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Annals of Mathematics, 113 (1981), 159-179

Bernoulli diffeomorphisms and group
extensions of dynamical systems with
non-zero characteristic exponents

By M. I. BrIN, J. FELDMAN, and A. KATOK

1. Every manifold of dimension greater than one carries a

Bernoulli diffeomorphism

We begin by fixing some terminology:

Manifold—C= compact connected manifold (possibly with boundary);

Smooth positive measure—probability measure on a manifold which can
be represented in any local coordinate system by a positive C* density;

Bernoulli diffeomorphism—C= diffeomorphism of a manifold M which
preserves a smooth positive measure /¢ and, considered as a measure-
preserving transformation of the Lebesgue space (M, f), is isomorphic to a
Bernoulli shift (analogously: K-diffeomorphism, weakly mixing diffeomor-
phism).

We will also use definitions and notation from [1], Section 1: In par-
ticular, the definition of the classes Diffy (D"), those diffeomorphisms of the
n-dimensional disc D* which are sufficiently flat near the boundary. The
flatness of the mth derivatives is controlled by a non-negative funection p,,
which is positive inside D". It will be convenient to denote the sequence
(06 O ) by 0-

The main result is this:

1.1. THEOREM. Ewvery manifold of dimension greater than one carries
a Bernoulli diffeomorphism.

The proof has four main components, (i)-(iv). The first and last are
taken from A. Katok [1] which deals with the particular case of Theorem
1.1 for two-dimensional manifolds; the second is carried out in subsequent
sections of this paper; the third is due to D. Rudolph [2]. We describe them
briefly.

(i) Construction of a Bernoulli diffeomorphism f, on D*([1], Theorem A).
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For any fixed sequence p = (o, p,, - - +), such a diffeomorphism can in fact
be constructed in Diffs (D?).

(if) Construction of a C* map h: D*->T** (the (n — 2)-torus) which
vanishes in a neighborhood of D* and such that the T**-extension £, of £,
corresponding to h is weakly mixing. We show two methods of doing this,
obtained independently by two of the authors.

One method, due to Feldman, is similar to methods of Liv§i¢ and Sinai
[3], [4]. Itis not difficult, but is quite special, and leans heavily on the specific
properties of the example in [1]. The construction is carried out in Sections
2 and 3. (This author wishes to acknowledge valuable conversations with
Mary Rees, in connection with Section 2.)

The other method, due to Brin, involves proving and then applying a
more general theorem of independent interest, which extends earlier work
[8] of the same author. This theorem will be proved in Sections 4, 5, and 6.
Its statement is the following:

COROLLARY 4.5. Given a K-diffeomorphism f: N — N which has non-
zero Lyapunov exponents, a compact Lie group G, and a non-empty open
set VC N, there exists a C” map h: N — G such that for x€ N~ V, h(x) is
the identity element of G, and the G-extension f: N x G -» N X G defined by

flx, 9) = (fx, h(z)g)

is a K-diffeomorphism.

(iii) A deep theorem of D. Rudolph [2]: If a compact group extension

of a Bernoulli shift is weakly mixing then it is metrically isomorphic to a
Bernoulli shift.

(iv) The Reduction Theorem ([1], Proposition 1.2, and the proof of
Theorem B): If for every admissible sequence of functions there exists a
Bernoulli diffeomorphism f € Diffy (D*) preserving the Lebesgue measure on
D” then there exists a Bernoulli diffeomorphism on every n-dimensional
manifold M.

Here is how the four components are used to give Theorem 1.1.

We start with the Bernoulli diffeomorphism f, of D* deseribed in (i).
This diffeomorphism has non-zero Lyapunov exponents ([1], Proposition 2.2).
Then we use either of the methods described in (ii) to construct a weakly
mixing diffeomorphism

forDE X T*t— DP x Tt
Folx, @) = (fix, h(x)-g),
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where h: D*-> T"*is a C” function equal to the identity in a neighborhood
of the boundary. .

Now we show that if f, is a Bernoulli diffeomorphism in Diff o (D? x T*~?),
with p° sufficiently rapidly decreasing, we may transfer it to D" in any
preassigned Diff, (D").

First, we show how to map D* X T onto D?® by a continuous map which
is a C~ diffeomorphism on the interior, and which sends normalized Lebesgue
product measure on D* X T to normalized Lebesgue measure on D*. Represent
D? as pairs (z,, x,): # + 22 < 1; T as points z = (z,, 2;) on the unit circle; and
D? as triples (y,, ¥., ¥:): ¥} + ¥5 + ¥3 < 1. Our map will send (z,, x,, 2) to

where 7 is a certain increasing function from [ —1, 1]Jonto [ —1, 1]. For fixed
x, the map sends the cylinder {(x,, »,, 2): 22 < 1— 22} onto the dise {(7(x,), ¥, ¥s):
y:+ y3<1— ()%, in a T-invariant manner which sends normalized product
measure on the cylinder to normalized plane Lebesgue measure on the disc.
Now 7 is that unique function which causes the map to give the proper image
measure at the 3:dimensional level (this is equivalent to the differential
equation dy/dx, = (8/3)(V'1 — 2¥/(1 — 7*)), from which the regularity of » and
hence of the map become clear).

Now suppose we are given any j, 0 < j < % — 2, and a preassigned
measure o' = (pi*!, pi*', ---) of flatness at the boundary of D7** x T"~~*
Topologically, D/+* x T2 = D? x (D* X T 7~*), which may be obtained by
applying the map described in the previous paragraph to the D* x T factor
in

DI x (D* X T) X T* % = (D7 x D?) x T*972 = Di*+* x T7*,
The homeomorphisms: D" — D7 x D* and D x D* — D/+* may be obtained
via homeomorphisms which are C* diffeomorphisms on the interior and which
make product Lebesgue measure correspond to Lebesgue measure; we leave
this point to the reader.

Now, there is some degree of flatness p’ at the boundary of Di** x T=~-*
such that if f, is in Diff,; (D’** x T"~i-%), then the corresponding Fi4 on
D+ x T will be on Diff,j+:1 (Di** x T"7~%). Thus, starting from fo in a
sufficiently flat Diff,0 (D* X T*"?), we get f._, in Diff,.-2(D"), where p”‘2 is
our preassigned p. Since all identifications were on sets of measure 0 , frand
f,, , are isomorphic as measure-preserving transformations; in particular, if
f0 is a Bernoulli diffeomorphism, so is f,,_z.

1.2. Remark. For the diffeomorphism 7 constructed in this paper, n — 2
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of the Lyapunov exponents are zero.

1.3. Problem. Show that any manifold of dimension greater than 1

carries a Bernoulli diffeomorphism none of whose Lyapunov exponents are
zero (cf. [6]).

The simplest manifolds for which the answer is unknown are D*, n odd
and S*, n = 3.

2. Hyperbolicity of the Katok example

We examine the example of [1] briefly. Let g, be a hyperbolic auto-
morphism of the 2-torus which leaves fixed the four points x, = (0, 0), x, =
(1/2, 0), z, = (0, 1/2), «, = (1/2, 1/2). The significance of the x, is that they
are fixed points of the map x + —x on the 2-torus. Then there is a commu-
tative diagram

9 s

T2—ﬁ)—*T2——l-’T2-—¢Z—>S2——>D2

190 lgl lgz lga lfo y
T? ) T? ¢1'T2 P2 Sz s D:

and g, is obtained by “slowing down” g, near the z,. It leaves invariant a
smooth probability measure dv = pdx, where \ is Lebesgue measure and o
is positive and C* except for infinities at the x,. The conjugating function
¢, of the diagram is only known to be a homeomorphism. However, ¢, is a
homeomorphism which is in fact a diffeomorphism except at the z,, is also
the identity outside a neighborhood of {x,, x,, x,, x,}, and carries dv into
Lebesgue measure.

Following [1], we choose coordinates (¢,, &) in the tangent space T, to
T® at z, so that Dg,(x) has the form (¢,, &,) — (a&,, a™'¢,) where a > 1. Thus
{¢. = 0} is the stable subspace of g, and {s, = 0} the unstable one. (Be
warned that this is not necessarily an orthogonal coordinate system for the
Riemann metric.) Set

K= {, &) &l Z 161 KAG, e lal = el
In [1] it is shown that Dg,(x)(K.") C K., while Dg7'(z)(K, ) C ng_lz.

Denote by W,, W, the images under ¢, of the systems of stable curves
and unstable curves of g,; these are then systems of stable and unstable
curves for g,. They no longer contract exponentially, but still contract uni-
formly (since ¢, is uniformly continuous). Our purpose in this section is to

show that this contraction is nevertheless exponential in a certain limited
sense.
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It is further shown in |1] that the curves of 1, and 1, are smooth, and
meet transversally. Thus each T, has a splitting into E P E;. It is also
the case that E*c K.’ and E:c K;; thus we may consistently choose a
“positive” unit unstable vector v, (x) and unit stable vector v,(x); consistency
means that Dg,(x)v,(x) is a positive multiple of v,(g,x), and similarly
Dg'(z)v.(x) of v,(g7'®).

2.1. LEMMA. Given any meighborhood U of {x, x., x,, x,} there exists
a, > 0 such that for all x outside of U we have
v.(x) — 0K, || > ay,
v (@) — 0K, || > a .
Proof. This is implicit in [1]. There, in (4.3) and (4.4) it is pointed out
that there is an inequality of this sort at each z; but furthermore the form

of (4.2) shows that the right hand side stays bounded away from 0 outside
any neighborhood of {x,, x,, x,, x,}. ]

Let li(x, k) = ${j: 0 = j = k, glx e U}.
2.2. LEMMA. For any neighborhood U of {x, x., x,, x,}, there is some

¢, > 0and o, < Lsuchthatifxe U, gtxe Uandl = l-(x, k), then the opening
of the cone Dg¥(K.") has angle < ¢,05 X angle of opening of the cone K, .

This lemma follows from (4.7) and (4.9) in [1].

2.3. PROPOSITION. Given any meighborhood U of {x,, - - -, x,}, there exist
¢ > 0and o < 1 such that if x and g*x are not in U, and | = l,(x, k), then
| Dgi(x)v ()|l = co'.

Proof. This is essentially a repetition of the proof of Proposition 2.2
from [1]. Let
Dygiv,(2) = Si(x)v,(2)
Dgiv, (x) = Ugx)v,(x) .
Let a, = A, (x)v,(x) + A,(x)v,(x) be the point where 0K, meets the set
&+ & =1 with A4,(x), A,(x) positive and let b, = B,(x)v,(x) + B,(x)v,(x) be
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the point where 6K, meets the set & + & = 1 with B,(x) positive and B,(x)
negative. Then |A,(x)|, |A,(x)|, |B.(x)| and |B,(x)| are all bounded away
from 0 and 1, because of Lemma 2.1. So Lemma 2.2 says the angle between
Dgta,, Dg*b, is less than c,0! times the angle between a, and b,. But

Dgta, = A, (@)Si(@)v.(x) + A(x)U,(x)v,(2)
and

Dgtb, = B,(x)S,(x)v,(2) + B,(x)U,(x)v,(2) .

A little algebra then reveals that
Uilz) < const. X a} .
S.(x)
But g% preserves a measure whose density is continuous outside U. Thus,

U.(x)S,(x) is bounded above and below by positive constants. Therefore
U.(x)* < const. X g}, so U,(x) < ca'. ]

2.4. COROLLARY. Given any neighborhood V of {x,, x,, x,, x,}, there exist
¢ >0,0 <1, and o > 0such that whenever x, y lie on the same stable curve
of g, with x, gfxe V and d(x, y) < 0, then d(gz, g*y) < c'o'd(x, y), where
l=1l(x, k).

Proof. It is shown in [1] that for any small open ball O disjoint from
{x,, ©,, x,, x,}, the map which assigns to x in O the connected component of
stable curve through « in O is continuous from O into the space of curves
in the C* topology. Then there is some §, such that if y is any point on the
connected segment of stable curve through x in the d,-ball around x, then
the segment of stable curve from x to y has arc length < 2d(z, y).

Now choose a neighborhood U of {x,, x,, ., #,} with U < V;say d(U, V)<
some positive ¢,. There is some J, < d, such that, if x, % are on the same
stable curve, and d(z, y) < 6, then d(gix, giy) < ¢, for all 7 = 0. Thus, if
x¢Vand gtx¢ V thenye Uand gy ¢ U.

If y lies on the component of the stable curve through « in the 6,-neigh-
borhood of x, and if x and g*r are outside V, then we may use the above
remark and the previous proposition for all points on the stable segment
from z to y to get this chain of inequalities: d(gix, gty) < arc length of
stable curve from gz to gty < co'v** X arc length of stable curve from «
to y < 2¢co =¥ d(x, y). Since l,(x, k) = l,(x, k), we conclude: d(gtx, gty) <
2¢co'd(x, y). ]

3. Construction of the skewing function

3.1. LEMMA. Let f be an ergodic transformation on the probability
space (X, ). Let h be a measurable function: X —T™, and write
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h(x) = (h,(x), N h,,,(x)). Then the skew product transformation (x, z)+—
(fx, zh(x)) s weakly mizing if and only if there is no m-tuple of integers
(T, *+*, tm) %= (0, - -+, 0) for which the function hd --- hiz: X — T has a form

B(b(fx)/b(x)) where B is a constant and b: X — T a measurable function.

Proof. If hi(z) --- him(w) = B(b(fx)/b(x)) for almost every x, then set
Y(x, 2) = b~ (x)zh - -+ 2im, where z = (2, -+, 2,) €T™. A calculation reveals
that (fx, zh(x)) = By (x, 2) for all z and almost every z. Clearly v is not
almost everywhere constant, so the skew product transformation cannot be
weakly mixing.

Conversely: if v(fx, zh(x)) = By (=, ) for almost every (z, z), then we
expand + as a Fourier series in

z: Yz, 2) = El‘lm ai,,m,im(w)zf] ez
The equation on +» gives
@, ..., (fR)h(x) - - - him(x) = Ba,,..; (x) fora.e. w.

By ergodicity of f, the modulus of each a, ..., is almost everywhere con-

im

stant. If + is not a.e. constant, then there is some (i, ---, 1,,) # (0, ---, 0)
for which |a; .., ()| =c >0 a.e. Set b(x)=c'a;..;,(x). Then b takes
values in T, and satisfies the equation of the lemma. O

Now we return to the diffeomorphism g,: T* — T

3.2. LEMMA. If H is a Lipschitz continuous function: T*— T, and
H =1 in a meighborhood of {z, -, x}, and H(x) = B(b(g,x)/b(x)) almost
everywhere for some measurable b: T* — T, then there is a set A of measure
1 in T? and for each € > 0, some o, > 0, such that, if d(z, y) < 0, x, Yy are in
A, and x and y both lie on the same stable or unstable curve of g,, then
|b(x) — b(y)| < e.

Proof. There is a g,-invariant set S of measure 1 such that H(x) =
B(b(g,2)/b(x)) for all xeS. Choose a compact set K of measure > 9/10 on
which b is uniformly continuous. If x €S and £ > 0, we may write

b(x) = b(grw)/H(w) - - - H(gi 'x) .
Thus, if z, y € S, we have

blx) _ blgr(x) H(y) --- H(gi™'y)

bly) blgi(y) H(z) - - - H(gi'w)
By ergodicity, there is a set F' of measure 1 such that if x € F' then g*z lies
in K for a set of k& of density >9/10. Thus, if z, y € F, then there exists an
arbitrarily large k& such that both g*x and ¢*y lie in K. Hereafter we will
always assume that x and y lie in S N F’ and on the same stable curve.
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Let us consider the factor (H(y) --- H(g''y))/(H(x) - - - H(g*"'x)), and

denote by V some neighborhood of {x,, -+, x} with Vc U. Then ¢, =
d(V, TA\U) > 0. Choose §, so small that if d(z, y) > 6, then d(g’z, giy) <
min (&, 0) for j = 0,1, ---, k, where § is as in Corollary 2.4. Given x, y with

d(z, y) < 0, 1let 0 < j, < -+ < 5, < k be the values of j between 0 and k for
which gix¢ V. If j is not some j, so that gixe V, then giy e U, so that
H(giz) = H(gly) = 1. Thus,

Hy) - Hgi"y) _ yp Hlgly)

H(x) - -+ H(g{'y) ' H(giix)
The product may, of course, be empty, i.e., | = 0, in which case it has the
value 1. If it is nonempty, then for 1 < i < [ we have

|H(gl'y) — H(giix)| < Ld(gi'y, giix) (L being the Lipschitz
constant for H)
= Lc'o'~'d(gix, giy) .
Now let us further restrict 6, so that if d(x, y) < , then d(giz, giy) < 4,,
where 0, is so small that

T (1 + Lc'o'16) < ¢/2.

Then, since

HAY) 1| < Lo,
H(giix)

we have

!szo gﬁgz; - 1i <2 forall k=0.

As for the factor b(x)/b(y), we restrict o, further: choose ¢, so that if
two points in K are within ¢, of each other, then their b-values are within
¢/2 of each other. Restrict d, further so that if d(x, y) <4, then d(giz, giy) <e,
for all j = 0. Now choose k for which g and g*y are both in K. Then if
d(z, y) < ¢, we have also

bgie) ¢ b)) 4
!b(gj‘y) 1|<e/2, and so By 1|<s.

Using ¢g~' we construct sets S’and F’. Thentheset A = SN F NS NF
satisfies the assertion of the lemma.

3.3. COROLLARY. Given H and b as in Lemma 2.3, there is a set of
measure 1L on which b is uniformly continuous.

Proof. This follows by use of absolute continuity of foliations, as in
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[3]. More precisely: since the Lyapunov exponents of g, are nonzero almost
everywhere ([1], Proposition 2.2), and since the stable and unstable foliations
are globally defined, it follows as in [5] that each of the stable and unstable
foliations is absolutely continuous. Thus, there is a set B C A, of measure
1, such that if x, y € B and z, y are reasonably close then there exist z,, v,
in A and on the same unstable curve, such that x and x, are on the same
stable curve, and likewise ¥y and y,. If x and y are close it easily follows
that x and z,, ¥ and y,, and x, and y, are all close. Thus Lemma 3.2 may be
applied to get the desired uniform continuity. O

Now we shall exhibit functions ~ from D* to T™ which are C*, take on
the identity of T™ near oD? and give weakly mixing skew products over f;.
Choose U in T* small enough that there are at least two g,-periodic points
x, y such that the orbits of x, —x, ¥, and —y are disjoint from each other
and from U. Let ¢ = ¢,0¢,0¢,. Then the images of x and y under ¢ are f,-
periodic points with orbits disjoint from each other and from ¢(U). Let the
periods be k and | respectively. Let h be a C* function = D*— T™ which
vanishes in ¢(U). Suppose the skew product made with f, and & is not weak
mixing. Then, by Lemma 3.1, there exist (¢,, ---, 7,) # (0, ---, 0), B€ T and
b: D* — T with Al - - - him = B((bo f,)/b) almost everywhere. Then

(hyog)t -+ (hyog)m = B—BT a.e.on T°.

Now, H = (h,o¢)" -+ (hno¢)= is C*, takes on 1 in U, and is almost
everywhere equal to 8((bo ¢ g,)/(bog)). Then by Corollary 3.3, bo¢ is almost
everywhere equal to a continuous function. Then the same is true for b, at
least on the interior of D®. In particular, it holds at ¢(x), fig(x), - - -, foi ()
and ¢(y), fup(y), - - -, fi '¢(y). Thus, we have

(H(x) - -+ H(gk'@))' = g = (H(y) - -- H(9:'p))* .

bogog,

But we are free to assign any values we want to h,;, - - -, h,, at the finitely
many point of the f,-orbits of ¢(x) and ¢(y), and for almost all such assign-
ments the above equation cannot hold for any (¢,, - - -, 7,.) #= (0, ---, 0). See
|4].

4. Statement of results about group extensions

In this and subsequent sections we study in a more general way ergodic
properties of group extensions of dynamical systems with non-zero charac-
teristic exponents. The corresponding problems for group extensions of
Anosov systems were studied in [7], [8]. Our main goal is to find out to what
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extent ergodic properties of the base system are inherited by its group
extensions. According to the results of Pesin [6], for any diffeomorphism
preserving a smooth measure and having non-zero characteristic exponents,
the measure of almost every ergodic component is positive, and the restric-
tion of the diffeomorphism to such a component is isomorphic to the direct
product of a finite cyclic permutation and a Bernoulli shift. Under some
additional conditions the diffeomorphism is a Bernoulli shift. Our main result
asserts that by taking a small perturbation of a given group extension one
can “lift” the mentioned ergodic properties of the base diffeomorphism to
its group extension.

All our results with appropriate changes in formulations remain valid
for smooth flows.

Let h be a C*-diffeomorphism of a smooth compact Riemannian manifold
N™ = N, preserving a smooth positive measure m,. The measurable function

(**) X(z, v) = 1im,m% In||dh*v||, veT.N

is called the characteristic exponent [9]. For almost every x in N the limit
(**) exists for every tangent vector v in T, N, and for fixed x, only finitely
many different values are taken on by X(x, v). Let X (x) be the greatest
negative value and let X*(x) be the smallest positive value. Denote by L
the h-invariant set of all points x such that:

(i) = is a regular point ([9], [10]).

(ii) X(x, v) #+ 0 for every v in T_.N.

The following theorem summarizes some of the results obtained by Ja. B.
Pesin in [10].

4.1. THEOREM (Ja. B. Pesin). Let a(x) = (1/1000) min (— X ~(2), X *(x)).
There exist two dh-imvariant measurable families of subspaces E°*(x),
E*(x) c T.N, x € L, measurable functions C(x), K(x), b(x) > 0, and two h-
mvariant families of local stable and unstable C*-manifolds V*(x) and V*(x)
satisfying the following conditions:

(a) C(x)/C(hx) = e ™, K(x)/K(hx) < e, b(x)/b(hx) < e*™.

(b) T.N = E*(x) P E*(x), and the angle between these subspaces 1is
greater than K(x).

(¢) For every positive integer n,

Idh®o || < C@je= "= ]|,

|dh=v]| Z C (@ @ [o]|, ve E'(@) ;
Idh®o| 2 C (@ == o],
ldh—v!| < Clx)e~ "= |ly]|,  ve B*x) .
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(d) The local stable and unstable manifolds V*(x) and V*(x) are defined
in the b(x)-neighborhood of every point x in L; their intersection is precisely
x; for every point y belonging to V:(x) and any positive integer m,

d(h"z, hy) = Cx)e ™=+ d(x, y) ;

1f the distance d(h x, h"y) 1s always less than b(h™x) and less than Ce'* ™ (# +et=in
Jfor some constant C, then y belongs to V*(x); and the same is true for V*(x)
and any negative n.

(e) Let us set L, = {x € L: min(— X~ (2), X*(2)) = "'}, and

L; = {xeL,: Clx), K\(x), b'(x) < s} ;

then the families E*, E*, V*, V* are continuous on every set L:.

(f) There is a function S = S(s, r) such that, if © and y belong to L;
and V*(x) intersects V*(y) at a point z, then z belongs to L.

(g) The foliations V* and V* are absolutely continuwous (cf. [10], [11],
[12]); moreover, the Jacobians of succession (or holomomy) maps and of con-
ditional measures on stable and unstable leaves are bounded on each set L:.

4.2. Definition. We say that a diffeomorphism h preserving a smooth
positive measure m, is a diffeomorphism with non-zero characteristic ex-
ponents, if for almost every point x in N (with respect to m,), X(x, v) #= 0
for every tangent vector v in T,N, i.e., L = N almost everywhere.

Let M and N be smooth compact connected Riemannian manifolds (maybe
with boundary), and let G be a compact connected Lie group.

4.3. Definition (cf.[8]). A diffeomorphism fof M is called a G-extension
of a diffeomorphism h of N, if M is a smooth principal G-bundle over N [13]
(with projection p: M — N) and if the following conditions are satisfied:

@) p-f =h-p;

(i) f-R, =R, f (R,: M — M is the right action of an element g € G).

Group extensions have been studied from different points of view. The
existence of group symmetries for these dynamical systems along the verti-
cal direction (i.e., along the fibers P~'(x)) makes it possible to study the
structure of ergodic components, K-components and Bernoulli components,
even in the abstract situation (cf., e.g., [14], [2]). In the case when & is an
Anosov diffeomorphism these components are smooth compact submanifolds
of M ([7], [8]). In this case every component turns out to be a principal
subbundle of M. Moreover, since f commutes with the right action of G,
the partitions of M into topological components P, (i.e., the sets on which f
is topologically transitive; in the case when & is Anosov, these sets really
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constitute a partition), ergodic components P,, or K-components P,, are
invariant with respect to every R,. Therefore, all the components of the
same type (topological, ergodie, or K) are diffeomorphic to one another, and
the corresponding factor spaces M/P,, M/P,, M/P, are homogeneous spaces
of G. The stabilizers of those spaces measure the degree of integrability of
the group extension, each of the stabilizers being the structure group of
the corresponding subbundle. It is proved [7] that any group extension of
an Anosov diffeomorphism & (preserving a smooth measure) can be perturbed
in the space of group extensions of # in such a way that the perturbed dif-
feomorphism is ergodic and is a K-automorphism. In the present paper we
generalize this perturbation theorem, and prove that the same is true if &
is a diffeomorphism with non-zero characteristic exponents.

Let M and N be smooth compact Riemannian manifolds (perhaps with

boundary). The following theorem is our main result concerning group
extensions.

4.4. THEOREM. Let f: M > M be a C-G-extension of h: N > N, r = 2.
Suppose h preserves a smooth positive measure and C, is an ergodic compo-
nent of h with positive measure, C, is a disjoint union of Ci, 1 =1, ---, k,
and the restriction h*|C} has non-zero characteristic exponents and 1s a K-
automorphism. Then for every meighborhood U of f in the space of all the
Cr-G-extensions of h there exists an fe U such that the set p~'(C,) is an

ergodic component of f, and the restriction f*|p='(C}) is a K-automorphism
for every 1.

4.5. COROLLARY. Let f: M- > Mbe a C'-G-extension of h: N- > N, » = 2.
Suppose h has non-zero characteristic exponents and s a K-automorphism.
Then there exists a C-perturbation f of f which is a K-automorphism. The
perturbation can be concentrated im any meighborhood on N, i.e., for any
neighborhood V < N there exists an arbitrary small perturbation f such that:

() fis a K-automorphism;

(i) flw) = flw) if p(w) does not belong to V.

4.6. Remark. By Pesin’s results [6] every K-diffeomorphism with non-
zero characteristic exponents is actually a Bernoulli diffeomorphism. Thus,
combining Corollary 4.5 with Rudolph’s result from [2], mentioned above

(§1, (iii)), we can see that the diffeomorphism f from Corollary 4.5 is a
Bernoulli diffeomorphism.

4.7. COROLLARY. Let f: M — M be a C™-G-extension of h: N— N, r = 2.
Suppose h has non-zero characteristic exponents. Then there exists a C'-
perturbation f of f such that for every ergodic component C.(f) of f with
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positive measure, and for every K-component C (f) with positive measure,
there are components C,(h) and Cy(h) for which:

(i) pUC.(h)) = C.f) almost everywhere;

(i) p Y (Cx(h)) = Cx(f) almost everywhere.

The general scheme of the proof of Theorem 4.4 and Corollaries 4.5 and
4.7 and techniques applied are similar to those of [8]. We begin by proving
that the stable foliation W; and the unstable foliation W} of h can be
“lifted” to the stable W} and unstable W} foliations of f respectively.

It is known (see [15]) that #(f) < u(W?%) Av(W?%), where n(f) is the
Pinsker partition for f. Our arguments will show that, if » has non-zero
characteristic exponents on an ergodic component C, (of positive measure),
then f can be perturbed in such a way that the intersections of the Pinsker
algebras for h and f with C, and p~'(C,), respectively, are isomorphic in the
following sense: for any set A which consists almost everywhere of giobal
stable and unstable manifolds of f, there exists a measurable subset B in N
such that p~'(B) = A almost everywhere and B consists almost everywhere
of stable and unstable manifolds of . These arguments include both the
study of Pinsker algebras and the perturbation itself.

5. Main lemmas

Throughout this section kisa C*-diffeomorphism of a compact Riemannian
manifold N (maybe with boundary) preserving a smooth positive measure
my, and f: M— M is a C*-G-extension of h preserving the measure m, which
is the product of m, and the Haar measure.

Suppose that i has non-trivial characteristic exponents; i.e., there is a
set L° of positive measure such that, if x € L°, then there exists a vector v
in T,N such that X(z, v) # 0, and if x does not belong to L°, then X(z, v) = 0
for every v. Since h preserves a smooth measure, it is clear that for any
point z in L° we can find two vectors v, and v, in T,N such that their charac-
teristic exponents are non-zero and of different signs. That means (see [10])
that there exist global stable W; and unstable W} foliations,

Wi@) = Unzo b ™(Vi(h 2)) and Wi @) = Unz h(Vi(h ")) .
Let L! be the set of points for which stable and unstable manifolds exist;
L' = L° almost everywhere.
5.1. LEMMA. (a) For every point w € p~'(L°) there are two tangent vec-
tors with non-zero characteristic exponents of different signs.

(b) For every point w outside p~'(L°) all the characteristic exponents
are equal to 0.
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(¢) For every point wep ‘(L) there exist a global stable manifold
Wi(w) and a global unstable manifold W} (w).

(@) p(Wi(w)) = Wi(pw)); p(Wi(w)) = Wi(p(w)).

Proof. Let w belong to p~'(L°), p(w) = x. The differential dp maps
T.M onto T,N, and ||u|| = ||dpu|| for every vector uwe T,M. Since there
are vectors v, and v, in T, N with non-zero characteristic exponents of dif-
ferent signs, it is clear that there exist two vectors u, and u, in T, M with
non-zero characteristic exponents of different signs. This proves (a).

Now let w be outside p~'(L°). Then for every tangent vector » in T ,M
the characteristic exponent X(x, dpu) is equal to 0. The mapping dp does
not increase the norm, and dpdf = dhdp; besides the characteristic expo-
nent is 0 for every vector u, tangent to p~'(x). Therefore, X(w, u) = 0 and
(b) is proved.

It follows from (a) and (b) (see [10], [12] and Theorem 2.1) that there
exist local stable manifolds V}(w) and local unstable manifolds Vi(w) for
almost every point w in p~'(L°) (actually it is obvious that these manifolds
exist for every point w in p~(L"). Since pf = hp, we have p(Viw))cC
Vi(p(w)) and p(Vi(w)) C Vi(p(w)). Let x = p(w) belong to L' and let x,
belong to Wi(x). Since the distance between the fibers p~'(h"z) and p~(h"x,)
decreases (exponentially), and since f acts isometrically in every vertical
fiber, there exists a single point w, in p~'(z,) such that the distance
d(f"w, frw,) tends to 0 (exponentially) as n tends to infinity. Thus, (c) and
(d) are proved. O

Suppose now that & has an ergodic component C, with positive measure
and such that X(x, v) # 0 for every point « in C, and every vector v in T,N.
We shall use now the results of Theorem 4.1. Without loss of generality
we can assume that local stable and unstable manifolds pass through every
point in C,. We need the following lemma to prove that for every element
A of the Pinsker algebra of f there exists an element B of the Pinsker alge-
bra of h such that A = p~'(B) almost everywhere.

5.2. LEMMA. Let A C M be a set of positive measure which consists al-
most everywhere of entire global stable and unstable leaves. Suppose w, is
a density point of A (i.e., if we consider a ball B(w,, r) of radius + with the
center at w,, then the relative measure of A in this ball tends to 1 as » tends
to 0). Suppose also that w, € Wi(w,) and w, e Ww,) and that all the three
points x, = p(w,), x, = p(w,), and x, = p(wzj are density points of some L*
(see Theorem 4.1). Then both w, and w, are density points of A.

Proof. 1t is sufficient to prove only the first half of the statement, i.e.,
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the half which concerns w,. Let us note that A*(L:) C L:™ (Where s(n) =
8(0)e**”), and the size of the stable manifold decreases not faster than e¢—"*="
along the trajectory. Besides, f and h are smooth, and hence they map
density points of sets to density points of their images. Therefore, if we
apply /" and k" for n large enough, the images h"z, and A"z, will belong to
the same local stable manifold. Thus, without loss of generality we can
assume that z, belongs to Vi(x,) and w, belongs to Vi(w,. Moreover, we
can assume that the distance between the points w, and w, measured along
the leaf Vi(w,) is much smaller than inf {b(x): z € L}, the minimal diameter
of the local stable manifolds in L:.

The vertical fibers p~'(x) form a smooth foliation W° which is absolutely
continuous because of its smoothness (see [12]) and is transversal to the
foliations V; and V. It follows from Lemma 2.1 that the pairs of foliations
W°, V;and W° V} are integrable (see[9]), and their integral manifolds form
two foliations W* and W°*. It follows from Theorem 2.1 that all the
aforementioned foliations are absolutely continuous, with bounded Jacobians
of succession mappings on the set L: (see 4.1(g)), and that all of them are
transversal, the angles between them being bounded away from 0 on the
set L; (see 4.1(b)). We use here the same notation for both Li(f) and Li(h)
because Li(f) = p~'(Li(h)).

By assumption there exists a set A, such that:

(i) A, = A almost everywhere;

(ii) A, consists of entire unstable leaves;

(iii) A, consists almost everywhere of entire stable leaves.

Let us denote:

B*(w, q¢)—the ball in Vi(w) of radius ¢ with center at w ;
B*(w, q)—the ball in V}(w) of radius ¢ with center at w ;
B°(w, q)—the ball in V%w) of radius ¢ with center at w ;
B"(w, ) = Usemwn B(®, ¢, weli;
Ulw, Q) = Useposiwg 12 B (w, q) .
The foliations are transversal; therefore, to prove the lemma it is suf-

ficient to show that the relative measure of A, in U(w,, q) tends to 1 as ¢
tends to 0.

Now, w, is a density point of both A, and L:, and the foliations V} and
W are absolutely continuous. Thus, for ¢, small enough, the relative
measure of those points in B*(w,, ¢,) which lie in a leaf V}(w) belonging to
A, is arbitrarily close to 1 (it tends to 1 as ¢, tends to 0). Hence, arbitrarily
(independently of q,) close to w, we can find a point w, such that:
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(i) The intersection A, N W (w,) consists mod 0 of entire stable leaves;

(ii) The relative measure of those points in B°(w,, q,), which lie in a
stable leaf belonging almost everywhere to A,, tends to 1 as ¢, tends to 0.
Thus, arbitrarily close to w, there exists a leaf W (w,) whose intersection
with A, consists almost everywhere of stable leaves, the relative measure
of A, on this leaf tending to 1 as ¢, tends to 0. Now, since A, consists of
entire unstable leaves, the relative measure of A, in some U(w,, ¢,) is close
to 1. ]

5.3. LEMMA. Let A C M be a set of positive measure which consists al-
most everywhere of entire global stable and unstable leaves. Suppose w, 1s a
density point of A and (w,, w,, - -+, w,) 1S a sequence of points such that:

(i) p(w,) is a density point of some L:;

(ii) every two meighboring points w,, w,., belong to the same stable or
unstable leaf.

Then w, is a density point of A.

This lemma immediately follows from Lemma 3.2.

The following four lemmas show that every group extension f can be
perturbed in such a way that for the perturbed system every set A4 of
positive measure, which consists almost everywhere of entire global stable
and unstable leaves, coincides almost everywhere with p~'(p(A4)). The most
interesting may be the case when f = h X I, where I is the identity mapping
of the group G.

The perturbations of fconsidered below will have the form f o L,, where
z: U — @G is a smooth function defined in a small neighborhood U and L, is
the left action of g € G (this action can be defined only locally, if M is not
homeomorphic to the direct product of N and G). If we want the pertur-
bation to be C -small, the function z should be close enough to e in the C’-
topology.

5.4. LEMMA. Let f = foL,. Suppose that w, belongs to Wi(w,) and w,
belongs to W}H(w,), p(w;,) = x;. Then

w(w,) N p~ (&) = lim, .. f~(W5(f w,) N p~'(kh"x)) ,
wiw,) N p~ () = lim, .. f(WHSF "w,) N p~'(h ")) .

This lemma is obvious, because every stable leaf is uniquely determined
by its infinite future, and every unstable leaf is uniquely determined by its
infinite past (see [7]).

Suppose M = N x G; then the vertical difference between two points
w, and w, belonging to the same stable (or unstable) leaf can be measured
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by an element of G. In this case fcan be represented in the following form:
flx, 9) = (hz, L,,,,9), where z: N - G is a smooth function and L denotes the
left action of G on itself. Now, let p(w,) = z,; then the difference A,(x, x,)
between the vertical coordinates of the points w, and w, can be calculated
by the following formula (see Lemma 3.4):
Az, x,) = lim, . (17, 2 '(h'w)) o (]}, 27 "(h',)) " .

The limit exists because the distance between the images h"x, and h"x, tends
to 0 exponentially. It is obvious that the same is true when the bundle is
not trivial (but in this case it is necessary to consider small neighborhoods
over which the bundle is locally trivial).

Let us consider a perturbation f = fo L,, where z is a smooth function
which differs from e in a finite number of small neighborhoods U,, 1 =
1,2 ---, k. Let (x, =, ---, x,) be a sequence of points such that every two
neighboring points x,, «,., belong to the same stable or unstable leaf. For
every point w, € p~'(x,) and for every perturbation f there exists a single
sequence (w,, w,, - -+, w,) such that p(w,) = z, and every neighboring point
belongs to the same leaf for f (see Lemma 3.1); the point w, is uniquely
determined by the function z. To estimate the vertical difference A(z)
between w,(e) (e corresponds to z = ¢) and w,(z) it is necessary to consider
k infinite sequences of images h"x,. Each time A"z, hits some U, we get a
non-zero contribution to A(z). Let us note that, while studying a stable
leaf, it is necessary to apply A" with positive n, and while studying an un-
stable leaf, it is necessary to apply A" with negative n. Therefore, since f
acts isometrically along the vertical fiber p~'(x), the contribution of every
image h"x; to the difference A(z) decreases exponentially as n tends to
infinity. That means that, if we consider a function z which equals e every-
where except a small neighborhood U of h(x,) (we assume that «, and x,_,
belong to the same stable leaf; z(x) = ¢,.,, where t(x) is positive inside U
and 0 outside U, and g, is a one parameter subgroup) and if the points «,
are not periodic and are not images of one another, then for U small enough
the distance between the real difference A(z) and g,.,  does not exceed 1/10
of the distance between g,,,, and e. It is obvious that A(z) depends con-
tinuously on z.

5.5. LEMMA. Let (x,, o, -, ©,) be a sequence of points in N such that:
(i) Every two neighboring points belong to the same stable or unstable
leaf;
(ii) If h*x, = x;, then 1 = jand n = 0.
Then for every positive ¢ there exists a positive ¢ such that for any g,
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belonging to a d-neighborhood of e there is a perturbation function z satis-
fying the following conditions:

(1) AR) = g4 B

(i) The C -distance between f and f is less than e.

Proof. For every g belonging to the ball B = {geG:d(g, e) < a}, con-
sider its one-parameter subgroup g,(g,=e, g,=g). Let t(x)be a function which
is positive inside U, is 0 out side U, and has a maximum equal to 1 at the
point i(x,) (we assume here that x,_, and z, belong to the same stable leaf).
If a is small enough, the perturbation to the function z(x) = g¢,,,, will satisfy
the second requirement for every g € B. The neighborhood U can be chosen so
small that the distance between A(z) and g does not exceed a/10. Thus, we
have a continuous mapping ¢ — A(z) of the ball B into G such that for every
point g belonging to the boundary the distance between its image and itself
does not exceed 1/10 of the radius. Therefore, the image of the ball B covers
a smaller ball. O

5.6. PERTURBATION LEMMA. Let (xf, @i, ---, 2i;,), 1 = 1,2, ---, [, be a
finite number of sequences in N such that:

(i) Every two neighboring points xi and xi., belong to the same stable
or unstable leaf;

(ii) If hra; = x), then © = 4, j = j,, and n = 0.
Then for every positive ¢ there exists a positive 6 such that for any l elements
g. belonging to a 6-neighborhood of e there is a perturbation function z satis-
fying the following conditions:

(1) A'z) =g

(ii) The Cr-distance between f and f is less than €.

Proof. Due to the second assumption all the sequences are “inde-
pendent.” Therefore, if the perturbation is concentrated in a finite number
of neighborhoods which are sufficiently small, then the mapping z —
A'(z), - --, A'(z) is close to the direct product of the mappings z — A¥(z),
1=1,2,---,1. The argument similar to the one used in the proof of the
previous lemma shows that, if a is small enough, then for every point
belonging to the boundary 6(B x B X --- x B) its image lies near the point
itself. Hence, the image of the product B x B x B X --- X B covers the
product of smaller balls. Il

Henceforth we will be interested in sequences of points in N for which
their beginnings coincide with ends.

5.7. LEMMA. Let all the assumptions of Lemma 5.6 be valid, but let
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2= 2hyy = x,. Then for every positive ¢ there exists a positive 6 such that
for any l elements g, belonging to a é-neighborhood of e there is a perturba-
tion function z satisfying the following conditions:

(i) AYz) =g,

(i) The Cr-distance between f and f is less than ¢.

Proof. Let us note that the perturbation does not have to be concen-
trated near the image (or pre-image) of the point x, (see Lemma 5.5). Thus,
the perturbation can be transferred to the image (or pre-image) of any other
point ;. Therefore, the arguments of Lemmas 5.5 and 5.6 go through. []

6. Proof of Theorem 4.4 and Corollaries 4.5 and 4.7

Let all the assumptions of Theorem 4.4 be valid. It is known (see [5])
that every element of the Pinsker partition of any diffeomorphism f consists
almost everywhere of entire stable and unstable leaves. Let A be a set of
positive measure which consists almost everywhere of entire stable and
unstable leaves. Suppose the set A, = A N C; has positive measure. Then
(see Theorem 2.1) there is a point w, in A, such that:

(i) w, is a density point of A4;;

(i) p(w,) = x, is a density point of L: for some s and 7;

(iii) x, is a density point of both Vi(x,) N L: and Vi(x,) N L.

There exists a small neighborhood U of the point z, such that:

(i) The relative measure of L; in U is at least 0.99;

(i) diam (U) is less than (S(s, 7))~ (see Theorem 2.1(g));

(iii) Let S = S(s, 7); then [z, x,] = Vi) N V¥(=x,) e Uif z, z,e Li N U.
Therefore, for any [ we can find [ sequences x’ = (x,, «{, 2}, xi),7=1,2, ---, [,
such that:

(i) i is a density point of LZ;

(i) «f = Vi(x,) N Vi(ad), o = Vi(x,) N Vilai).

According to Lemma 5.1, for any point w belonging to p~'(z,), every such
sequence can be “lifted” to the corresponding sequence of length 5 in M.
That is, there exist [ sequences (w, wi, wj, wj, wi) such that:

(i) wi = Vi(w) N Viwi), wi = Viwi) N Viwi);

(ii) p(wi) = x,.

Let us identify w, with e. Then for every sequence z’ there is an element
g7 € G such that wi(w) = L,w (since w, = e, the left action of G is defined
in p~'(z,)). Indeed, the mapping w — wj(w) commutes with the right action
of G (since f commutes); hence, this mapping is a left translation.

Let D(x) denote the set of density points of A; which belong to the fiber
p~'(x). Lemma 5.3 states that the set D(x,) is invariant with respect to the
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left action of the subgroup G, generated by the elements ¢', ¢%, ---, ¢'. It
is obvious that for any neighborhood in a Lie group one can find a finite
number of elements belonging to this neighborhood, such that the subgroup
generated by them is dense. Therefore, according to Lemma 5.7 there exists
a perturbation f of fsuch that the corresponding elements ¢, - - -, ¢g' gener-
ate a dense subgroup G,. It is also clear that for almost any point x in U
which belongs to L; the corresponding subgroup is conjugate to G,. Actually,
the left action of G in a vertical fiber p !(x) is determined only up to the
choice of an element corresponding to e; so, all the left actions are conjugate.
Let us note that the set D(x) is measurable for almost every point « in U.
Thus, it is clear now that D(x)=p '(x) for almost every point xin UN L:= U:.
Thus we have proved that A4, D p~'(U?) almost everywhere.
Define
B ={xeN:p'(x)C A(mod 0)} .

It is obvious that B is measurable and consists almost everywhere of entire
global unstable leaves V(x). Furthermore its measure is positive, hence
(see[6], [15]), B = C; almost everywhere. It follows that A, = p~'(C;) almost
everywhere.

Notice now that the perturbation obtained possesses the following prop-
perty: for almost every point w in P-'(U}?), the assumption “w is a density
point for a set A’ consisting almost everywhere of stable and unstable
leaves” implies that A’ contains p~'(C;) almost everywhere. But for every
measurable set A’ almost every point w in M (and in particular p~(Cj)) is
either a density point of A’ or a density point of its complement. Therefore,
the perturbation f which was constructed, possesses the property that
every set of positive measure consisting almost everywhere of stable and
unstable leaves coincides almost everywhere with p~'(C;) for some i. Thus,
p~'(C})is a K-component, and the restriction f*| P~(C;) is a K-automorphism.
This completes the proof of Theorem 4.4.

6.1. Remark. It follows from the concluding arguments in the proof of
Theorem 4.4 that the perturbation can be concentrated in an arbitrarily
small neighborhood V of any density point of the ergodic component C,; i.e.,
Flw) = f(w) if p(w) is outside V. If the assumptions of Corollary 4.5 are
valid, then h is a K-automorphism, and the perturbation can be concentrated

in any neighborhood of every point.

6.2. Remark. If h is a diffeomorphism with non-zero characteristic
exponents, then the number of ergodic components of positive measure is
at most countable (see [6]). Let us note that Lemma 5.6 can be applied to a
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sequence of elementsg,,7 =1,2, ---, [, such thatg, = ¢,fori =1, 2, --- n.
Therefore, by induction one can get a converging sequence of perturbations
f. such that:

(i) For every f, the statement of Corollary 5.7 is true for the first &
ergodic components of h;

(ii) The differences Ai(z,), which correspond to the j-th ergodic compo-
nent and to the k-th perturbation, do not change for & > j.
The second property guarantees the ergodicity of the limit diffeomorphism
on the pre-image p~!(C,) for every ergodic component C, of k. This proves
Corollary 4.7.
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