o(X)~@. 
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4.2.2. By a Markovian partition of a locally maximal hyperbolic set A is meant a cov- 

ering of A by parallelograms Rt, ..., R k such that Int~nlntRi=@, i~j; if xEIntRt, 

fx~lntRi, t h e n  fWu(x, ~i)DWu(fx, RI), f-lW~(fx, Rj)~Ws(x, ~i.) 

4 . 2 . 3 .  For  any  l o c a l l y  max ima l  h y p e r b o l i c  s e t  A and any  e > 0  t h e r e  e x i s t s  a M a r k o v i a n  

partition of the diameters of all of whose elements is less than e. 

4.2.4. The first concrete example of a Markovian partition was constructed by Adler and 
Weiss [197] for hyperbolic automorphisms of the two-dimensional torus. In this example the 
"parallelograms" from 4.2.2 are projections on the torus of real parallelograms in the plane. 
The geometric construction of Adler and Weiss does not carry over to other cases, even to 
hyperbolic automorphisms of tori of higher dimension. 

The general definition of Markovian partitions for ~-diffeomorphisms was given by Ya. 

G. Sinai [159]. This definition differed from that given above in the case when the ele- 
ments of the Markovian partition are not connected. In [160] Sinai actually constructed 
partitions satisfying 4.2.2 in the case of transitive diffeomorphims. 

Yet another variant of the approach to the definition of Markovian partitions develops 
in the paper of B. M. Gurevich and Ya. G. Sinai [68], where infinite partitions are admitted. 
Definition 4.2.2 and Theorem 4.2.3 in complete generality are due to Bowen [257]. 

4.2.5. Let the diameters of the elements of the Markovian partition R~, ..., R k be less 
than the distance between any two points x, y~A (cf. 2.4.2). We construct the intersection 
matrix A=[la~II, where 

1, if I n t R ~ N f - ' I n t R j @ ~ ;  
CtU~ 0 otherwise. 

The following theorem allows one to carry over the theory of Gibbsian measure to local- 
ly maximal hyperbolic sets. 

Let ~={~s}CEA. Then the infinite intersection N fsR~ s is nonempty and consists of 
sCz 

precisely one point. The map ~:~A-+A, where ~(~)=n fSR~s is continuous and one-one out- 
s~z 

side some subset of the first Baire category. If ~EFA and ~ is a Gibbsian measure on 

EA, and ~,>~ is the image of the measure ~ on A, then ~ is an isomorphism mod 0 of the 

spaces (~A, ~) and (A, @,~). 

The first results in the direction of the theorem formulated were Theorem 5.1 of the 
paper of Ya. G. Sinai [159], in which in the case of ~ -diffeomorphisms a system of condi- 

tional measures on the fibers was constructed, corresponding to the measure @.~0. For the 

measure ~0 in the case of hyperbolic sets the theorem was proved by Bowen in [257]; the re- 

sult for the measure ~ in the case of ~ -diffeomorphisms was proved by Ya. G. Sinai [164], 

in the general case by Bowen [269]. The existence, uniqueness, and Bernoullianness of the 
measure with maximal entropy for expanding endomorphisms was proved by Krzyzewski [487, 488]. 

4.2.6. Let the diffeomorphism f:U-+~4 belong to the class C l+e, ~>0, the restric- 

tion fl& be topologically transitive and the function g:A-+R satisfy a Holder condition 

with some exponent. It follows from 2.1.4 and 4.2.5 that the functions on EA ~----~.gESrA. 

Hence, according to 3.6 and 4.2.5, ~g-----~.~ is the unique Borelian fl& -invariant measure 

~, for which the quantity h~(fIA)+~gd~ achieves its maximum, which is equal to P (g, fIA) 

(of. Paragraph 1.2.2). 

For the case g = 0 this fact means the uniqueness of the measure with maximal entropy, 

which was proved independently for ~-diffeomorphisms by B. M. Gurevich [65] and (in the 
general case) Bowen [257]. 
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If ~A has the property of mixing domains, then from 3.5 and 4.2.5 it follows that the 

map ~A with the measure ~g is metrically isomorphic with a Bernoulli scheme. 

4.3. The concept of Markovian partition carries over to the case of continuous time. 
Here in the theorem analogous to 4.2.5 the question is of the isomorphism with some suspen- 

sion over a t.m.c. (cf. Paragraph 3.8). Markovian partitions for transitive ~-flows on 

three-dimensional manifolds were constructed by M. E. Ratner [143]; in the multidimensional 
case Markovian partitions were constructed independently by Bowen [268] (for locally maxi- 

mal hyperbolic sets of flows) and Ratner [619] (for transitive ~-flows). 

55. General Approach to the Construction of Gibbsian Measures 

5.1. Gibbsian measures, which were first constructed for topological Markov chains (Para- 
graphs 3.5-3.7) and were carried over with the aid of the theory of Markovian partitions to 
locally maximal hyperbolic sets (Paragraph 4.2) can be constructed directly by some other 
method, applicable to a wider class of dynamical systems, which includes both classes con- 
sidered in the preceding paragraphs. 

Let f be a homeomorphism of the metric space X, which has the property of separating 
trajectories (Paragraph i.i) and that of specification of 2.4.6, and ~ be a continuous func- 
tion of X. Here it ~s necessary to consider the following. 

5.1.1. For some ~>0 one can find an ~4=M(~) such that if x,y~X and d(flx, fiy)~e,O~ 

i~n--I (d is the distance in X), then 

~-I ? ( f i y )  ~__~o~ ( f 'x ) -  < M. 

In what follows (for the validity of 5.3.5) some strengthening of this condition is re- 
quired: 

5.1.2. If e-~0, then one can choose M(e)~O. 

This property is satisfied in both cases which were considered in the preceding para- 

graphs: when f is a transitive t.m.c, and ~E ~A, and also when f is the restriction of a 

diffeomorphism to a locally maximal hyperbolic set and ~ satisfies a H~ider condition. 

5.2. We denote by Pn the set of periodic points of the homeomorphism f with period n. 
We set 

n--I 

Z ~ ( f ,  ?) = ~ exp ~ ? (f~x).  
xEP n i=O 

We denote by Ux the normalized measure concentrated at the point x6X. Let 

We write 

!%,~-=Z,~ ( f  , ?)-~ exp ( f~x  t ~  . 
\ xQ.p a \i=0 

Bn (x ,  f )  = { v G X :  d ( f i x ,  f i g )  ~ _, i = O, 1 . . . . .  n - -  1 }. 

If the properties of separating trajectories, specification, and 5.1.1 are satisfied, then one 
has the following estimate, which is a fundamental technical fact in the theory of Gibbsian 
measures. 

5.2.1. There exist an N and constants dl,  d2, O<dl<d2 ,  such that for n ) - N  

di eP(t'c~ ..< ZPn ( f  , ?) ~< d2e P(f''p)n . 
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5.2.2. For any k and sufficiently small e>0 one can find a natural number N(~,k) and 

positive constants AI(~), A2(e ) such that for ~>N(e,k) and x@X 

Al(~)exp ~ ( f Z x ) - - k P ( f , ? )  <~,~(Bk(x ,  f))<A2(~)exp ~w~(fL~:)--kP(f, 'r . 
\i=O I=0 ' 

5.3. The estimates given allow one to prove the following facts. 

5.3.1. The sequence ~.n converges weakly as n-+oo to some measure which we denote by 

~. 

5.3.2. The map f is ergodic with respect to the measure F~. 

5.3.3. ~ is the unique Borelian invariant measure for which the expression h~(f)-[-I~d ~ 

attains its maximum, which is equal to P(f,~). 

5.3.4. The homeomorphism f has the K-property with respect to the measure ~. 

5.3.5. If the functions ~I,~2 satisfy 5.1.2, then ~=F~, if and only if one can find 

a continuous function g such that 

~, (X)=~2 (x)+ g ( f  , x) -- g (X) + P (f, ~) --  P (f, ~0. 

From 3.6 and 5.3.3 it follows that in the case of a topologically transitive t.m.c, the mea- 

sure coincides with the Gibbsian measure F~ of Sec. 3. 

The approach described in this paragraph to the construction of the measure ~0 and the 

proof of 5.3.1 and 5.3.2 in this case are due to Bowen [259]. With this approach, the con- 

nection of the measure ~0 with the asymptotic distribution of periodic points is obvious. 

Bowen proved analogous results for flows in [263]. 

The papers of Bowen appeared after the paper of Ya. G. Sinai and G. A. Margulis on the 
asymptotic number of closed trajectories and the asymptotic distribution of these trajecto- 

ries for ~ -flows, in particular, geodesic flows on manifolds of negative curvature. We 

shall speak about these papers in Sec. 7. 

Bowen's construction is carried over to arbitrary Gibbsian measures by Ruelle [634, 635] 
(cf. Paragraph 1.2). The inequality 5.2.1, the left-hand side inequality 5.2.2, and asser- 
tions 5.3.1-5.3.3 are in the paper of Bowen [266]. The right-hand side of 5.2.2 and asser- 

tions 5.3.4 and 5.3.5 were proved by A. B. Katok. 

The basic construction of this paragraph carries over in an obvious way to the case of 

flows. 

w Measures Connected with Smoothness and Homological Equations 

6.1. Suppose on the smooth compact manifold M there is a fixed Riemannian metric. There 
is a certain measure connected with it (the Riemannian volume). Let us agree to call a Bore- 
lian normalized measure on M absolutely continuous, absolutely continuous positive, Holderian, 
or smooth if in relation to the Riemannian volume this measure is respectively absolutely con- 
tinuous, equivalent, defined by a positive density, satisfying a Holder condition, or defined 
by a positive smooth density. All the enumerated classes of measures are independent of the 

Riemannian metric. 

If f:Mf+M is a diffeomorphism, then the existence for f of an absolutely continuous 

invariant measure is equivalent to the existence of a nonnegative integrable function 0, such 

that for almost all xEM 

6. L I. lgl detDf~l =lgp (~x)--Igp (x), 
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where IdetD[xl denotes the coefficient of expansion of the Riemannian volume. The function 
p serves as the density for an invariant measure relative to the Riemannian volume. 

If the density of the invariant measure is continuous and positive, then the following 
condition is satisfied. 

6.1.2. For any point of period n, 

I det  D[=  ~ [ = 1. 

6.2. Let [:M-+A4 be a topologically transitive ~-diffeomorphism of class C 2. A.N. 

Livshits [115] and also D. V. Anosov and A. M. Stepin proved the followmng theorem. 

Let f have an absolutely continuous positive invariant measure and let g be a contin- 

I 

uous function with modulus of continuity ~g(S) such that I~ds<oo. 
0 

surable function and almost everywhere 

6 . 2 . 1 .  g (X)---- h ( fX ) - -  h (x), 

then there exists a continuous function h', which coincides with h almost everywhere. 

For y/-flows, 6.2.1 is replaced by the following. 

6.2.2. For any T>0 , almost everywhere 

T 

I g (Lx) dt = h ( / , x ) -  h (x). 
0 

Then if h is a mea- 

Thus, if f has an absolutely continuous positive measure, then this measure is really given 
by a continuous density, and consequently, satisfies 6.1.2. 

Equations of the form 6.2.1 and some close equations are met with not only in the prob- 
lem of existence of absolutely continuous invariant measures, but also in a series of other 
problems of the theory of dynamical systems (cf. above: Paragraphs 3.7 and 5.3.5, and also 
Chaps. 5 and 6). They are usually called homological equations. The solvability properties 
of these equations depend very strongly on the properties of the transformation f. In [114, 
115] A. N. Livshits studied the homological equation (6.2.1) and similar equations for func- 
tions with values in more general groups than the additive group of real numbers for ~ - 

systems and topological Markov chains. For the problem of existence of invariant measures 
the following result of Livshits is more essential [114, 117]: 

6.2.3. Let /:M~M be a topologically transitive ~-diffeomorphism of class C 2,UCM 

be an open set, g be a function satisfying a Holder condition. Equation (6.2.1) has a solu- 
n--I 

tion satisfying a Holder condition if and only if for any periodic point x6U Zg(/~x)=O, 
l=O 

where n is the period of the point x. If g is a function of class C I then h is alsoa func- 
tion of class C I. 

Combining 6.1.2, the theorem of Paragraphs 6.2 and 6.2.3, we get the following assertion. 

6.2.4. The following conditions are equivalent: f has an absolutely continuous in- 

variant measure; for any point x of period n, [detDf~n[=l; f has a smooth invariant measure. 

For flows, we get an analogue of 6.2.3 if in 6.1.2 we replace periodic points by peri- 
odic trajectories. 

6.3. Condition 6.2.4 is also equivalent to the existence of an absolutely continuous 
invariant measure. This fact can be obtained in the framework of another approach to the 
proof of 6.2.4, proposed by Ya. G. Sinai in [671, 164] and complete in the joint paper of A. 
N. Livshits and Ya. G. Sinai [177]. This less direct approach arises in working out the 
program of applying the ideas of statistical physics to the ergodic theory of smooth sys- 
tems, to which the two above-mentioned papers of Ya. G. Sinai are devoted. 
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6.3.1. If the.~-diffeomorphism f of class C TM has a smooth invariant measure ~, 

then it is a K-automorphism with respect to this measure [9, 16], and consequently for any 

absolutely continuous measure ~, the measure (f,)n converges weakly to ~ as n-+• 

In [158], Ya. G. Sinai with the aid of Markovian partitions constructed for any topo- 

logically transitive ~ -diffeomorphism invariant measures B+ and ~- such that for any 

absolutely continuous measure ~, the measure (f.)nv converges weakly to ~ as n~ and to 

~= as n~-- ~ Whence, obviously, it follows that the existence for f of an absolutely con- 

tinuous invariant measure is equivalent with the equation ~+=~-. In [158] it is also proved 

that f is a K-automorphism with respect to the measures ~+ and ~_ 

6.3.2. Let the Riemannian metric on M be fixed. We write 

~(=) (x) ---- Ig det Dfx [g~, ?(') (x) ---- Ig det Dfx ]z~ 

By v i r t u e  o f  2 . 1 . 4  t h e  f u n c t i o n s  ?~u) and 9(s) s a t i s f y  a H o l d e r  c o n d i t i o n .  Upon p a s s a g e  to  

a new m e t r i c ,  t o  ?(~) and ~rs) a r e  added  a t e r m  o f  t h e  fo rm g ( f x ) - - g ( x )  w i t h  smooth  g .  I n  [ 1 6 4 ] ,  

Ya. G. S i n a i  p r o v e d  t h a t  t h e  m e a s u r e s  ~+ and ~_ c o i n c i d e  w i t h  t h e  G i b b s i a n  m e a s u r e s  c o n -  

s t r u c t e d  f r o m  t h e  f u n c t i o n s  ~(~0 and ~s!. T h i s  a l l o w s  one to  p r o v e  a s t r e n g t h e n e d  v a r i a n t  o f  

6 . 2 . 4 ,  s t a r t i n g  f rom 3 .7  and 6 . 2 . 3 .  A n a l o g o u s  f a c t s  a r e  v a l i d  f o r  f l o w s  [164 ] .  

6 . 3 . 3 .  We n o t e  an i n t e r e s t i n g  f a c t ,  p r o v e d  by B. M. G u r e v i c h  and V. I .  O s e l e d e t s  [67] 
w i t h  t h e  a i d  o f  6 . 3 . 2 .  I f  t h e  t o p o l o g i c a l l y  t r a n s i t i v e  ? ~ - d i f f e o m o r p h i s m  f has  no a b s o l u t e l y  

continuous invariant measure, then with respect to any absolutely continuous measure ~, f is 

dissipative, i.e., one can find a set A, ~(A)>0, such that InAf]TmA'----fD for n # m and 
UTnA=J~(rnod0). Whence it follows that 6.2.1 is solvable in measurable functions for any 
n 

measurable g. 

6.4. Let A be a hyperbolic attractor of the diffeomorphism f or the flow ft of class C a , 

i.e., a hyperbolic set such that for some neighborhood f/DA A f~V=A (respectively, 
n>0 

Let g be a continuous function on V. Then, if the restriction fIJ (ftiJ) is topolog- 

ically transitive, 

n - - I  

S lim n g (fkx) -> g@'~(") 
t ~ o o  k ~ 0  A 

T 

(respectively, ',m~ig(/tx)dt-*ig(x)dp.~<.)(x)). The function p(,O is defined only on A. 
T ~ o o  0 A / 

If the restriction f / A ( f t I A )  has the property of mixing domains, then for any absolute- 

ly continuous measure ~ with carrier in the neighborhood V one has the weak convergence 

(f*)nv-~(u) as a-+co (~)v-+~(u) as t-+o o). This generalization of a result of Ya. G. 

Sinai is due to Ruelle and Bowen [270] (the case of flows). The proof for diffeomorphisms 
is in [268]. 
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6.5. For an expanding endomorphism f:M~M there always exists a unique absolutely con- 

tinuous positive invariant measure. With respect to this measure f is a strict endomorphism 

(Krzyzewski and Szlenk [489]). Krzyzewski proved that this measure is always smooth [485]. 

L. A. Kosyakin and E. A. Sandier [102], and later, independently, Lasota and Yorke [510] 

proved that a map of a segment that is twice continuously differentiable everywhere except 
at a finite number of points has an absolutely continuous invariant measure whose density 
has bounded variation. 

w -Flows 

7.1. Let ft:M-+M be a topologically transitive ~ -flow of class C ~ on the compact mani- 

fold M. An invariant measure, which we shall denote by ~o, for this case was first constructed 
by G. A. Margulis [121]. The method of Mnrgulis is different from the "Markovian" method of 
Sinai (Secs. 3 and 4), as well as from the method of Bowen (Sec. 5). 

The global integral manifolds of the distributions Es-~E ~ and Eu+E ~ E s, E ~ are called, 

respectively, contracting and expanding leaves, and contracting and expanding orispheres. 
Let a Riemannian metric be fixed on M. We shall consider each expanding leaf ~ as an in- 

dependent Riemannian manifold and we define linear functionals It, t>O, on the space of con- 

tinuous finitary functions on o: 

It (~?) ---- ~ ~ (ft X) d~ o, 

where ~ is the measure induced by the Riemannianvolume on the leaf. Further, one con- 
siders the closure of the set of linear combinations of I t with nonnegative coefficients, 
satisfying some normalization condition, and with the aid of Tikhonov's theorem in this clo- 

sure a functional I is sought, for which ~oft) =dtl(~), where d>l is some constant. The 

functional I generates a o-finite measure ~ on the leaf, and consequently, also a condi- 
tional measure on the orispheres that make up the leaf, while it turns out that the measures 
on the different leaves are well coordinated so that with the aid of these measures and the 
corresponding measures on the contracting leaves one can define a global invariant measure 
on M. 

7.2 We recall that the geodesic flow on a compact Riemannian (or Finslerian) manifold N is 

the flow on the manifold W(N)C TN of tangent vectors to N of unit length, which can be described as 

motion of a tangent vector w G W(N) along the geodesic, which it defines with unit speed with respect 

to the parameter of arc length. On W(M) there is induced a Riemannian metric and Riemannian 
volume which is an invariant measure for the geodesic flow. 

If the curvature of the manifold N in any two-dimensional direction is negative, then 

the geodesic flow on N is a ~-flow. The first estimate of the asymptotic number of closed 

geodesics on a compact n-dimensional Riemannian manifold of negative curvature was given in 
1966 by Ya. G. Sinai [168]. Namely, if K~ and K a a are the infimum and supremum of the curva- 
tures of N in two-dimensional directions, and v(R) is the number of closed geodesics of 
length not more than R, then 

(n- -  1) K2 < li.t'-- ~ I n v  (R) ~ 1 ~  lnv___ff_(R) ~ (rL --  1)/('~. 
R-.-,.ao R~-Qo 

In [120], G. A. Margulis essentially sharpened the result of Ya. G. Sinai, proving that 

7.2.1 lira d.R.v(R) =I 
R-+oo e dR 

where d is the constant from Paragraph 7.1. Here, actually, Margulis proved the coincidence 
of the measure of Paragraph 7.1 with the measure ~o, which is constructed for flows by the 
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method of Sec. 5 (there is a similar proof in the dissertation of G. A. Margulis, "Some 

questions of the theory of ~-systems,"Moscow University, 1970). 

It should be noted that the exact multiplicative asymptotic 7.2.1 for ~(R) is not ob- 
tained by the general methods of Secs. 3, 4, or 5 (the analogous result for discrete time 
follows from the theory of Markovian partitions). In [120] some other asymptotic charac- 
teristics of manifolds of negative curvature are also obtained. 

We note, in conclusion, the later paper of Bowen [264] in which it is proved that for 
the geodesic flow on manifolds of constant negative curvature the measure ~o coincides with 
the natural smooth invariant measure. 

7.3. The geodesic flow on a Riemannian manifold N can be a v-flow not only if the cur- 

vature of N in every two-dimensional direction is negative. A series of necessary condi- 
tions for this was found by Klingenberg [448]. Among these conditions are the absence of 
conjugate points on N and the fact that the universal covering of N should be diffeomorphic 
with Euclidean space. P. Eberlein [323, 324] found some conditions that are necessary and 

sufficient for the geodesic flow on a manifold without conjugate points to be a ~ -flow. 

7.4. If ft:M-+M is a ~-flow, then for any flow gt that is close to ft in the C l- 

topology there exists a homeomorphism ~g:M-+M carrying the trajectories of ft into tra- 

jectories of gt. This homeomorphism is not uniquely defined. There is interest in the ques- 

tion ol necessary or sufficient conditions under which the homeomorphism ~g can be chosen 

absolutely continuous. A. B. Katok [84] applied the rotation number to this problem. Namely, 
he proved that if the flows ft and gt preserve the smooth measure ~ and the rotation classes 

~(/t) and ~(gt) are not collinear in the homology group HI(M, R), then any homeomorphism 

~g is singular. If dim M = 3, then one can get another necessary condition, and in the case 

when ft and gt are geodesic flows on surfaces of negative curvature, sufficient conditions 
also. We shall dwell on the latter case. A necessary condition for the existence of a non- 
singular homeomorphism, homotopic to the identity, sending trajectories of ft into trajec- 
tories of gt is the proportionality of the length of all homotopic closed trajectories of 
ft and gt" Now if the Riemannian metrics generating ft and gt are homotopic in the class of 
metrics of negative curvature, then this condition is sufficient for the existence of a 
homeomorphism preserving a smooth invariant measure, conjugating the flows ft and g~,t, ~ = 
const. 

w Billiards and Some Other Systems 

In this paragraph we shall consider some classes of dynamical systems on manifolds, in 
which one has hyperbolic behavior of trajectories, i.e., exponential approach in one direc- 
tion and exponential dispersal in another, but this is not true of all trajectories and the 
estimates of dispersal are not uniform in time. 

8.1. In the case of smooth dynamical systems with smooth invariant measure~ a natural 
generalization of the hypotheses of Paragraph 2.1 is the absence of null characteristic Lyapunov 
exponents (cf. [40] and Sec. 2 of Chap. 9) on a set of full measure. Ya. B. Pesin constructed 
a theory of stable and unstable manifolds for dynamical systems with nonzero exponents and 
with its aid proved the following theorem: 

Let [:M~M be a diffeomorphism with a smooth invariant measure ~, A be the set of those 
points at which all characteristic exponents are different from zero. Then almost any er- 
godic component of f, lying in the set A, has positive measure. Each such component decom- 
poses into a union of a finite number of sets, invariant with respect to some power of f, 
while this power is a K-automorphism on each of the invariant sets. 

8.2. From a general point of view, billiard systems can be considered as a generaliza- 
tion of geodesic flows to the case of Riemannian manifolds with piecewise smooth boundary. 
Let Q be such a manifold, W(Q), as in Sec. 7, be the manifold (also with boundary) of tangent 
vectors to Q of unit length. 

By billiards in Q is meant a dynamical system in W, generated by motion of a tangent 
vector w in W along the geodesic defined by it with unit speed, while upon the carrier of w 
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hitting the boundary of Q there occurs instantaneous reflection according to the law "angle 
of incidence equals angle of reflection." This means that the tangential component of the 
vector w is preserved but the normal component changes sign, after which the motion can be 
continued inside Q, provided only the hit did not occur at a "fracture" of the boundary. 
It follows from paragraph 7.2 that billiards has a natural invariant measure. The practi- 

cal word in what follows will go only to two-dimensional manifolds Q with metric of zero 
curvature, i.e., domains with piecewise smooth boundary in the Euclidean plane or on the 
torus. The ergodic properties of billiards depend essentially on geometric properties of 
the boundary F = ~Q. If F is a convex curve, while the curvature of Y is different from zero 
and the smoothness is sufficiently high, then billiards in the bounded domain Q is non- 
ergodic. We shall speak about billiards insiAe polygons in Paragraph 3.3 of Chap. 4. Hyper- 
bolic effects were first discovered in billiards whose boundary turns convexly inside the 
domain. The role of such boundaries in billiards is similar to the role of regions of nega- 
tive curvature for geodesic flows. 

In the paper of Ya. G. Sinai [161] billiards in domains Q, obtained from an n-dimen- 
sional torus or square by the rejection of a finite number of convex domains, was consid- 
ered. We shall explain how to obtain in such systems exponentially unstable trajectories. 
Let us assume that n = 2 and we fix a point qE Q and an angle ~ . We release a pencil of 

trajectories from the point q at angles close to ~ . As long as this pencil is not reflected 

from a concave component of the boundary, the separating of the pencil occurs with line=~ 
speed, and its front is an arc of a circle, whose radius grows linearly with time, and the 
curvature decreases with the same speed. It turns out that upon reflection from a concave 
boundary the convex pencil remains convex in the small, but its curvature increases upon 
reflection by a quantity depending on the angle of incidence and the curvature of the bound- 
ary at the point of reflection. Between two reflections the width of the pencil grows in 

the small by (|~-Tk) times, where T is the interval between the reflections and k is the 

curvature of the pencil at the initial moment. Hence by n reflections the width of the pen- 
n 

cil increases by ~(|-~T~ki) times, where Ti, k i are the corresponding quantities for the 

i-th reflection. Since the number of reflections for typical trajectories grows linearly 
with t, the latter expression grows exponentially with t. 

We note two characteristic difficulties arising in the study of the asymptotic behavior 
of trajectories in such billiards. First of all, some trajectories can in general not hit 
the boundary (example: a certain family of closed geodesics on the torus from which a small 
disk has been excised). Such trajectories are small, but others may from time to time ap- 
proach close to them and because of this some Ti will be large. 

Secondly, billiards is a discontinuous dynamical system in W. Discontinuities arise 
upon trajectories hitting fracture points of the boundary (and there always are such points 
if Q is a domain in the plane) and upon tangency of trajectories with the boundary. 

It is proved in [161] that for typical points in phase space one can construct stable 
and unstable manifolds. The measure of the set of typical points is equal to one. But in 

contrast to > -systems the manifolds WS(x) and WU(x) are discontinuous functions of x. More- 

over, each fiber WS(x), WU(x) as a submanifold of M itself has singularities of fracture 
type. Hence, the general theory of systems with transversal fibers [158] gives for this case 
positive entropy. In [161] it was proved that nevertheless the systems considered are ergo- 
dic and are K-systems. At the basis of the considerations lies a theorem that is naturally 
called the fundamental theorem of this theory. Its meaning is that in a sufficiently small 

neighborhood of a point of general form for any p, 0<p<1, and any C, 0<C<~, if one takes 

a regular (i.e., without singularities) segment of W s (~) of length C~, then with probability 
not less than p, through its points one can pass regular segments ofW u (W s) of length not less 
than C~. 

In the paper of L. A. Bunimovich and Ya. G. Sinai [39] an essentially simpler proof of 
the fundamental theorem than in [161] was obtained, which is applicable in more general cir- 
cumstances. Simultaneously, by the same methods Kubo proved the K-property for billiards in 
domains of more general form [494, 495]. The definitive condition in the two-dimensional 
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case looks like this: The domain Q has a boundary consisting of a finite number of concave 
curves of class C 2, which intersect transversally. Billiards in such domains are called 
scattering. 

8.3. Further progress in the study of billiards is due to L. A. Bunimovich. In his 
papers [33, 37, 38] he singled out a new class of domains, in which one succeeds in proving 
the K-property for billiards with the aid of the construction of the stable and unstable 
manifolds for most points. In the papers [33, 37] this program is realized for domains with 
boundary consisting of several concave curves, intersecting transversally (scattering com- 
ponents of the boundary) and several arcs of different circles (focusing components or pock- 
ets). Additional conditions are that the arcs cannot abut on one another, and also that the 
disk bounded by each circle belongs to Q. In [38] yet another series of examples is consid- 
ered in which the boundary consists of scattering components, arcs of circles, and segments 
of lines (neutral components). There is more interest in the principal point of view of the 
very simple example: The domain Q is convex and bounded by two simicircles, joined by seg- 
ments of common exterior tangents (such domains, naturally, are called "stadia"). The value 
of this example is that it demonstrates a new mechanism in the appearance of hyperbolic prop- 
erties, connected not with scattering pencils of trajectories but with successive agreements 
of focusing. It should be noted that the theory here is not complete. In particular, the 
requirement of constant curvature of the focusing component is nonprinciple. However, in 
this case it is necessary to introduce restrictions on the integral of the curvature of the 
focusing components and hence one should not expect elegant general conditions which would 
contain all the interesting cases. 

In [32, 35] for the scattering billiards considered in [37, 39], the central limit theo- 
rem is proved. 

The ergodicity of billiards is of interest not only for its own sake. As was proved 
by A. I. Shnirel'man [183], from it follows very interesting information about the asympto- 
tically uniform distribution of the eigenvalues of the Laplace operator with reflection con- 
dition on the boundary. 

8.4. Kubo (preprint) considered a class of systems close to billiards. Billiards can 
be represented as a dynamical system generated by the motion of a particle with unit energy 
in a force field whose potential has the form 

~0, q~ Int Q, 
U (q) = ~, oo, qEOQ. 

Kubo considered a Hamiltonian system generated by the motion of a particle in a torus 
in a force field with potential U([q--qo[) for which U(r)~O for r~ro, r0< I/2, and the de- 

rivative U' is negative and sufficiently large in modulus (strongly repellent). 

8.5. It is natural to try to seek out conditions on the Riemannian metric weaker than 
negativity of curvature, which would allow one to investigate the metric properties of the 
geodesic flow in the spirit of "nonuniform hyperbolicity." 

The first steps in this direction were made in the papers of A. Kramli [106, 108]. His 
result is the following. Let M be a compact orientable surface of genus greater than one 
with a Riemannian metric without focal points (this condition is somewhat stronger than the 
condition of absence of conjugate points), W_ be the set of those line elements which do not 
always remain in domains of zero curvature. Then the measure of W_ is positive and almost 
all ergodic components of the geodesic flows making up W- have positive measure and on each 
of these components the geodesic flow is a K-flow. Ya. B. Pesin strenthened this result, 
proving the ergodicity of the geodesic flow on W_. 

We note that there are interesting papers of P. Eberlein on the topological structure 
of geodesic flows on Riemannian manifolds with various properties, weaker than negative cur- 
vature (cf. [322]). The methods of P. Eberlein apparently are poorly suited to the inves- 
tigation of the metric properties of these flows. 

8.6. Yet another example of systems of discontinuous type with hyperbolic properties was 
investigated by V. I. Oseledets. The question here is of a model for stochastic acceleration 
of Fermi, described in the book of G. M. Zaslavskii (cf. Chap. IV of [76]). We consider a 
transformation of the two-dimensional torus 
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T (xl, x2)=(xl + e N f ( x l ) + N x 2  (rood 1), x2+ efxl  (rood 1), 

clearly preserving Lebesgue measure. The function f is such that 

j l ,  0 < x <  t/2, 
/" (x)-----k--l, 1/2..<x<l. 

Hence the transformation T is not smooth. It turns out that as 'N=+oo, s Ne=k this trans- 

formation becomes ergodic and will even have the K-property for sufficiently large N, if 

or k<--4. It is interesting to note that the latter result is obtained with the aid 

of a definition of hyperbolicity in terms of "cones," which is more convenient for many ap- 
plications (cf. [3-5]). 

8.7. There are one-dimensional irreversible maps, which are somewhat similar with the 
systems considered in this paragraph (cf. 2.2). We shall speak in this connection of the 
paper of L. A. Bunimovich [31], which proved the existence of an absolutely continuous in- 
variant measure for maps of the circle of the form Tx = q~ sin x(mod z), where q is an integer 
not equal to zero. From the presence of critical points of this mapping, the density of the 
invariant measure has singularities. 

w Partially Hyperbolic Dynamical Systems 

In this paragraph we shall consider a useful generalization of ~-system (Paragraph 2.1). 

9.1. A diffeomorphism f of a compact connected manifold is called partially hyperbolic 

if at each point x 6M the tangent space TxM decomposes into the direct sum of three subspaces 

Ex s, Ex ~ Ex u, while the following conditions are satisfied: 

9.1.1. The dimensions of E~, E~, E~ are independent of x and at least two of these di- 

mensions are greater than zero. 

9.1.2. r ~ O,u. DfE.~ = E f~, r=s,  

9.1.3. For some Riemannian metric on M one can find a number c>0 and 0<ki<~i<I< 

:~2<k2 such that for xEfW and a natural number n one has the following inequalities (the 

norm is induced by the Riemannian metric) 

ltDfnuil ~<cX~ tlttlt, u6E]. ; 

j lD/nul l> ct~ [lull, u6E ~ ; 

llO./-'uj[ > c~-"llull,  u e E  ~ ; 
]lO/-"uj] ~< cX~"llull, u~E~. 

The flow ft is called partially hyperbolic if fl is a partially hyperbolic diffeomorphism. 

9.2. Conditions of the type given in Paragraph 9.1 are well known in the theory of in- 
variant manifolds for ordinary differential equations. In application to dynamical systems 
on compact manifolds these conditions first appeared explicitly in Hirsch, Pugh, and Shub 
[399]. This paper is devoted to basic topological questions. As an example, Anosovian ac- 

tions of Lie groups are considered in it. A locally free action of group G as diffeomorphims 

{/g} of a manifold M is called Anosovian if for some element g 6 G the diffeomorphism fg is 

partially hyperbolic while E ~ is the tangent space to the orbits of the action of G. The 
element g :is called an Anosovian element. In [614] Pugh and Shub proved that an Anosovian 
action with a smooth invariant measure is ergodic if an Anosovian element lies in the con- 
tralizer of G. 

The first paper on the metric theory of dynamical systems in which nontrivial effects 
connected with partial hyperbolicity were studied was the paper of A. M. Stepin [171] on 
spectral properties of some flows on solvable manifolds, generated by groups of motions (cf. 
See. 1 of Chap. 3). Almost simultaneously, there appeared the paper of Sacksteder [638] in 
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which properties of mixing diffeomorphisms with smooth expanding and contracting fibers of 
nonfull dimension were studied, and in particular it was proved that absolute nonintegrabil- 
ity (cf. Paragraph 9.4) is sufficient for mixing with respect to a smooth invariant measure. 
In the situations considered by Stepin and Sacksteder, because of the smoothness of the fi- 
bers analytic difficulties are easily overcome. The definitions and results given below are 
due to M. I. Brin and Ya. B. Pesin and are contained in their joint papers [27-29] and in 
the papers of M. I. Brin [24-26]. The approach of Brin and Pesin to the study of partially 
hyperbolic systems is a rather extensive development of the approach of Sacksteder. This 
approach allows one to get a series of interesting, although apparently not definitive, me- 
tric and topological results in the case of nonsmooth fibers. M. I. Brin and Ya. B. Pesin 
also used some results of [399]. 

The subsequent results on partially hyperbolic systems generated by motions on homo- 
geneous spaces of Lie groups are in the paper of A. M. Stepin [176] (cf. Sec. 1 of Chap. 3). 
We shall mention some other papers in the course of the exposition. 

9.3. As in the case of ~-systems, 9.1.3 is independent of the choice of Riemannian 

metric, and the subspaces E s E u E ~ depend continuously on x and generate three continuous 
X' X' X 

distributions on M, which are naturally denoted by E s, E u, E ~ For the first two of them 
one has an analogue of the Hadamard--Perron theorem, which allows one to construct integral 
manifolds of these distributions, satisfying a uniqueness condition and generating fibra- 
tions, which we denote by W s, W u. These fibrations have the important property of absolute 
continuity; the map of a smooth area element UI, which is transverse to the fibers into a 
C1-close area element U2, under which the point x~ UI corresponds to the unique point of U2 

of the local fiber of the point x, has bounded Jacobian with respect to the Riemannian vol- 
umes onU1 and U2 [27, 29]. This property allows one to apply to partially hyperbolic sys- 
tems the theory of transversal fibrations of Ya. G. Sinai [158]. 

The entropy of a partially hyperbolic system with respect to a smooth invariant measure 
is positive and bounded by the characteristic exponents [24]. Using his general theory of 
stable manifolds (cf. Paragraph 8.1), Ya. B. Pesin proved that the entropy of a diffeomor- 
phism with respect to a smooth invariant measure is equal to the integral of the sum of the 
positive characteristic exponents. 

9.4. More subtle metric properties of partially hyperbolic systems, in the first place 
ergodicity and the K-property, hold under additional restrictions. In order to clarify the 
meaning of these restrictions, we return to the case when the distributions E s and E u have 
sufficiently high smoothness (this case was studied by Sacksteder [638]). 

We call the pair of fibrations WS and W u absolutely nonintegrable if the values at 

each point x ~M of smooth vector fields subordinate to the distributions E s and E u and 

their Lie brackets of those orders for which the bracket operation is defined generate the 
entire tangent space TxM. 

There is a geometric property, derived from absolute nonintegrability, which can be de- 
fined in several variants and for nonsmooth fibrations. Namely, the pair of continuous fi- 
brations W s and W u is called almost locally transitive (respectively, transitive) if any two 

sufficiently close points ~ yGM can be joined by a chain of points x0=x, xl .... , xN-1, 

(N is independent of x and y) such that for i = 0, i, ..., N -- i, the points x i and 

xi+1 lie on one local fiber of one of the fibrations (respectively, on one global fiber but 

at uniformly bounded distance in the fiber). 

9.4.1. The property of almost local transitivity of the pair W s, W u is preserved under 
small C 2 perturbations of the dynamical system, if in the original dynamical system the dis- 
tributions E s and E u have sufficiently high smoothness [29]. 

9.4.2. If the pair of fibrations W s, W u of a partially hyperbolic diffeomorphism is 
transitive, then the diffeomorphism is topologically transitive [25]. 

9.5. Starting here we shall always assume that the diffeomorphisms or flows considered 
have smooth invariant measure ~. 
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9.5.1. If the distributions E s and E u of a diffeomorphism satisfy a Lipschitz condition, 
and the pair of fibrations W s, W u is transitive, then f is a K-automorphism with respect to 

[29]. 

It is unknown whether this assertion is true if one relinquishes the Lipschitz condi- 
tion on E s and E u. The difficulties that arise here are connected with the fact that the 
"middle" fibration W ~ corresponding to the distribution E ~ even if it exists, may not be ab- 
solutely continuous. Nevertheless one can successfully replace the condition of 9.5.1 by 
others which correspond to a series of interesting examples. 

9.5.2. Let the distributions E ~ E ~ s, E ~ u be integrable, the pair of fibrations 
W s and WU be almost locally transitive, and ir addition WS and W u satisfy some additional 
condition which is fulfilled if, for example, E s and E u are Lipschitzian along the fibers 
of the fibration W ~ Then f is a K-automorphism [27, 29]. 

9.6. The condition of 9.5.2 turns out to be crude for some classes of dynamical systems. 
Let M, N be smooth manifolds, where M is a smooth bundle with base N and projection =:TW-+N. 

A diffeomorphism f:M-+~1 is called an extension of the diffeomorphism h:N-+N if =f-----k=. 

If, in addition, the bundle M over N is a principal right G-bundle, where G is a Lie group, 

then the extension f is called a G-extension, if for g6O, x~TWf(xg)=f(x)g. The defini- 

tion for flows is analogous. 

If /:~[-+7%4 is an extension of a ~-diffeomorphism h::~-+fW, E0=Ker~ and ~i ~j < I 

~__s , k2~q < 1 and the pair of bundles W s, W u is almost locally transitive, then the conditions of 

9.5.2 are satisfied, and hence, f is a K-automorphism [29]. If the bundles W s and W u are 
sufficiently smooth, then by virtue of 9.4.1, 9.5.2 is satisfied also for extensions of the 
diffeomorphism h which are sufficiently close to f in the C2-topology. 

9.7. We give more detailed results relating to a special class of G-extensions of ~- 

flows. By the flow of frames on an n-dimensional compact Riemannian manifold M is meant a 

flow in the manifold ~n(M) of orthonormal tangent n-frames, under which the first vector of 

the frame moves with unit speed along a geodesic and the frame itself is parallel transported 
along this geodesic. Obviously, the frame flow is an SO(n -- l)-extension of the geodesic 
flow. 

9.7.1. In [28, 29], M. I. Brin and Ya. B. Pesin, using 9.4.1 and 9.5.2, proved that 
frame flow is a K-flow if the Riemannian metric on M is close in the C3-topology to a metric 
of constantnegative curvature. For three-dimensional manifolds, ergodicity in this case was 
proved independently by A. B. Kramli [107]. 

9.7.2. There is a conjecture (Green [370]) that the frame flow is ergodic if the curva- 
ture on M is negative and the ratio of maximal and minimal curvatures in two-dimensional di- 
rections is less than four. In [29] an example of G. A. Margulis is given: If a Riemannian 
metric is Kahlerian, then the frame flow has a first integral. In such examples, the ratio 
of greatest curvature and least may be equal to four. 

9.7.3. In [25] M. I. Brin proved that in the space of metrics of negative curvature of 

class C ~ (r~3) an open dense set is formed by the metrics for which the frame flow is a K- 

flow. 

9.8. In [26] M. I. Brin proved that for any diffeomorphism or flow ft on M which is a 

G-extension of a ~-system on N there exist a closed subgroup [fcG and a map o:A4-+O/H 

of class C ~, such that for X~TW we have ~(x).g=a(x.g) and the preimages of left cosets Hg 

are invariant with respect to f(ft), and on each such preimage f(ft) is ergodic with respect 
to the smooth invariant measure. Whence it is easy to deduce that the frame flow on any 
three-dimensional manifold of negative curvature is a K-flow. Using some more refined topo- 
logical considerations, D. V. Anosov proved an analogous fact for five-dimensional manifolds. 
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CHAPTER 3 

DYNAMICAL SYSTEMS ON HOMOGENEOUS SPACES 

w Flows on Homogeneous Spaces of Lie Groups 

i.I. Let G be a Lie group, F be a closed subgroup of G. Let us assume that on the homo- 
geneous space G/F there exists a finite measure, invariant with respect to the left action 

{Tz} of the group G on G/F.* The restriction of this action to any one-parameter subgroup 

of G will be called a G-induced flow. For the study of the metric and topological proper- 
ties of such flows, one uses algebraic methods and methods of the theory of representations. 
The first application of these methods appears in the paper of I. M. Gel'fand and S. V. Fo- 
min [56], in which the methods of the theory of representations were used to calculate the 
spectrum of the geodesic flow on compact manifolds of negative curvature. 

The fact that G-induced flows admit extension to the action of a wider class of Lie 
groups imposes essentia• restrictions on their properties. For example, there is a conjec- 
ture that the spectrum of G-induced flow can only have discrete and countably multiple Le- 
besgue components [174]. All the results obtained up to this time confirm this conjecture. 

1.2. Let gt be a one-parameter subgroup of G. The expanding orispherical subgroup (cf. 

[55]) connected'with gt is the collection H + of elements h~0 such that as t-+ ~ lim g_thgt=e 

(e is the identity of the group). The contracting orispherical subgroup H- connected with 

gt is the subgroup H + connected with g-t. We denote by ~e the complexification of the (real) 

Lie algebra ~ of the group G. We decompose ~c into a sum of root subspaces V~. of the opera- 

tor adx:y-+[x, y], XE| The subspace V~+V~ is invariant with respect to complex conjuga- 

tion in ~c and hence can be represented in the form ~+~, where ~c~. We write 

~*=~., ~u=~, ~0--X~. Then H-=exp~u,H------exp~ s. We extend the decomposition 
Re~<O Re~>O R e ~ O  

~__--O*~-~u+ ~0 to a left invariant decomposition of the tangent bundle of G: TG = E s + 

E u + E ~ The projection of this decomposition onto T(G/F) forms a decomposition of T(G/F) 
into contracting, expanding, and neutral distributions with respect to the flow Texpt x. The 
fibrations W s and W u on the integral manifolds of the first two distributions are fibrations 
into orbits of the action on G/F of the orispherical subgroups H- and H +. Thus, if the sub- 
groups H + and H- are not contained in F, then the G-induced flow Texpt x is a partially hy- 
perbolic system in the sense of Sec.' 9 Chap. 2. 

Transitivity of the pair of fibrations WS and W u in terms of the orispherical subgroups 
means that the subgroups H-, H +, and F in aggregate generate the entire group. Since the fi- 
brations WS and WU are analytic, it follows from the transitivity that Texpt x is a K-flow. 

1.3. Basic special cases of dynamical systems on homogeneous manifolds are G-induced 
flows on factor spaces of semisimple and solvable groups. In the first case, the simplest 
examples are flows on factor spaces of the group G = SL(2, R) by discrete subgroups. If x 
is a second-order matrix with trace zero and distinct eigenvalues, the the subgroup e tx 

induces a ~ -flow on G/Z2D; it admits a geometric realization as the geodesic flow on a sur- 

face of constant negative curvature. If x has zero eigenvalues then the subgroup e tx in- 

duces a minimal ergodic flow on G/Z2D; its geometric realization is the oricycle flow. In 

the case of nonreal eigenvalues of the matrix x, the subgroup e tx gives a periodic flow. 

A subgroup H of G is called ergodic if on each factor space G/F of finite volume the 
action of the subgroup is ergodic. The metric properties of group actions on homogeneous 
spaces of semisimp!e groups were considered by Moore [542]. He found in this case a geome- 
tric description of ergodic subgroups and proved the absolute continuity of the spectrum of 
the flow generated by a one-parameter ergodic subgroup. The final result in the problem of 
spectral analysis of such flows is due to A. M. Stepin [176]: A flow on a factor space of 
finite volume of a connected semisimple group induced by an ergodic subgroup has countably 

*Such a measure is unique up to a factor. For a discussion of the question of the existence 

of an invariant measure, cf. [97]. 
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multiple Lebesgue spectrum. Another basic result of the paper [176]: If R is a representa- 
tion, which is continuous in the strong topology of a semisimple group G, by isometric op- 
erators on a Banach space B, then the subspace of H+-invariant vectors in B coincides with 
the subspace of H--invariant vectors. Whence it follows that the measurable (topological) 
hull of the fibration W s or W u coincides with the measurable (topological) hull of the fibra- 
tion by orbits of some normal subgroup of G. In particular, the flow Texptx will be a K- 
flow on any homogeneous space G/F with finite left-invariant measure if an only if the opera- 

tor adx in each simple ideal of the algebra ~ has an eigenvector corresponding to an eigen- 
value with nonzero real part. 

1.4. The results on the topological proporties and ergodicity of G-induced flows on nil- 
potent and some solvable manifolds obtained up to 1966 are expounded in the book of Auslan- 
der, Green, and Hahn [17]. Typical examples of G-induced flows on solvable manifolds are 
flows on factor spaces of semidirect products of G planes and their one-parameter groups of 
automorphisms A t . If the group A t is hyperbolic, then the flows induced by regular elements 

of the Lie algebra of the group G are ~ -flows. Now if the group of automorphisms A t is 

compact, then any such flow is isomorphic with a flow induced by a one-parameter subgroup on 
the three-dimensional torus. Yet another interesting example is the G-induced flow on the 
factor space of a three-dimensional nilpotent Lie group N by a uniform discrete subgroup D. 
Such a flow is minimal and ergodic if an only if its factor-flow on the two-dimensiona7 to- 
rus N/[N, N]D, where [N, N] is the commutator subgroup of N, has these properties. A G-in- 
duced flow on a nilpotent manifold is called a nilflow. 

The final solution of the problems of ergodicity and minimality of flows on solvable 
manifolds was obtained by Auslander in [224, 227, 228]. He found necessary and sufficient 
conditions for the ergodicity of a G-induced flow on a homogeneous manifold of a solvable 
group. In [227] the theorem is proved: If the flow Tt on the solvable manifold G/D, in- 
duced by a one-parameter subgroup of G, is minimal, then the manifold G/D is homeomorphic 
with a nilmanifold, and the flow T t is algebraically conjugate with a nilflow. 

Let G be a simply connected solvable group, which is the image of its Lie algebra 
under the map exp DcG be a uniform discrete subgroup. A. M. Stepin [171] proved that the 

spectrum of an ergodic flow on G/D, generated by a regular element of ~, consists of discrete 

and countable multiple Lebesgue components. The proof is based on the fact that the measura- 
ble hull of the expanding fibration WU of such a flow coincides with the measurable hull 
of the pair of fibrations WU and W s, while the factor-flow Texptx/~ is isomorphic with a nil- 
flow. 

Parry [600] proved that metrically isomorphic nilflows are algebraically isomorphic. 

1.5. ]Let G be a simply connected Lie group with Lie algebra ~, while the factor-algebra 

by its radical contains no compact ideals. Conze [301] considered flows on compact homo- 

geneous spaces of the group G, induced by real regular elements of ~ . It turned out that 

such flows have the K-property if they have continuous spectra. 

Le G be a locally compact group; Hz, H2 be closed subgroups of G. Using the duality be- 
tween H1-invariant measures on G/H2 and H2-invariant measures on G/HI, Furstenberg [358] 
proved the strict ergodicity (of. Sec. i, Chap. 4) of the horocycle flow on compact surfaces 
of constant: negative curvature. A generalization of this result was obtained in preprint of 
Eberlein and Veech. 

A. S. Mishchenko [127] considered geodesic flows (with respect to left-invariant Rie- 
mannian metrics) on Lie groups and found a series of integrals of motions for geodesic flows 
on groups of orthogonal matrices with metrics corresponding to motions of n-dimensional rigid 
bodies. 

w Groups of Automorphisms and Affine Transformations 

Another class of measure-preserving transformations, whose analysis can be carried out 
by algebraic means, is formed by the automorphisms and affine transformations of groups and 
their homogeneous spaces. Let F be a discrete subgroup of G with factor space of finite vol- 
ume, Abe an automorphism (endomorphism) of the group G, carrying F into itself, and h ~ G~ 
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The transformation T:gF~hA(gF) is called an affine transformation of the space G/F; it 

preserves the left-invariant measure on G/F. Typical examples of transformations of the 
class considered are automorphisms of tori and nilmanifolds, and also transformations with 
quasidiscrete spectrum (cf. par. 3). 

A cycle of papers of Parry [596, 598-601, 603] is devoted to the analysis of the metric 
and topological properties of affine transformations of nilmanifolds. An affine transforma- 
tion T of a nilmanifold N/F is an extension (cf. Sec. 4) of an affine transformation T' on 
the torus N/[N, N]F. Necessary and sufficient conditions for ergodicity (strict ergodicity, 
minimality) of the transformation T are ergodicity* (strict ergodicity, minimality) of the 
transformation T'. An ergodic affihe transformation T of a nilmanifold has countably mul- 
tiple Lebesgue spectrum in the orthogonal complement of the space generated by the eigen- 
functions of T [599]. Let S be an ergodic affine transformation of the nilmanifold X, T be 
a unipotentt affine transformation of the nilmanifold Y; if the homomorphism ~:X~Y is 

such that ~S=f% then ~ coincides almost everywhere with an affine homomorphism. In par- 

ticular, if ergodic unipotent affine transformations of nilmanifolds are metrically isomor- 
phic, then they are algebraically conjugate. In [603] it is shown that the class of ergodic 
unipotent affine transformations on nilmanifolds is closed with respect to factorization. 

Conze [301] calculated a T-partition of an affine transformation of a compact homoge- 
neous space. His method is analogous to the method of the earlier paper of A. M. Stepin 
[171]. Conze also proved that an affine transformation of a compact homogeneous space of 
a solvable group G has a continuous spectrum only in the case when G is nilpotent. The 
metric properties of endomorphisms on homogeneous spaces of compact groups are studied by 
S. A. Yuzvenskii in [187]. In [417] criteria are given for when the action of a commuta- 
tive group of diffeomorphisms of a compact manifold is isomorphic with the action of groups 
of affine transformations on a factor space of a Lie group. 

Walters [709, 710] proved that the problem of topological classification of affine 
transformations of compact commutative groups and nilmanifolds reduces to the problem of the 
algebraic similarity of such transformations. Brown [273] constructed a universal object 
for ergodic automorphisms of commutative metrizable groups. 

Berg [244] proved that the metric entropy of a (group) automorphism of a compact metriza- 
ble group achieves its maximum on the Haar measure m. Now if the automorphism is ergodic 
with respect to m and has finite entropy, then m is the unique measure maximizing the en- 
tropy. Bowen [260] calculated the topological entropy hd(T) (with respect to the metric d) 
for affine transformations of Lie groups and their homogeneous spaces. 

A series of papers is devoted to the question of the existence of ergodic automorphisms 
of noncompact locally compact groups. For commutative or connected groups, a negative an- 
swer to this question is due to S. A. Yuzvenskii [186] and Rajagopalan. Rajagopalan and 
Schreiber [615] announced a negative solution of this problem in the general case. Sato 
[643, 644] considers the question of the existence of an ergodic affine transformation of a 
noncompact locally compact group and gives a negative answer for commutative or totally dis- 
connected groups (cf. also [215]). Moreover, for groups of this class Sato [641, 642] proved 
that compactness follows from the existence of a topologically transitive affine transforma- 
tion. 

w Transformations with Quasidiscrete Spectra 

Transformations with quasidiscrete spectra are generalizations of transformations with 
discrete spectra. An eigenfunction of an automorphism T of the space (X, ~) is called a 
quasieigenfunction of the first order. Functions of higher order are defined by induction. 

Namely, if ~ is a quasieigenfunction of order n, and fE L2(X, ~), ~0, is a function such 

that ~(Tx) =~(x)f(x), then f is called a quasieigenfunction of order n + i. If the quasi- 

*The criterion for ergodicity of an affine transformation of the torus is due to Hahn; for 
another proof cf. the survey of Auslander [225]. 
tAn affine transformation T:gr-+hA (gF) of a factor-space G/F of a Lie group G is called uni- 
potent if the differential of the automorphism A at the identity of the group G is unipotent. 
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eigenfunctions form a complete system in L2(X, ~), then one says that the transformation T 
has quasidiscrete spectrum. 

3.i. In 1962 L. M. Abramov [i] constructed a metric classification of completely ergo- 
dic* transformations with quasidiscrete spectra and proved that such transformations are 
realized as affine transformations of compact connected commutative groups. The metric prop- 
erties of transformations with quasidiscrete spectra are considered by Hahn and Parry [383]. 
A completely ergodic transformation T with quasidiscrete spectrum is disjoint# from any com- 
pletely ergodic transformation whose spectrum is singular mod{l} with discrete spectrum T. 
Any invariant partition for a transformation T with quasidiscrete spectrum is a partition 
on the cosets with respect to some closed subgroup upon realization of T as an affine trans- 
formation; whence follows, in particular, the closedness of the class of transformations 
with quasidiscrete spectra with respect to factorization. 

3.2. In the posthumous paper of Hahn [381] interesting examples of one-parameter groups 
of transformations with quasidiscrete spectra are considered. Let A n be a closed subalgebra 
of the algebra of bounded continuous functions on the line, generated by elements of the 

form eiq(s), where q is a real polynomial of degree no greater than n. The real line acts 

on its compactification with respect to A n . This action is ergodic and minimal. On the 
basis of this example, Hahn undertook an attempt to construct a theory of flows with quasi- 
discrete spectrum. He proved the existence of a flow with a given system of quasieiger~unc - 
tions. In the remarks [604] on the paper of Hahn, with the supplementary assumption of com- 
plete minimality of the flow, Parry proved a uniqueness theorem and a theorem about the rep- 
resentability of flows with quasidiscrete spectra as flows of affine transformations. 

3.3. Brown [273] constructed a universal object for ergodic transformations with quasi- 
discrete spectra. In [212] it is proved that the maximal factor with quasidiscrete spectrum 
of an ergodic affine transformation of a connected group coincides with the maximal factor 
of zero entropy. In [209, 210, 213, 642] the indices of commuting for transformations with 
quasidiscrete spectra are computed. The question of the existence of roots of automorphisms 
with quasidiscrete spectra is solved by Michel [536-538]. Transformations with discrete spec- 
tra are considered in [490, 231, 232, 548, 505]. 

w G-Extensions 

A dynamical system T t in a space X, commuting with the action R of a compact group G, 
induces a factor-system T~ on the space of orbits of the action R and is called a G-exten- 
sion of the system T~ (cf. Paragraph 9.6., Sec. 9, Chap. 2). If G acts freely, then each 

G-extension has the form St:x-+ ~0(x,oTtx, where T t is some fixed G-extension. The function 
! 

0(x,t), ca%led the cocycle corresponding to the extension S t has the following properties: 

0(~x, t)= 0(x, t); 2) 0(x, tq-s)-----0(Ttx, s)0(x,t). Extensions S~ I) and S(2) are isomorphic i) if 
t 

their corresponding cocycles 0 (t) and 0 (~) are homologous, i.e., there exists a measurable func- 

tion ~(x), such that 0~ t)=~(Ttx)0(2)(x, t)~-1(x). 

We note that the nilflows considered in See. i are obtained by successive application 

of the procedure of T n -extension from flows with discrete spectra on tori. 

The question arises of under what conditions on the cocycle e does the system T t in- 
herit ergodic properties (such as ergodicity, mixing, complete positivity of entropy, mini- 
mality, etc.) from the system T t. In [595] Parry studies topological properties of G-exten- 
sions (for commutative G) and gets a structural theorem for a class of minimal transforma- 
tions, generalizing transformations with quasidiscrete spectra. 

Jones and Parry [422] proved that cocycles with values in commutative compact groups, 

homologous to the cocycle O(x. t)~e , form a set of the first category in the group of co- 

cycles with metric of the space C or L~. Whence it follows that commutative G-extensions, as 
a rule, inherit the dynamical properties of the base. 

*That is, ergodic along with all its powers. 
#Transformations T~ and T2 are disjoint if they are always independent as factor-transforma- 
tions (cf. [357]). 
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Thomas [696] considered the class of transformations T, satisfying the condition 

T(Rgx) =Ra~Tx, where ~ is an automorphism of the group G. He proved that such extensions, 

having continuous spectra, inherit complete positivity of entropy. In [697] for such ex- 
tensions there is proved an addition formula for entropy. Conze [303] made a survey of the 
metric properties of group endomorphisms and transformations, getting extensions with the 
help of group endomorphisms. He proved also that uniqueness of measures with maximal en- 
tropy is preserved for group extensions (cf. also [713] of Walters). 

A student at Moscow university, Morozov, proved that a G-extension of an ergodic shift 
on a compact group H has quasidiscrete spectrum only in the case when the cocycle giving the 
extension is homologous to a homomorphism of H into G. 

For a smooth flow, which is a T~-extension of a flow on a torus with discrete spectrum 
and sufficiently incommensurable eigenvalues, a geometric condition for its realization as a 
nilflow is obtained in [272]. 

A. G. Kushnirenko [113] considered an S I -extension of a rotation of a circle of the 

form (4 y)~{x'~-y+h(y), y+~) and under the additional assumptions h C C I, h'+l~0, he proved 

that in the orthogonal complement of the subspace of functions depending only on y, this 
transformation has countably multiple Lebesgue spectrum. 

Interesting examples of group extensions of Bernoulli automorphisms were considered by 
Goldstein, Landford, and Leibowitz [362] in connection with a physical model. 

CHAPTER 4 

DYNAMICAL SYSTEMS ON COMPACT METRIC SPACES 

In this chapter we shall consider continuous dynamical systems (homeomorphisms and one- 
parameter groups of homeomorphisms of compact metric spaces) whose space of Borelian inva- 
riant measures is finite-dimensional. We note that much has been said in Chap. 2 (especial- 
ly Secs. i, 3, and 5) about dynamical systems on compact metric spaces, but there in the cen- 
ter of attention was the situation (of most interest at least from the point of view of ap- 
plications) when there are very many invariant measures. On the other hand, in Chap. 3 
many strictly ergodic systems of algebraic origin were mentioned, and hence we shall not re- 
turn to their consideration. We shall dwell on two questions: strict ergodic realization 
of abstract dynamical systems (existence theorems in Sec. i and concrete constructions in 
Sec. 2) and the properties of some closely connected and completely concrete classes of dy- 
namical systems (Sec. 3), which are interesting from the point of view of applications and 
at the same time are typical for the problems considered in this chapter. 

In writing the first two paragraphs, an acquaintance with Jacobs' survey ([414], pre- 
print), the third paragraph of which is devoted to the same problems, turned out to be very 
useful. 

w Strictly Ergodic Realization of Dynamical Systems 

i.i. A homeomorphism f (respectively, a continuous flow ft) of a compact metric space X 
is called strictly ergodic if it has a unique Borelian normalized invariant measure. This 
is equivalent with the fact that for any continuous function ~ on f the mean 

(~ (x) + ? (fx) + . . .  § ? (f~-~x)) 

0 

converges uniformly as n ~ ( T  ~o:3) to a constant depending on ~ . The homeomorphism or con- 
tinuous flow is called minimal if any of its trajectories is everywhere dense. Minimality 
follows from strict ergodicity. The metric properties of strictly ergodic dynamical systems 
with respect to the unique invariant measure are, obviously, topological invariants of the 
dynamical system. 
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Classical examples of strictly ergodic dynamical systems are natural realizations of 
ergodic automorphisms and flows with discrete spectra on commutative compact groups, and 
also the corresponding realizations of ergodic automorphisms with quasidiscrete spectra and 
nilflows (cf. Chap. 3). These examples give rise to the impression that strict ergodicity 
may impose some additional restrictions besides erogodicity on the metric properties of a 
dynamical system with respect to its unique invariant measure. In particular, at the fifth 
Berkeley symposium on probability theory in 1965, the question was posed of whether a strictly 
ergodic system can have positive entropy [414]. 

If one speaks of smooth or even continuous strictly ergodic systems on manifolds, then 
this question remains open, since in all known examples the entropy is equal to zero. In 
general, all known examples of strictly ergodic diffeomorphisms of manifolds are connected 
with more or less special constructions, either algebraic (cf. Chap. 3), or of the character 
of approximations (cf. Paragraph 1.3, Chap. 5). 

1.2. In the case of continuous, and in partituclar symbolic (cf. Paragraph 3.1, Chap. 2) 
systems, strict ergodicity turned out to be compatible with arbitrary metric properties (in 
the symbolic case, one has, of course, obvious entropy restrictions). 

The first important paper in the direction indicated was the paper of Hahn and Katznel- 
son [382], in which a positive answer is given to the question formulated at the end of the 
previous point. The example of Hahn and Katznelson is a symbolic system. A decisive step 
was made by Jewett [416], proving that any weakly mixing automorphism of a Lebesgue space 
admits a strictly ergodic realization. The homeomorphism obtained with the help of the con- 
struction of Jewett, in general, is not symbolic, although the space on which it acts is 
homeomorphic with a Cantorian perfect set. 

The final solution of this question is due to Krieger [480]. He proved that any ergodic 
automorphism of a Lebesgue space with finite entropy h admits a strictly ergodic realization 
on a closed subset of the space o k which is invariant with respect to the shift Ek, if k > eh 
(cf. Paragraph 3.1, Chap. 2). There is an analogous result for automorphisms with infinite 
entropy. Another proof of this theorem was given by Denker [311]. In the proof the theorem 
of Krieger on generating partitions [472] (cf. Sec. i, Chap. i) is used. 

Hansel and Raoult [386] proved a theorem from which the possibility of strictly ergodic 

realization of any ergodic automorphism of a Lebesgue space also follows: If T:(X,~)-+(X,~) 

is an ergodic automorphism, then there exists a countable subalgebra ~" , dense in the o- 

algebra of all measurable sets, invariant with respect to T and such that for any set AC~' 
n--I 

the average characteristic functions -n-~ ZA(T~X) converge uniformly to a constant ~(A). 
i=0 

Another generalization of the theorem on strictly ergodic realization is connected with 
nonergodic transformations. Hansel [388] proved that for any automorphism of a Lebesgue 
space one can find a strictly uniform realization. A homeomorphism of a compact metric space 
X is called strictly uniform if the closure of any trajectory is a minimal set and the aver- 
ages of any continuous function converge uniformly to a limit. Then the space X is parti- 
tioned into the closures of trajectories, on each of which the homeomorphism is strictly 
ergodic, and any invariant measure decomposes into ergodic components with respect to these 
strictly ergodic measures. 

1.3. One can obtain the theorem on strictly ergodic realizations for ergodic flows more 
naturally from a theorem on special representations. Krieger's theorem on strictly ergodic 
realizations for automorphisms and Ornstein's theorem on continuous realization of any mea- 
surable change of time (Paragraph 3.2.2, Chap. 6). With this method one gets that any ergo- 
dic flow is metrically isomorphic with the suspension of some symbolic strictly ergodic sys- 
tem (cf. Paragraph 3.8, Chap. 2), which is a strictly ergodic flow. However, the original 
proof of the theorem on strictly ergodic realizations of flows used not a direct reduction 
to the case of discrete time, but a certain analogy with this case. Namely, Jacobs [413] 
considered the space L of functions on the line with values in the segment [0, i], satisfy- 
ing a Lipschitz condition with constant I, with uniform metric, and the flow ~t in this 
space generated by the natural one-parameter group of shifts of the line. The restrictions 
of this flow to closed invariant subsets are analogues of symbolic systems. Jacobs, follow- 
ing the met:hod of Jewett, proved that any weakly mixing flow admits a strictly ergodic real- 
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ization in the Tikhonov product of a countable number of copies of the space L with the cor- 
responding flow. The analogue of Krieger's theorem was proved by Denker and E. Eberlein 
[314]: Any ergodic flow admits a strictly ergodic realization in the space L on a closed 
subset which is invariant with respect to the flow ~t �9 

w Some Symbolic Systems 

The invariant measure of a strictly ergodic system is completely re-established on any 
trajectory of this system. In this connection there is interest in the following problem: 

how, for a given ergodic automorphism T, to construct a sequence ~@ Eh, such that the restric- 

tion of the shift Ok to the closed trajectory {~kn~} is strictly ergodic and metrically iso- 

morphic with the automorphism T. Here it is assumed that the sequence must be constructed 
with the help of an algorithm which can be described as a program for a Turing machine. 

The inverse problem consists of the following. For a sequence ~ EZk, which is defined 

with the aid of an algorithm, to determine whether the restriction of ok to the closed tra- 
jectory ~ will be a strictly ergodichomeomorphism, and in the case of a positive answer to 
find the metric properties of o k with respect to the corresponding invariant measure. The 
direction in ergodic theory which occupies itself with similar questions is called by K. 
Jacobs [412] the combinatorial approach. The first combinatorial construction of a nontriv- 
ial strictly ergodic transformation appeared in the paper of Kakutani [423], but the idea 
of such constructions goes back to Morse, Gottschalk, and Hedlund. 

The majority of the papers here relate to the second of the problems formulated. In 
Kakutani's examples [423] the automorphism from the metric point of view is a skew product 
over an automorphism with a discrete spectrum with a two-pointed fiber. The set of eigen- 
values coincides with the set of roots of unity of powers 2n, n = i, 2, .... In the orthogo- 
nal complement of the corresponding eigenfunctions the spectrum is automatically continuous. 
Kakutani's construction was generalizaed by Keane [432]. 

Jacobs and Keane [415] considered so-called Toeplitz sequences and proved strict ergo- 
dicity and discreteness of the spectrum of symbolic systems connected with these sequences. 
An interpretation of the results of [415] was given by Neveu [554], who showed how to estab- 
lish a metric isomorphism between symbolic systems and the corresponding shifts on commuta- 
tive compact groups. The paper of E. Eberlein [319] is also devoted to Toeplitz sequences. 

Generalizations of the constructions of Kakutani and Keane are the so-called sequences 
(or minimal sets) generated by substitutions (having in mind substitutions of elements of 
the alphabet). These sequences were considered by Martin [524], Coven and Keane [306], Kamae 
[426], and Michel [539]. In the latter paper, the strict ergodicity is proved of the re- 
striction of the shift in the space ~k to the closures of trajectories of sequences generated 
by substitutions. The remaining papers are devoted to the description of metric properties 
(the entropy always turns out to be equal to zero), the conditions for topological and metric 
conjugacy in the class of dynamical systems considered, and the construction of normal forms 
for these systems. The papers of Veech [704] and Petersen [610] also partially touch on the 
problems considered. 

A step in the direction of the first of the problems of the combinatorial approach (the building 
of combinatorial constructions realizing automorphisms with given metric properties) appeared in 

the papers of Grillenberger [372, 373]. In [372] for any h, 0<h<Ink, a combinatorial con- 

struction is given of a strictly ergodic symbolic system in the space E~ with entropy h. 

In [373] for any topological Markov chain a A (cf. Paragraph 3.1, Chap. 2) and any ~>0 

a combinatorial construction is built of a strictly ergodic symbolic system in the space 

Ea, which is a K-automorphism and has entropy greater than htop(aa)--s (it is assumed that 

htov (gA) > 0 ) .  

w Exchange of  Segments ,  Flows on S u r f a c e s ,  B i l l i a r d s  i n  P o l y g o n s  

3 . 1 .  By exchange  of  segments  i s  meant  a o n e - t o - o n e  map f o f  t h e  segment  [0 ,  1] on to  i t -  
s e l f ,  p r e s e r v i n g  Lebesgue  measu re  and d i s c o n t i n u o u s  a t  a f i n i t e  number o f  p o i n t s .  We d e n o t e  
the intervals of continuity in the order of their location on the segment from the left end 
to the right by At, ..., A m. Sometimes it is also assumed that on each interval of continuity 
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the exchange preserves orientation. We shall call such a map an oriented exchange. An ori- 
ented exchange is completely determined (up to the trajectories of the points of discontinui- 

ty, which as we shall see below, it is natural to disregard) by a vector (a~ ..... am), ai>0, 

i= l,...,m,~a~=l, where a i is the length of the interval Ai, and a permutation oG $m, which 
t=l 

indicates the order in which the images of the intervals A i are situated on the segment. In 

the genera] case it is still necessary to add another vector of -~i e=(el ..... 8m), where e i 

is equal to the derivative of f on the interval A i. 

Although exchanges are discontinuous maps, they are of interest from the metric as well 
as the topological point of view. Here the question will be of the metric properties with 
respect to Lebesgue measure as well as of properties of the entire collection of invariant 
measures of an exchange. The following condition allows one to discard some automatically 
uninteresting cases. 

3.1~ ~Af~A .-.Afn~...=e, where ~=(Al ..... Am) 

If this condition is not satisfied, then the entire segment is filled by periodic points. 

V. I. Oseledets in [130] first systematically cosidered exchanges, in truth only from 
the point of view of metric properties with respect to Lebesgue measure, He proved the fol- 
lowing theorem. 

3.1.2. If 3.1.1 is satisifed, then the multiplicity of the spectrum of the exchange 
with respect to Lebesgue measure does not exceed m -- i. 

From this it is easy to deduce the following assertion (or to carry over the proof of 
3.i.2). 

3.1.3. The number of Borelian, invariant, normalized measures of an exchange satisfying 
3.1.i does not exceed m -- i. The multiplicity of the spectrum with respect to any invariant 
measure does not exceed m -- i. 

The first half of 3.1.3 was also proved by Keane under somewhat stronger restrictions 
on f [434]. 

If 3.]..1 is satisfied, one can introduce in the complement of the points of discontinuity 
of a trajectory a new topology, stronger than the topology of a segment, with respect to 
which the exchange is a symbolic system in lm. Keane [434] proved the following theorem. 

3.1.4. If the permutation o does not leave invariant any set of the form (I ..... ]}, ]= 

! ..... ~z--|, the exchange is orientable and between the numbers at ..... am there are no other 
m 

rational relations besides ~i=I, then the symbolic system connected with the exchange is 
i=l 

minimal. 

Keane stated the conjecture that in the situation 3.1.4 the exchange is strictly ergodic, 
but as we shall show below (cf. Paragraph 3.2), this is not always so. A. B. Katok proved 
the following fact. 

3.1.5. An exchange is not mixing with respect to any of its invariant measures. 

In the ergodic, or what is equivalent the minimal case, 3.1.5 follows from the follow- 
ing assertion. 

3.1.6. For any natural number N one can find a partition ~N=(A~ .... N , A(m+1),) and num- 

bers ni(N):>N , i=I ..... (m~-l) = such that for any measurable set A as N-+oo 

Selecting the parameters of the exchange in a special way, one can get examples of auto- 
morphisms with various interesting metric properties (cf. for this Sec. 3, Chap. 5). 
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3.2. With exchanges there is closely connected a more "traditional" class of dynamical 
systems -- certain flows on surfaces. Let ft be a smooth flow on a compact surface M 2, havi~ 
a finite number of fixed points, which are generalized saddles, and all points of M 2 non- 
wandering with respect to the flow ft. Then the map of following for ft on any transversal 
section is topologically conjugate to Some exchange, while the function of time of return 
has singularities at the points corresponding to the appearance of separatrices of fixed 
points of the flow. We note that in this case an invariant measure for the exchange is not 
necessarily generated by the invariant measure for the flow, since the time of return func- 
tion may turn out to be nonintegrable for the relatively invariant measure of the exchange. 
In order to save oneself from similar effects, A. B. Katok [88] proposed along with finite 
to consider certain a-finite invariant measures of flows of the type described. Namely, an 
invariant measure of a flow is called nontrivial if the measure of any trajectory is equal 
to zero and the measure of the complement of any neighborhood of the set of fixed points 
is finite. 

If M 2 is an orientable surface of genus p, then in the typical situation on the trans- 
versal section there arises an exchange of 4p -- 2 segments, whence, by virtue of 3.1.2, one 
gets an estimate for the number of nontrivial ergodic measures of the flow ft up to normal- 
ization. However, this estimate can be significantly improved with the aid of additional 
geometric considerations, connected with the rotation number. In [88] the following asser- 
tion is proved. 

3.2.1. The number of nontrivial invariant ergodic measures of a flow satisfying the con- 
ditions formulated above does not exceed p (the measure is considered up to factors). In 
[88] it is assumed that the fixed points are nondegenerate saddles, but this additional re- 
striction is absolutely inessential for the proof (cf. [78]). 

The analogous property of minimality in the case of flows on surfaces is the following 
property, called quasiminimality in [78] and equivalent in the case considered to topologi- 
cal transitivity: Any semitrajectory, except for fixed points and their separatrices, is 
everywhere dense on the manifold. In [88] there is a criterion for quasiminimality of flows, 
analogous to 3.1.4, which is deduced from some strong results of A. G. Maier. Moreover, in 
this paper there are found sufficient conditions for topological conjugacy (but for flows 
with smooth invariant measure and differentiable) up to change of time with flows of the type 
considered in terms of some finite-dimensional objects, generalizing rotation numbers. 

The estimate given by 3.2.1 is unimprovable even in the class of quasiminimal flows. 
This was proved by E. A. Sataev [151]. 

3.2.2. For any k, 1<k<p, on an orientable surface of genus p, there exists a quasimini- 
mal flow (all its fixed points are nondegenerate saddles), having exactly k normalized in- 
variant ergodic measures, whose sum with certain positive coefficients is a smooth measure, 
and having no other nontrivial invariant ergodic measure. 

In [151] the analogous result for exchanges of a special form is first proved, and then 
a flow is constructed on the surface for which the map of following on transversal sections 
is an appropriate exchange. In the case k = p, the restriction of the exchange to each er- 
godic component is isomorphic with some rotation of the circle. 

3.3. Certain considerations expounded in the preceding points turned out to be useful in 
the study of billiards in polygons (for the definition of billiards cf. Paragraph 8.2, Chap. 
2), to which the paper of A. N. Zemlyakov and A. B. Katok [78] is devoted. In this paper, 
billiards in polygons all of whose angles are commensurable with ~ are first considered. In 
this case the phase space decomposes into invariant two-dimensional manifolds, while after 
a change of time on all the manifolds, except for a countable set, the flow becomes miminal. 
The question of the ergodicity with respect to the natural invariant measure still remains 
open. Then, with the aid of passage to a limit, it is proved that for a typical (from the 
categorical point of view) polygon, billiards are topologically transitive in the entire 
phase space. 

CHAPTER 5 

APPROXIMATION METHODS IN THE THEORY OF DYNAMICAL SYSTEMS WITH INVARIANT MEASURE 

The approximation approach to the problems of ergodic theory in a quite general way con- 
sists of the fact that the action of a noncompact group is represented as a limit in some 
sense of the actions of compact groups. In the case of a transformation (action of the group 
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Z), such approximating groups are naturally finite cyclic groups, while a flow (action of R) 
can be approximated either by finite cyclic groups of by circles $I; for the action of R k 
the role of approximating groups can be played either by finite commutative groups with a 
finite number of generators, or by tori T l, [<k Approximation assertions are used in the 
study of general dynamical systems with invariant measure, (cf. Paragraph 2.1); approxima- 
tion criteria allow one to establish various metric properties of automorphisms and flows 
(Sec. 2, Sec. 4, Chap. 6) and in particular, verify the typicality of these properties in 
various spaces of dynamical systems (Sec. 4); finally, approximation constructions allow 
one to construct a variety of examples of dynamical systems with interesting properties in 
abstract spaces with measure, as well as in topological and smooth =ituations (Secs. 1 and 
3). 

If in the fifties and the first half of the sixties the basic source of new examples 
for ergodic theory was probability theory (cf. [48]), then beginning with the middle of the 
sixties, this role passed to "geometric" approximating constructions. 

We shall begin (Sec. i) with the description of a class of such constructions, where 
smooth dynamical systems on manifolds with smooth invariant measure are constructed (in par- 
ticular, Hamiltonian systems) and the approximating maps converge to a limit in the C =- 
topology, while the speed of this convergence turns out to be rather high. Then (Sec. 2) 
general aspects of the approximation approach in the abstract metric situation are considered. 

w Smooth Realization of Ergodic Dynamical Systems 

I.I. Let M be a compact connected manifold of class C ~ of dimension not less than two, 
closed or with boundary, on which there is a nontrivial C=-action of the group of rotations 

of the circle S I. We denote this action by {St}, 0~t~1, S1=id. Let ~ be a measure on M, 

invariant with respect to the action {St} and defined in local coordinates by a C=-density, 

which can vanish only on the boundary of M. We denote by Diff'(M,?) the space of C~-diffeo - 

morphisms of M, preserving the measure ~, endowed with the C~-topology. In the papers of D. 
V. Anosov and A. B. Katok [14, 15] the following theorem is proved. 

i.i.I. For any 10:0<t0<l, in any neighborhood of the diffeomorphism Sto in the space 

Diff'(M, It), there exist diffeomorphisms which are ergodic with respect to the measure ~, 

having (according to choice) discrete, continuous, or mixed spectra, admitting cyclic approx- 
imation by periodic transformations (a.p.t.) with any preassigned speed f(n) (cf. [93, 48] 
and Paragraph 2.4.1 below; different sequences f(n) correspond, in general, to different dif- 
feomorphisms), while the discrete components in the spectra can be generated by any preas- 
signed number (finite or infinite) of independent frequencies over the ring of integers. 

1.1.2. A diffeomorphism T, satisfying a specific variant of i.i.I, is constructed as a 

limit as ~-+c~ converging in the C~-topologyof asequenceof diffeomorphismsT nof the formT n= 

B~IS~nB~, ~ere 

B~Diff~( M, ~), ~,~----~-t~-~, ~=P~ ~ 1 
qn ' snqn-, ' 

Pn, r are integers, B~-----A,,B~,_t, S~,~_,A~=A~S~n_ ,. A basic role in the n-th step of the c9n- 

struction is played by the construction of the diffeomorphism An. This diffeomorphism, in 
general, has very many derivatives and is constructed so that T n is cyclically represented by 
elements of some finite partition gn, which is a refinement of a partition ~, constructed so 
that each of its elements has "nucleus" of small diameter and large conditional measure. 

In the construction of A n it is convenient to use the following assertion proved by A. 
B. Krygin [109] (in [14, 15] a much weaker assertion is used). 

1.1.3. Let 0 m be an open m-dimensional connected C ~- manifold, ~ be a measure O m, given 
by a locally positive C~-density, Fi, Gi, i = i, ..., k, be two collections of compact sub- 
sets of 0 m, each of which is C~-diffeomorphic with an m-dimensional ball D TM, while Fi~FI---- 

G~QGr=O for i # j and ~(Fi)=~(Gz). Then there exists a C~-diffeomorphism S:Om-+O m, which 
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is the identity outside some compact N c O  m, preserving the measure ~ and such that 
SF~=O~, i = l  . . . . .  k. 

1.1.4. The choice of the number Bn is made after the construction of A n . It can be 
chosen so small that first of all, the convergence of the sequence T n in the C=-topology is 

guaranteed, and secondly, one can construct with the help of the partition ~n and diffeo- 
morphism T n a cyclic a~ limit diffeomorphism with given speed. At each step of the in- 
duction the construction of A n and Bn depends on a series of parameters, the special choice 
of which allows one to get the properties which were spoken about in i.i.i for the limiting 
diffeomorphism. Here it turns out that for "quite natural" choice of the parameters the 
diffeomorphism T is metrically isomorphic with a rotation of the circle by the angle 2aa, 

where  ==liman. 

This circumstance can be interpreted in the following way: Although the sequence of 
diffeomorphisms B n does not converge in any sense, there exists a map ~ of the set My of 

regular points of the action of {St} onto S I, such that for x~M~ we have ~Stx=~x+t(mod i), 

while n,~=% is the Lebesgue measure on the circle, and the sequence of maps Bno~ converges 

to a one-to-one mod 0 map, which realizes the isomorphism between T and a rotation of 

the circle by the angle 2~. 

1.2. There follows immediately from theorem 1.1.1, for example, the existence of ergo- 
dic diffeomorphisms with smooth invariant measure on spheres and balls (cf. [48]), and also 
many "nonstandard" smooth realizations of automorphisms with discrete spectra. Not as im- 
mediately, one deduces from this theorem the following assertion [13, 14]. 

1.2.1. Let M be an arbitrary compact connected C ~ manifold, closed or with boundary, of 
dimension greater than two, and ~ be a measure on M, defined by a locally positive density 
of class C =. There exists a flow of class C ~ on M, preserving the measure ~ and ergodic with 
respect to this measure. 

Reduction of 1.2.1 to i.i.I is done as follows [14]. Let v be a measure on the ball 

D ~ - I =  (x~ . . . . .  Xm_l): X~41  , s u c h  t h a t  d~=p(Xx~)dx~ . . .  d x ~ _ ~ ,  w h i l e  a s  r ~ l ,  9 ( r ) + O  w i t h  s u f -  

f i c i e n t l y  h i g h  s p e e d .  With t h e  a i d  of  1 . 1 . 1 ,  one c o n s t r u c t s  an e r g o d i c  d i f f e o m o r p h i s m  TE 

Diff~(Dm-aov), which  i s  c l o s e  to  t h e  i d e n t i t y .  Then one c o n s t r u c t s  a f l o w  in  t h e  d i r e c t  p r o d -  

u c t  D m - ~ x S ~ p r e s e r v i n g t h e m e a s u r e  v X ~  (~ i s t h e L e b e s g u e  m e a s u r e ) ,  f o r w h i c h T i s t h e f o l l o w i n g  

map on D m-l. Using a C~-map of Dm=IXS I onto D m , which is a diffeomorphism off the 

boundary, and making an appropriate change of time, we get a flow on D m that preserves the 

Lebesgue measure, with preassigned (independent of the choice of p) speed of decrease of the 

vector v of the phase space at the boundary. The manifold M is the image of D ~ under a C ~ 

map f, which is a diffeomorphism off the boundary. 

Let d~*~)=~l ... xm)dxl ... dxm. The flow generated by the vector field ~-Iv preserves 

the measure f*~, and for sufficiently rapid decrease of v at the boundary, g-Iv is a 

vector field of class C ~. The vector field f,(o-av) generates the desired flow on M. 

In the paper of D. V. Anosov [13] some other variants of the reduction are given with 
all the details. About other metric properties of the flows obtained, besides ergodicity, 
it is difficult to judge, since in the process of construction a time change has been made. 
At least, this flow is standard (cf. Sec. 2, Chap. 6 and [91]). 

1.2.2. A. A. Blokhin [23] constructed examples of ergodic flows with invariant measure 
on any surface except the sphere, projective plane, and Klein bottle, on which such flows can- 
not exist. These flows have closed transversals and hence, are also standard. 

1.2.3. The papers of E. A. Sidorov [152-154], which appeared earlier than [14, 15] par- 
tially abut on the problems considered in the present paragraph. In these papers, for ar- 
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bitrary domains of Euclidean space, topologically transitive diffeomorphisms are constructed, 
which also have some additional properties. In Sidorov's examples, either there is no in- 
variant smooth measure at all or there is a continuum of ergodic components. 

1.3. In the constructions of Paragraphs i.i and 1.2, the behavior is controlled not of 
all, but only almost all trajectories T. In a series of cases, on some set of trajectories 
of measure zero, the behavior is inevitably different; this happens if M has a boundary, or 
if there is no nontrivial action of S I on M, or if there is such an action but not all the 
orbits are regular. However, if the action {St} is free, then one can realize a uniform 
variant of the construction of Paragraph i.i (cf. [87]). 

1.3.1. Let M be a compact closed manifold of class C ~, dim M=m~2 and suppose there 

is a free C'~-action {St} , O~t~l, S~-id, of the group S ~ on M; in other words, M is a prin- 

cipal S I -bundle of class C a over some manifold of dimension m -- I. Let ~ be a smooth 

C ~ -measure, invariant with respect to the action {St}. Then for any t0:O~tn<1 in any neigh- 

borhood of the diffeomorphism Sto in Diff~(f~, ~) there exists a minimal diffeomorphism T, 

having any preassigned finite or countable set of ergodic invariant measures. In particular, 
the diffeomorphism T can be strictly ergodic. 

1.3.2. For flows one has an analogue of Theorem 1.3.1, if M~3 and on M the tor~ 

r 2 acts freely. Here the role of the "unperturbed" diffeomorphism Sto is played by the 

flow, generated by some one-parameter subgroup of T 2. From this assertion it follows that 

on some simply connected manifolds (for example, on product of odd-dimensional spheres) there 
exist minimal flows, which refutes the strong conjecture of Gottschalk. 

1.4. In some situations, a construction analogous to the one described above can be 
carried out in the class of Hamiltonian systems. This is done in the papers of A. B. Katok 
[85, 89]. The condition of being Hamiltonian essentially decreases the "flexibility" of the 
construction. 

1.4.1. In [85] a C=-Hamiltonian system (flow) is constructed on the space R=m, uniform- 

ly close in the C=-topology to a system generated by m independent oscillators with commen- 
surable frequencies, ergodic on each manifold of constant energy and having for almost all 
values of the energy a discrete spectrum, generated by k independent frequencies (2<k<m), 
one and the same for distinct values of the energy (cf. the end of Paragraph 1.1.4). 

1.4.2. Another variant of the Hamiltonian construction is given in detail in [89]. In 

this paper a noncompact symplectic manifold (M =m, ~) closed or with boundary (~ is the cano- 

nical 2-form) is considered with additional structure -- a complete vector field u, such that 

the Lie derivative ~u~ is equal to %~, where % is a positive constant. A function H on 

M 2m is called homogeneous if ~uH=~H. It is assumed that on M 2m there is given an ef- 

fective symplectic action of the two-dimensional torus T 2, while each one-parameter sub- 

group ?cT 2 correspond to a Hamiltonian vector field Vy with homogeneous Hamiltonian func- 

tion Hy. If for some subgroup y the manifold HI I (I) is compact, then the function Hy can 

be perturbed in the class of C ~ homogeneous functions by an arbitrarily small amount so that 
the perturbed function generates a Hamiltonian vector field, ergodic on each manifold of con- 
stant energy. The condition of homogenity allows one to work on all manifolds of constant 
energy at once, but on the other hand, lessens the arbitrariness in the construction. Hence 
aside from ergodicity one can only guaranteee the standardness of the flows constructed (cf. 
Sec. 2, Chap. 6). 

This result is also applied in [89] to the case of independent oscillators, and also al- 
lows one to construct Finslerian metrics on compact symmetric spaces of rank i, close to 
standard Riemannian metrics and such that the geodesic flows have two ergodic components 
filling the phase space except for a set of arbitrarily small measure. 
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w Various Types of Approximation 

2.1. A classical and extraordinarily useful fact of approximation character is the lem- 

ma of Halmos--Rokhlin on uniform approximation: For any aperiodic autormophism T: (X, ~)-+ 

(X, ~), any natural number n and e>0 one can find a set AcX~ such that 

AnT~A=~, i = 1  . . . . .  n - - l ,  I~ i~oTiA >1--~. 

This lemma is used widely in ergodic theory. As examples, we indicate papers on the 
isomorphism problem (cf. Sec. 2 Chap. i), time change ([91, 104, 354]; Secs. i, 2, Chap. 6), 
the connection of the speed of approximation with entropy [82, 656], and also the paper of 
A. B. Katok and Foiash [95], in which it is proved that for any aperiodic automorphism and 

continuous function ~;SI-+S ~, from the fact that the operator ~(Ur) is generated by some 

automorphism, it follows that ~(X)i-~ ", ~6Z. 

The lemma of Halmos--Rokhlin was generalized in various directions: for subsequences of 
powers of an automorphism (Keane, Michel [435]), for transformations with quasi-invariant 
measure, for actions of certain countable groups on which there is an invariant mean (A. M. 
Vershik [47]). These assertions are connected with the property of approximate finiteness 
of the operator algebra constructed on a given group of transformations (cf. Chap. 7). 

2.2. The further development of approximation methods is connected with the study of 
metric invariants of approximation character. This approach is based on the refinement of 
the concept of approximation in two ways, in comparison with approximations, which are given 
by the lemma of Ha!mos--Rokhlin. First of all, with an approximating sequence of action of 
compact groups there is connected an exhausting (tending to e) sequence of invariant parti- 
tions ~n, such that the factor-space X1$n consists of a finite number of orbits of the ap- 

proximating action. Secondly, one introduces a certain concept of the speed of convergence 
of approximating actions to the limit. In what follows, we shall speak almost exclusively 
of automorphisms. 

The program indicated can be realized in many ways which differ essentially (which is 
connected in the first instance with the desire to cover approximation approaches to dynami- 
cal systems with various properties) as well as in many secondary points (which is connected, 
basically, with the fact that only asymptotic properties of the approximating sequences of 
transformations are essential and hence there arises a large amount of nonuniqueness in the 
choice of these sequences). 

We note that approximating sequences of transformations do not figure explicitly in all 
variants of the concept of approximation. A complete analysis of the logical connections 
between various concepts of approximation which we have is not carried out and apparently 
this is a thankless problem. It is more important to identity those variants of the defini- 
tion which are better connected with the basic metric invariants (decomposition into ergodic 
components, various mixing properties~ entropy) and with the basic constructions of ergodic 
theory (derivative, special automorphism, factor-automorphism, skew product). 

2.3. The approach described at the beginning of the previous point was given in the 
papers of A. B. Katok and A. M. Stepin [92, 93], where some variants of the definition of 
approximation by periodic transformation (a.p.t.) with given speed were introduced for auto- 
morphisms and flows -- a.p.t.I, a.p.t. II, cyclic a.p.t. -- and the connections of these con- 
cepts with the basic metric invariants of automorphisms and flows were established. The 
basic results of [92, 93] are formulated in the survey of A. M. Vershik and S. A. Yuzvenskii 
[48], and [93] is devoted to the development of approximation methods up to 1967. 

It should be noted that Chacon in [282, 283], which appeared almost simultaneously with 
[92, 93], used an approximation approach and corresponding techniques for the construction of 
an example of an automorphism T with continuous spectrum, having no roots (i.e., T~S ~ for 

n>[). Later [284, 286] Chacon offered his version of a definition of approximation with 

given speed, based on the concept of tower, which is also used in some papers on the isomor- 
phism problem mentioned in Secs. 2, 3, Chap. i. We shall consider the more fruitful of the 
various definitions of approximation which have appeared since 1967. 
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2.4. The definitions of a.p.t.l and cyclic a.p.t, were generalized and improved by 
Schwartzbauer [657] (for earlier versions cf.[290, 655]). 

2.4.1. Let {/(~}, ~=I, 2 ..... be a sequence of positive numbers tending to zero. An 

automorphism T:(X, ~)-+(X, ~) admits approximation with speed f(n), if there exists a se- 

quence of partitions ~n---- (ci(n), 11-----I ..... q.} and rearrangements Tn:X[~.-+XI~ ., such that 

~n~e and 

qn 

~ (Te, (n) fl ( X ' .  T,,c~ (n)) < f (qn). 
i= I  

If T n is a cyclic permutation of the elements of the partition ~n, then the automorphism T 

admits a cyclic approximation with speed f(n). This definition turns into the definitions 
of a.p.t.I and cyclic a.p.t, with speed 2f(n), if one requires in addition that ~(Tnci(n)) = 

), i = 1  . . . . .  

The basic result of [657] consists of the fact that such an approximation "splits into 
ergodic components" (partial results were obtained earlier by Chacon and Schwartzbauer in 
[290]): If B is a measurable partition, consisting mod 0 of sets which are invariant w_ h 
respect to T, and T admits approximation (respectively, cyclic approximation) with speed f(n), 

then there exists a family of sequences fB(n) (B~) such that for almost all BOXt~ the auto- 

morphism T[B admits approximation (respectively, cyclic approximation) with speed fB(n) and 

SfB (n) d~.<f(n), n=l ,  2 . . . . .  
x~ 

With the aid of this theorem, Schwartzbauer [656] refined the results of A. B. Katok 
[82] on connnections of approximability with entropy of automorphisms. Let b(T) and c(T) 
denote the infimum of numbers ~ such that the automorphism T admits, respectively, approxima- 

tion with speed %~Inn and a.p.t.l with speed %/Inn. Then 2h(T) = b(T) = c(T). In [82] and 

in the dissertation of A. B. Katok, "Some applications of approximation methods of dynamical 
systems to periodic transformations in ergodic theory" (Moscow University, 1968), the equa- 
tion 2h(T) = c(T) is proved only for ergodic T, and in the general case, the inqualities 

h(T)<c(T)<2h(T) are proved. 

2 . 5 .  The f o l l o w i n g  two v e r s i o n s  of  a p p r o x i m a t i o n  a r e  s u c c e s s i v e  w e a k e n i n g s  of  t h e  p r o p -  
e r t y  o f  c y c l i c  a . p . t ,  w i t h  speed  O(1 /n )  [92 ,  93 ] .  

2 . 5 . 1 .  The a u t o m o r p h i s m  T:(X, ~ )~ (X ,  ~) a d m i t s  good a p p r o x i m a t i o n  i f  one can  f i n d  a 

sequence of partitions 

such that 

~-n = (C~, C rt = eta, dn),  
�9 " "~ q,'Z 

�9 �9 -- C n q.), 

and 

qn--1 

qn ~,~ ~(TC~, AC~+I)-+O for 
I=0 

f~-+ oo. 

This definition is contained in [91] in the form given here and in the earlier papers [203, 
289, 523]; an equivalent property is called strong approximation by partitions. 
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2.5.2. An automorphism T admits approximation by partitions if one can find a sequence 

~n = ( Cn, Tcn, ''-, Tqn--:cn, dn) such that ~n~8 ([203, 654]). 

2.5.3. The results of [93] on spectral properties of automorphisms admitting cyclic 
a.p.t~ with sufficiently high speed (absence of mixing, simplicity, and singularity of the 
spectrum) carry over word for word to the case of automorphisms admitting good approxima- 
tion [91, 523, 654]. 

In [91] A. B. Katok proved that a factor-automorphism by any invariant partition with 
an infinite set of elements of an automorphism admitting good approximation also admits 
good approximation. 

Another result of [91] consists of the fact that for any two automorphisms T, S admitting 
good approximations, and any number 8, 0 < 8 < I, one can find a set A of measure B, such that 
the derivative of the automorphism T A is metrically isomorphic with S. These results are 
used in the study of change of time and monotone equivalence of dynamical systems (cf. Sec. 
2, Chap. 6). 

Any ergodic automorphism with discrete spectrum admits good approximation [91]. 

2.5.4. A series of interesting papers is devoted to the study of the set C(T) of auto- 
morphisms commuting with a given automorphism T. Obviously, this set is a group, closed in 
the weak topology and containing all powers of T. If the automorphism T admits good approxi- 
mation, then the weak closure of the set of its powers is a perfect set, and consequently, 
contains a continuum of elements. On the other hand, if T is mixing, then the set of powers 
of T is closed. In [289] Chacon and Schwartzbauer proved that for an automorphism T admit- 
ting good approximation, the set C(T) coincides with the weak closure of the set of powers 
of T. The proof is based on an ingenious combinatorial lemma which first appeared in an 
earlier paper of Chacon [282] in connection with the construction of an example of an auto- 
morphism from which no roots can be extracted. 

Akcoglu, Chacon, and Schwartzbauer [203] described the set C(T) for an automorphism 

T:(X,~)-+(X,~), admitting approximation by partitions. Namely, if S commutes with T, then 

either $-----T k, k~Z, or one can find a partition ~n=(X~, X~) and numbers 7~,J% such that 
�9 I .2 

.I .2 yn,/n-+oo as A-+co and for AcX SA-~|Im(TJ~(ANX%) UT-Jn(ANX~)). If, in addition, T is 

mixing then S~T ~. 

These results are interesting, in particular, in connection with the fact that Ornstein 
[572] constructed an example of a mixing automorphism which admits approximation by parti- 
tions. Later, a similar construction of Ornstein and Friedman was used to construct a mixing 
derivative for an arbitrary ergodic automorphism (cf. Sec. i, Chap. 6). 

There are further generalizations in the paper of Akcoglu and Chacon [202], where it is 
proved that an automorphism commuting with some power of an automorphism T, which admits ap- 
proximation by partitions, can be approximated by finite combinations of powers of T. From 
this assertion it follows that a mixing automorphism, which admits approximation by parti- 
tions, has no rational powers other than integral ones. 

2.6. In [93] the following assertion is proved. 

I/2--~ s>0, has simple 2.6.1. An automorphism that admits cyclic a.p.t, with speed f(n)= n ' 

spectrum. 

In the proof one uses certain properties derived from the required cyclicity of the ap- 
proximation and weaker than approximation by partitions. 

2.6.2. The simplicity of the spectra of automorphisms admitting approximation by parti- 
tions was reproved in [239, 523]. In the latter paper a useful technical assertion is con- 
tained: The sequence of partitions ~n in definition 2.5.2 can be chosen to be monotone in- 
creasing, and also the following result: Among the elements of maximal spectral type there 
are characteristic functions of sets of arbitrarily small measure. 

Chacon [286] introduced a certain generalization of approximation by partitions (simple 
approximation with multiplicity n with respect to a sequence of partitions) and proved that 
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in this case the multiplicity of the spectrum of the automorphism does not exceed n. Godd- 
son [365] considered skew products over automorphisms admitting such approximations. 

2.6.3.. In [175] A. M. Stepin generalized and simultaneously strengthened 2.6.1. He 
proved that: the multiplicity of the spectrum of an automorphism, which admits cyclic a.p.t~ 

with speed f(~)__2--2]m--e (8>0, m is a natural number), does not exceed m -- i. 
m 

2.7. One concept of speed of approximation is insufficient to distinguish dynamical sys- 
tems with continuous and discrete spectra. A~roximation criteria for continuity of spectra 
(in all of L 2 or in some subspace) are based on the fact that the approximating transforma- 
tion contains some "incongruity," which in the limit destroys the eigenfunctions. This idea 
is considerably older than contemporary a:proximation methods in ergodic theory, actually 
it first appeared in 1932 in the classical paper of von Neumann, "Operator methods in classi- 
cal mechanics," where with its aid the first examples of dynamical systems with continuous 
spectra were constructed. 

Continuity of spectra for concrete clases of transformations, among which are those ad- 
mitting cyclic a.p.t, with arbitrarily high speed, was proved in [93, 282]. Actually, in 
these papers some general approximation criteria for continuity of spectra were used, similar 
to those which were later proved explicitly in [94, 284, 654]. In [284] such a criter_ ~ is 
approximation in m-pairs -- essentially cyclic approximation with sufficiently high speed, 

where q2n+l=mq2n-~1, m is a given number; in [94] the existence is required of an a.p.t.I 

with speed o(~), such that the approximating automorphism T of the permutation T n of ele- 

ments of the partition ~ should have two cycles whose periods differ by one, and the mea- 

sure of the set of elements forming each of the cycles does not tend to zero. 

Papers also continued to appear in which, with the aid of considerations of approxima- 
tion character, concrete examples of automorphisms with continuous spectra are constructed 
which are not mixing (cf. [441, 425]). 

~3. Some Applications of Approximation Methods 

Applications of approximation methods to problems of ergodic theory, basically, are in- 
dicated in the following scheme: the construction of examples of dynamical systems with 
"exotic" properties (here the examples themselves often turn out to be completely natural), 
the study of typical properties in various spaces of dynamical systems (so-called "category 
theory"), the study of metric properties of certain concrete classes of dynamical systems. 
In this paragraph we shall consider applications relating to the first of the directions 
enumerated. We note that the results considered in Sec. 1 also apply to this direction to 
some degree, but we have separated them in view of the fact that the basic interest in this 
case is not so much the metric properties projected by the dynamical system on itself as the 
appearance of their smooth realizations. The following paragraph is devoted to the second 
direction, and some results relating to the third direction are in Sec. 3, Chap. 4 and Sec. 
4, Chap. 6 (cf. also [48]). 

The basic value of the examples of which we shall speak is that they allow one to refute 
some "natural" conjectures on the structure of the spectra and other metric properties of 
automorphisms and flows, generated, fundamentally, by analogy with the case of discrete spec- 
tra. We note that all the examples from Paragraphs 3.1-3.3 are exchanges of segments (cf. 
Sec. 3, Chap. 4). 

3.1. V. I. Oseledets [130] turned his attention to exchanges as sources of interesting 
and often unexpected examples. In particular, in [130] examples are constructed of ergodic 
exchanges of 24x segments, whose maximal spectral multiplicity is not less than two (and not 
greater than 23x, by virtue of 3.1.2, Chap. 4). To the present time, this is the only known 
example of an ergodic automorphism with finitely multiple but not simple spectrum. 

It is unknown whether there exist ergodic automorphisms with spectra of constant multi- 
plicity not equal to one. It is also unknown whether an automorphism can have finitely multiple ab- 
solutely continuous spectrum. A close question, whether there exist automorphisms with sim- 
ple Lebesgue spectrum, is one of the oldest unsolved problems of ergodic theory. 
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3.2. S. V. Fomin, in the appendix to the book of Halmos, "Lectures on Ergodic Theory," 
posed the question of whether automorphisms with identical simple spectra will be metrical- 
ly isomorphic. A negative answer to this question was given by S. A. Malkin [119], who con- 
structed an automorphism with simple mixed spectrum, which is not isomorphic with its in- 
verse automorphism. Then V. I. Oseledets [133] constructed an analogous example with sim- 
ple continuous spectrum. Apparently, using the idea of Oseledets one can construct a con- 
tinuum of pairwise nonisomorphic automorphisms having identical simple continuous spectra. 

3.3. An analog of the well-known group property of the set of eigenvalues of an er- 
godic automorphism is the following property: The maximal spectral type of an automorphism 
subordinates its convolution. It is satisfied in examples of probability-theoretic origin 
(cf. [48]), and also, obviously, in the case of Lebesgue spectra. A. M. Stepin [93] con- 
structed an example of an automorphism with mixed spectrum, for which the property indicated 
is not satisfied. An analogous example with continuous spectrum was constructed by V. I. 
Oseledets [132]. In these examples the spectra are simple. Later, Stepin and Oseledets in- 
troduced the concept of mixing with exponent ~ (it would be more exact to call this proper- 
ty weak mixing with exponent ~ ), which allows one to construct similar examples systemati- 
cally [685, 174]. In particular, they can be realized by diffeomorphisms in the framework 
of the constructions of [15], described in Paragraph i.i. 

We note that Foias [341] proved a weak analogue of the group property for arbitrary 
ergodic automorphisms. The results of this paper are used in [95]. 

3.4. The results of Chacon [282, 283] and A. M. Stepin [93], touching on roots of auto- 
morphisms, were generalized by Akcoglu and Baxter [200]. In this paper for any preassigned 
set Q of prime numbers, an automorphism is constructed with continuous spectrum, which has 
roots of degree n for precisely those n all of whose prime divisors lie in the set Q. 

3.5. R. S. Ismagilov [81] applied the method of approximation in ergodic theory for the 
construction of inequivalent representations of commutation relations. 

w Typical Properties of Dynamical Systems 

A set in a Hausdorff topological space L will be called massive if it contains an every- 
where dense subset of L of type G~. Let L be some space of dynamical systems, equipped with 
a Hausdorff topology. A property of dynamical systems will be called typical in the space 
L, if the dynamical systems of L which have this property form a massive set. In ergodic 
theory, one considers typical properties in the following spaces (we shall restrict ourselves 
basically to the case of discrete time): the group U of all automorphisms of a Lebesgue 

space with the weak topology; the group H(X, ~) of all homeomorphisms of a compact me- 

tric space X, preserving a continuous Borelian measure ~, with the topology of uniform con- 

vergence; the group Difir{M, ~), of Cr-diffeomorphisms of a compact manifold m, r = i, 2 ..... 

~, preserving the smooth measure ~, with the cr-topology; the space of all derived automor- 

phisms of a given automorphism T with metric d(TA, TB)=~(AAB); the space of all special flows 

over a given automorphism with L:-metric; the space of all invariant measures of a given 
homeomorphism of a compact metric space with the weak topology. 

4.1. The initial results for the group U were obtained in the forties by Halmos and V. 
A. Rokhlin. The results obtained up to 1967 can be summarized (cf. [48, 93]) in the follow- 
ing way. 

4.1.1. A typical automorphism admits cyclic a.p.t, with preassigned speed f(n) (f(n)>0, 

n = I, 2, ...) and has continuous spectrum. 

The latter fact was proved again by Chacon [284] with the aid of his approximation cri- 
teria (cf. 2.7). Natarajan [550] proved the typicality of weak mixing for actions of the 
group Z ~ , i.e., for pairs of commuting automorphisms. 

4.1.2. A. M. Stepin [174, 697] proved that a typical automorphism of maximal spectral 
type does not subordinate its convolution (cf. Paragraph 3.3). 

4.2. A. B. Katok and A. M. Stepin [94] proved an analogue of assertion 4.1.1 for the 

group H(X, ~). The precise formulation in this: X is a finite regular connected cellular 
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polyhedron, or a topological manifold; the measure ~ vanishes on the set of nonregular points, 
and the measure of any open subset of the set of regular points is positive. Moreover, of 
course, ~ is Borelian and continuous. The paper [94] is a combination of the approaches of 
Oxtoby and Ulam, who in 1941 proved the typicality of ergodic homeomorphisms in H(X, ~) un- 
der somewhat stronger conditions on X (cf. [48]), and the approximation approach in the spirit 
of [93] and Sec. 2. To prove the continuity of the spectrum, the approximation criterion 
mentioned in Paragraph 2.7 is used. 

Oxtoby [592] proved, under the assumptions of [94], the following approximation asser- 

tion: If T:(X, ~)~(X, ~) is a metric automorphism (not necessarily continuous) and ~>0, 

then there eixsts a homeomorphism S@H(X, ~), which is the identity outside some set D, 

homeomorphic with an r-dimensional ball (r = dim X) and coinciding with T on a set E such 

that ~t(X\E)<e." This theorem of Oxtoby allows one to obtain simply the basic approximation 

assertions of [94]. 

4.3. The smooth case is very interesting but very unstudied. It is clear, at least, 
that the situation is markedly different from the two previous cases. This follows from the 

fact that ~ -diffeomorphisms form an open set ([9, 16]; cf. also Sec. 2, Chap. 2). Any com- 

plete category theory in the smooth case, apparently, is a thing of the far future. There 
is a likely conjecture that the positivity of entropy is a typical property. It is not ex- 
cluded that the situation for diffeomorphisms will turn out different for dimension 2 and for 
higher dimensions, and also for C I smoothness and higher smoothness. 

4.4. Some results on derivatives and special automorphisms are presented in Sec. i, Chap. 
6. We shall add to this the almost obvious assertion: If the automorphism T admits cyclic 
approximation with speed f(n), then a typical derived automorphlsm admits cyclic approxima- 
tion with speed cf(n) for some c>0. The properties of good approximation and approxima- 
tion by partitions (cf. Paragraph 2.5) are also preserved upon passage to typical derived 
automorphisms. 

4.5. It makes sense to study typical properties of invariant measures if there are 
enough such measures, for example, for transitive topological Markov chains (cf. Sec. 3, 
Chap. 2) or for locally maximal hyperbolic sets of diffeomorphisms (cf. Sec. 2, Chap. 2). 
Apparently, in these cases the answer will be similar to 4.1.1. Sigmund [666, 668, 669] 
concerned himself with these problems, considering the basic case of a locally maximal hy- 
perbolic set, on which a diffeomorphism has the property of mixing domains (cf. Paragraph 
2.4.5, Chap. 2). In [666] it is proved that for a typical invariant measure one has ergo- 
dicity, the absence of mixing, and zero entropy. In [669] the density of those measures 
with respect to which the diffeomorphism is a Bernoulli automorphism is proved. In [668] 
some results of [666] are carried over to the case of flows. 

CHAPTER 6 

CHANGE OF TIME IN DYNAMICAL SYSTEMS 

w Genera]. Questions 

i.i. The operation of change of time is well known in the theory of ordinary differen- 
tial equations. This operation from the dynamical point of view consists of passage from 
the flow ft generated by the vector field X to the flow gt generated by the vector field 
pX, where 9 is a scalar, nonnegative (or even positive) differentiable function. If the 
flow ft has an invariant measure ~, then the flow gt has the invariant measure p-1~. 

The operation described has natural analogue in abstract ergodic theory. Let aELx(X,~) 

be a function that is positive almost everywhere on the Lebesgue space (~,~), T t be a mea- 
t 

on X. We write. ~(t,x)----Ia(Tu~)du. Let ~(t,x) be the inverse function with surable flow 
0 

respect to t to ~(t,x) for given x. Then the flow T~x--T~(t.~)x preserves the measure a~, 

d~(t,x) 
equivalent with ~. We write :d-7 :P(x). Obviously, O-~a -x. 
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Measurable flows S t and T t are called monotone equivalent if St is metrically isomorphic 

with some flow T~ [91]. An equivalent approach to change of time is connected with special 

representations of flows. Flows St and T t are monotone equivalent if an only if one can find 

an automorphism R :(M,~)--*(M,~) and positive functions ?,~ELI(A4,~) such that S t and T t are 

metrically isomorphic with the special flows R~, R~ constructed from the automorphism R and 

the functions ? and 4, respectively. 

1.2. There exists a more general approach to change of time proposed by Maruyama [526] 
and expounded in detail in Totoki's paper [700]. The basic difference consists, roughly 
speaking, of the following: change of time for Maruyama and Totoki is not assumed to be ab- 
solutely continuous along trajectories, i.e., the function T(t, x) (the new "time") for given 
x may not be the integral of its derivative with respect to t. Because of this, the in- 
variant measure of the new flow too may not be absolutely continuous with respect to ~; 
hence, there arise difficulties connected with the choice of a sufficiently large o-algebra 
of sets, measurable with respect to both measures. These difficulties are more naturally 
overcome if one assumes that the flow Tt and the change of time are measurable with respect 
to some Borelian o-algebra in X (a minimal o-algebra generated by a countable system of sets). 

1.3. In general, monotone equivalent flows are not metrically isomorphic, even up to 
change of scale in the group R (cf. below). However, there is an important sufficient con- 

dition for the isomorphism of flows Tt and T~, when the transformation conjugating these 
flows preserves each trajectory of T t. This condition can be put in two equivalent forms: 

1.3.1. There exists a measurable function ~:X-+R such that for each IEA and for al- 

most all xEX 

, (~ (x, t ) ) - ,  (x) = t. 

A criterion for solvability of such equations is found in Kowada [450]. 

1.3.2. For almost all xEJI4 ' d~(Ttx) Idt t=o--a(x) (cf. Sec. 6, Chap. 2). 

A corresponding criterion for metric conjugacy of special flows R~ i and R~' over auto- 

morphism R:X--+X appears thus: 

1.3.3. ~1 (x)-- ~2 (x)----- ~ (Rx)-- ~ (x), 

where ~ is a measurable function of X (cf. Sec. 6, Chap. 2). 

1.4. In distinction from the continuous and smooth cases the metric concept of monotone 
equivalence has a natural analogue for discrete time. It is natural to restrict oneself to 
the ergodic case. Ergodic automorphisms T and S are called monotone equivalent if over them 
one can construct metrically isomorphic special flows [91]. 

This definition is equivalent with the following. Let T:7~-+7~ be an ergodic automor- 

phism, m@L1(7~,~) be a function assuming nonnegative integral values and not identically 

equal to zero. We write .~/m(.)=7~/\m-l(~; let Tm(.) be the special automorphism from the 

derived automorphism TAm(), constructed by restricting the function m to ~4m(). Then the 

automorphism S is monotone equivalent with T, if S is metrically isomorphic with some Tm() 

(in [589] this equivalence relation is called local equivalence). 

1.5. Of the basic metric invariants, only entropy generates an invariant of monotone 
equivalence. From the results of L. M. Abramov (cf. [48], Sec. 2) it follows that the prop- 
erty of entropy being zero, a positive number, or infinity is invariant with respect to 
monotone equivalence. 

1.5.1. In 1966, Chacon [281] proved that any ergodic flow can be made weakly mixing by 
a change of time, and also that for any ergodic automorphism there is a weakly mixing special 
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automorphism. R. M. Belinskaya (cf. [48]) proved an analog of the latter assertion for 
derived automorphisms. 

The results of Chacon and Belinskaya have recently been strengthened in two directions. 
Conze [305] proved that for an ergodic automorphism T, the sets A, for which the derived 
automorphism T A is weakly mixing, form an everywhere dense G 6 in the space ~ of all measura- 

ble sets with the natural metric d(A, B)----~(A~B~ (cf. also [350]). An analogous result for 

flows was obtained by A. Tagi-Zade. 

1.5.2. More profound are the results of Ornstein and Friedman [354], who proved that an 
ergodic automorphism T has a mixing derivative, where too the sets A for which T A is mixing 

are dense in ~ , and of A. V. Kochergin [104], proving that any ergodic flow can be made 

mixing with the help of a change of time, infinitely differentiable along trajectories and 
the identity outside a given set of positive measure. In these papers a new construction of 
"sluggish" mixing is given. The question of the speed of mixing which can be guaranteed with 
the aid of similar constructions remains open. In particular, it is unknown whether by a 
change of time one can convert an arbitrary ergodic flow into a flow with absolutely conti- 
nuous spectrum. 

1.5.3. Hansel [384] proved that for any aperiodic automorphism T:M~M and any e, ~, 

e>0, [%]=1, there exists a set A such that ~(A)>1--s and the derived automorphism T A has an 

eigenfunction with eigenvalue %. Somewhat earlier Conze [305] proved this for an everywhere 
dense set of numbers %. From the results of A. B. Katok (cf. [91] and Sec. 2, Chap. 5) fol- 

lows a strengthening of Hansel's result: For any not more than countable subgroup G@S I and 

s>0 one can find a set A, ~(A)>l--e, such that the automorphism TA has eigenfunctions with 

all eigenvalues %~ G. 

1.5.4.. Osikawa [589] proved that all Bernoulli automorphisms with finite entropy are 
monotone equivalent. We note that by virtue of the theorem of Ornstein about isomorphism 
(cf. Sec. 2, Chap. i) it was sufficient for any Bernoulli automorphism T and any ~, 0<=<|, 

to construct a set A, ~(A) ==, such that the automorphism T A is metrically isomorphic with 

a Bernoulli automorphism. This follows also from the result of Salesky [639] mentioned in 
Sec. 2, Chap. i. 

1.5.5. The question of monotone equivalence for various classes of automorphisms with 
positive entropy is not sufficiently studied. Here are some unsolved questions: 

i) Is every automorphism with positive entropy monotone equivalent with a K-automor- 
phism? 

2) Is every K-automorphism which is monotone equivalent with a Bernoulli automorphism 
metrically isomorphic with a Bernoulli automorphism? 

3) Does there exist a K-automorphism which is not monotone equivalent with a Bernoulli 
automorphism? 

~2. Standard Dynamical Systems 

2.1. An ergodic automorphism is called standard if it is monotone equivalent with an 
automorphism with discrete spectrum, whose set of eigenvalues coincides with the set of roots 
of unity of all degrees. An ergodic flow is called standard if it is metrically isomorphic 
with a special flow over a standard automorphism. 

In [91] A. B. Katok proposed a new approach to the study of properties of ergodic dy- 
namical systems that are invariant with respect to change of time and found effective neces- 
sary and sufficient conditions for standardness. It turned out that standardness of the auto- 

morphism T:M~M is equivalent with the following weak approximation property of the auto- 

morphism: There exists a sequence of sets Fn cM and maps ~n:F~[0,1X {0, I .... , q~--l} such 

that 
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2.1.1. For a measurable set A C F  n the normalized Lebesgue measure of the set ~n(A) 

i s  equal  to a n v(A), where an i s  independent  of A and ~n-+l as n-+oo.  

2 . 1 . 2 .  I f  xl,x~CFn, ~n(Xl)=(t,m), %(x2)=( t ,m+k) ,  k>O, then  x2=Tlx , ,  where l > 0 .  

2 . 1 . 3 .  I f  x~Fn, ~ (x )=( t ,  m), then e i t h e r  ~'(Tpx)(t ,  re+k), ~ > 0 ,  or ~(Fn)N{ t }X{m+l  ~ . . . .  
q n - - l } = |  

2 .1 .4 .  We w r i t e  $n= {~71([0, 1] X (i}), ~=0  . . . . .  qn--1; Jl4\Fn}. Then Sn-+s. 

There is an analogous criterion for flows which is more difficult to formulate. 

2.2. Another criterion for standardness allows one to prove that a factor-automorphism 
of a standard automorphism by any infinite invariant measurable partition is standard. At 
the same time, for any ergodic automorphism S, one can find an automorphism Tx, monotone 
equivalent with T, some factor-automorphism of which is metrically isomorphic with S. These 
facts show that standard automorphisms form the simplest class of monotone equivalent metric 
automorphisms. 

The criterion mentioned for standardness is based on comparison of how various points 
"wander" through the elements of an arbitrary finite measurable partition. Let n = (A~...A k) 

be such a partition. For a point xfiM we set TZxEAk~lx); then there is defined a map ~: 

31-+~, ~,~x -----( .... k_1(x),ko(X),k1(x ) .... ) and a measure ((~).~) in the space ~k , invariant 

with respect to the shift o k . The projected measures (~.~) on coordinates with numbers 0, 

i, ..., n-- 1 generate a finite-dimensional distribution ~n(~) in the space Ek.n of se- 

quences of numbers I, 2, ..., k of length n. In the spaces Xk.n one can introduce a nor- 

malized metric such that the standardness of the automorphism T turns out to be equivalent 

with the fact that for any partition ~ as n-+oo the measure ~n(N) is concentrated in some 

ball of arbitrarily small diameter. 

2.3. This approach also allows one to construct invariants of monotone equivalence con- 

nected with the asymptotic, as ~-* co, minimal number of balls of small radius in E~,n cov- 

ering sets whose measure is close to one. These invariants are natural analogues of en- 
tropy and allow one to prove the nonstandardness and monotone inequivalence of various auto- 
morphisms and flows with zero entropy. We note that there is some informal connection be- 
tween the approach expounded in this paragraph and the approach proposed earlier by A. M. 
Vershik ([42, 46]; cf. also Chap. 7) in connection with other problems. 

w Smooth and Continuous Change of Time 

3.1. The classical procedure for change of time (cf. Paragraph I.i) in the case of 
smooth flows with smooth invariant measure is a special case of the procedure we consider. 
The following question is natural: What may the metric properties of the flow Tt0 -z with 

respect to the invariant measure p-~ be in this case. In the following paragraphs we shall 

consider a simple class of dynamical systems, where the corresponding question has been 
studied in considerable detail. Here we shall indicate a few of the results which are known 
in other cases. 

3.1.1. ~-flows (cf. Sec. 2, Chap. 2) remain ~-flows under smooth change of time with 

a positive function ~ [9]. On the other hand, a theorem of A. N. Lifshitz [115] (cf. also 
Sec. 6, Chap. 2) gives the following necessary and sufficient condition for the conjugacy 

of the ~ -flow T t and the flow T,0-~ by means of a CX-diffeomorphism homotopic with the iden- 

tity. For any periodic trajectory 

to 

: {Ttx} pd~d to I p-1 (Ttx) ell---- to. 
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3.1.2. A. G, Kushnirenko [113] proved that for the horocyclic flow on a compact two- 

dimensional Riemannian manifold of constant negative curvature ~ the flow T t has counta- 

bly multiple Lebesgue spectrum if f is a function of class C I and • where Ea is the 

vector field generating the geodesic flow. 

3.2. Now let {Tt} be a continuous flow on a compact metric space X, preserving a con- 

tinuous Borelian measure ~ positive on open sets, and ergodic with respect to this measure. 

3.2.1. Parry [602] proved that continuous change of time in such a flow makes it weakly 
mixing. The result of Parry was essentially strengthened by A. V. Kochergin [104], who 
proved that there exists a continuous change of time, the identity outside a previously 

chosen open set U with ~(U)>0, carrying the flow {T~} into a mixing one. The proof of 

Kochergin is based on the fact that the construction of a change of time which he used to 
make an arbitrary ergodic measurable flow mixing can be realized in the class of continuous 
changes. 

3.2.2. The definitive clarity on the question of continuous time change is brought inby 

Ornstein (cf. [91]). He proved that any flow obtained by a measurable time change from a 

continuous flow {St} is metrically isomorphic with some flow obtained from St by a continuous 

time change. The proof of this theorem of Ornstein was also obtained by A. V. Kochergin. In 
order to elucidate the meaning of Ornstein's theorem, we shall give a result of homological 
equations, very closely connected with this theorem and being its analogue for special flows. 

3.2.3. Let (M, ~) be a Lebesgue space, K be some cone in L~(M. ~) closed with respect 

to the uniform norm: ll~IL=esssup]~(x)[, consisting of positive functions and dense in the 

norm of L I in the cone of all positive functions. Then for any positive function fcL~(M, ~) 

and any ergodic automorphism T:M-~M one can find functions gEK and hELl(M, ~) suchthat 

f (x) =g  (x) + h  (Tx)--h (x). 

Whence it follows that any special flow over T is metrically isomorphic with a special flow 
with a function from the cone K. 

w Special Flows over Rotations of the Circle and Some Other Flows 

4.1. In this paragraph we shall consider results on metric properties of special flows 
over the transformations of rotations of a circle and exchanges of segments (cf. Sec. 3, 
Chap. 4) with various functions (analytic, smooth, continuous, piecewise smooth with sin- 
gularities of special form). 

The classes of flows indicated are closely connected with smooth flows on two-dimen- 
sional surfaces. In the case of a rotation of the circle by an angle a, the special flow 
with constant function B, obviously, is isomorr~c with a linear flow on the torus and has 
discrete spectrum, generated (over Z) by the numbers a and B. Any smooth flow on the torus 
without fixed points with a positive smooth invariant measure is metrically isomorphic with 

a special flow Tt a'f over a rotation of the circle by some angle ~ with a smooth positive 

function f (cf., for example, [83]). The converse is also true; an arbitrary flow without 
fixed points on the torus with irrational rotation number, satisfying a Lipschitz condition, 
is strictly ergodic and metrically isomorphic with a flow Tt ='f, where f is a function of 

bounded variation [103]. Finally, a smooth flow with smooth invariant measure on an orient- 

able surface of genus p>l, with a finite number of fixed points~ among which none are el- 

liptic, is metrically isomorphic with a special flow over an exchange of segments with a 
function, differentiable everywhere except at a finite number of singularities. The form 
of these singularities depends on the local structure of the flow in a neighborhood of the 
fixed points. 

4.2. We consider conditions under which the flow T~ 'f is metrically isomorphic with a 

flow T~ 'f~ where the constant fo is equal to ~f(x)dx. For this it suffices that the equation 
d 
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4.2.1. / ( x ) - / o = , ( x + ~ ) - , ( x )  

have a measurable solution ~ (cf. Paragraph 1.3.3). If the function ~ has integrab!e square 

modulus, then expanding f in a Fourier series: ~=~fnexp2=ix, we get 
n 

/n exp2=ix. 4 .2 .2 .  ~--.~-n~#oeXp2~i=_ 1 

From this condition it follows (A. N. Kolmogorov [99]), that for numbers u, not too well ap- 
proximated by rational numbers, 4.2.1 has a solution whose properties are "not much worse" 
than those of f. 

We shall not discuss concrete consequences of the indicated situation, but only examples 
when f is a "good" function and ~ is given by the series 4.2.2 and is sufficiently "bad," 
since the corresponding results relate basically to the 1950s. 

D. V. Anosov [12] proved that even for some analytic functions f there exist u for 
which 4.2.2 diverges but 4.2.1 has a solution which does not belong to L 2 or even L z 

4.3. A. N. Kolmogorov remarked in [99] that for some analytic functions f and numbers 

~, not normally well approximated by rational numbers, the flow T~ 'f may have continuous 

spectrum (be weakly mixing) which corresponds to the unsolvability of the equation 

4.3. i. exp ~=ikf (x) = ~ (x + ~) (x) 

for any real ~ in the class of measurable functions ~ . M. D. Shklover (cf. [48]) proved 

that such u exist for any analytic function f which is not a trigonometric polynomial. In 
the previously mentioned dissertation of A. B. Katok sufficient conditions are found for the 
continuity of the spectrum for analytic f in terms of the connection between the character 
of approximation of the number u by rationals and the character of the decrease of the Fou- 
rier coefficients of the function f. For functions with sufficiently regular behavior of the 
Fourier coefficients, these conditions are close to the necessary conditions following from 
the divergence of 4.2.2. Later progress in this question is due to A. M. Stepin, who found 
an effective criterion for continuity of the spectrum, applicable not only to analytic func- 
tions, but also to functions of finite smoothness, and also to functions with singularities. 

4.4. A. B. Katok [83, 93], using the method of periodic approximation, proved that for 

functions f~C a the flow T~ 't has simple singular spectrum and is not mixing. The result 

on the absence of mixing was strengthened significantly by A. V. Kochergin [103]: For any 

function of bounded variation, the special flow T~ ,f is not mixing. Using this result and 

the remark made in Paragraph 4.1, A. V. Kochergin proved that any flow on the torus without 
fixed points and without closed trajectories, satisfying a Lipschitz condition, is not mixing 
with respect to its invariant measure. A. B. Katok, using his result on exchanges (cf. Para- 
graph 3.1.6, Chap. 4) and Kochergin's method, proved that a special flow over an exchange 
with a function of bounded variation also is not mixing. 

Another generalization, due to A. V. Kochergin himself, is connected with certain flows 

on surfaces of genus p>l. In A. V. Kochergin's dissertation (Moscow University, 1974), flows 

Tt=,f are considered where ~ is such that for some 0>0 and an infinite sequence of irre- 

ducible fractions Pn/qn 

and 

[ ~ - -P~ /q .  I < Olq~ In q., qn--> ~ ,  

k 

1028 



k k 

where fo is a function of bounded variation, bz, dl~0 and Ebi= Ed~ , and such flows 
i = l  t = I  

are proved to be nonmixing. Logarithmic singularities of the function f arise upon repre- 
sentation of the flow as a special flow on a surface with smooth invariant measure and with 
nondegenerate saddles (cf. Paragraph 3.2, Chap. 4). 

The following question is still unanswered. 

4.4.1. Let Tt be a smooth flow on a surface of genus p~2 with smooth positive invari- 

ant measure, all of whose fixed points are nondegenerate saddles. Can Tt be mixing? The 
distinguished results of A. V. Kochergin and A. B. Katok give a negative answer to this ques- 
tion in all probability. 

4.5. On the other hand, A. V. Kochergin proved that an ergodic flow on a surface, all 
of whose fixed points are typical degenerate saddles, arising not from logarithmic but from 
power singularities of the function f, is mixing. In [105] he introduced the class ~(a,b) 
of functions, twice differentiable and convex downward on the interval (a, b), whose second 

derivative as x~a grows faster than (x--a) -2, and satisfying a certain regularity condition. 

The basic result of [105] is the following. 

Let T:[0,1]-+[O,|] be an ergodic exchange of segments, {x I ..... xD} be a set containing all 

points of discontinuity of T, f={l ..... p},f(x)>c>O and 

f (x)=/o 
iEl iGl'~I 

where f~, gl~(0,1), i~[, and the function fo has bounded second derivative. Then the special 

flow T~ israixing. From this theorem one deduces the existence of smooth mixing flows on any 

compact orientable surface except the sphere (cf. Paragraph 1.2.2, Chap. 5). 

4.6. Finally, we consider this question: Can it happen that 4.2.1 is unsolvable and 
and 4.3.1 is solvable for some %? This means either the disappearance of part of the dis- 
crete spectrum when the set of % for which 4.3.1 is solvable is a subgroup of the group 

{m~-~-n~}, m, n~ Z, or the appearance of a "nonnormal" discrete spectrum if 4.3.1 is solvable 

for some % not of the form indicated. For smooth f such effects have not been discovered. 

4.6.1. The simplest example of the first type was constructed by A. B. Katok (cf. [ii0]; 

in this example, f is a "step," the spectrum of the flow Tt=.f is mixed, while the discrete 

component consists of numbers which are multiples of ~). On the basis of this example, A. B. 
Krygin [110] constructed an example with the same properties with a continuous function f. 

4.6.2. In [91] with the aid of his results on good approximations of automorphisms (Sec. 

2, Chap. 5), A. B. Katok proved that for any irrational number r the flow T?.f with a func- 

tion fELI (land by virtue of Ornstein's theorem from Paragraph 3.2 also with a continuous 

function) can have any discrete spectrum except for one generated by one frequency, and also 
a mixed spectrum with any discrete component. 

CHAPTER 7 

TRANSFORMATIONS WITH QUASI-INVARIANT MEASURE 

Let (X, ~) be a Lebesgue space and G be a locally compact measurable group of transfor- 

mations of this space. The measure ~ is called quasi-invariant with respect to the action 
of the group G if the transformations from G preserve the type of the measure ~ (nonsingular). 
Groups G and G' of transformations with quasi-invariant measure are isomorphic if there 

exists a nonsingular transformation T such that TGT -i= G ~. From many points of view there 
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is interest in the problem of constructing a complete system of invariants for a sufficientl" 
broad class of transformation groups with quasi-invariant measure. The construction of von 
Neumann associating a group G with quasi-invariant measure with a weakly closed symmetric 
MG of operators on a separable Hilbert space (cf., e.g., [96]), establishes an important 
connection between the problem of classification and the theory of operator algebras. For 
an ergodic freely acting group G, the algebra M G is a factor (i.e., an algebra with one-di- 
mensional center), and the decomposition of the group G into ergodic components corresponds 
to the decomposition of the algebra MG into a direct integral of factors. An ergodic group 
G of transformations with quasi-invariant measure we shall consider as type I, II1, II~, or 
III, if the factor MG belongs to type I, II1, II~, or III; this classification is connected 
with the question of the existence and properties of an invariant measure for the group G. 
The first example of a nonsingular transformation of type III was constructed by Ornstein 
[57]. Moore [543] and Hill gave a complete answer to the question of when a product-measure 
belongs to class I, II:, II~, or III. V. Ya. Golodets [59] proved that each countable group 
has an action of type Ill. 

Transformation groups G and G' are called trajectory isomorphic if their decompositions 
into trajectories are isomorphic (with respect to a nonsingular transformation). If the 
ergodic groups G and G' are trajectory isomorphic, then the factors generated by them are 

isomorphic. The transformation group [G] = {T: Tx~ Gx for a.e. x} is called the complete 

group for G. A group is called approximate-finite if MG is an approximate-finite algebra. 
It is known that all ergodic approximate-finite groups of transformations of type II1 are 
trajectory isomorphic. A. M. Stepin [172] proved that the cohomology groups Hk(G) are tra- 
jectory invariants of the transformation group G. 

A complete invariant for trajectory isomorphism for some groups of type III was found 
by Krieger [470, 471]. Namely, a countable group G of transformation of the space (X, ~) 

contains the measure ~ if: i) the group {S~[G]:S~=~} is ergodic; 2) for any T~G the 

Radorr-Nikodym derivative dT~ d~ assumes a countable set of values. We write A(G, >) for the 

.dT~t 
multiplicative subgroup of ,+, generated by the set T~G{aE,+:~({X.--~(x)=a})>O}. Krieger 

proved that the closure of A(G, p) is a complete invariant of trajectory isomorphism for 

transformation groups containing the measure. In particular, all transformations T contain- 

ing the measure ~, for which A(T, ~)~ is everywhere dense in R +, are trajectory isomorphic. 

V. Ya. Golodets [58] proved that a countable approximate-finite group of transformations 
o o  

is trajectory isomorphic with an action of the group ~Z 2. 
i 

For countable transformation groups, Krieger, in [474], introduced an invariant r(G) of 
trajectory equivalence, analogous to the invariant of factors introduced by Araki and Woods 
[216] in connection with the algebraic classification of factors. Namely, the set r(G) con- 
sists of all real numbers a satisfying the following: For any measurable set A of positive 

measure and any e>0 there exists a measurable set BcA, ~t(B)>0 and a transformation 

TCO such that 

(1 - - e )a<  ~-~(x)<(1 +~) a for a.e. x~B. 

The set r(G) is closed in [0, c~), r(G)n~O~ o~) is a multiplicative group. Krieger proved that 

r(G) is a complete invariant of trajectory equivalence in the case when r(G)~{0,|}. We as- 

sume that the countable group F acts as a group of shifts in the direct product H(X, ~), 
gEr 

where (%, 2) is a measure space. Let ~ be a measure in ~ (X, N), invariant with respect to 
gEP 
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F, ~ be the projection of the measure ~ on (X, 2) and T be a nonsingular transformation of 

In [478] the invariant r(G) of the ergodic group G generated by the trans- the space (%, ~, ~). 

formation Tg, 

of the space (H(X, 2), ~) is computed. The set r(G)v~{O,l} in this case and hence is a 
g@O 

complete invariant of the group G. 

A. M. Vershik [41, 43] proposed a new method of study of trajectory partitions based on 

their representation as the set-theoretic intersection n ~n of a decreasing sequence of mea- 
n 

surable partitions Sn. Partitions admitting such a representation are called tame. A.M. 
Vershik [47] proved that the property of the trajectory partition of a freely acting group 
G of being tame depends only on the algebraic type of the group G. 

In [45] A. M. Vershik investigated the structure of tame partitions and their connec- 

tion with operator algebras. Each tame partition P of the Lebesgue space (X, ~) can be rep- 

resented in standard form n VNz, where Ni is a finite measurable partition and ~=e. 
n~l i=n i=l 

A tame partition P is called Bernoullian (Markovian) if there exists a standard representa- 

tion P-----nV'~k, where N~ is a sequence of independent (a Markovian sequence of) finite par- 
In 

titions. If the tame partition P of the Lebesgue space (X, >) has countable elements and 

P-----N Sn, A!in --v, then for any s>O there exists a measure ~' equivalent to ~ such that 

l - - -d -  ~- d ~ c ~  and P i s  a Markovian  p a r t i t i o n  i n  (X, ~'). For  B e r n o u l l i a n  p a r t i t i o n s ,  in  [45] 

t h e r e  i s  o b t a i n e d  an e x h a u s t i v e  c r i t e r i o n  f o r  i somorph i sm ,  which  a l l o w s  one to  d i s t i n g u i s h  

t r a j e c t o r y  p a r t i t i o n s  a l s o  i n  t h e  c a s e  r(G)={O, 1}. With the  a i d  of  t h i s  c r i t e r i o n ,  a c l a s -  

s i f i c a t i o n  theorem i s  o b t a i n e d  f o r  a c l a s s  of  f a c t o r s  of  t y p e  I I Z :  I f  t he  t r a j e c t o r y  p a r t i -  
t i o n  o f  the  e r g o d i c  group G i s  B e r n o u l l i a n ,  t h e n  i t s  m e t r i c  t y p e  i s  an i n v a r i a n t  of  t he  f a c -  
t o r  Ir K r i e g e r  [479] c o n s t r u c t e d  an example o f  an e r g o d i c  n o n s i n g u l a r  t r a n s f o r m a t i o n  whose 
t r a j e c t o r y  p a r t i t i o n  i s  no t  B e r n o u l l i a n .  

Yu. I .  K i f e r  and S. A. P i r o g o v  [98] p roved  a theorem on t he  d e c o m p o s i t i o n  o f  q u a s i - i n -  
v a r i a n t  measu re s  i n t o  e r g o d i c  componen t s .  The p rob lem of  c l a s s i f i c a t i o n  of  t r a n s f o r m a t i o n  
g roups  up to  t r a j e c t o r y  e q u i v a l e n c e  i s  s t u d i e d  i n  [ 3 0 8 ] .  On an a p p r o a c h  c o n n e c t e d  w i t h  t h e  
c o n c e p t  o f  v i r t u a l  g r o u p s ,  c f .  [617,  508] .  

A s e r i e s  of  p a p e r s  i s  d e v o t e d  to  t h e  p rob lem of  t he  e x i s t e n c e  of  i n v a r i a n t  m e a s u r e s  f o r  
c o u n t a b l e  g roups  of  n o n s i n g u l a r  t r a n s f o r m a t i o n s .  

M e a s u r a b l e  s e t s  A and B a r e  c a l l e d  c o n g r u e n t  w i t h  r e s p e c t  to  t he  t r a n s f o r m a t i o n  group G 

if there exist decompositions A= ~ An, B= U B,~ and transformations TnEG such that TnAn = 
1 1 

Bn. The set A is incompressible with respect to G if it is not congruent to any subset 

A'cA, ~(A\A')>O. The classical result of Hopf is that the group G is of type IIt if and 

only if X is incompressible with respect to G and the measure ~ is continuous. A measurable 

set W is called weakly wandering if there exists a sequence (T~} of transformations from G 

such that Tn(W) are pairwise disjoint. Hajian and Kakutani [380] proved that a cyclic group 
of transformations is of type IIx if and only if there does not exist a weakly wandering set 
of positive measure. Hajian and Ito [376] generalized this result to arbitrary countable 
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transformation groups. In [500] another proof of the theorem of Hajian--Kakutani is given. 

Sufficient conditions for the existence of a finite invariant measure for a family {T} 
of nonsingular transformations were obtained in [255] and [388]. Let M be the set of finite 

products of elements of {T}; if inf~(~-IA)>0, ~(A)>0, then there exists a finite measure 

m, equivalent with ~ and invariant with respect to {T}. For conditions for the existence 

of a finite invariant measure for an indiviaul transformation cf. [499, 643]. 

In [308] partitions {X I, X--Xt} of the space (X ~), are considered, where Xf is the 

maximal part on which there exists a finite G-invariant measure equivalent with ~. Let P 

be the projector in Lp(X, ~) onto the subspace of G-invariant vectors. If fELp(X, ~), I < 

p<oo, f>0, then 

{x: (p.f) (x) > O} = X I. 

Jones and Krengel [421] constructed for each invertible nonsingular transformation of a prob- 

ability space {X, ~) a measurable partition (XI, X I .... ), such that: a) Xf and U X i are in- 

variant with respect to T; b) the restriction of T to Xf has a finite T-invariant measure 

equivalent with ~; c) XI is the image of each X i, i~l, with respect to some power of the 

transformation T. 

If a nonsingular transformation T of the space (X, ~) has no finite invariant measure 

equivalent with ~, then the collection of sets A, for which the partition (A, X\A) is gen- 

erating, is everywhere dense in the o-algebra of measurable sets (and even in any exhaustive 
subalgebra) [458]. Kuntz generalized this result to group actions. 

Brunel [277] proved that a positive compression T in LI(X, ~) has an equivalent finite 
invariant measure if all compressions of the form EpiT i, p~>~O, Ep~=l are conservative. In 

[315] criteria are obtained for the existence of finite invariant measures for positive 

operators in L:(X, ~) satisfying the condition 

N ) I  

The q u e s t i o n  o f  the  e x i s t e n c e  o f  e - f i n i t e  i n v a r i a n t  measures  f o r  Markov ian  o p e r a t o r s  i s  
the subject of [535, 277, 287]. In [535] sufficient conditions are obtained for the exist- 
ence and uniqueness of fixed points for conservative Markovian operators in the cone of non- 
negative measurable functions on a space with o-finite measure. Ornstein and Sucheston [587] 

weakened the condition lIT liL~=1 in Harris' theorem on the existence of a o-finite invariant 

measure for a Markovian operator T to the requirement limTnh<oo for all h~L , h>O. 

Hajian, Ito, and Kakutani in [380] proposed a new construction of a transformation not 
having a o-finite invariant measure. Let (X, ~) be a Lebesgue space and ~= be the set of 

ergodic nonsingular transformations of the space (X,~), having o-finite infinite invariant 

measure equivalent with ~. In [380] it is proved that there exists a TE~ and a nonsingu- 

lar transformation Q, commuting with T, such that Q does not preserve the measure, invariant 
with respect to T and equivalent with ~. 

In [374] for the generalized Gauss endomorphism T:x -~[f-J(x)] an algorithm is found for 

reconstructing for f an invariant measure equivalent with Lebesgue measure. 

Keane [430] proved for ergodic rotations of the circle the existence of a continuum of 
pairwise singular continuous quasi-invariant ergodic measures. Krieger [476] generalized 
this result to strictly ergodic homeomorphisms of compact metric spaces, provided the space 
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does not consist of one trajectory. The decisive result in this direction is due to I. P. 
Kornfel'd [i01] and Katznelson and Weiss [428]: a homeomorphism T of a compact metric space 
has an uncountable set of inequivalent continuous ergodic quasi-invariant measures if and 

only if T has a recurrent point. 

Kubo [491, 492] studied the class of automorphisms and flows admitting a transversal 
flow with quasi-invariant measure. Ito constructed transversal flows for topological Mar- 
kov chains with measure of maximal entropy. In [570] it is proved that the spectrum of such 

II 
a flow is discrete for the transition matrix (I0). Kubo [491] and Krengel [455] obtained 

a generalization of the theorem of Ambrose on special representations of flows to the case 
of a one-parameter group (semigroup) of nonsingular transformations of a o-finite space with 

measure. Kubo [493] constructed a special representation for the group R ~ of nonsingular 

transformations. The question of special representations of general group action is open. 

We shall now consider transformations with infinite invariant measure (of type If| ). 

Krengel [456] introduced the concept of mixing for transformations of a topological 
space with o-finite Borel invariant measure and proved that the mixing transformations form 
a set of the first category in the group of all transformations (cf. Sec. 4, Chap. 5). 

Then Krengel and Sucheston [464, 466] proposed another definition of mixing transforma- 
tions, coinciding with the usual one in the case of finite invariant measure. We define the 

sufficient o-algebra �9 of sequences of measurable sets (An} as the intersection of the o- 

algebras ~ generated by the sets An, n~k. A transformation T of a o-finite space with mea- 

sure is called mixing if in each sequence Tk~A, >(A)<oo, k s<ks+1, one can find a subsequence 
with trivial sufficient o-algebra; if this is so for each measurable set A, then T is called 
completely mixing. 

A transformation T, having infinite invariant measure is mixing if and only if~(TnA 

A)-§ as n~oo for each set A of finite measure. Strict endomorphisms are completely mix- 

ing, however Kolmogorov endomorphisms with infinite invariant measure (cf., e.g., [318]) do 
not have this property. Further, the property of completely mixing of a nonsingular inverti- 
b!e transformation T is equivalent with the existence of a finite invariant measure, with 
respect to which T is mixing. 

A transformation T with infinite invariant measure ~ is called weakly mixing if 

1 
~p(T-kAnB)-+0 as n-~oo for each pair of sets A and B of finite measure. In [637] it 

is proved that mixing transformations form a set of the first category with respect to the 
weak topology, and weakly mixing ones are nowhere dense in the uniform topology (cf. Sec. 4, 
Chap. 5). 

An invariant of a transformation T of a space (X,~) with infinite measure, connected 

with the asymptotic behavior of the sequences ~(~T-~A), ~|, is proposed in Kakutani's 

survey [423]. 

An interesting example of a rational map of the line, preserving Lebesgue measure, was 
considered by Adler and Weiss [198]. They proved the ergodicity of the transformation T: 

1 
x-+x----. The method of proof allows one to establish the complete ergodicity of the trans- x 
formation T. 

Entropy, mixing properties, and spectra of transformations with infinite invariant mea- 
sure are considered in [445, 590, 339]. 
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CHAPTER 8 

SOME APPLICATIONS OF ERGODIC THEORY 

Applications of ergodic theory to other parts of mathematics are quite diverse. More- 
over, ergodic problems arise in many problems of physical origin, e.g., in the general theo- 
ry of relativity, in plasma physics, in problems relating to the study of the motion of 
charged particles in electromagnetic fields, Fermi statistical acceleration, etc. A survey 
of all similar applications would exceed in volume all that relates directly to ergodic theo- 
ry. Hence, in compiling this section, it was necessary to restrict ourselves to somewhat 
narrower boundaries. We resolved to devote it only to applications of ergodic theory to 
statistical mechanics, since ergodic theory arose from statistical mechanics and the latter 
has always been a source of problems for ergodic theory. 

Upon consideration of a series of problems of equilibrium and nonequilibrium statistical 
mechanics there arose a class of infinite-dimensional dynamical systems. In contrast to the 
partial differential equations, which may often also be considered as generating operators 
of the corresponding infinite-dimensional dynamical systems, the dynamical systems of statis- 
tical mechanics differ in that for them all powers are equally free. We proceed to the di- 
rect description of such systems. Assume function U(r) is a potential of a dual interaction. 
For now we shall assume only that U(r)~ C I, U(r)EO for r>rl. 

The configurations of our system are an infinite subset X of the space R a, d>l, which 

has the property that [XNO]<oo, here O is a compact subset of ~a, the sign ]-] denotes the 

cardinality of the set standing inside. Points x6X will be called particles. The collec- 

tion of velocity vectors of all particles x6X is naturally considered as an ~a-valued 

function V={~(x),x6X}, defined on X. The pair (x, v) is a point of the phase space of 

our infinite-dimensional system, which we shall denote by J~. We shall write Newton's equa- 

tions of motion, assuming that the particles have mass I, interact pairwise with strength de- 
pending on the distance, whose potential is U(r): 

dx do U" 
~ = v ( X ) ,  ~ = - -  Y, (Ix--yl) (l) 

y~x, yQX 

In view of our conditions of X the right-hand side is finite. Nevertheless, (i) does not 
split into finite-dimensional systems, since distant particles can be connected by means of 
interaction, and there arises the far from trivial problem of proving a theorem like an exist- 
ence theorem for systems of type (i). The nontriviality is already evident just from the 

fact that for U~0, if the velocity v(x) grows sufficiently rapidly to infinity and is di- 

rected toward the origin, then in an arbitrarily small time in a neighborhood of zero there 

are infinitely many particles and we fall outside the limits of the space ~. 

The problem of existence of solutions of (i) is related to the problem of existence of 
solutions of partial differential equations. In the theory of partial differential equations 
Cauchy-type problems are posed and solved in certain function spaces. For (i), instead of 

choosing a function space, it is necessary to construct a Borel set d~'Cdg on which one can 

define a one-parameter group of transformations {St} in such a way that along trajectories of 

this group the equations of motion (i) are satisfied. It is clear that one can devise tri- 
vial examples of such subsets. But the problem consists of choosing the most massive pos- 

sible subset. 

We shall dwell on the case d = I. In the space ~one can introduce a three-parameter 

family of Gibbsian equilibrium distributions ~(p, ~ h), where the parameters are the first 

three additive integrals of motion: p is the density, ~ is the mean speed, h is the energy, 
taken over one degree of freedom. The measure ~(p, % k) is constructed analogously to the 
process described in detail in Chap. II on hyperbolic systems. We consider a segment Az= 

[--L,L] and we fix coordinates and velocities of all particles outside it. In the phase 

space of particles inside AL, we consider a measure ~L' whose density is 
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, - ]} ~-exp --~[ ~ (v(x)70' + ~.~ U(Jx'--x"]) + ~ U([x--y[)+~N , 
LxE~L x',x"EA z XE~L 

Y~AL 

where  N i s  t h e  number of  p a r t i c l e s  h i t t i n g  Az; ~, ~, v a r e  p a r a m e t e r s ;  ~ i s  a n o r m a l i z i n g  

factor. As L--+oo the measures ~z converge in a natural sense to a limit, which is called 

the Gibbsian equilibrium distribution. The parameters B, ~ are uniquely connected with h, 
p. 

Returning to our problem, we shall call the subset ~tcJ~ massive if ~(J~'IP, ~, h)=l 

for all D, ~ k. The first time the problem of the construction of massive subsets j~" was 

considered was in the paper of Lanford [507], In his paper it was assumed that U(r) is 
bounded above, and under this assumption a massive subset was constructed. The case when 

the potential has a hard kernel, i.e., U(r)-----oo for r~rl, was considered in Ya. G. Sinai's 

paper [163]. He constructed a massive subset on which (i) has a solution, reducing to so- 
called cluster dynamics. The latter means that the evolution of the entire infinite ensem- 
ble of particles occurs in such a way that at each moment of time t all particles decompose 
into finite groups (clusters), where each cluster moves for some time independently from the 
others. Then the clusters decompose, run into one another, and the particles again split up 
into clusters, etc. The results of [163] were carried over to systems with long-range poten- 
tial by A. N. Zemlyakov [77]. 

In Sinai's paper [166] the subset ~gz on which the solution of the system (i) giving 

the cluster dynamics is defined was constructed also in the multidimensional case for d>1. 

However, ~(~[p, ~ h) =I only for sufficiently small values of the density. From the physi- 

cal point of view, this is completely natural. The fact is that for d>l there may occur 

in the system phase transitions, manifesting themselves in that given values of the parame- 

ters p, h can correspond to several Gibbsian equilibrium distributions, i.e., the limit which 
figures in the definition of the Gibbs equilibrium distribution can depend on the choice of 
the successive boundary conditions. For the Gibbs equilibrium distribution corresponding to 
a fluid or solid thermodynamical phase, it is unnatural to require a cluster character of 
the dynamics, which is specific for gas phases; viz., this also explains that ~(~Ip, v, h)=l 

for sufficiently small p, when the Gibbs equilibrium distribution is unique and corresponds 
to a gas phase. 

We consider the subset ~r, on which the solution of (i) is defined. The motions S t 

along solutions of this system, constructed in the papers mentioned, leave any Gibbs equilib- 
rium distribution invariant, and hence the question arises of the ergodic properties of the 
corresponding dynamical system. Up to now only the simplest cases have been studied success- 
fully: ideal gas, when U(r)~O, and gas of one-dimensional hard globules, i.e., U(r)=co for 

0<r<r0 and 0 in the remaining cases. Gallavotti proved that the dynamical system {St} cor- 

responding to an ideal gas is mixing, and in the paper of K. L. Volkovysskii and Ya. G. Sinai 
[53] it was proved that it is a K-system. In Sinai's paper [162] it was proved that the gas 
of one-dimensional hard globules is a K-system; and in the paper of Aiserman, Goldstein and 
Leibowitz [199], that it is a Bernoullian system. In the paper of de Pazzis [608] systems 
of one-dimensional hard globules on a half-line with elastic reflections from the boundary 
were considered and the K-property was proved for them. 

From the point of view of statistical mechanics the question of the ergodic properties 

{S~} should be posed somewhat differently than in ordinary ergodic theory. The fact is that 

from the infinite number of degrees of freedom, different probability distributions in 

natural from the point of view of statistical mechanics as a rule are mutually singular 
among themselves. The irreversibility of statistical mechanics means that for the evolution 
of these distributions, generated by motions along solutions of (I), they must in some sense 
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or other converge to the Gibbs equilibrium distribution. The absence of a sufficiently com- 
plete existence theorem for (i) does not allow one to approach this problem at the present 
time. Nevertheless, one can try to clarify what kind of limits, in principle, are possible 
for the evolution of nonequilibrium distributions. The first such formulation of the prob- 
lem was made in the paper of B. M. Gurevich, Ya. G. Sinai, and Yu. M. Sukhov [69]; some re- 
sults were obtained there for the case d = i. Recently, B. M. Gurevich and Yu. M. Sukhov 
[70] obtained considerably stronger results, to whose description we shall now proceed. 

In the space Jg one can introduce a class of measures that are natural from the point 
of view of statistical mechanics, which we shall call Gibbs distributions (not necessarily 
equilibrium). The definition of a Gibbs distribution is a variant of the general definition 
of a limit Gibbs distribution due to R. L. Dobrushin. Let X be an infinite configuration of 

particles, Q be a compact set of the space R d, F be a function defined on the set of all 

finite subsets of particles (by particles we now mean points of the space R 2d , i.e., coor- 

dinates and velocities) which the following properties: 

i) F = 0, if the subset contains more than no particles (no is a constant); 

2) F~0, if the distance between points is less than ~; 

3) F=oo if the distance between points is less than ro (rigid core). 

Definition. A probability distribution p in Jg is called a Gibbs distribution (with 

potential F) if the conditional distribution on the space of particles in Q for fixed par- 
ticles outside Q is given almost everywhere by a density with respect to the measure ~, hav- 

ing the form ~-lexp(--ZF'(z)), where the summation is over all finite subsets z, at least one 

of whose elements is contained in Q. By the measure % is meant the direct product of the 
Lebesgue measure in the velocity space and the Poisson measure with constant density on con- 
figurations in Q. 

Gibbs distributions form a sufficiently broad and natural class of distributions in M. 
O. Kozlov obtained rather general conditions on distributions under which they turn out to 
be Gibbsian. 

In statistical mechanics, the chain of Bogolyubov equations, which describe the evolu- 
tion of a nonequilibrium distribution, is well known. This chain is derived formally: In 
the derivation one passes to a limit to an infinite number of particles, whose validity is 
not evident. Nevertheless, the extended point of view is that in natural situations the 
chain of equations of Bogolyubov correctly describes the process of evolution of a distribu- 
tion. The basic result of Gurevich and Sukhov can now be formulated as follows: 

If a Gibbs distribution is a stationary solution of a Bogolyubov chain of equations, 

then it is a Gibbs equilibrium distribution. 

This theorem is a mathematical proof of the known assertion of Landau that the additive 
integrals of motion reduce to energy, impulse, and density. 

An interesting example of an infinite-dimensional dynamical system was considered in a 
recent paper of Goldstein [361]. Let there be situated on the plane an infinite set of cir- 
cles of the same radius with centers at integral points of the plane. To complete this set 
of circles one scatters a statistically homogeneously (i.e., according to a Poisson distribu- 
tion) a infinite number of particles of identical mass, each of which moves independently 
from the other particles and is reflected from the fixed circles according to the law of bil- 
liards. In [361] ergodic properties of this system are studied in relation to a group of mea- 
sure-preserving transformations isomorphic with the direct product of R l and Z ~ 

CHAPTER 9 

ERGODIC THEOREMS 
T 

' i  The q u e s t i o n  of  t h e  a s y m p t o t i c  b e h a v i o r  of  e r g o d i c  means T Utdt of  o n e - p a r a m e t e r  g r o u p s  
0 

of  l i n e a r  o p e r a t o r s  {Ut} i s  o f  i n t e r e s t  f rom v a r i o u s  p o i n t s  o f  v i e w .  The c l a s s i c a l  e r g o d i c  
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theorem of yon Neumann and Birkhoff--Khinchin asserts that for a measure-preserving flow {T~} 
T 

I ~f(Ttx )dr converges as t-+co in mean in the Lebesgue space (X, I~), I~(X)=I, the function ~-} 
0 

square br almost everywhere, if /6L2~X, b), or, respectively: /ELI(X, ~). Generalizations 

of this theorem to the case of transformations of a space with infinite measure, and also 
to the case of semigroups of operators in abstract normed and function space were obtained 
by F. Riesz, V. V. Stepanov, E. Hopf, Yosida, Kakutani, Doob, Dunford and Schwartz, and 
Chacon and Ornstein. A detailed survey of these results and the corresponding bibliographi- 
cal citations can be found in the book of Dunford and Schwartz, and also in the paper of 
Vershik and Yuzvinskii [48]. We shall restrict ourselves here to enumerating papers that 
have appeared since 1967. 

w Statistical Ergodic Theorems 

Sine [674] proved that the average of iterations of a compression T in a Banach space 
converges strongly if and only if the fixed points of the operator T are separated by the 
fixed points of the adjoint operator T*. Aribund [217] obtained a generalization of the 
statistical ergodic theorem to the case of a group of linear operators acting on a locally 
convex linear topological space. A statistical ergodic theorem for other methods of summa- 
tion is proved in [504]. 

Let T and S be bounded linear operators in a Banach space B. We consider the following 
assertions: 

(i) T n converges weakly to S, 

( i i )  W Tts c o n v e r g e s  s t r o n g l y  to  S f o r  each  s t r i c t l y  i n c r e a s i n g  s e q u e n c e  {is}. 
S = I  

From ( i i )  f o l l o w s  ( i ) .  The c o n v e r s e  was p roved  by Blum and Hanson f o r  o p e r a t o r s  T i n  

L2(X, I~), i nduced  by an au tomorph i sm of  t he  Lebesgue  space  (X, ~), ~ ( X ) - - I .  Then the  e q u i v -  

a l e n c e  of  ( i )  and ( i i )  was p roved  f o r  c o m p r e s s i o n s  in  a H i l b e r t  space  o r  i n  t he  space  LI(X,~,), 
where  ~ i s  o - f i n i t e .  Akcog lu ,  Huneke, and Rost  [206] c o n s t r u c t e d  an example of  a compres -  
s i o n  i n  a Banach space  f o r  which  ( i )  and ( i i )  a r e  n o t  e q u i v a l e n t .  J o n e s  [418] e s t a b l i s h e d  a 

n 

~T~s and weak mixing in the sense 
! 

connection between the existence of the strong limit 1im~ /_~ 
S=I 

that for some sequence {nk} of density I, Tnkx has a limit. 

A sequence of probability measure ~n on a locally compact commutative group G is called 

summing if for any unitary representation U of the group G !Ughd~,~ converges to a U-invari- 

ant vector. In [253] equivalent characteristics of summing sequences are found. 

w Individual Ergodic Theorems 

n 

Let T be an ergodic automorphism of a space X with measure ~; we set f*(x)=sup~ f(T~x). 

In addition to the Birkhoff ergodic theorem, D. Ornstein [577] obtained the following result: 

i) if ~(x)< oo, f>0, then J*s163 ~) if and only if max(/Iogf, 0) GL,(X, ~); 2) if B(X)=oo 

f~0, then the function f* is not integrable. 
1 

Results on the convergence of the mean ~Tkf almost everywhere for compressions in 

the spaces Lp are grouped around the theorems on Dunford--Schwartz and Chacon--Ornstein. 

THEOREM (Dunford--Schwartz). Let (X,~) be a space with a o-finite measure and T t be a 

strongly continuous semigroup of compressions in LI(X, ~) satisfying the condition 

IIT~filoo<llflloo foran f 6L,(X, ~)NL~(X, ~). 
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Then for f6Lt(X, F ~) the limit 

N 

l im sv .!Tefdt exists almost everywhere. 
0 

An analogous result also holds for semigroup {T n} with discrete time. Brunel [278] 

proved an individual ergodic theorem for a finitely generated semigroup of compressions in 
LI which are also compressions in L~. 

THEOREM (Chacon-Ornstein). For a positive compression T in LI(X , .~) the means 
n 

I ~ Tkf, f6LI(X, ,~), converge almost everywhere. 

For a new proof of this theorem, cf. [345] (cf. also [307, 355]). 

Akcoglu and Cunsolo [204] proved a theorem of Chacon--Ornstein type for one-parameter 

semigroups: If the semigroup Tt of positive compression in LI(X, ~) is strongly continuous, 

t h e n  f o r  e a c h  g~Ll(X, ~) and e a c h  f6(X,  ~) 

o~ 

,~' r,yct: 
lira o 

X 

,x--,~ !. Ttgdf 

exists almost everywhere on the set x~X: Tfg)(x)dt>O. 
0 

Terre! [693] found the following remarkable generalization of the theorems of Dunford-- 
Schwartz and Akcoglu--Cunsolo. A family Pt of measurable nonnegative functions is called ad- 
missible with respect to the semigroup of operators T t if: 

I) Pt(X) is measurable in t for almost all x, 

2) if f6LI(X, ~) and [ f i~  ~ p,d~ almost everywhere, then for any s > O  ' T s f : ~  'i p,dt al- 
n'~s 

mos t  e v e r y w h e r e .  

THEOREM. I f  t h e  s e m i g r o u p  {Tt} of  c o m p r e s s i o n s  in  LI(X, g) i s  s t r o n g l y  c o n t i n u o u s  and 

t h e  f a m i l y  P t  i s  a d m i s s i b l e  w i t h  r e s p e c t  t o  {Tt}, t h e n  f o r  e a c h  f6Ll(X, ~),  

.i r,1~f 
l ira  o 

c~--~ .tptdt 
0 

exists almost everywhere on the set p t d t > O .  

In the paper of Meyer [534], results of Rost, which give a new approach to the proof of 
the maximal ergodic theorem and the Chacorr-Ornstein ergodic theorem are expounded. 

Of other papers on individual ergodic theorems we mention [438, 645, 502, 651]. 
n 

J ~'Tk/ almost everywhere also in LI(X, ~) Thus in [438] the convergence of the means -h-_~ 
0 

for a Markovian operator T in %1(X, ~) under the additional hypothesis of weak compactness 
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1 " ~ T k ?  for some function ~L~(X,~), ~ >0, is proved of t h e  s e q u e n c e  --~ ~_~ �9 
0 

We shall say that a linear operator T in LR(X, ~) admits a majorizing estimate with con- 

tant k, if for each /~Lp(X, ~) 

hi; x ~ 1Tk/ k; l [/IPd~" 

I f  a c o m p r e s s i o n  T i n  L2(X,~) has  t h i s  p r o p e r t y ,  t h e n  t he  s equence  2 Tk/ c o n v e r g e s  
1 

a l m o s t  e v e r y w h e r e  f o r  a l l  /6L2(X, ~). E. S t e i n  p roved  t h a t  p o s i t i v e  u n i t a r y  o p e r a t o r s  admi t  

m a j o r i z i n g  e s t i m a t e s .  I n  [287] i t  i s  p roved  t h a t  a p o s i t i v e  c o m p r e s s i o n  T in  LR(X,~) a d -  

P if there exists a sequence of positive func- mits a majorizing estimate which constant p--1' 

tions h~ 6Lp(X, ~l), such that [ITnhnll=Ilhnll. There are close results in [288]. 

Akcoglu and Sucheston [208] reduced the question of the existence of a majorizing esti- 
mate for compressions in a Hilbert space H to the corresponding question for unitary opera- 
tors in H. In [532] it is proved that: 

i) A convex linear combination of two commuting isometries in Lp, p # 2, admits a ma- 
p . 

jorizing estimate with constant p--1' 

2) a convex linear combination of any collection of commuting positive invertible isome- 
trics in L2 admits a majorizing estimate with constant 2. 

On the connection of ergodic theorems with integral representations of harmonic func- 
tions in the circle, cf. [207]. 

Kowada [451] gave a uniform estimate for the speed of convergence of the means 
s 

f(Ttx) dt to f(x) dl~ for analytic flows on the two-dimensional torus, having analytic in- 
0 

variant measure and a rotation number, poorly approximated by rational numbers. 

D. A. Moskvin [128] found conditions under which almost all points of a curve of class 
C 2 on T = are uniformly distributed with respect to an algebraic endomorphism of the two-di- 
mensional torus, which has no eigenvalues of modulus one. 

In a series of distinct generalizations of individual ergodic theorems there is special 
interest in connection with the analysis of dynamical systems which have the property of ex- 
ponential dispersal of trajectories (cf. Chap. 2), represented by multiplicative ergodic theo- 

rems. Let Tt be a one-parameter group of automorphisms of the Lebesgue space (X, ~), ~(X)=I 

and A(x, t) be a measurable matrix function on XXR , satisfying the relation 

,4(x; t+s) =A(x; t)A(T~x; s). 

The problem consists of studying the asymptotic behavior of the matrix function A(x; t) as 

Under certain restrictions on A(x; t), V. M. Millionshchikov [124] and V. I. Oseledets 

[131] established the existence for almost all x of the precise characteristic exponents (cf. 
[40]) of the function A(x; t) and studied their properties. 

In some questions of ergodic theory, the behavior of the means 

essential. The local ergodic theorem of Wiener asserts that 

T 

0 

~-+0 is 
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T 

l:m I : (r,x) at=/(x) 
x--,.O 

0 

if fELI(X,~) and Tt is a measurable flow in the space (X,~), F()0=I. 

In [501] a generalization of this theorem of Wiener to the case of strongly continuous 

semigroups of positive operators in LI(X,~) is obtained. In [694] it is proved that for a 

strongly continuous semigroup of compressions T t in Lx the local ergodic theorem is equiva- 
lent with the maximal ergodic inequality 

Terrel [693] proved the local ergodic theorem for an n-parameter strongly continuous 
semigroup of positive compressions in LI(X, ~), and also for a semigroup of compressions in 

LI(X, ~) which are compressions in L~(X, ~). It is interesting to note that in the local 

case, the assertion analogous to the maximal ergodic lemma, in general, is untrue for n-pa- 
rameter semigroups of positive compressions in LI, n>l. 

The application in ergodic theory of the method of summation of Abel leads to the ques- 

tion of the behavior as ~-+0 of means of the form le-XtTtfdt. For the corresponding theo- 
d. 
0 

rem on convergence almost everywhere, cf. [325] and [650]. For a family of positive opera- 

tors Tu, where ~ runs through a semigroup V~R +, Berk [248] considered the mean 

f (T~fr dv(~.); 
vNio,f~] 

here v is a nondecreasing, upper semicontinuous solution of the renewal equation ~(=)~I+ 

f ~ ( ~ -  ~) ~ CaD. 
0 

In [387] conditions are found on a matrix (an~), which are necessary and sufficient for 

the convergence in L~(X,~) of the sequence Sn(x )=~ank/r Sate [647] obtained a gen- 
k=O 

eralization of the Chacon ergodic theorem for weighted means. 

Fong and Sucheston [343] proved the equivalence for a compression T in the space LI(X, ~) 
of the following two properties: 

i) Tnf converges weakly in LI(X, ~) for each f if(X, ~); 

2) if JELl(X, ~), then the sequence Z aniT~[ converges in Lp(X, ~) for each matrix 
i 

(ani) satisfying the uniform regularity conditions: 

s u p ~  l a ' a l < ~ 1 7 6  l i m ~ a ~ l = l ' ~  i limmaxla~i]=O',, i 

An analogous result is true for compressions in L2. Of other papers on ergodic theorems for 
weighted means we note [247] and [516]. 

In [279, 646, 304] ,  p o i n t w i s e  convergence  of means of subsequences  i s  s t u d i e d ,  i . e . ,  ex- 

1 p r e s s i o n s  of t he  form -~Tk~f ,  f~L~ (X, ~). We n o t e  in  c o n n e c t i o n  w i t h  t h i s  t h a t  Krengel  [460] 
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constructed an increasing sequence of natural numbers {kz}, such that for any aperiodic auto- 

morphism T there exists a characteristic function f, for which 

n • 
lim~/(Tk~x)=l, tim-~ f(Tatx)=O 

I I 

almost everywhere. 

References [623, 442, 443] are devoted to probabilistic ergodic theorems. 

In [446] a generalization of the individual ergodic theorem of information theory to the 
case of infinite invariant measure is obtained. B. S. Pitskel' [138] showed that the condi- 
tion of finiteness of entropy of the partition in the Shannon-mMacMillan--Breiman theorem can- 

not be weakened, requiring only convergence of the series ~,~(C~)llog~(C~)l q for all 0<q< I. 

R. M. Belinskaya [20] obtained a generalization of the individual ergodic theorem of informa- 
tion theory to the case of skew product. 

w Actions of General Groups 

For actions of general groups of transformations, from various points of view there is 
interest in the question of the convergence almost everywhere of "time means." A series of 
results in this direction was obtained by A. A. Tempel'man [178, 179]. Analogous results are obtained 
in [291, 250]. Bewley [249] constructed an example of an action of a free group with two 
generators for which the individual ergodic theorem is false. 

Let G be a locally compact group with left-invariant mean, {Hn} be a averaging sequence 

of subsets of G, % be the left-invariant Haar measure on G. Under the assumption that there 

exists a constant K for which ~(HnH~-I)< K~(Hn), the individual ergodic theorem for actions 

of the group G is proved in [292] (cf. [692]). 

A. M. Vershik [47] introduced the class of completely hyperconical groups and proved for 
actions of groups of this class the individual ergodic theorem. His proof is based on the 
theorem on convergence of martingales. 

Of other papers on ergodic theorems for groups of operators, we note [688, 689, 437, 
242]. 
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