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Ergodic theory and Weil measures
for foliations

By S. Hurper' and A. KaTox?
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0. Introduction

The main theorem of this paper, Theorem 0.1 below, gives a relation
between the transverse measure theory of a foliation and its secondary classes.
While the technical antecedents of this work developed from the papers [37],
[46], [44], our main result was inspired by a question posed in 1974-75 by
Moussu-Pelletier and D. Sullivan: Must a codimension-one C*foliation F with
no leaves of exponential growth have zero Godbillon-Vey class? This was settled
after a progression of works [18], [53], [36], [37], [8], [7] each of which
successively broadened the geometric hypothesis under which the vanishing of
the Godbillon-Vey class GV(%#) was known to hold. The culminating work by
G. Duminy ([7], see also [4]) proved a much stronger and more natural result
than the original question asked for. Duminy’s theorem states: If & is a
codimension-one, C*foliation of a compact manifold and F has no resilient
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leaves, then GV(%) is zero. The proof of this theorem makes extensive use
of the classification theory of codimension-one, CZfoliations of Hector and
Cantwell-Conlon (see references in [4]).

This paper begins with the study of ergodic theory of foliations, and
especially the metric properties of measurable cocycles over discrete metric
equivalence relations obtained from foliations. The results given in Sections 1
and 3 below are developed as needed for our main theory, but are preliminary to
the full development of Pesin theory and Lyapunov exponent theory for folia-
tions. These topics are discussed further in [25], [30]. In this paper, we use the
ergodic theory techniques of Sections 1 and 3, and the methods of Weil measures
from [17] to prove:

THEOREM 0.1. Let Z be a codimension-n, C%foliation on a smooth mani-
fold M without boundary. Suppose that the measurable equivalence relation
R(F) on M determined by the leaves of F is amenable. Then all residual
secondary classes for & in degrees greater than (2n + 1) must vanish.

The hypothesis that %2(%) is amenable is a purely measure-theoretic
property of %, and is invariant under measurable orbit equivalence of foliations,
an extremely weak type of equivalence (cf. [39]). Characterizations of amenabil-
ity and examples of amenable foliations are discussed in Section 1.

The question of Moussu-Pelletier and Sullivan has a direct extension to
higher codimensions, as the notion of the growth type of a leaf is independent of
the codimension (see §1, also [46]). A foliation, for which the set of leaves with
positive exponential growth type is a set of measure zero, must be amenable, so
that by Theorem 0.1 all of the residual secondary classes in degrees greater than
(2n + 1) must vanish. Moreover, Theorem 1 of [22] implies that all of the
secondary classes in degrees 2n + 1 vanish when almost every leaf of % has
subexponential growth; so we obtain an affirmative solution to the Moussu-
Pelletier-Sullivan question for arbitrary codimension:

CoroLLARY 0.2. Let F be a codimension-n, C%foliation on a smooth
manifold M for which almost every leaf of # has subexponential growth. Then
all residual secondary classes for # vanish.

This corollary in particular implies that all of the “Godbillon-Vey” type
classes (cf. §2) vanish for & of subexponential type. Note that some hypothesis
on % in addition to amenability is required in order to conclude the secondary
classes in degree 2n + 1 must vanish. The Roussarie examples [13] and
Thurston’s examples [53] are all amenable foliations, but have non-zero
Godbillon-Vey classes. A very interesting open problem is to find the precise
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ergodic hypothesis on % between amenability and subexponential growth which
is sufficient to force the Godbillon-Vey classes to vanish.

The measurable hypothesis in Theorem 0.1 can be reformulated in terms of
von Neumann algebras. Associated to a Clfoliation % is a von Neumann
algebra # (%), represented as bounded operators on the Hilbert space L%(¥)
of measurable fields of functions which are L? along leaves of % (cf. [11]). We
say M (F) is approximately finite if it is the weak closure of an increasing
sequence of finite dimensional subalgebras. By Zimmer [57] (see also §5, [39]),
R(F ) is amenable if and only if # (%) is approximately finite; so we conclude:

CoroLLarRY 03. Let % be a codimensionn, CZ%foliation whose
von Neumann algebra M(F) is approximately finite. Then all residual sec-
ondary classes for F in degrees greater than 2n + 1 must vanish.

A particular case where .# (%) is approximately finite occurs when (%)
has Murray-von Neumann type I (cf. §1.9). This corresponds to the foliation %
admitting a measurable cross-section, or equivalently a measurable Epstein
hierarchy [9]. Theorem 0.1 and Theorem 3.11 below combine to yield:

CoroLLARY 0.4. Let # be a Cfoliation of a manifold M without boundary.
If M (F) has type 1, then all residual secondary classes for F vanish.

These corollaries are stated explicitly to emphasize that some of the deepest
problems in foliation theory arise when trying to relate properties of the
von Neumann algebra /(%) with differential-geometric properties of Z. It
would be extremely interesting to have direct proofs of Corollaries 0.3 and 0.4,
i.e., to deduce the vanishing of characteristic classes directly from properties of
von Neumann algebras, bypassing the use of ergodic properties of Z(.%).

We next discuss the result in ergodic theory which is crucial to the proof of
Theorem 0.1, and then discuss how it is applied. We begin with a theorem of
Zimmer: Suppose ¢: R — G is a cocycle over an amenable ergodic equivalence
relation Z and G is a real algebraic group. Then ¢ is cohomologous to a cocycle
¥ with values in an amenable subgroup H C G. (See §1.7 below for a further
discussion.) We consider the case where the orbits of % are equipped with a
discrete good metric d, and G has a left-invariant norm. Then we ask: If ¢ is a
tempered cocycle, is it possible to choose Y tempered? Using Moore’s classifica-
tion of maximal amenable subgroups of GL(m,R), we prove the following result
for foliations:

Tueorem 0.5. Let # be a C'-foliation of a Riemannian manifold M.
Assume the equivalence relation Z(F) on M is ergodic and amenable. Then for
any tempered cocycle ¢: #(F) - GL(m,R), there are a maximal amenable
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subgroup H of GL(m,R) and a tempered cocycle y: R(F) — H cohomologous
to ¢. Moreover, if the growth rates of the leaves of & are at most exponential
of type a and the growth of ¢ is at most exponential of type b, then for all ¢ >

0, we can choose Y =1, to have growth of type at most {(4m — 3)a +
(8m — 6)b + &).

This is actually a special case of the more general result Theorem 3.2 which
applies to discrete metric equivalence relations. For non-ergodic foliations, the
conclusion of Theorem 0.5 must be modified to allow the subgroup H to vary on
ergodic components. A precise statement is given in Corollary 3.3.ii) below. One
other special case of Theorem 3.2 is of particular importance:

CoroLLARY 0.6. Let T' be a finitely generated group with subexponential
growth, (X, p) a standard Borel measure space and T X X — X a measurable,
ergodic action of T on X. Let ¢: T X X - GL(m,R) be a cocycle with
exponential type a. Then there is a maximal amenable subgroup H of GL(m, R)
and for all ¢ >0 a cocycle y =y, T X X - H cohomologous to ¢ with
exponential type (a + ¢).

This corollary has been used by the second author to establish noncommuta-
tive analogs of the Birkhoff ergodic theorem for finitely generated nilpotent
groups, and also to deduce the existence of Lyapunov exponents for measure-
preserving actions of such groups. These results allow one to extend the Pesin
theory from actions of the integers to actions of this more general class of groups
[30].

The relevance of Theorem 0.5 for the proof of Theorem 0.1 is seen when we
apply it to the normal linear holonomy cocycle Dy of an amenable foliation %#.
The cohomology between Dy and a tempered cocycle ¢ gives a measurable
(though leafwise smooth) framing for the normal bundle to %, and in this
normal framing, the linear holonomy ¢ takes values in an appropriate maximal
amenable subgroup of GL(n,R), where n is the codimension of .%. Moreover,
the linear holonomy matrix ¢ in this framing is uniformly bounded when
evaluated on points a fixed distance apart in the leaf metric on M.

The Weil algebra formulation of the secondary classes, due to Kamber and
Tondeur [28], shows that if # has a smooth normal framing for which the linear
holonomy takes values in an amenable subgroup, then the vanishing of Theorem
0.1 follows from a Lie algebra calculation made in [21]. This is explained in
Remark 5.12 below. In order to deal with measurable framings, we need two
new techniques. The first is the Weil measure reformulation of the secondary
invariants introduced in [7] and [17], which divides the task of calculating
residual secondary classes into two steps: The Chern forms for the normal bundle
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to & are first calculated, or assumed given. Then a linear functional, the
appropriate Weil measure, is applied to this form to obtain a secondary in-
variant. These ideas are discussed in [17].

The second technique is to show the Weil measures can be calculated using
any tempered cocycle cohomologous to Dy. This follows in three steps: The
semisimplicial construction of the Weil homomorphism is used to reduce the
calculation of Weil measures to local foliation charts equipped with O,-related
smooth framings of the foliation normal bundle in Section 5.1. It is then shown in
Section 6 that if these local framings are measurable, bounded and leafwise C2,
then they can again be used to calculate Weil measures. Finally, in Section 7 the
geometry of the symmetric space GL(n,R) /O, is used to show that the normal
framing does not have to be bounded, as long as the cocycle Dy expressed in this
framing is tempered. This is exactly the data provided by Theorem 0.5, and the
general measurable case then follows as for the smooth case of normal framings
with amenable linear holonomy.

Section 3 contains a number of further vanishing theorems for the Weil
measures, and hence for the appropriate residual secondary classes, which are
consequences of the techniques developed in Sections 5, 6 and 7.

We conclude this introduction with a comment on the role of Proposition
3.9 of [17] (see Lemma 5.11 below) in the proof of Theorem 0.1. For an
amenable subgroup H C GL(n,R), this proposition implies that the map on
continuous cohomology

(0.1) H*(GL(n,R),R) - H*(H,R)

vanishes in degrees greater than one. This follows from the Van Est theorem and
a Lie algebra calculation. For a C*-foliation % of codimension n, Haefliger has
shown that the natural extension of (0.1) to the continuous cohomology of the
category of C*-local diffeomorphisms is the secondary map

A,: HX(WO,) = H*(W(gl,,0,)) » H*(M).

n

The hypothesis that H is amenable becomes the requirement that Dy be
smoothly conjugate to a cocycle with values in an amenable group, and the
vanishing of A, follows as in Section 5.2. However, this hypothesis on D7y is
extremely restrictive, and does not in general correspond to any measurable
hypothesis on .#. The Lie group H is a topological category with one object, so
there is essentially a unique notion of amenability. However, for a foliation with
@ the groupoid associated to % and linear holonomy Dy: 4 — GL(n,R), ¢ has
both a measurable and a smooth structure on its object space. Thus, there are
notions of smooth and measurable amenability. The point of this paper is to
show that for the much weaker notion of measurable amenability for %, one still
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has the vanishing of the map A, on appropriate classes. This vanishing should
also be compared to the vanishing of primary classes in bounded cohomology for
manifolds with amenable fundamental groups due to Gromov. This relation will
be made quite precise in a subsequent paper.

The authors are indebted to a number of people for helpful comments
during the development of this work, especially D. Ellis, J. Feldman,
H. Furstenberg, J. Heitsch, A. Ramsay, and R. Szczarba. This work was done
while both authors were visiting the Mathematical Sciences Research Institute at
Berkeley. We would like to thank the institute for financial support and for
excellent working conditions.

The main results of this paper have been announced in [26].

1. Ergodic theory of metric equivalence relations

In this section we discuss the ergodic theory of foliations and group actions
necessary for the remainder of this paper. The fundamental object will be a
metric equivalence relation on a measure space, which arises as a common
discrete model for the following three geometric situations:

(F) a smooth foliation .# on a Riemannian manifold without boundary, with
the Riemannian metric determining a metric class on each leaf of %

(A) a locally-free measurable non-singular action of a connected Lie group
G on a standard measure space, which involves two structures:

(a) the measure classes on “local transversals”,

(b) the Riemannian metric classes on leaves or orbits.
Recall that by a metric class we mean an equivalence class of metrics which are
quasi-isometric; ie., they differ by an arbitrary but uniform multiplicative
constant.

(T') a measurable non-singular action of a countable group T" on a standard
measure space X, with a choice of generating set T}, for T.

The passage from.the data (F) or (A) to a metric equivalence relation
requires the choice of a uniform section, discussed in Section 1.5. The passage
from (I') to a metric equivalence relation is a special case of the discussion of
Section 1.4.

The effect of replacing a foliation with its metric equivalence relation is to
construct a discrete, measurable model for it, where the geometry of the leaves is
reduced to metric properties for the discrete equivalence relation on a uniform
transversal. The notions of equivalence we use always involve measurable maps,
so that Section 1 can be viewed on the study of foliations up to measurable
equivalences, with leaves being sent to leaves. This naturally suggests studying
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the broader category of measurable foliations, which we do not undertake here.
One definition of measurable foliations has been given by Sinai [52].

After the basic definitions of Section 1.1, we introduce the appropriate
notions of equivalence, growth rates of orbits, uniform sections, cocycle theory,
exponents for cocycles and ergodic properties of cocycles over amenable
equivalence relations. These topics are standard for the case of a flow on a
measure space, but are seen here to also have natural extensions to metric
equivalence relations.

1.1. Metric equivalence relations. Let (X, %, p) be a standard measure
space (Lebesgue space). Here, X is a set, % is a Borel o-algebra of subsets at X
and p is a o-additive probability measure defined on 4. It is often the case that
only the equivalence class of the measure p is important, and we will then abuse
notation by omitting o-algebras and measures from our notation.

A discrete measured equivalence relation on (X, %, p) is a pair (£, »),
where # € X X X is a Borel subset, v is a measure on %, and these satisfy (cf.
[39)):

(1.1.1) (x,x)eF forall x € X,
(1.1.2) (x,y) €F  implies (y,x) € F,
(1.1.3) (x,y) and (y,z) € Fimplies (x, z) € F,

(1.1.4) for every x€ X, the set #, = {y € X: (x,y) € ¥}
is at most countable,
(1.1.5)  the projection of » from % to either coordinate X in X X X
yields a measure equivalent to p.

A continuous measured equivalence relation on (X, &, p) is a pair (%, v)
satisfying (1.1.1), (1.1.2), (1.1.3) and (1.1.5), but for which (1.1.4) fails.

Two equivalence relations (%#,») on X and (%#”’,») on X’ are orbit
equivalent if there exists an isomorphism P: X — X’ of measure spaces which
carries equivalence classes of % onto those of #’, and the measure » onto a
measure equivalent to »’.

A subset A C X is called saturated if x € A implies %, C A. We will
denote by #(%) C # the o-algebra of all measurable saturated subsets of X. A
measurable saturated set A is called ergodic if it cannot be decomposed into a
disjoint union of two measurable saturated sets of positive measure. We say that
the equivalence relation % is ergodic if X itself is an ergodic saturated set.
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A metric on # is a r-measurable non-negative real-valued function d on %
such that

d(x,y) >0 iffx #y,

(1.2) d(x,y) = d(y, x),
d(x,y) +d(y,z) >d(x, z).

For any fixed x € X the metric d defines a norm| - | =d(x, ) on %.
Condition (1.2) implies that

lyl, > 0 fory € Z\ {x},
(1.3) x|, = lyl,,
|y|x+ Izly2 Izlx'

Conversely, any measurable family of norms | - |, defined on %, and satisfying
(1.3) determines a metric on %#. We will call the metric d on a discrete
measured equivalence relation % good if for every x € X and T > 0 the T-ball
around x on &, B(x,T,d) = {y € %: d(x,y) < T}, contains finitely many
elements.

The concept of a good metric will play the central role in what follows. A
metric equivalence relation will mean a discrete measured equivalence relation
provided with a good metric.

1.2. Quasi-isometry and Kakutani equivalence. The metric equivalence
relations (X, #,d) and (X', %', d’) are quasi-isometric if there exists an orbit
equivalence P: (X, #) — (X', #’) and constants A, B such that for every
(x,y) e F

(1.4) A-d(x,y) <d(Px,Py) <B-d(x,y).

For most of our purposes quasi-isometric equivalence relations may be
treated as indistinguishable. In other words we will be interested not in the
metric d itself, but in the metric class, i.e. the class of uniformly equivalent
metrics. However some of the invariants discussed below, e.g. the exponential
growth rate, do depend on the metric itself.

For many purposes the notion of quasi-isometry is too strong. This becomes
clear if one tries to describe the properties common for all uniform sections of a
smooth foliation (cf. §1.5 below). An appropriate notion of equivalence for that
purpose is Kakutani equivalence which we will describe now. For simplicity we
will consider only ergodic equivalence relations.

The metric equivalence relation (X', #',d’) is a factor of (X, #,d) if
there exists a non-singular (but probably non-invertible) measurable map P of X
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onto X’ which maps equivalence classes of % onto equivalence classes of %’
and such that for some constants A, B, C and every (x,y) €

A-d(x,y)—C<d(Px,Py) <B-d(x,y) + C.

Two ergodic metric equivalence relations are Kakutani equivalent if they
have a common factor. Kakutani equivalence for ergodic measure-preserving
transformations and cross-sections to flows was introduced in [27]; later it served
as a basis of extensive development in ergodic theory [59], [40]. For foliations,
Haefliger has studied a corresponding smooth version of this equivalence (cf.
§1.1, [15]). For generalizations to groups actions see [60], [31]. For the
von Neumann algebras obtained from a measurable equivalence relation [11],
Kakutani equivalent relations yield Morita equivalent algebras.

1.3. Growth rate. The exponential growth rate of a good metric d on Z at
a point x is defined by

logCard B(x, T, d)
g(#,d, x) = limsup T
T— oo

It follows from the triangle inequality (1.2) that for (x, y) € %,

so that g(#,d, x) = g(£#, d, y). This implies that the growth rate is constant
on equivalence classes and since it is a measurable function, it is constant on
ergodic saturated sets. We will say that the metric equivalence relation (%, v, d),
or sometimes just % for short, has exponential type a if g(F,d, x) < a almost
everywhere.

Let us notice that although the exponential growth rate is not preserved
under a quasi-isometry, its property of being zero, a positive number or infinity is
preserved. Moreover, this property is invariant under Kakutani equivalence so
that we can speak of metric equivalence relations of subexponential, exponential
and superexponential type.

The growth types of the leaves of a foliation were first systematically studied
by Plante (cf. [46]), who related subexponential type to the existence of invariant
measures and cohomology classes. Our interest is in how the growth type
influences the canonical forms of tempered cocycles over an equivalence relation.

It is worth noticing that the polynomial growth rate

{logCard B(x,T,d) }

p(Z,d, x) = limsup

t— o0

log T

is invariant under quasi-isometry and under Kakutani equivalence.
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There are several useful properties which a good metric d may possess:

d is discrete if there exists a constant ¢ > 0, so that for (x,y) €F, x+y,
d(x,y) > c.

d is tempered if for every T the cardinality of the set B(x,T,d) is
uniformly bounded for x € X.

d is uniformly connected if there exists T, > 0 such that for any (x, y) € #
one can find a finite set of points x = x,, x,,..., xy = y € % such that

d(x;,x;,,,)<T, fori=0,...,N—1.

The metric induced on any uniform section of a smooth foliation of a
compact manifold by a Riemannian metric on the leaves is good, discrete,
tempered and uniformly connected. Other examples of such metrics come from
finitely generated pseudo-groups (cf. next section).

We will end this section with an interesting open question, which is the
analogue via Mackey virtual group construction [34] for a metric equivalence
relation of the proposition in Section 2 of Manning [35].

Problem 1.1. Let (X, %, d) be an ergodic metric equivalence relation such
that d is good, tempered and uniformly connected. Suppose that F has a finite
transversal invariant measure p. - . Does

log Card B(x, T, d)
T

converge to a limit as T — oo for almost every x € Support()?

1.4. Equivalence relations and discrete pseudo-groups. Let us assume that
the equivalence relation . is generated by a discrete pseudo-group I' = (A,,9,)
for n=1,2,... where A, C X is a measurable set and ¢,: A, —> X is an
injective non-singular transformation so that the left inverse

o, @ (A,) 2 A,

is defined. The equivalence relation # is defined as follows: (x, y) € % if there

exist ny,...,n, and ¢,,..., & = +1 such that
(1.5) P = @rert o gt

is defined at x and ¢(x) = y. The word metric dr on F is defined by
dr(x,y) = min{k|n,, ..., n, satisfying (1.5) exists}.

The metric d is always discrete and uniformly connected. It is good if
every x € X belongs only to finitely many of the sets A, and ¢, (A,), and
tempered if the number of A,’s and ¢,(A,)’s covering any point is uniformly
bounded.
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One can define other metrics on % by introducing positive weight func-
tions ¢, on A, and minimizing the sum of this function (¢) along any chain
(1.5). If the functions ¢, are uniformly bounded from above and bounded away
from zero, this more general metric is quasi-isometric to the metric dr.

It is interesting to notice that any metric equivalence relation with a
uniformly connected metric can be naturally generated by a pseudo-group.
Namely, let us fix any T > T, and order measurably all elements of the set
B(x,T,d) = {x},..., Xp(x)}-

Let

A, = {x|Card B(x,T,d) > n} and

For the word metric d; we have dp(x,y) > T; 'd(x, y) (but the above
estimate may not be true).
A slightly more general construction works for any good metric.

1.5. Uniform sections. A metric equivalence relation is a discrete object
which is supposed to play the role of a “section” to a certain continuous object.
The picture we have in mind is similar to the relationship between a flow and
the Poincaré map defined on a section. The general continuous object in question
can be called “foliated measure space.” The precise definition is somewhat
involved (cf. [52] and [39]); for our current purposes it is enough to state that a
foliated measure space is a common generalization of the situations (F) and (A)
above.

For a smooth codimension-n foliation the measurable structure on an
n-dimensional transversal A" is given by the n-dimensional smooth measures on
A", It can be naturally derived from the smooth measure class on the ambient
manifold M.

The metric structures on the leaves are provided by fixing a smooth
Riemannian metric on M and defining the distance on a leaf via the induced
Riemannian metric. The compactness of M guarantees the equivalence of
metrics obtained from different Riemannian metrics on the ambient manifold.

Let us consider the group action case in some detail. Let T = {T,|g € G}
be an action of the Lie group G on the measure space X. First, by fixing a
Riemannian metric o on the Lie algebra g of G we define the Riemannian
metric on the orbit Gx of x € X. Let us assume that G acts on X from the left.
Then the Riemannian metric obtained on the orbits will correspond to the right
invariant Riemannian metric on G so that in general it is not preserved by the
action of G. Obviously, different Riemannian metrics on the Lie algebra gener-
ate equivalent metrics on orbits. Let B.(x, r) be the ball in the orbit of x,
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centered at x of radius r with respect to the metric defined above. A set I' C X
is called an r-section for the G-action T if the following conditions (S1)—(S3) are
satisfied:

(S1) For x,y € T, x # y implies B,(x,r) N B.(y,r) = 0,

(52) w(U, erBo(x.1) > 0.

(S3) The partition of T, = U,erBe(x, r) into the sets B.(x, r) is measur-
able.

The measure p on T, is naturally projected onto I' thus defining a measure
pr whose equivalence class does not depend on r, or on the choice of the metric
on G. Moreover, if G is unimodular and the action T is measure-preserving then
the measure pr. itself is canonically defined.

Let M be a complete metric space. Given 0 < r < R, a set S C M is called
an (r, R)-net if

(NI) dist(x), xo) > r for x|, x, € = and x,; # x,.

(N2) For every x € M there exists y € = such that dist(x, y) < R.

The set = is called a net if it is an (7, R)-net for some r, R. The notion of
net depends only on the equivalence class of the metric on M. Let us consider
now the cases (F) and (A) simultaneously, having in mind that the concept of
uniform section defined below can be extended to general foliated measure
spaces.

A set I' C X is called a uniform section if:

(i) The intersection of I' with any leaf or orbit is a net with respect to the
Riemannian metric class.

(ii) For (F), I is a finite union of smooth local transversals.

For (A), I is an r-section for some r > 0.
The existence of a uniform section for the case (F) of foliations is obvious; for
case (A) it can be proved by taking an r-section and considering its maximal (up
to a set of measure zero) extension (cf. [10]). For the case (T'), the equivalence

relation
A= {(x,yx)lyeT} c X x X

is already discrete, but we can view the diagonal inclusion X ¢ 2 X X X as a
uniform section.

Let I' € X be a uniform section. It possesses a measure class which makes
it a standard measure space. The continuous equivalence relation of X into
leaves or orbits defines a discrete equivalence relation on T'. The restriction of a
Riemannian metric to each equivalence class defines a good, discrete, tempered
and uniformly connected metric on the equivalence relation. The metric
equivalence relations corresponding to different uniform sections for the same
foliation or action are Kakutani equivalent. In the foliation case we also obtain a
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finitely generated groupoid generating the equivalence relation by considering
the holonomy maps on the leaves which correspond to paths of bounded length.

1.6. Cocycles over metric equivalence relations. Let G be a Polish group. A
G-cocycle over an equivalence relation (X, %) is a measurable map ¢: % - G
satisfying the cocycle equation: if x € X, y, z € %, then

(1.6) ¢(x,y) - ¢(y, 2) = ¢(x, 2).

Two cocycles ¢ and ¢ are cohomologous if there exists a measurable map
f: X = G such that for (x,y) € ¥

Y(x.y) =f(x) " o(x,y) - fy).
We will call f the transfer function and will denote the cohomology by ¢y or
sometimes simply by ¢ ~ .
We now will consider G-cocycles over a metric equivalence relation
(X, #,d). Let us fix a left-invariant metric p on the group G, or a left invariant
pseudo-metric p such that the set

G, = (g€ Glp(id, g) = 0}
is compact, and denote for g € G, |g| = p(id, g).

In the following, we will have need of several different notions of norm and
pseudonorm in matrix groups and in order to avoid confusion we will have to
distinguish notations carefully. First, for any matrix group G C GL(N, R) there
is a natural pseudonorm
(1.7) |Aly = max(log||A]], log||A~"]])

where ||A|| is the usual matrix norm

[| Av]|
(1.8) Al = :
oxver® [0l
The pseudonorm | |,, determines a left-invariant pseudo-metric p,,, where
(1.9) pu(A, B) = |71 B,

which is quasi-isometric to a left-invariant metric p on G in the sense of (1.4);
i.e., there are constants a, b, ¢ so that for all A, B € G,

a-p(A,B)—c<py(A,B)<b-p(A,B) +c.
In general, the metric p is not generated by a Riemannian metric, though if
G = GL(N,R) then p can be chosen that way. In the calculations which appear

in the proofs of Theorems 3.1 and 3.2, as well as in Sections 6 and 7, we will use
the norm || ||, the pseudonorm | |,,, and the quantity

(1.10) A" = max(||A|l, A7) = exp|A|y.
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The G-cocycle ¢ over (X, #,d) is called tempered if there exists a
continuous function ¢: R* - R* such that

(1.11) lo(x, y)| < c(d(x,y)).
The cocycle ¢ has exponential type b if for almost every x € X,

1
1.12 lim su {— max -|p(x, } <b,
(1.12) msup) 7. _max e(x.y)ly
and b is the least real number such that (1.12) holds. We say ¢ has exponential
type if for some real b < oo, it has exponential type b. A cocycle ¢ has
moderate growth, or is of subexponential type, if it has exponential type 0.
The following two lemmas are immediate corollaries of the definitions.

Lemma L1. If a metric d is uniformly connected, then every tempered
cocycle has exponential growth.

Lemma 1.2. If a cocycle ¢ has exponential type b, then for every ¢ > 0
there exists a measurable positive function C, on X such that

lp(x,y)| < C(x)exp{(b + &) - |y|,}
forally € #,.

If the equivalence relation % is generated by the action T = {T,},crofa
discrete finitely generated group I' and the metric on % is generated by the
word metric on the orbits (cf. subsection 1.4) then any cocycle ¢ can be
interpreted as a function on I' X X, and (1.6) becomes

?(v2 - v, %) = @(v5, T, x) - @(v,, x).

In this case, the cocycle ¢ is tempered if and only if for every y € I' (or for
every y from a generating set in T') the function ¢(v, x) on X takes values in a
compact subset of G.

Cocycles arising from continuous geometric constructions are usually tem-
pered; for example, the normal linear holonomy cocycle to a foliation, when
calculated with respect to an orthonormal measurable framing of the normal
bundle equipped with a smooth Riemannian metric, will be tempered with
exponential type. Non-tempered cocycles can be obtained by using an orbit
equivalence P: (X, #,d) — (X', #’,d’) where P is not a quasi-isometry (cf.
[31], Chapter 11).

L.7. Amenability. Let K be a compact convex space and ¢ be a cocycle
over the discrete equivalence relation (X, %) with values in the group Aut K of
affine automorphisms of K. The equivalence relation % is called amenable if for
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any such cocycle ¢ one can find an invariant section, i.e., a measurable map
h: X — K such that for (x, y) € Z,

¢(x,y) - h(y) = h(x)
(see [55]). Obviously, amenability is invariant under orbit equivalence. It is also
inherited by the restriction of the equivalence relation to any measurable subset.
The notion of amenability has an obvious extension to continuous equivalence
relations, for example, those obtained from cases (F) and (A). Every such relation
admits a section [48], and a continuous equivalence relation is amenable if and
only if the discrete equivalence relation on a section is amenable.

If the equivalence relation % is defined by an action of an amenable Lie
group I on (X, %, p) then % is amenable. Conversely, if % is defined by an
almost everywhere free action of I', p is invariant under the action, and % is
amenable, then T is amenable. If p is not invariant, this need not be true [55].

Every foliation defined by the action of a solvable Lie group is amenable,
though it may have leaves of exponential growth type b > 0. Amenability for
foliations is discussed further by Brooks in [3], and for general equivalence
relations in [6].

There is an obvious similarity between the notion of amenability for an
equivalence relation (in particular for a relation generated by a free group
action) and the more common notion of amenable group. The amenability of a
discrete group is equivalent to a combinatorial growth condition (Folner condi-
tion). A similar condition for metric equivalence relations turns out to be
sufficient but not necessary for amenability. Here is the condition. For x € X we
will call an increasing sequence of finite subsets F, C %, a Folner sequence if

(o2}

F,=%, and for every T > 0,
=1

n

Card |J B(x,T,d)
lim x<F, =1
n— oo Card F, .

It is easy to see that the last pfoperty depends only on the equivalence class of
metric d.

ProrosiTion 1.3 (cf. [6]). If a Folner sequence exists for almost every
x € X, then (X, #,d) is an amenable equivalence relation.

For foliations defined by connected Lie group actions, the fact that this
condition is not necessary for amenability is connected with incompatibility of
the left and right invariant metrics. Here are two geometric propositions which
imply the existence of a Folner sequence.
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ProposiTION 1.4 (cf. [46]). If a metric equivalence relation (X, %, v) has
exponential growth type 0, then for almost every x € X, there exists a Folner
sequence on %,.

Proof. Let g(%#,d, x) = 0. Fix T > 0 and consider the balls B(x, nT, d)
forn=1,2,.... Let

Card B(x,(n + 1)T,d)
B Card B(x, nT,d)

a(x,n

Obviously a(x, n) > 1 and Card B(x, nT, d) = I[1¢_la(x, k). Thus, there exists
a sequence n;, — oo such that a(x, n,) — 1 so that B(x, n,T, d) may serve as a
Folner sequence for the given T. Applying this argument for T = 1,2,... and
using the diagonal process we finish the proof. O

A partial converse to Proposition 1.3 has been proven by Carriére and Ghys
(cf. Théoréme 4, [5)).

ProposiTion 1.5. Let T'=(A,, 9,) be a discrete pseudo-group acting
essentially freely on (X, %, pu), with p an invariant probability measure. If the
equivalence relation # (cf. §1.4) is amenable, then a Filner sequence exists for
p-almost every x € X.

We conclude this subsection with a discussion of the above concepts for an
important subcase of (I'). Suppose that Y is a compact manifold without
boundary, y, € Y is a basepoint, I' = 7,(Y, y,) is the fundamental group and a
representation A: T — Diff ¥ X is given, where X is a closed n-manifold. Then
A induces a left C*action A: T X X — X, and T acts naturally on the universal
cover Y; so the quotient manifold M = M A=T\ (Y X X) is defined. Moreover,
M carries a C*foliation, Z,, which is the quotient of the product foliation on
Y X X by the leaves (Y x {x}|x € X}. The leaf %, of %, through x € X is
the covering space of Y associated to the isotropy group of A at x. Note that the
inclusion of the fiber {y,} X X C M is a uniform section to the continuous
equivalence relation (M, %,), and the discrete model is A: T x X - X.

The pair (M, %,) is called the flat Diff ® X-foliation associated to the
representation A. The importance of these examples is that there is an extensive
homotopy machinery available to construct such foliations, with given secondary
class data (cf. [24]). Also, if T has subexponential growth, then . and A have
exponential type 0. If T is amenable, then .% and A will be amenable. However
if # does not admit an invariant transverse measure, then .# can be amenable
with T' nonamenable [55].
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1.8. Cocycles over amenable equivalence relations. Zimmer has proved that
there is a strong restriction on a cocycle over an amenable equivalence relation:
its Mackey range must be amenable. Combining this with the virtual group
theory of Mackey (cf. [33], [34], [47]), we obtain the following version of
Zimmer’s theorem, which is one of the starting points for the results of this
paper.

THEOREM 1.6 (Zimmer [56]). Let (X, %) be an ergodic amenable discrete
equivalence relation, and G a real algebraic group. Then for every cocycle
¢: F— G, there is an amenable subgroup H, C G and a cocycle y: #— H,
with ¢ cohomologous to ¢ in G.

Proof. This theorem is implicit in Zimmer’s work; we discuss here only the
steps needed to deduce it from the two results cited below. The cocycle defines
the skew-product equivalence relation % ? on the product X X G by the rule:
the equivalence class of (x, g) consists of all elements {(y, (y, x) - gly € #.}.
The o-algebra %#(.% %) determines the space of ergodic components of %9,
which we denote by S_.

The right action of G on X X G projects onto a right action of G on S,
defining a factor-action called the Mackey range of ¢ (cf. [47], [55]). Since
(X, #) is ergodic, G acts ergodically on S_. By Proposition 3.5 of [56], G acts
amenably on S . Then G real algebraic implies there is a closed amenable
subgroup H C G and a G-equivariant map f: S, - H\ G, [55]. It is then
standard to construct, using f, a cocycle ¢: F# — H so that ¢ is cohomologous
to ¢ (cf. [47)). O

Let (X, %) be an amenable discrete equivalence relation, and let Z be the
space of ergodic components of X under %#. Let y: X - Z be the natural
quotient map, so that each X, = A"!(z) C X is ergodic under the action of #.
Given a cocycle ¢: #— G into a real algebraic group G, we apply Theorem 1.6
to the restriction of ¢ to each set X, to obtain an amenable closed subgroup
H_ c G and a cocycle ¢, ~ ¢|X_ which takes values in H_. Via a selection
argument, we can conclude:

CoroLLARY 1.7. Let (X, %) be an amenable discrete equivalence relation
and ¢: F— G a cocycle with values in a real algebraic group. For A\: X - Z
an ergodic decomposition space of (X, %), there is a measurable field of closed
amenable subgroups {(z) X H|z€ Z} C Z X G and a cocycle ¢: F— G
such that y ~ ¢, and { restricted to F |X, takes values in H_.

In the special case G = GL(n,R), there are precisely 2" conjugacy classes
of maximal amenable subgroups ([38]; cf. also subsection 4.2 below). Choose one
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representative from each class and denote these by {H,|i <i < 2"}. For
(X, #) as in Corollary 1.7 and a cocycle ¢: % — GL(n,R), for each z € Z
there is an integer n(z) such that H, is conjugate to a closed subgroup of H, .
The function n: Z — N is measurable; so there is a partition of X into at most
2" measurable saturated sets,

-

X=UKX,

i=1
with n o A constant on X;. Again using a selection lemma, we can incorporate
this conjugation into the cocycle ¥ and obtain a sharper form of Corollary 1.7:

CoroLraRY 1.8. Let (X, %) be an amenable discrete equivalence relation
and ¢: F— GL(n,R) a cocycle. Then there is a cocycle y: F— GL(n,R)
such that ¢ ~ ¢, and a decomposition X = U2 X, such that ¢: F X, — H,.

L.9. Murray-von Neumann classification. The classification of ergodic mea-
surable equivalence relations by their orbit equivalence types falls naturally into
three categories, according to their Murray-von Neumann types (cf. [39]). We
describe here these types as they apply to a foliation .% on a manifold M.

Let M; be the largest measurable saturated subset of M on which % is
dissipative; that is, there is a measurable transversal T C M, so that almost every
leaf of # |M| intersects T precisely once, and the quotient measure space M JF
is a standard, non-atomic Borel space. The complement of M, is partitioned into
My, and M, where M, is the largest saturated measurable subset of M — M I
so that & |M|; admits an absolutely continuous o-finite transverse invariant
measure p with almost every leaf of % |M|; being p-essential. Thus, the only
absolutely continuous transverse invariant measure for % |M,; is the zero
measure, and the quotient M;;/% is a completely singular measure space.

A subset B € %(F) inherits a decomposition into disjoint measurable
saturated sets,

B =B, U By U By,
with the above properties. We say % |B; (respectively, % |B}; or % |By;) has
type I (respectively, II or III). There are various further subdivisions of types I,
IT and III which are of great importance for foliations, but are not used in this
paper.

For B € #(.%) ergodic with positive Lebesgue measure, either B = B,
a.e. or B = By a.e., in which case we say B has type II or III, respectively. If %
is ergodic on M, then we say % has type II or III, accordingly.

A foliation & is an SL(n,R)Hfoliation if there is a non-vanishing closed
nform @ on M whose kernel defines the distribution T.%. In this case,
M= M, U M,.
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A leaf L ©¢ M is proper if L is locally closed in the relative topology
induced from M. For example, a compact leaf is proper and a dense leaf is not
proper. There is the following geometric context which yields type I foliations:

ProrosiTion 1.9 [49], [58]. For B € #(%), suppose almost every leaf
L C B is proper. Then % |B has type 1. If almost every leaf L C M is proper,
then % has type 1.

2. Characteristic classes for foliations

The secondary classes, and the related p-classes and dual homotopy in-
variants of foliations have provided the primary means for studying the quantita-
tive theory of foliations, and especially for analyzing the topological type of the
foliation classifying spaces of Haefliger (cf. [1], [2], [14], [20], [24]). In this
section, we briefly define the secondary classes and Weil measures of a codimen-
sion-n, C2%foliation, %, on an m-dimensional manifold M without boundary. If
Z has, in addition, a finite invariant transverse measure, p, then the p-classes of
the pair (&, p) are also defined. More extensive treatments are found in the
literature [1], [12], [16], [20], [28].

2.1. Secondary classes. Denote by I(GL(n,R)) the graded ring of adjoint
invariant polynomials on the Lie algebra gl, of the real general linear group
GL(n,R). As a ring, I(GL(n,R)) = R[c,,...,c,] is a polynomial algebra on n
generators, the Chern polynomials {c,,...,c,} where ¢, is the polynomial of
degree i (although c, is assigned graded degree 2i) defined by the equation
(2.1) det(A - I, — 1/27X) = Y A" I¢,(X)

i=1
for X € g, and I, the identity in GL(n,R). Denote by I(> n) the ideal in
I(GL(n,R)) generated by the monomials of graded degree greater than 2n.
Define the truncated polynomial ring to be the quotient I(GL(n,R)), =
I(GL(n,R))/I(> n).

Let A*(M) denote the algebra of differential forms on M, and let # be the
ideal of differential forms which vanish when restricted to the leaves of %.
Observe that #"*! = 0. Let Q be the normal bundle to .%. Choose a basic
connection 6” on Q — M, and let 2 denote its g! -valued curvature form. The
i®".Chern form of % is then c,(2%) € A*(M). This is a closed form which
belongs to #°.

Choose a Riemannian metric h on Q with metric connection §" and
curvature Q". Note that " is skew-symmetric; hence

(2.2) c,(2")=0  foriodd.
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For each ¢ € R, form the connection §' = t - §* + (1 — ¢)6" on Q, and let
its curvature form be €. For each c; set

A, (67, 6%) =i folc,.(ab — Q... Q) - dt
where we view c; as an i-linear functional on g!, using polarization [16]. The
form Avi(ﬂb, 6") € A%~Y(M) satisfies the equation
dAci(Hb, 0") = c,(2°) — ¢,(Q").
In particular, for i odd from (2.2) we have
dAci(ﬂb, 6") = c,(Q°).
Let A(y,, y;, ..., y,) be the exterior algebra on generators { y,, ys,.. ., y,}

where degree y, = 2i — 1 and n’ is the greatest odd integer less than n + 1.
Define the graded differential algebra WO, to be the graded tensor product

WO, = Ay, y5,---,y,,) ® I(GL(n,R)),

with differential defined by d(y; ® 1) = 1 ® ¢, d(1 ® ¢,) = 0. The choice of §°
and 0" determines a graded differential algebra homomorphism

A= A(6% 6"): WO, > A*(M),
Ay, @ 1) = A, (8% 6"),
A(l ® ¢;) = ¢,(Q°).

The induced map on cohomology, A,: H¥(WO,) - H*(M), is independent of
the choice of 6% and 6", and the elements of H*(M) which belong to the image
of A, are called the secondary classes for %.

We adopt the standard notation: I = (i},...,i,) denotes an index set with
1 <ip < - <i,<n! with all i; odd; J = (j,,..., j,) where each j, > 0;
Ul =ji+ 25y - +njy;

Yi¢; =y, Ao Ay ® cft - i

A basis of H*(WO,) in degrees greater than 2n, due to J. Vey [12], is given by
the cocycles

{yic)| ]| <nyiy + |J| > n;for k odd if j, > Othen i, < k).

In degrees less than 2n + 1, H¥(WOQ,) is the ring of Pontrjagin polynomials for
Q- The classes in degrees greater than 2n in H*(WO,) are divided into several
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groups:

y,c, is residual if |J| = n;

y,c; for |J| = n are the Godbillon-Vey classes;

y,c; with i, = 1 and |J| = n are the generalized Godbillon-Vey classes;
y,c; with degree y, > 1 and |J| = n are the higher degree residual classes;
y,c; with i, + |J| > n + 1 are the rigid classes;

y,c; with i, + |J| = n + 1 are the variable classes.

Notice that the generalized Godbillon-Vey classes constitute the variable residual
classes. The names residual, variable and rigid reflect the behavior of these
classes in various examples.

2.2. Weil measures. The Weil measures of [17] are a common generaliza-
tion of the p-classes of [20] and the Godbillon measure introduced by Duminy
[7], [4]. The basic idea is that the transgression forms Aci(ﬂb , M), introduced in
the definition of the secondary classes, are themselves intrinsically important
data, and the Weil measures are “universal” functionals derived from these
forms. Moreover, we will show in Section 5 that the transgression forms
Acl_(ﬂb ,0") can be calculated from the normal linear holonomy cocycle; these
forms are the “finest” de Rham invariants on M which one can derive from this
cocycle. Thus, one expects the values of the Weil measures to be closely related
to the dynamics of the foliation, and this is what we show in this paper. A key
technical point is that the Weil measures depend continuously on the choices of
connections 6° and 6" so it is feasible to study their behavior in the limit, as the
connection data limit to a “measurable connection”. In contrast, the Chern
forms c,(60") depend upon 8° and its first derivatives. This effectively prevented
the analysis, prior to the introduction of the Weil measures, of the secondary
classes vis-a-vis dynamics, except under very controlled geometric conditions (cf.
(18], [19], [36], [37)).

Let A(M, %) denote the n-th power of the ideal £. If Q is orientable, so
that M admits a non-vanishing n-form « whose kernel is the tangent bundle to
F,then A(M, F) = w A A(M). A typical form ¢ € A¥(M, %), for k > n, can
be written as ¢ = w A ¢, where ¢ is a (k — n)form. If Q is not orientable,
then this just holds locally on M. The ideal A(M, %) is closed under the exterior
derivative, and we set

H*(M, ) = H(A(M, %), d).
We will also need the ideal of compactly supported forms,
A (M, F)=A(M,F) A A (M)
where A (M) are the compactly supported forms on M. If Q is orientable, a



249 S. HURDER AND A. KATOK

typical form ¢ € AX(M, %) can be written ¢ = w A @, where ¢ is a compactly
supported (k — n)-form. We again set

H*(M, %) = H*(A,(M, F),d).

Note that for M compact, H*(M, %) = HX(M, F).
For notational convenience, the relative Lie algebra cohomology of gl, is
identified with the exterior algebra of WO, :

H*(gIn’ On) = A(yl’ y3""’ yn’) ® 1

Now assume M is oriented. Given y € H?(gl,,0,), ¢ € ATTP(M, F)
and a measurable subset B C M, set

(2.3) xs(v)lg] = fB Aly) A ¢.

For B € #(%), the integral (2.3) depends only on the cohomology class of @ in
A (M, #) and does not depend on the choice of 6% or 8", [17].

TreoREM 2.1 (Heitsch-Hurder [17]). Let % be a C*foliation of an oriented
manifold M without boundary.

(a) For each y € H?(gl,,0,) and B € B(F) there is a well-defined
continuous linear map x gz(y): H™ P(M, %) > R.

(b) For each y € H*(gl,, O,), the correspondence B — Xgs(y) defines a
countably additive measure on B(F) with values in the continuous dual
H™ (M, F)*.

We call x(y) the Weil measure of & corresponding to y. The Godbillon
measure (cf. [7]) is defined as g = x(— 27 - y,), with values in HMY(M, F)*.

For each residual class y,c, € H(WO,) and closed form ¢ € A?(M),
Proposition 1.4 of [17] implies there is a well-defined class [A(y,c)) Aol €
H?™9(M, #). If now y, = +vy, - y,., then for g = m — p,

XM(yI’)[A(yI"C]) A ‘P] = i‘<A*(yIC]) ) [(P]’ [M]>

By Poincaré duality, the secondary class A ,(y,c,) is thus completely determined
by the measure x(y,) on M, and we obtain:

CoroLLary 2.2. If x,(y,) =0 then all residual secondary classes
Ay(y,c;) = 0, where y,, is a factor of y,.

Given a residual y,c, € H*(WO,) and B € #(%), we can define the
restriction A 4(y,c;)|B € H?(M) via Poincaré duality and the rule, for [p] €



ERGODIC THEORY AND WEIL MEASURES 243
H!' P(M),

<A*(y101)|B U [‘P], [M]> = XB(yI)[A(C]) A (P]-
The countable additivity of x(y,;) then implies:

ProposiTion 2.3. Let M = U B; be a countable partition of M, where
each B; € B(F). Then for y,c, residual,

[e e}
A*(!/IC/) = Z A*(y101)|Br
i=1
2.3. p-classes. Let the manifold M be oriented and without boundary.
Assume % admits an invariant transverse measure p which is finite on compact
transversals. The p-classes are invariants of the pair (%, p) given by a map

x,: H*(gl,,0,) = H" " *(M).

For y € H?(gl,, O,), to construct x,(y) consider first the Ruelle-Sullivan [51]

current c,: A77"(M) — R associated to p. Define a closed current x,(y)*:
A"~ ""?(M) — R by the rule:

X.(¥)* o] = ¢,(A(y) A ).

Poincaré duality implies that x,(y)* determines a class x,(y) € H""?(M).
Complete details and applications are given in [20].

If the support of p consists of compact leaves of %, then x,(y) is the
p-average of the leaf classes corresponding to y for the leaves in the support of p
(Proposition 3.4, [20]). For p absolutely continuous, x,(y,) is in a more general
sense the average of the leaf classes for the leaves in the support of u. Intuitively,
X ,(y) reflects the transverse mixing of %, and the main problem is to determine
precisely what aspects of the dynamics of (%, p) are being detected. This is
answered in part by Corollary 3.10 below.

3. Statement of results

This section contains precise technical formulations of the main results of
this paper. The proofs of Theorems 3.1 and 3.2 will be given in Section 4, and
the proofs of the remaining theorems given in Sections 5-8.

3.1. Cocycles over metric equivalence relations. The results formulated in
this subsection form a part of a more general program of “e-classification” of
matrix-valued cocycles over amenable group actions and amenable equivalence
relations. The roots of this approach can be found in the multiplicative ergodic
theorem by Oseledec [42] and in the Pesin construction of a Lyapunov (adapted)
metric ([43], Theorem 1.5.1) which plays a pivotal role in smooth ergodic theory
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[43], [44], [61]. For different approaches to tempering processes in ergodic
theory see [31], [32], [41], [50].

Let H ¢ GL(n,R) be a linear Lie group. We will say that H has the cone
property if the set

{A* - A: A€ H)
is a cone; i.e., forany A, B € H and a, 8 > 0 the equation aA* - A + BB* - B
= X* - X has a solution X € H. Among the standard forms of semisimple
groups the following ones have the cone property: GL(n, R), GL(n, C), SO*(4n),

one of the real forms of E; and SO(n,1). On the other hand the group of
diagonal matrices also has this property.

Tueorem 3.1. Let (X, #,d) be an ergodic metric equivalence relation
with exponential type a, H C GL(n,R) be a linear group with the cone property
and ¢ be an H-cocycle over (X, #,d) of exponential type b with respect to the

norm | |y. Then for every € > 0 there exists a tempered H-valued cocycle
such that ¢y, where f: X — H and for (x,y) € %,
(3.1) |4 (x,y) |y < (a + 2b + €)|x],.

Moreover, the transfer function f satisfies the inequality

(3.2) If(x)],, <C(y) + (a+3b+ e)lxl,.

If H does not have the cone property, the tempering of H-valued cocycles
in general remains an open question. Various partial results will be discussed in a
separate paper. However there is one important case where the tempering is
always possible, namely when H is a maximal amenable subgroup of GL(n, R).

Tueorem 3.2. Let (X, #,d) be an ergodic metric equivalence relation
with exponential growth rate a, H € GL(n,R) be a maximal amenable sub-
group and ¢ be an H-valued cocycle over F of exponential type b with respect

to the norm | |,. Then for every ¢ > O there exists a tempered H-valued
cocycle Y ~ ¢ such that for (x,y) € F,
(3.3) |4 (x, y) |y < {(4n = 3)a + (8n — 6)b + &} - |x],.

Moreover, this can always be achieved with a diagonal cohomology.

From Theorem 3.2 and Corollary 1.8 we obtain a tempered version of
Theorem 1.6:

CoroLrary 3.3(i) Let ¢ be a GL(n,R)-cocycle with exponential growth
over an amenable ergodic metric equivalence relation (X, #,d). Then ¢ is
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cohomologous to a tempered cocycle ¢ with exponential growth which takes
values in an amenable subgroup H C GL(n, R).

(ii) If the metric equivalence relation is not ergodic then there exists a
decomposition of X into at most 2" sets, X, € B(F), i = 1,..., N such that
the restriction of ¢ to each set X, is cohomologous to a tempered cocycle with
values in an amenable subgroup H, C GL(n,R).

The next corollary will not be used directly in this paper but it represents
the basic step in developing the e-classification of cocycles over the actions of
nilpotent groups [30].

CoroLLARY 3.4. Let # be defined by the action on X of a discrete group T
with subexponential growth and let ¢ be a GL(n, R)-valued cocycle of moderate
growth. Then for every & > 0 there exists a cocycle ¥, ~ ¢ where i, takes
values in an amenable subgroup of GL(n,R) and forall y € T

[ (v %) [y < elvl.

3.2. Characteristic classes and ergodic theory. We discuss now the relation
between the characteristic classes of a foliation and its ergodic theory. The most
general results are in terms of the Weil measures. Recall that %(%) is the
Z-algebra of measurable Fsaturated subsets of the orientable manifold M.

Tueorem 3.5. Given B € B(F), assume that the restriction F |B is
amenable. Then for y € H'(gl,, O,) with | > 1, the Weil measure x z(y) = 0.

CoroLrary 3.6. Let # be an amenable foliation. For all y € H'(ql,, O,)
with 1 > 1, the measure x(y) is zero on B(.F).

CoroLLARY 3.7. Let F be an amenable foliation. Then all residual sec-
ondary classes A4 (y,c;) € H?(M) are zero forp > 2n + 1.

Corollary 3.7 shows that the higher degree residual classes of .#, which are
differential topological invariants, yield obstructions to % possessing the prop-
erty of amenability which depends only on the transverse measure theory of %.
We cite two special geometric contexts to which Corollary 3.7 applies. First,
recall that % is amenable if almost every leaf L of .# has non-exponential
growth; ie., for every x € L, lim;_, inf(1/T)logvol B,(x,T) = 0, where
B, (x,T) is the T-ball on L around x. Thus, we deduce:

CoroLLary 3.8. If almost every leaf of # has non-exponential growth,
then all residual secondary classes of % vanish in degrees greater than 2n + 1.
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By the remarks of subsection (1.7), we also have:

CoroLLARY 3.9. Suppose F is defined by the C%action of an amenable Lie
group on M. Then all residual secondary classes of F vanish in degrees greater
than 2n + 1.

For a foliation of a locally homogeneous manifold defined by the cosets of a
minimal parabolic subgroup, Bott and Haefliger proved (cf. [45]) that all of the
secondary classes in degrees greater than 2n + 1 are zero. As a minimal
parabolic subgroup is solvable, hence amenable, Corollary 3.9 generalizes this
result to arbitrary foliations defined by the action of a solvable Lie group. For the
case of # defined by the action of the abelian group R™ ", this also generalizes
M. Herman’s vanishing theorem for foliations of the 3-torus by planes [18].

Let us next discuss the situation where # admits an absolutely continuous
invariant transverse measure (a.c.i.t.) p. Let dx be a non-vanishing smooth
transverse measure to % . Define

S(p) = {xeM'%(x) > o},

so that S(p) is saturated and S(p) € #(F). If u is finite on compact transver-
sals to #, then the p-classes of (%, u) are defined as in subsection 2.3, and
Theorem 3.5 yields:

Cororrary 3.10. Let p be an a.cit. measure for F which is finite on
compact transversals. If % |S(u) is amenable, then the characteristic map
X, H*(gl,,0,) > H**"(M) of (&, p) is zero in positive degrees.

When % admits an a.c.it. measure p, not necessarily finite on compact
transversals, the value of the Godbillon measure is restricted by:

TueoreM 3.11. Assume F has an a.c.it. measure p. For B € B(F) with
B < S(p), the Godbillon measure g(B) = 0, and all Weil measures X z(y,y;) =
0 fory, € H¥(3(,,0,).

CoroLrLary 3.12. If F admits an a.cit. measure u with S(p) equal to M
up to a set of measure zero, then all Godbillon-Vey and generalized Godbillon-Vey
classes of F are zero.

CoroLrary 3.13. Let B € (%) and suppose F |B has type 1. Then all
Weil measures x g(y,) are zero, and for all of the residual secondary classes,
their restrictions A (y,c;)|B = 0.
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Proof. % |B type l implies % |B is amenable, so x z(y;) = 0 for all y, with
degree y, > 1. Since B/# is a standard measure space, the measure on B/%#
induces an a.c.i.t. measure p on B with S(u) = B a.e., so that xz(y,) = 0 also.

O

CoroLLaryY 3.14. If F has type 1, then all residual secondary classes for F
are zero.

This corollary yields a new relation between the geometry of a foliation and
its secondary classes. In the paper [19], the first author proved that all residual
classes are zero for a foliation with all leaves compact, using the Epstein filtration
for such a foliation. In fact, it is wellknown that a type I foliation admits a
filtration with properties similar to the Epstein filtration, and this can be used to
give an alternate proof of Corollary 3.14.

The last theorem relates the characteristic classes of % with distality of the
linear holonomy of %#. We will say that the foliation % is measurably linear
distal on B € #(%) if the normal cocycle Dy for # is cohomologous to a
cocycle ¢ whose restriction to B takes values in a distal subgroup of GL(n, R).
Recall that a subgroup H C GL(n,R) is distal if for each h € H, the eigenval-
ues of h all have modulus one. The above definition extends to foliations a
concept introduced by Fiirstenberg for diffeomorphisms.

THEOREM 3.16. Let B € #(% ) and suppose F is measurably linear distal
on B. Then all Weil measures x z(y,) are zero. If F is measurably linear distal
on M, then all Weil measures on B(F ) are zero, and all residual secondary
classes for % vanish.

4. Tempering procedures: Proofs of Theorems 3.1 and 3.2

4.1. Proof of Theorem 3.1. A GL(n,R)-cocycle ¢ over the equivalence
relation % determines an extension Z, of # to X X R"; that is, Z, s the
measurable equivalence relation on X X R" where (x, v) ~ (y, w) for (y, x) € #
and w = ¢(y, x)v. If ¢ is a smooth cocycle over a manifold X, then Fy s a
discrete form of a foliated vector bundle over % in the sense of Kamber and
Tondeur [28]. The cohomology between cocycles can be viewed as a measurable
fiberwise linear coordinate change. The idea of the proof of Theorem 3.1 is to
introduce a new inner product (-, -), on X X R", where the inner product on
each fiber {x} X R" is defined by convolution with an exponentially decaying
kernel. We then introduce a cohomology (i.e., a fiberwise coordinate change)
which brings the new inner-product into the standard one. The cone property
will guarantee that this coordinate change can be chosen within the group H.
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For all of Section 4 we work with a fixed, but arbitrarily chosen, & satisfying
O0<e<l.

Let (X, #, d) be a metric equivalence relation with exponential type a, and
¢: # — H a tempered cocycle with exponential type b. Suppose H € GI(n,R)
and H has the cone property. Recall that ||v|| is the usual Euclidean norm of a
vector v € R".

LemMma 4.1. Forall x € X and v, w € R", the sum

(4.1) (v,w),= X (¢(y. %) v, (y, x) - w)exp(— {a+2b + ¢} - |y|,)

yeZ£,

is convergent and defines a measurable inner product on X X R".

Proof. 1t is enough to prove the lemma for the fiberwise norm |v|, = (v, v)..
By Lemma 1.2, there is a measurable function C,(x) so that

(4.2) lo(y, x) | < Cy(x) - exp({b + £/10} - |yl,)
where || || * is as in (1.10). Let us represent
F.= U {B(x,n,d)\B(x,n—1,d)}.
n=0

Since the exponential growth rate g(.#, d, x) < a, we again invoke Lemma 1.2
and find a measurable function C,(x) so that

Card{B(x,n,d)} < Cy(x) - exp{(a + £/10) - n)
and thus using this and (4.2), we have

0|2 < Cy(x)* - o2+ ¥ exp(— {a + 8¢/10} - |y],)

yeF

< Ci(x)"- Jlol* - ¥ exp(— {a + 8e/10) - n)
n=0
-(Card{B(x,n,d)\ B(x,n— 1,d)})
< Ci(x)"Cylx) - ¥ exp(= (7e/10) - n) - o] < oo.
n=0
The inner products (-, -), are thus bounded above by a measurable function,
and being the limit of a family of continuous inner products on X X R", are
therefore measurable.
Since |v], > ||v|| for all x € X, the inner products (-, ) are non-degener-
ate.
Let us now show that the norms | - |, of Lemma 4.1 do not change very
fast under the action of ¢.
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LEmma 4.2. Fory € %, and v € R",

(4.3) |6(y, x)ol; < exp({a +2b +¢) - |yl,) - |v]
Proof-

6(y, x)oly = X lo(z.y) - o(y, x)ol* - exp(— {a +2b + ¢} - |2],)

2EZ,

=Y lo(z,x)- v|(2 exp(— {a+2b +¢) - |z|y)

zeﬂ;

< X oz x) - o - exp(— {a+2b+e) - (2], — lyl,})
zeﬂ;

=exp({a+2b+e} - |yl) ol o

The inner product (-,-), is the limit of finite linear combinations of
products of the form (Av, Aw) = (v, A*Aw) where A € H. Using the cone
property of H, we can deduce that any such combinations can again be
expressed in a similar form. The assumption H is closed guarantees that the limit
has a similar representation. It is also clear that such a representation can be
chosen to depend on x in a measurable way. Thus, we can choose a measurable

map f: X — H such that
(4.4) (v,w), = (FHx)o, FYx)w) forall x € X,
and define for (y, x) € %,
Wy, x) =fy) " oy, x) - flx).
It follows from (4.1), (4.3) and (4.4) that
(4.5) [¥(y, )0l < expl{a + 2b + ) - Jyl,) - |lo])®

This inequality applied toy(y, x) and ¥(x,y) = ¥(y, x) ! implies conclusion
(3.1) of Theorem 3.1. ‘
To obtain conclusion (3.2), we simply notice that

f(y) = ¢(y’ x) : f(x) ' ¢(x’ y)
and use the inequalities (4.2) and (3.1). a

The method of proof of Lemma 4.1 yields somewhat more than indicated,
and for subexponential systems there is a curious additional conclusion. Let
(X, #, d) have exponential type a, and ¢: # — GL(n, C) have exponential type
b. We say a measurable field of Hermitian inner products H = ( -, -), has
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exponential type c if there is a measurable function C;(x) on X so that
(46)  (.w), < Cylx) - exple- [yl,) - (o, wh (4. x) € 5.

Let 5#(.#, c) denote the real cone of such metrics on X X C".

Let X' (%, r) denote the space of measurable complex functions on .# such
that for k € X'(#, r) and & > 0, there is a measurable function C,(x) on X so
that for all (y, x) € &,

(4.7) [k(y, )| < Cy(x) - exp(= {r+ e} - yl,).

The same proof as in Lemma 4.1 then yields:

Lemma 4.3. For all r > a + 2b + ¢, then, there is a bilinear pairing,
where ¢: F— GL(n,C) has exponential type < a,

b: H(F 1) XH(F,c) »H(F, 1),
where for given k and { -, - we define

(4.8) (v,w), =} (o(y,x)v, d(y, x)w)k(y, x).

yeZ

The formula (4.8) makes it clear that the tempering procedure of Lemma
4.1 is obtained from a generalized Fourier transform, where the kernel k in (4.8)
represents a combination of a weight used to define an appropriate L%space, for
x € X, LA %, |k(y, x)| - dv(y, x)) and ¢ is a connection on the fibers identify-
ing {x} X C" with {y} X C". An element H € ¥ (%, c) can be interpreted as
a measurable map H: X — GL(n,C)/U, with a growth condition, and the cone
structure on GL(n,C)/U, is used to define the integral of such maps. In the
proof of Theorem 3.1, the kernel k(y, x) = exp(— {a + 2b + e} - |yl,) is a
real positive function; so the convolution process yields the constant term in this
generalized Fourier expansion. If a = b = 0, then Lemma 4.2 shows that as
¢ = 0, the averaged metric does approximate a constant inner product with
respect to ¢. For # defined by a group action T' X X — X, these analogies can
be further pursued.

A second remark is that for a = b = ¢ = 0, convolution defines a multipli-
cation

H(F,0) X H(F,0) > H(F,0)
by setting, for k; k' € X' (F#,0)
(4.9) k"(z,2) = X k(z,y) - k(y, x).

yEF

If we set k*(x,y) = k(y, z), then H#'(F,0) becomes a *-algebra which is dense
in the group-measure space von Neumann algebra obtained from (X, %, »).
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Lemma 4.4. For (X, &, d) of subexponential growth and ¢: % — GL(n, C)
a cocycle with moderate growth there is a natural action é: H'(F,0) X
H(F,0) > H(F,0) of the *-algebra KX (F,0), given by (4.8).

As the space #(.#,0) is a contractible cone, the action of #'(.#,0) on it
should yield cohomological invariants of a subexponential metric equivalence
relation.

4.2. Proof of Theorem 3.2. Let us first recall the classification up to
conjugacy of maximal amenable subgroups of GL(n,R) in [38]. Let (n,,..., n,)
be an ordered partition of n into the sum of positive integers: n = n;, + --- +n,_.
For every such partition we construct the group of all block matrices of the form

A, * * %
0 . *
(4.10) 0 ) .
0 0 0 A

T

where each diagonal block A; of size n; X n, consists of the scalar multiples of
the n; X n-orthogonal matrices, so that A; = R* - O(n;). The elements above
the diagonal blocks are arbitrary, and those below are zero. Every maximal
amenable subgroup of GL(n,R) is conjugate to one of these groups.

Let (X, #,d) be a metric equivalence relation of exponential type a, and
¢: F—> H a cocycle with exponential type b, and H a maximal amenable
subgroup of GL(n, R). We can assume that H has the canonical form (4.10) for

appropriate (n,,...,n,).
The cocycle ¢ decomposes into blocks
é,(y, x) by, x) - ¢, (y, x)
(4.1 9 by, x) - dy(y, %)
0 0 9, (y,x)

where ¢,(y, x) € GL(n,,R) and ¢;; € End(R", R™). Note that each diagonal
block ¢, is again a cocycle with values in the group A,. Consequently,

(4-12) ||¢i(y,x)”"; = det ¢i(y’x)‘

Define a scalar-valued cocycle A; over # by

Ny, x) = {det,(y, x)}™, (y,x) €F

The hypothesis that ¢ has exponential type b and the estimate ||¢,(y, x)|| <
ll¢(y, x)|| imply that A; has exponential type < b. By Theorem 3.1 applied to
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A;, there is a measurable function T,(x) on X so that

(4.13) wly,x) = T(y) " Ai(y, %) - T(x)
is a (2b + a + ¢)-tempered cocycle, and T, has exponential type (a + 3b + ¢)
along orbits. Let T(x) denote the n X n-diagonal matrix whose first n -diagonal

entries are T)(x), the next n,-diagonal entries are T,(x), and so forth with the
last n -diagonal entries equal to T,(x). Define

(4.14) 8(y,x) = T(y) " - ¢(y,x) - T(x),
and write § in the block form, for (y, x) € %,
0,(y,x) O,(y,x) -- 0, (y, x)
0 0o(y,x) -+ Oy(y,x)
0(y, x) = . .
0 0 o 6(y,x)

Note that each 6, # — A, is a cocycle.
LEmMma 4.5. For 1 <i <, 0, is (2b + a + ¢)-tempered.

Proof. 6,(y,x) = T(y) "' - ¢i(y, x) - T,(x), where ¢,(y,x) is A(y,x)
times an orthogonal n; X n-matrix. Thus, ||6,(y, x)|| = p,(y, x) which is (2b +
a + e)-tempered by the choice of T;. O

LeEMMA 4.6, Forall 1 < j < i < r, there is a measurable function C(x) on
X such that

(4.15) ||0,.j(y, x)“ < C(x) -exp({a +4b + ¢} - |y|,).
Proof-

16,5y ) | <116y, ) | <IT(w) I -No(y, x) | -IT(x) |

and (4.15) now follows from this, the growth hypothesis on ¢ and the asymptotic
estimates on the 7. ‘ a

CoroLLARY 4.7. The cocycle 0 has exponential type < (a + 4b +¢). O

By Corollary 4.7 and the method of proof of Lemma 4.1, we can now define

(4.16) A(x) =e" Zﬁ 16(y. x) 1" exp(~ {2a + 4b + 2¢) - [yl,),

and we immediately obtain:

Lemma 4.8 [[A(y)||" < [[A(x)|| " - exp({2a + 4b + 2¢} - |y|,) for
(y,x) € %. O
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Let A(x) be the diagonal matrix whose first n -diagonal entries are equal to
1, the next n,-diagonal entries are equal to A(x) 2, the next n,diagonal entries
are A(x)~*, and so forth, with the last n -diagonal entries equal to A(x)2~2".
Then define

(4.17)  Y(y,x) = A(y) ' 8(y, x) - A(x).

= (T(y) - A(y) - oy, x) - (T(x) - A(x)).
Since T(x) - A(x) is a diagonal matrix in H,  is again H-valued. We will show

that i is tempered, the first assertion of Theorem 3.2, and then establish (3.3).
Write ¢ in block form

¥,(y, x) Yoy, x) - ¥, (y, x)
0 \Pz(yax) ‘Pzr(yax)

Y(y,x) = . . .
0 0  Y,(y, %)

It will suffice to show that the entries ,(y, x) and j(y, x) are tempered, and
obtain a uniform exponential estimate. We begin with the diagonal blocks.

LEmMma 4.9. Foreach 1 <i <,

(4.18) [[¥,(y, x)|" < exp({(4i — 3)a + (8i — 6)b + (4i — 3)e} - |y,).
Proof. From (4.17) we have

W) = (M@ )02 A0
so that
2i-2 |

[y, < (M) A ) 6y o)1)
and (4.18) follows from Lemmas 4.5 and 4.8. a
For the off-diagonal terms it suffices to estimate the matrix norms. Note that
Y (. %) = XNy)™ - 0,;(y, 1) - A(x)* Y
so that
(4.19) [y (. %) [ <[6;(y, x) |- A(x)* 7" (AM(y) - M(x) ")

<Ax) 77 0(y. %)
- exp({2i — 2} -{2a + 4b + 2¢} - |y|,)

by Lemma 4.8 and since A(x) ! <& < 1.

2i—2
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LeEmma 4.10. For (y,x) € %,

Ax) 72 |10(y, x) | < & exp({2a + 4b + 2e} - |yl,)-
Proof. It suffices to show

Ax) 160y, x) 7" = 7' - exp({2a + 4b + 26} - |yl,),

which is immediate from (4.16). O

The proof of Theorem 3.2 can now be completed. By Lemma 4.9, the
diagonal terms of { are uniformly tempered with exponent no greater than
(4n — 3)a + (8n — 6)b + (4n — 3)¢, as i < n. By Lemma 4.10 and the esti-
mate (4.19), the off-diagonal terms of { are uniformly tempered with exponent
no greater than (2n — 3)(2a + 4b + 2¢). It follows that ¢ is uniformly tem-
pered with exponent no greater than the former estimate. As & > 0 was
arbitrary, this yields (3.3). a

5. Proof of Theorem 0.1 in the smooth case

The purpose of this section is two-fold: First, we obtain a local formula for
calculating the Weil measures, where the abstract definition of the forms y; in
Section 2 is replaced with an explicit Lie algebraic construction. This essentially
reduces the calculation of Weil measures to the level of calculating leaf classes
(cf. [19], [21]). Secondly, we use the local form of the Weil measures given in
Corollary 5.7, along with a result from [21] to deduce Theorem 0.1 in the smooth
case. The proof of Theorem 0.1 in full generality consists of removing the
smoothness restrictions made in this section.

5.1. A local formula. Let % be a fixed codimension-n, C2%foliation on an
oriented m-dimensional manifold M without boundary. Let 7: P — M denote
the smooth principal GL(n, R)-bundle of frames of the normal bundle Q — M to
&%, where GL(n,R) acts on the right on P.

The relative truncated Weil algebra W(g!,, O,), is the O,-basic subalgebra
of the full Weil algebra, the differential graded algebra (d.g.a.)

W(gl,), = Agl* ® S(gl*),,

where S(gl%*) is the commutative symmetric algebra on the dual to the Lie
algebra gl ,, with each x € g[* considered to have degree 2, and the differential
is defined as in Chapter 4 of [28]. The subscript n denotes the quotient algebra
obtained by truncating the free algebra S(gl*) in degrees above 2n. For further
details, see e.g., (Chapter 4, [28]).

The algebra W(gl,,O,), contains a d.g. subalgebra isomorphic to WO,,
and by abuse of notation we identify WO, with this subalgebra: The element
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1 ® ¢; € WO, is identified with ¢; € S'(gl*), and y, ® 1 € WO, is identified
with y, € A(gl*) ® S(gl¥),. It is a basic fact that this inclusion induces an
isomorphism i,: H¥(WO,) = H¥(W(gl,, O,),) (cf. Chapter 5, [28]).

A basic connection 6% on the normal bundle Q determines a GL(n,R)-
equivariant map, also denoted

6. TP — al,,
from which we obtain a d.g.a. map
k(6%): W(gL,,0,), » A*(P)* = A*(P/0,)

on O,-basic forms.

A smooth (respectively, measurable) metric h on Q corresponds to a smooth
(respectively, measurable) section s,: M — P/O, of the quotient bundle whose
fibers are the symmetric space S(n) = GL(n,R)/O,. Thus, a smooth metric on
Q vyields a d.g.a. map

ds,: A*(P/O,) —» A*(M).

ProrosiTION 5.1. Given a basic connection 8° and a metric h on Q, with
metric connection 8", there is a commutative diagram

H*(WO,) > H¥(W(g1,, 0,),)
(5.1) aeb 6" | [
H¥*(M) & H*(P/0,)

where A(0°, ") is defined in Section 2.
Proof. This is a special case of Theorem 5.95 and Remark 5.112 of [28]. O

CoroLLary 5.2. For all y, € H*(gl,,0,), y, = A(6% 0")(y,® 1) =
ds;, o k(6°)(y,)- '

This corollary enables one to analyze separately the contributions of 8% and
h to the forms i, on M. For this paper, we restrict our attention to only one
component of the form y,. Let 7: W(g!,, O,), = A(gl*) denote the projection
onto the first factor, and set 7, = 7(y;). For degree y, > 1, the element y; is the
sum of the purely exterior component 7, with components containing ““curvature
terms” from S(gl%),. These latter components are exceedingly difficult to
analyze, and the success of the Weil measure approach is due to its dependence
only on the images of the components 7;, which are relatively easy to study.
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LemMma 5.3. The form 7, is O, -basic on gl,, closed with respect to the
Hochshild differential on A(gl}) and the set {1, 1,,...,1,) is an exterior
algebra basis for H*(g!l, O,).

Proof. This is classical (cf. [62]). a

A foliation chart (U, ®) for % consists of an open set UC M and a
diffeomorphism, for [ = (— 1,1), ®: U —» I~ " X I" such that for each x € I",
the set (L N U), = ® '(I™ " X {x}) is a connected component of the leaves
of # |U. We call (LN U), the plaque of % through x. We say (U, @) is
regular if there is an open set W C M with the closure UC W, and a
diffeomorphism ®: W — (— 2,2)™ extending ®. The foliated manifold M
always admits a locally finite covering by regular foliation charts. For the rest of
this paper we fix a choice of such covering,

(U, ®,)]e € A}.

For U C M open, set P|U=7"}U) with the restricted projection w:
P|U — U. A local smooth (respectively, measurable) framing for Q over U is a
smooth (respectively, measurable) section s: U — P|U. From s, we obtain an
isomorphism of bundles over U, T;: U X GL(n,R) — P|U. Given a metric s,:
M — P/0O,, a local orthonormal framing is a local framing, orthonormal with
respect to h. Equivalently, it is a section s: U — P|U so that the diagram
commutes:

P|U —> P/O,|U
(5.2) N A
U

For a foliation chart (U, ®), the bundle P|U is trivial, so a local orthonormal
framing of Q exists over U for any choice of metric h.

For a, B € A, we say the pair (a, B) is admissible if U,z = U, N U is not
empty. For each a € A, set P, = 7~ !(U,). The given metric s, restricts to local
sections s, ,; U, — P,/O,, and these lift to local orthonormal framings s,
U, — P, which satisfy the following compatibility condition:

Definition 5.4. A collection {¢,: U, - P,|a € A} of measurable local fram-
ings is said to be O, related if for each admissible pair (a, 8), there is a
measll;rable function 0,50 Uy — O, such that ¢,(x) - 0,4(x) = tz(x) for all
x < .

op
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LemMma 5.5. An O, related collection of measurable local framings
{ty U, = P,|la € A} determines a global section t: M — P/O, such that each
t, is a lift of t|U,.

Fixing a metric h on TM defines an orthonormal splitting TM = T ® Q,
and an exterior algebra isomorphism AT*M = ATF* A AQ*. The leafwise
exterior derivative on functions, d ~, is defined by means of this splitting as the
component of the exterior derivative d which lies in T.# *. Note that d , f can be
defined for any function fon M such that the restriction of f to leaves of % is
C! as follows. The differential of a C' map f: M — N of manifolds will be
denoted Df: TM — TN. The leafwise differential of a function f: M — R is
defined by the composition

D.f: T%c ™M 5 TR=R® R — R.
Note this is independent of the metric, and D, f extends to functions which are

def
only leafwise C'. Then df= D, f for f leafwise smooth.
The main result of this subsection is then:

ProrosiTion 5.6. Let (U, ®) be a foliation chart and s: U — P|U a local
orthonormal framing. Then on U we have

A(6°,6")(y;) = A¥(7)mod A(U, 7)

where A;: TF |U — gl, is defined by (5.5) below, and A% is the induced map
on exterior forms.

Proof. By Corollary 5.2, we have
A(6°, ah)(yl) = dsh(k(ﬁb)(y,))
= dsh(k(ab)(TI))mOd A(M, F),
the second equality a consequence of the identity k(0°)(¢) A 7*(A(M, F)) =0
for all ¢ € S(gl*),,, which follows from Theorem 4.23 of [28].

We calculate 7, = ds;,(k(6°)(r,)) in local coordinates on U. It suffices to
evaluate 7, on vectors tangent to .%#; so we consider the restrictions 7,|L for
L c U a plaque. The connection #° is flat when restricted to 7: P|L — L and L
is contractible, so #° defines a product structure P|L = I™ " X GL(n, R). That

is, there are coordinates (y, g) on P|L with y € I™ ™" and g € GL(n,R) so that
7(y, g) = y in these coordinates, and 6" is given by:

(5.3) 6%. T(P|L) - gl ; 8°(d/dy, X) = X

where X is a left-invariant vector field on GL(n, R). The section s|L: L — P|L
is given in coordinates as s(y) = (y, g(y)), where g: L — GL(n,R) is smooth.
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It follows that 8” ¢ D: TL — gl is given by
(5.4) 6" Dys(3/dyl,) = 8°(0/dyl,, Deg(d/9y)ly,)

= g(y)_l : ng(a/ay)lg(y)'
Define A on T, % by the rule

(5'5) A (‘9 3y|y) =g(y)_l'Dﬁg(a/3y)|g(y),
or more simply, A, = g~! - Dzg. From (5.4) and (5.5) we obtain

A(6°,6")(y,) = A¥(m))
as claimed. Note that 7, is O,-basic, so the form A*(;) on each plaque of % |U
is independent of the choice of local Riemannian framing, s, compatible with the
metric, h, on Q. O

Let {A,|a € A} be a partition-of-unity subordinate to the open cover { U, }
of M. For the given metric h on Q, choose local orthonormal framings { s, |a €
A} as above. Then Proposition 5.6 directly yields:

CoroLLaryY 5.7. For B € B(%) and [¢] € HI(M, %), where degree (y;)
+r=m,

(5.6) xs(wlel = L [ A,-Ax(m) A
acEA UamB
Remark 5.8. Observe that the integral in (5.6) is still defined whenever
A, - A%(m) is an integrable form on U, for all a € A.

5.2. Proof in the smooth case.

Definition 5.9. A smooth foliation % has a smooth amenable reduction if
there is a maximal amenable subgroup H € GL(n,R) and a collection {s,|a €
A} of smooth, O, related local framings such that the maps A, T#F U, - gl,
take values in the Lie algebra §) of H. Equivalently, in the terminology of [28], P
admits a foliated H-reduction. In this case, we can always assume that the Oup
take values in the maximal compact subgroup K = O, N H of H, where H is in
the canonical form of Section 4.

TuEOREM 5.10. Suppose Z is a C%-foliation which admits a smooth amena-
ble reduction. Then for y, with deg(y;) > 1, the Weil measure x(y,) is zero.

Proof. By Corollary 5.7, it suffices to show

Z/ A, A*('r,/\q) 0

a€EA BﬁU
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for all B € #(%), ¢ € H.(M, ). The key point is provided by Proposition
3.9 of [21].

LEmMa 5.11. Let H € GL(n,R) be a maximal amenable subgroup, K C H
its maximal compact subgroup and Y its Lie algebra. Then the restriction map

H*(gl,,0,) = H?(b, K)

n

is zero for p > 1. In particular, for 1, of degree p, there is a (p — 1)-form o, on
b, which is K-basic and /| = d(a;).

By Lemma 5.11, for each a € A, there is a (p — 1)form o, , = A% (7;) on
U, so that d 4(o; ,) = 7,|U,. Moreover, s, and s, are K-related on U,; and o,
is K-basic, so that o, , = 0, 5 on U, . Thus, there is a well-defined form o; on
M whose restriction to each U, gives o, ,. Now consider

XB(yI)[(P] = Z / Ao A,:a(TI) AN @
a€EA BnUa
= Z/ }\a‘dge'("'z)/\‘P=0
aEA BmUa
by Stokes’ theorem for foliations (§2, [17]). O

Remark 5.12. Theorem 5.10 can be proved without introducing the local
forms A% (;), by using the functoriality of the Weil homomorphism. A reduction
P’ C P where P’ has structure group H determines a commutative diagram:

H*(W(gl,,0,),) —> H*W(b,K),)

lk(ob) lk(ob)
(5.7) H*(P) — HX(P")
ds,x /ds,,
H*(M)

A calculation using Lemma 5.11 above shows that r, annihilates the residual
classes of degree > 2n + 1. This calculation is essentially the same as that used
to prove Theorem 5.10 above. Note that the Weil algebra approach via diagram
(5.7) breaks down completely for connections #° on Q which are only measur-
able transversally. It is in order to handle this generality that the Weil measures
are introduced, and this will allow the techniques of Sections 6 and 7 to be
developed.
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6. Measurable Weil theory: Smoothing the normal cocycle

We introduce the metrics, norms and pseudo-norms on forms needed for
this and the next section. Fix a Riemannian metric A on TM, and give the
exterior bundle ATM the induced metric. The norm of v € APT.M is denoted
|vl,, with [|@]|| the corresponding sup-norm on p-forms. Give GL(n,R) a
left-invariant Riemannian metric which is also invariant for the right O,-action,
and so that O, has total volume 1. This metric projects to a GL(n, R)-invariant
metric on the symmetric space S(n) = GL(n,R)/O,. Let p and p denote the
distance functions on GL(n,R) and S(n) corresponding to these Riemannian
metrics. The fibration 7: P/O, — M has typical fiber S(n), and the metric p on
S(n) admits a natural smooth extension to a family of metrics {p,|x € M} on
the fibers of .

The metric h defines an embedding Q' — TM of normal vectors perpendic-
ular to T . Let h denote the induced metric on ©, which defines a section §,:
M — P/O,. For any open set UC M let s < I'(U, P/O,) be a bounded
measurable metric on Q|U. We define the essential sup norm of 5 to be

(6.1) 51l = esssupp,(5(x), 5,(x))
xreU
and for U = M, set ||5|| = ||5||, Note that (6.1) defines a pseudo-norm on the

local framings s: U — P|U by first considering the O reduction, § €
I'(U, P/0O,), then setting

def _
(6.2) lIsllo =1l

For a matrix-valued, bounded measurable p-form w: APTM — gl,, define
the norm of w by

(6.3) lw|| = esssup
xEM

{ IIw(v)ll}
sup ——
oxverrT.M V],

and the #pseudonorm of w by

(6.4) lw|ls= esssup{ sup o (o)l }

reM |\o0#verrt.# V[,

For a form « defined only on an open set U C M, both the norm and %pseudo
norm of w on U are again defined as in (6.3) and (6.4). We will abuse notation
by using the same notation as in (6.3) and (6.4) for the norms restricted to U
when the context makes the domain clear.
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The purpose of this section is to prove:

THEOREM 6.1. Let {s,|a € A} be an O,related collection of local mea-
surable framings for Q which satisfy for each a € A:

(6.5) sq|L is C? for each plaque L C U,,
and there is a constant K, with

(6.6) lIsall < K,

(6.7) 1A, |- < K,

Then the collection can be used to calculate the Weil measures of %. That is,
given y; € H?(gl,,0,), [p] € H" ?(M, ) and B € B(F),

(6.8) xs(w)lel = X [ A, a1(n) A
acA BN,

Proof. Note the integral in (6.8) is well-defined, for each A - A¥(m) A gis
an essentially bounded measurable m-form on U, N B by (6.7), (5.5) and the
remark following Lemma 5.5.

The main point of the proof is to construct a sequence of smooth, O,-related
local framings

{spila€A,i=1.2,...)}
such that for the projections s, ; = s, ;mod O, to the symmetric space S(n),
(6.9) S,;— 5, ae. U,

a, i

(6.10) A* (m) > A¥(r)ae. U,

o, i

||Asu‘i||},s K/, foralli >0

for some new constants K. We call such a sequence a tempered smoothing of
the measurable framings {s,|a € A}.

The symmetric space S(n) is naturally identified with the cone of positive
definite matrices in GL(n, R). This allows us to consider an S(n)-valued function
as being matrix valued, and to perform integration of such functions. In
particular, integration of s, with respect to a probability distribution on U,
yields a function with values in S(n) again.

Choose a sequence of smooth kernels {k,|i = 1,2,...} on I" = (— 1,1)"
which converge to the §-function, and whose supports converge uniformly to the
diagonal in I" X I". Extend each k; to a function on I™~" X I" X I" which is
constant on the first factor, and via the identification U, = I™ " X I, lift each
k; to a kernel k,, on U,. Let s, denote the convolution (in the transversal
direction) of 5, with k. Note that s, ; is a framing of Q|U, via its identifica-
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tion with an element of GL(n, R), and denote by s, ; the formal identification of
So i as an element of S(n). By (6.5), the framings (s, ;} are smooth on U, and
the convergence in measure of {5, ;i =1,2,...} to 5, is immediate. The
bound (6.6) implies that the inverses {s;li admlt a bound K, uniform in i.
Moreover, modulo the adjoint action of O,, the inverses {s, i = 1,2,...} also
converge in measure to s '

To prove that (6.10) holds, first observe that (6.6) implies s, has a uniform
bound on U,; so by (6.7), D(5,) also has a uniform bound. The convolution of
s, with k, , does not involve the leaf directions, so there is again a uniform
bound on the differentials { D (5, ,)|i = 1,2,...}. As the {s;}} are uniformly
bounded in i, we conclude that AT ls< K for some K. Similarly, the
differentials D (5, l) converge in measure to Dg(s )- Thus, modulo the adjoint
action of O,, {A, |i = 1,2,...} converges in measure to A, . As the form 7, is
O,-basic, we obtain

(6.11) A% (1) > A%(r,) ae. U,

and (6.10) follows.

Now apply the dominated convergence theorem, Corollary 5.7 and (6.10) to
conclude

xs(y)[e] = lim ) fum;}‘ CAY () A e

Il
™
~—
>

- lim A* (1) A g
acA"U,NB i—co

Il
™
~—
>

R

-
« %
S
>
|
O

7. Measurable Weil theory: Tempering the normal coboundary

This section proves two essential results needed for the proof of Theorem
3.5. We begin by constructing the linear holonomy cocycle Dy over the foliation
pseudogroup I'. It is an easy consequence of the semi-simplicial construction of
the Chern-Weil homomorphism (cf. Chapter 8, [28]) that the Weil measures of .%
depend only on the smooth cohomology class of Dy over I. We will show a
much stronger result, that the Weil measures depend only on the measurable
cohomology class of Dy over the measurable equivalence relation (X, %, d)
defined by the foliation. We prove in subsection 7.1 that the cocycle Dy is
almost everywhere equal to a cocycle lifted from .#. This is equivalent to the
statement that almost every leaf of # has trivial linear holonomy group. The
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ergodic theory of Sections 1 and 4 can then be applied to this cocycle over Z to
deduce that there are canonical framings for Q|B when % |B is either amenable
or admits an a.c.i.t. measure. These framings are used to calculate the Weil
measures, as given in the main Theorem 7.3 below.

7.1. The pseudo-group associated to %. Recall that (U, ®)|a € A} is

the locally finite open cover of M by regular foliation charts chosen in Section 5.

For each a € A, set T, = I" for I = (— 1, 1), and define X = Uge T, to be the

disjoint union of these discs. Then A= $(X) is a complete transversal to %,

where & X — M is defined by &(x) = @, (0, x) for x € T,. Let ®% U, — I"

be the pro;ectlon of ®_ onto the second factor. For (a, B) admissible, let
O2(U «p) C T,, and define

: Ty > Ty,

Ypal¥) = ®§°®;‘(1’”‘" x {x}).

The collection {yg,|(a, B) admissible} of local diffeomorphisms generates
the holonomy pseudogroup ¢ acting on X associated to the given covering of M.
From & one can construct the holonomy groupoid T'; (cf. [14]), and the
equivalence relation # on X consists of the orbits of the @action.

Fix a basis of R" and use this to define a framing of TX via the identifica-
tions T(T,) = I" X R". Given y € ¢ and x € Domain(y), denote by Dy(x) €
GL(n, R) the derivative matrix of y at x with respect to the framing of TX. Note
that Dy(x) acts on the left on R". For («, 8) admissible, this defines a map
Dyg,: T,3 > GL(n,R). The chain rule Dysg e Dyg, = Dys, shows that Dy:
% — GL(n,R) is a map of pseudo-groups.

(7.1)

7.2. The triviality of linear holonomy.

ProposiTion 7.1. There exists a GL(n,R)-cocycle { over (X, %) such that
for all y € ¢ and almost every x € Domain(y), Dy(x) = Y(y(x),x). In
particular, the linear holonomy of almost every leaf of F is zero.

Proof. It is enough to show that forall y € ¢ and ae. x € Domain(y) with
y(x) = x, that Dy(x) = Identity. For then one can define y(y, x) to be the
map ¢ (y, x) = Dy(x) where y € ¢ is chosen so that y(x) = y.

Let A = {x € Domain(y)|y(x) = x} and assume that A, has positive
Lebesgue measure Let x € A be a point of Lebesgue den51ty one. We can
approach x from any direction i 1n the tangent space T, X by a sequence of points
from A, so that Dy(x) = Identity. Since almost every point in A, has
Lebesgue density one and ¢ is countable, this proves the proposition. O
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By virtue of Proposition 7.1, we use the notation Dy = y: #— GL(n,R)
and call this the linear holonomy cocycle for %.

For Be #(%), let X|B=¢ Y(BNA) be the saturated subset of X
corresponding to B. Define % |B to be the equivalence relation on X|B induced
from %, so that (X|B, % |B) is a subequivalence relation of (X, #).

A measurable map g: X = GL(n,R) defines a measurable framing of TX,
also denoted by g, by letting g(x) act on the standard frame of T.X = R"
chosen above. The derivative matrix of y € ¢ at x with respect to the new
frames g(x) and g(yx) is denoted by

(7.2) ¥(y,x) =g(y)" - Dy(y, x) - a(x).

In Section 4, the Moore classification of the conjugacy classes of maximal
amenable subgroups of GL(n, R) was described in terms of the partitions of n.
Let us number all subgroups of the form (4.10) by { H;|i = 1,2,...,2"}. Set also
H, = SL(n,R). The maximal compact subgroup of H; is K, = H, N O,. We
need the following conclusion from Corollary 3.3:

CoroLLARY 7.2. Let B € #(%) and suppose that (X|B, % |B) is amena-
ble. Then there exist a disjoint partition of B into {B, € B(F)|1 <i < 2"},
and a measurable framing g: X|B — GL(n,R) such that the linear holonomy
cocycle ¢ of F |B with respect to this framing is tempered with

(7.3) y: F|B, > H,.

7.3. The fundamental theorem. The following result will be combined in

Section 8 with Corollary 7.2 to prove Theorem 3.5, and consequently Theorem
0.1.

THEOREM 7.3. Let ¢: % — GL(n,R) be a tempered measurable cocycle
cohomologous to Dy. Then for all B € #(%), y, € H?(g!,,0,) and [¢] €
H™ (M, %)

xs(w)lel = L [ A,-A%(n) Ao
a€EA BnUa
where A : BN U, — gl is obtained from the restriction ¢: % |B —» GL(n,R).
Moreover, if  on F |B takes values in one of the subgroups H,, 0 < i < 2",
then A T# |BN U, - b, where 1, is the Lie algebra of H,.

The proof of this theorem will occupy the rest of Section 7. We first show
that the cocycle ¢ can be approximated by uniformly tempered cocycles ¢°,
¢ > 0, obtained from D7y via c-tempered coboundary. Then in subsection 7.6,
we show the Weil measures can be calculated from the ¢°; in order to show that
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A, has values in the appropriate Lie algebra, it is necessary to use special care in
constructing framings of Q from y°.

7.4. Estimates on tempered cocycles. Recall that p is the left-invariant
metric on GL(n,R) chosen in Section 6 which is also right O,-invariant. We
identify S(n) = GL(n,R)/0, with the cone of positive definite matrices, and
let p denote the quotient metric on S(n). Let m C gl denote the subspace of
symmetric matrices, exp: m — S(n) the matrix exponential map and log:
S(n) — m its inverse. The value of the Riemannian metric determining p at the
identity element I, € GL(n,R) determines an inner product p, on m, with
associated norm || || ,. For A € GL(n,R), we let A denote its coset in S(n),
and set

Al = p(A, 1), 4], =5(4, L,).
These metrics and norms satisfy some basic identities and inequalities:
LemMma 74. Forall A, B, C € GL(n,R),
(74) p(A,B) = p(A, B),
(7.5) A, =]Aa""

(7.6) p(A-B,A-C)=p(B,C)
(7.7) A-B|,<p(A-B,A)+p(A,1,) =|A], +|B|,

(7.8) lexp(a) |, = |lall, fora € m.

Proof. (7.4) is obvious, (7.5) and (7.6) follow from left-invariance of p, (7.7)
from the triangle inequality, and (7.8) from the fact that the matrix exponential
agrees with the Riemannian exponential in S(n). O

The geometry of S(n) enters into this section, and thus the proof of
Theorem 0.1, via (7.8) and the next lemma, which is a special case of a result
valid for any Riemannian manifold with no focal points (cf. [29] or [35]).

LemMma 7.5. Let a(t) and b(t) be unit-speed geodesics in S(n). Then for all
0<t<T,
(7.9) p(a(t), b(t)) < p(a(0), b(0)) + p(a(T), b(T)).

When a(0) = b(0), Lemma 7.5 implies that p(a(t), b(t)) is a monotone
increasing function. We apply this lemma to a special situation in which a(t)
and b(t) are related via a cohomology:

LemMA 7.6. Let a(t) and b(t) be 1-parameter subgroups of GL(n,R) so
that a(t) and b(t) are unit-speed geodesics in S(n). Suppose there exist
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g0, &1 € GL(n,R) satisfying g, - a(t,)= b(t,) - g, for some ty,t, > 0. Then
forall 0 <t < T =min(ty,t,),

(7.10) p(go-a(t),b(t)) <|gol, +1a.l, +1t. — tol.

Proof. For t < T < t,, Lemma 7.5 and (7.8) yield

B(go - alt),b(t)) <|&l, + Ao (o) b(t)))
=&, + p(b(t,) - ,,b(%,))
<|&l, + p(b(t,) - &,,b(t,)) + (b (t,),b(t,))
=1gol, +1811, +1t: — tol- m

7.5. Tempering normal coboundaries. Let (X, %#,d) be a metric equiv-
alence relation and ¢, y: % — GL(n,R) be tempered cocycles related by a
coboundary g: X — GL(n,R):

Yy, x) =gly) - oy, x) - glx).

We construct below a sequence of bounded transfer functions {g|c > 0} so
that for (y, x) € #,

def

(7.11) vy, x) =g (y) " oy, x) - g°(x),

the cocycles {y°} are uniformly tempered and converge in measure to ¢ as
c — 0.
For g: X - S(n) € GL(n,R), define

(7.12) I: X - m: I(x) = log(g(x)), x € X.
For each positive real number c, define the truncation [° of I by setting
I(x) if [1(x) ], <c

(7.13) I°(x) = ¢ l(x) i x c
i, e o, e

Set g¢ = exp{l°}): X - S(n), and define y° by (7.11). Note that for each
x € X, there is a k(x) € O, so that

g(x) - k(x) = lim g*(x).

Cc— 00

The function k: X — O, is clearly measurable.
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ProrosiTion 7.7. With notation as above,

(7.14) lg¢(x)| " < exp(K, - c) ae. x € X, fixed K, >0,

(7.15) lim g(x) = g(x), forallx € X,

(7.16)  lim y(y,x) =k(y) " - ¥(y,x) - k(x), forall (y,x) € Z,

(7.17)

¥(y, x)|p < 3<|¢(y, x)|p + [y (v, x)|P}, ae. x € X.

Proof. (7.15) and (7.16) are immediate from the definitions. To see (7.14)
observe that there is a constant K|, so that ||a|| < K, - ||a||, for all a € m; then
using that g°(x) is symmetric we have

log||g®(x) | " = largest eigenvalue of +log(g®(x))
< K, -[log(g°(x))l,
=K, -|g°(x)|, by (7.8)
<K, - ¢ by (7.13).
To establish (7.17), we use Lemma 7.6 and formula (7.11):
(7.18) [4¢(y, x) |, = po(y, x) - g°(x).8°(y))

= (g, - a(s(x)),b(s(y)))

where a(t) = exp{t/||l(x)|l, - I(x)}, b(t) = exp{t/|ll(y)ll, - I(y)} and
s(x) = min{c, ||I(x)||}. Then set ¢, = ||l(x)||, and ¢, = ||I(y)]|, so that

a(ty) = g(x), b(t,) = (),

and let g, = ¢(y, x), g, = ¥(y, x). We then apply Lemma 7.6 to (7.18), and
consider the possible cases: For ¢ > max{¢,,t,}, we have Y (y, x) = k(y) -
Y°(y, x) - k(x) ! so that (7.17) is immediate. If ¢ < min{ ¢y, t,} then (7.18) and
Lemma 7.6 yield (

(7.19) [y, x)|, <[y, x)|, + ¥y, x)|, +1t, = to].

If t, > ¢ > t,, then we obtain
[¥°(y, x)|, = p(g, - alty),b(c))
< B(go - alty),b(t°)) + p(b(%,),b(c))

Slq)(y’ x)|p +|‘P(y’ x)lp +|t1 - tol +|C - t0|.
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The case t, > ¢ > t, is similar, so it always holds that

(7.20) ¥ (y, x)|, <lo(y, )|, + ¥ (y. x)|, + 2/t, — .

It remains to estimate |¢;, — ¢,|; so consider:
to =[[1(x) [, =[g(x)], by (7.8)
=[¢(x,y) -g(y) - ¥(y, )],
<lo(x,y)|, +e(y)], +[¥(y, x)|, by (7.7),

so that [t, — t,| < |$(y, x)|, + [¥(y, x)|,. The proof of (7.17) is now com-
plete. O

7.6. Extending the framing g°. We now assume the hypotheses of Theorem
3.5 are satisfied for B € #(F). Let (X, #,d) be the metric equivalence
relation of subsection 7.1 and Dy: # — GL(n,R) the normal linear holonomy
cocycle with respect to a smooth framing of TX. By Corollary 7.2, we can
assume there is a disjoint decomposition X|B = UZ. X, into measurable saturated
sets and a measurable function g: X - GL(n,R) so that for y(y, x) = g(y) ™' -
Dy(y, x) - g(x) ™", we have y|X, takes values in H,. Recall that H, = SL(n,R),
and H, for 1 <i < 2" are the maximal amenable subgroups of subsection 7.2,
chosen so that H, N O, = K; is the maximal compact subgroup of H,.

By the construction of subsection 7.5, there are uniformly tempered cocycles
¥¢, which converge in measure to ¢, and are cohomologous to Dy via a
tempered coboundary. We next use the functions {g°} on X|B to define
collections { F{|a € A, ¢ > 0} of O, related bounded measurable framings for
the foliation. In this step, the key point is to make sure the limit framings are
such that the resulting leafwise maps Apc(x) take values in f; for x in the
saturation B; of X,;. We begin with some notation. For a, 8 € A, set

8. = 8g°1X,,
Vha(%) = g5(vpa(x)) - Dy(pa(x), 1) - g5(2),
X(a,i,¢) = {x € T, N X,|5,(x) € H, forall B with x € T,,},
Ula,i,c) = (®2) (X(a, i, c)),
Dyg,(z) = Dy(®}(2), ®2(2)), 2z € U,
Ypa(2) = ¥(®3(2), 82(2)), 7 € U,y
We identify Q|U, = (®2)*(TR"), so that the composition
fi =ge°®F - GL(n,R)

a
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defines a measurable framing of Q|U, which is parallel along plaques. For each
¢ >0, we modify the local framings { f’|a € A} to obtain O, related local
framings. On the good sets U(a, i, c), the convexity of the subsets H,/K; in
S(n) will be used to keep the modification inside H,, while on the remainder of
M we simply use the convexity of S(n).

Consider first the case i > 0. The group H, is a semi-direct product of K,
and a maximal connected solvable subgroup R(i). Thus, for z € U(a, B,1i,¢)
there is a unique expression

"[ina(z) = rﬁca(z) ! kca(z)
with 74,(z) € R(i) and k§,(z) € K,.

Lemma 7.8. For (a, B) and (a, §) admissible, and z € U(a, i, c)NUyN

Us,
(7‘21) \[//C;a(z) : Tacs(z) = Tﬂcs(z) ’ kfaa(z)-
Proof. This follows from the cocycle identities
\[/Ea Yoo = H'/fss and k/c;a ks = kﬁs,
the latter holding because R(i) is normal in H,, i > 0. a

The subgroup R(i) is convex, so we can make a center of gravity construc-
tion for functions taking values in R(i). In particular, for z € U(a, i, c) we use
the partition-of-unity { A} chosen in subsection 5.1 to define

ro(z) = Z As(2) - 15(z) € R(i),
(7.22) (a.9)
sa(2) = £i(z) - ri(2).

LEMMA 7.9. For z € U(a, i,c) N U(B, i, c), the framings so(z) and sp(z)
are K ~related.

Proof. Use relation (7.21) and the definition of s¢ to obtain
DYpa(Z) ’ Sﬁ(z) = fﬁc(z) : Hl’;caa ’ Z)\s(z) ’ rofs(z)
)

=f;(z) - ‘%M(Z) “15a(2) - kja(2)

=s5(2) - kg,(2). O

The functions f; and r; are constant along the plaques in U(a, i, ¢), so the
restriction of s; to this good set has leafwise derivative given by

(7‘23) Dgsy = fy - ZDgz}‘s Ty
)
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and thus
-1
(7.24) A= [sz ’ rac.s] ' [ZDgz}\s ) raCB]‘
P 8

As R(i) is a Lie subgroup of GL(n,R), (7.23) implies that A takes values in
the Lie algebra r(i) of R(i) on the set U(aq, i, c). Moreover, from (7.24) one
concludes that the norm ||A.||s is majorized by a constant multiple of
[max . g)l[¥5ll 12

Next, consider the case i = 0. Let SS(n) C S(n) denote the set of positive
definite symmetric matrices with determinant one. There is a natural projection
S: S(n) — SS(n), obtained by suitably scaling the matrix, and this gives SS(n) a
cone structure. On the set U(aq, 0, ¢), where the cocycle Yop(2) takes values in
SL(n, R), we define

(7.25) s2(2) = f(z) - s[‘@s(z)@as(z)]

for ¢ _5(z) the O, reduction of f. One checks easily that {se]a € A} gives an
O,-related framing of Q on the sets {U(«a, 0, ¢)|a € A}. The restrictions of s¢ to
the plaques in U(e,0, c) are smooth, and ¢ ,4(z) € SL(n,R) for z € U(«,0, c)
implies

Ag(z) = 55(z) " Da(sD)], € 81,

It remains to extend the framing s¢, defined on the unions U(a,c) =
2 JU(a, i, c), to the whole of U,. First define sets

Ula,c) = {z€ U(a,i)|z € Ula,i,c) N Us implies z € U(B,i,¢c)},
U'(a,c) = U(a,c)\U(a,c).

For each a € A)lim,, U(a,i,¢) = U, N B;,, so that lim
U, N B.
For each z € U'(q, ¢), set

c— 00 c—»ooU,(a’ C) =

via (7.22)  forz € U(a,i,c)
7.26 F(z) = s .
(7.26) 2 () S"(Z){Via (725)  forze€ U(a,0,c)
Extend s¢ to all of U, by setting s%(z) = £(z) for z € U, \ U'(a, c). Let s¢

denote the O,-reduction with values in S(n); then using the convexity of S(n)
set, for z € U \ U'(q, ),

Fi(z) = Xslks(Z) - DYos(2) - 55(2).

Then { FJ|a € A} is an O related measurable framing of Q, and we require two
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estimates on the norms of the family. First, note that for each z € U, N B, the
limit framing as ¢ — oo exists,

(7.27) F,(z) = lim s%(z),

and we define maps A, A : T |U, - gl by:
AF;(Z) = Fac(z)_l - DgFy|

Pl

Aa(z) = AFM(Z) = Fa(z)_l " DgF,|..

Clearly, A;. —> A,, and it remains to estimate the pull-back maps (Ag)* on
O,-basic forms.

ProposiTion 7.10. There exists a constant C,, depending only on ||y| +
IDY|| and the partition-on-unity {\,} so that for every O,-basic p-form T on
gl,,

(Ag)* (1), < Gallll,.

Proof. The form (A..)*(7) depends only on the reduced framing Ec
U, = S(n), for 7 is O,-basic implies that it defines a GL(n, R)-invariant p-form
7on S(n), and clearly (Ag)*(1) = (D4 ES)*(7). Thus, it will suffice to show
there is a uniform bound on the norm of the derivative maps D, (F¢): TU, —
TS(n) with respect to the invariant norm on TS(n). For z € U’(a, ¢), we have

(), =[ Zars - 02,

p

p

< YIDgA| - max [ (yp,(x), 2) |
8 (a,8)

< Gy~ (¥l + 1IDYI)
by (7.17). The cases z € U"(a, ¢).and z € U, \ U(aq, c) follow similarly. a

We can now prove Theorem 7.3. First, the O,-oriented framing { F*} is
bounded, and by Proposition 7.10 the forms (Age)*(7;) are uniformly bounded
by a constant independent of a, ¢ and z € U,. Thus, the proof of Theorem 6.1
shows that these forms can be used to calculate the Weil measure x p(yp)- It
follows from the definition (7.26) and observation (7.27) that on U, N B,

lim (45)"(n) = (4,.)" (x),

where A, ;= A,|B: T# |U,N B, > b,, 0 <i < 2" Then by the dominated
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convergence theorem we obtain

xs()lel = L [ A (Ag)* (1) Ag

acAYU,NB

= f lim A, )*(T,) A @
acA YU NBCc—

= Z A, AX(1) A g O
acAYU,NB

8. Applications to vanishing theorems

In this section, we use the idea of the proof of Theorem 5.10 along with
Corollary 7.2 and Theorem 7.3 to prove Theorems 3.5, 3.11 and 3.16.

Let us first prove Theorem 3.5. Given B € #(.% ) with % |B amenable, by
Corollary 7.2 there is a tempered cocycle y: % |[X N B —» GL(n,R) and a
partition X N B = U X, so that y: & |X, - H,, for H, maximal amenable.
Let B, denote the Fsaturation in M of X,. Then by Theorem 7.3, for
y; € H?(g!l,, O,) we have

(8.1) xs(v)lol = X ¥ [U A Ae

Now assume that degree y, = p > 1. Then by Lemma 5.11, there is a K basic
(p — DHorm o; on b); with d, 0, = 7,. From Lemma 7.9 we conclude that

A’Z,i(oz) = A,z,i(ol)
on U, N Us. Thus there is a well-defined bounded measurable (p — 1)-form
A%(0;) defined on all of B; such that d ;A (0,)|U, = A% .(7;). This implies the

integrands in (8.1) are leafwise-exact; so by the Stokes’ Theorem for foliations
[17] the integrals vanish. a

The proof of Theorem 3.11 is similar, but easier. Given B € #(.%#) with
B C support(p), where p is an absolutely continuous invariant transverse mea-
sure, it is immediate that Dy ~ ¢ on X N B where ¢: #]X N B — SL(n,R) is
tempered. We then apply Theorem 7.3 for the case H, = SL(n, R) to deduce

(82) xs(wllel = L [ A, A%o(n) Ao

Now if y; = y; A yp, thenas A, o2 TF# |U, N B — 8[,, we have A% ((7,) =0
so the integral in (8.2) vanishes. m|
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Finally, to prove Theorem 3.16 we combine both of these approaches. For
y; of degree p > 1, the hypothesis of Theorem 3.16 implies Dy ~ ¢ on X,
where there is a measurable partition X = U%_ X, into saturated sets with 1:
& |X; = H;. Then by Theorem 7.3 and the argument for (8.1) above, x(y;) =
0. For y,, it is given that Dy ~{: X — SL(n,R); so xz(y,) =0 for all
B € B(F).
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