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A B S T R A C T  

Let F ---- SL(n, 7.) or any subgroup of finite index, n > 4. We show that the 
standard action of F on T n is locally rigid, i.e., every action of F on T n by C °o 

diffeomorphisms which is sufficiently close to the standard action is conjugate 

to the standard action by a Coo diffeomorphism. In the course of the proof, 

we obtain a global rigidity result (Theorem 4.12) for actions of free abelian 

subgroups of maximal rank in SL(n, Z). 

1. In troduct ion  

Let G be a connected semi-simple Lie group with trivial center and without com- 
pact factors. Then if F is an irreducible lattice in G and G is not isomorphic to 
PSL(2,  R), there are a number of weU-known results which reflect the "rigidity" 
of F in G in the context of finite-dimensional representations, culminating in the 
celebrated "superrigidity" theorem of Margulis [Mal] (see also Mostow [Mo] and 
Prasad [P]). The present work is part of a more recent program, initiated by R. 
Zimmer, of understanding a special class of non-linear representations of such 
groups, namely the realizations of F and G as smooth transformation groups 

on compact manifolds. The basic idea, which first appeared in the work of S. 
Hurder [H2], [H3], is to combine the purely algebraic, finite-dimensional rigidity 

*Partially supported by NSF grant DMS9011749. 
Received May 21, 1991 

203 



204 A. KATOK AND J. LEWIS Isr. J. Math. 

properties of 1" with results about hyperbolic dynamical systems, and especially 

structural stability. 
In particular, we consider the following basic example. 1" = SL(n, Z), the 

lattice of integer matrices in SL(n, R), or more generally, any subgroup of finite 

index in SL(rt, Z). 1" acts naturally on M = T" as the group of orientation- 

preserving automorphisms of M as a compact abelian Lie group. Before de- 

scribing our main result and recent related work which preceded it, we need to 

establish some general terminology. 

If F is any finitely-generated discrete group and G is any topological group 
whatsoever, we let R(1", G) denote the set of homomorphisms of 1" into G with 

the compact/open topology. We can describe the topology on R(1", G) more 

concretely as follows. Fix generators 71, . . . ,  7k for 1" and identify R(1", G) with 
a closed subset of G k via p ~ (P(71),. . . ,  P(Tk)); then the topology on R(1", G) 
is simply the subspace topology it inherits from G k. Note that G acts naturally 

on R(F, G) by conjugation. A homomorphism P0 E R(F, G) is said to be locally 

rigid if its orbit in R(1", G) is open. Equivalently, p0 is locally rigid if and only 

if there exists a neighborhood U of p0 in R(1", G) such that for every p E U there 

exists g E G such that P(7) = gPo(7)g -1 for every 7 G F. 
In case M and N are (finite-dimensional) G ~ manifolds, 0 < k < oo, we 

write Gk(M, N) for the set of C k mappings M ~ N and Diffk(M) (or simply 
Diff(M) in case k = oo) for the set of G k diffeomorphisms of M. We shall endow 

Ck(M, N) with the "weak" or "standard" Gk-topology of uniform convergence 
of k-jets on compact subsets of M and topologize Diffk(M) as an open subset of 
Gk(M, M). A G~-action of  F on M is an element of R(P, Diffk(M)). 

In case G is a (finite-dimensional) Lie group, Weil observed [W] that if p E 

R(F, G) such that H 1 (F, AdG o p) = 0, then p is locally rigid. Now suppose 

M is a compact G °° manifold, and let Vec(M) denote the space of C ~ vector 

fields on M. Any action p E R(1", Diff(M)) induces a natural linear action of 1" 

on Vec(M). Following Zimmer [Zi2], we say that p is infinitesimally rigid if 

H 1 (F, Vec(M)) = 0. The terminology is meant to suggest an analogy with Well's 

theorem, although in the present context, the connection between infinitesimal 

and local rigidity has not been established in either direction. 

Zimmer raised the question of infinitesimal and local rigidity for the action of 

SL(n,Z) on T", rt >_ 3, during the 1984 M.S.R.I. workshop on ergodic theory, 

Lie groups, and geometry (see [H1]), and again in his 1986 address to the I.C.M. 

[Zil]. The first result in this direction was obtained by the second author [L]: 

THEOREM 1.1: Let P = SL(n,Z) or any subgroup of fin/re index. Then the 
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action of  F on T n by automorphisms is infinitesimally rigid for n > 7. 

Recently, Hurder [H2], [H3] established the following property, which he terms 

"deformation rigidity," under more general conditions.* 

THEOREM 1.2: Let r = SL(n, Z) or any subgroup of  finite index, n >_ 3. Let 

t ~ pt E R(F,  Diff(T")) be a continuous path based at p0 = the standard action 

by automorphisms. Then there exists a continuous path t ~ gt E Diff(T n) and 

> 0 such that Pt(7) = gtPo(7)g~ -1 for a / / t  < e and 7 E r .  

In this paper, we answer, for n >_ 4, the principal question posed by Zimmer. 

THEOREM 1.3: Let r = SL(n,  Z) or any subgroup of  ~nite index, n > 4. Then 

the standard action of r on T n is locally rigid. 

Observe that  this result, when applicable, is stronger than 1.2, since it has 

not been established, a priori, that the space R ( r ,  Diff(Tn)) is locally path- 

connected. (In fact, the technique can be extended to yield global results under 

appropriate hypotheses; these will appear in [K-L].) 

The proof of (1.3), like that of (1.2), divides naturally into two steps. First, we 

show that  any action which is sufficiently close to the standard one is conjugate 

to the standard action via a homeomorphism of T n. This is the principal part of 

the argument, which is carried out in Section 3. Then in Section 4 we show that,  

perhaps in a smaller neighborhood, the conjugating homeomorphism is smooth. 

We would like to acknowledge at the outset that  several important  ideas in 

the proof were first introduced by S. Hurder [H2]. Specifically, two key ingre- 

dients in the proof of topological conjugacy, the use of Stowe's theorem (2.3) 

and the idea of building up the conjugating homeomorphism on rational points, 

are borrowed from that  paper. On the other hand, our argument requires more 

detailed information about the structure of the group r in order to avoid making 

infinitely many appeals to Stowe's theorem (see Section 3 for more details). 

Furthermore, once the existence of a conjugating homeomorphism has been 

established, the regularity argument in [H3] is applicable under the hypotheses 

of Theorem 1.3 and could be used to complete the proof. However, we provide a 

*Unfortunately, the notation in [H2], [H3] differs from our own. In particular, Hurder uses 
the term "local rigidity" as well as "deformation rigidity" to refer to the property described in 
(1.2). He refers to our "local rigidity" as "stability"; in particular, he refers to the property in 
(3.1) below as "topological stability" and that in (1.3) as "differential stability." 
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different proof in Section 4, both because our argument is more elementary, and 

because it provides a more general result (el. Theorem 4.2). 

We shall have more to say about the relationship between Hurder's work and 

our own at appropriate points below. 

We are of course deeply indebted to R. Zimmer, who posed the problem and 

with whom we have had many helpful conversations. We would also like to 

acknowledge our debt to G. Stuck and D. Witte, who directed our attention to 

the paper of Tits [T], and to D. DeLatte, M. Policott, L. Vaserstein, and H. Weiss, 

all of whom made helpful remarks. Finally, the second author in particular would 

like to thank the mathematics department at Pennsylvania State University for 

their generous hospitality during the final preparation of this paper. 

2 .  P r e l i m i n a r i e s  

In this section, we gather together some more or less well-known results from 

dynamical systems, stated in a form most suitable for our present purposes. The 

first of these is the structural stability theorem for Anosov diffeomorphisms [A]. 

The assertion in the second paragraph follows easily from uniqueness (of. [P-Y]). 

PROPOSITION 2.1: Suppose 7 6 SL(n, Z) is a hyperbolic matrix, i.e., 7 has no 

eigenvalues on the unit circle. Denote by 7 as well the corresponding Anosov 

diffeomorphism of T n. Then i f  71 is another diffeomorphism of T n which is 

sufticiently close to 7 in the Cl-topology, 7' is Anosov and there exists h E 

homeol(T n) such that 7 ~ = hTh -1. More precisely, there exists a homotopy 

7t = h tTh t  1 with ho = 1, hi = h, and ht E homeo(T n) for each t E [0,1]. 

The homotopy ht "varies continuously" with respect to 7 ~, in the sense that 

by taking 7' sutl~ciently dose to 7 in the Cl-topology, we can arrange that ht 

remains arbitrarily cIose to 1 in the C°-topology. 

Let p = h(O), which is one of finitely many fixed points for 7'. Then h is the 

unique homeomorphism of T n such that h7h -1 = 7 ~ and h(O) = p, and i f  qo is 

any homeomorphism o f t  n which commutes with 7', then h - i ~ h  is a linear map 

which commutes with 7. 

The following statement summarizes all that we need of the "normal hyper- 

bolieity" theory in [H-P-S]. 

PROPOSITION 2.2: Let V be a smooth compact submanifold of a smooth Rie- 

mannian manifold M, f E Diff(M) leaving V invariant. We say that f is nor- 
mal ly  hyperbol ic  at  V ff  the tangent bundle of M,  restricted to V,  splits into 
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three continuous subbundles T v M  = T V  ~ N u ~ N s, invariant under Dr,  such 

that D f  expands N tr and contracts N s more sharply than TV.  Then ff  f '  is 

another diffeomorphism o/' M which is su~ciently close to f in the Cl-topology, 

there is a unique, normally hyperbolic, invariant C 1 submani/'old V'  /'or f '  near 

V. 

Finally, the (finite-dimensional) cohomology-vanishing results for F will enter 

the argument via the following theorem due to Stowe [Sto]. Suppose F is any 

compactly-generated Lie group (i.e., F ° is a Lie group and F /F  ° is a finitely- 

generated discrete group) and M is a (finite-dimensional) C 1 manifold. Suppose 

• R(F, Diffl(M)).  Set S(a)  = {p • M I a(7)p = p for every 7 • F}, the 

fixed-point set for the action of F under a,  and fix p • S(a). Then a induces 

a natural (finite-dimensional) linear representation of F on TpM, the tangent 

space to M at p. We denote by HI(F,  TpM) the ordinary group cohomology 

with coefficients in this representation. 

PROPOSITION 2.3: / f  H i (F ,  TpM) = O, then p is stable under perturbation of 

a; i.e., given any neighborhood U of p in M, there is a neighborhood V of a in 

R(F, Diffl(M)) such that each fl E V has a fixed point in U. 

Moreover, near p, S(a)  is a stable C 1 submanifold of M. More precisely, there 

is a neighborhood U of p in M, a neighborhood V of a in R(r, Difr~(M)), a 

disk D diffeomorphic to some Euclidean space, and/ 'or  each fl • V a dosed 

embedding qa • CI( D, U) such that 

(i) qa(D) = U N S(fl), and 

(ii) Y ~ CI(D, U), fl s.4 qB is continuous. 

Stowe's theorem has two obvious corollaries which we state separately for 
future reference. 

PROPOSITION 2.4: If  p is an isolated fixed point and H I(F, TpM) = O, then 

for every neighborhood U of p there is a neighborhood V of a in R(F, Difft( M)  ) 

such that every fl • V has an isolated fixed point in U. 

PROPOSITION 2.5: /.f N C S(a)  is a compact connected component of S(a)  

such that Hi(F,  TpM) = 0 for every p E N,  then N is a stable C 1 submanifold of 

M. More precisely, there is a tubular neighborhood U of N in M, a neighborhood 

V of a in a ( r ,  OitP(M)),  and for each fl • V a dosed embeddingqa • CI (N ,U)  

such that 

(i) q#(N) = U 0 S(fl), and 
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(ii) V ~ C ' ( N , U ) ,  ~ ~ qa is continuous. 

3.  T o p o l o g i c a l  C o n j u g a c y  

Let Diff 1 (M) denote the set of C 1 diffeomorphisms of M with the C 1 topology. 

THEOREM 3.1: Suppose F = EL(n, Z), or any subgroup of finite index, n >_ 4. 

Then there exists a neighborhood U of the standard action in R(r, Diffl(M)) 
such that each p E U is C°-conjugate to the standard action, i.e., there exists 

a unique homeomorphism h o f T  n near the identity such that P(7) = h7 h-1 for 

every 7 E F. 

In this section, we give the proof of (3.1) in the special case in which F equals 
the full integer lattice SL(n, Z); the additional argument needed to extend the 

theorem to subgroups of finite index appears in Section 5, below. We adopt this 
approach not only to simplify the presentation, but because there are several 
points in the proof which can be made both more elementary and more explicit 

for the full group (cf. (3.2) versus (5.2) and (3.8) versus (5.7)). 

Before presenting all the details, it will be convenient to give a brief outline 

of the argument. We begin by observing that F is generated by a finite set 

of hyperbolic matrices, say 71, . . . ,  7k. Then by structural stability (2.1), for p 
close enough to the standard action there exist homeomorphisms hi such that 
P(Ti) = hiTih'i I , 1 < i < k. To complete the proof, we must show that the hi's 
coincide. 

The first step is to apply (2.4) to obtain a fixed point, p, for the perturbed 

action, so that hi(0) = p, 1 < i < k. 

Fix a partition {1, . . . ,  n} = { i l , . . . , i t}  U {j l , . . .  ,jra} of the indices into dis- 
joint subsets with l, m > 2. Corresponding to each such partition, we obtain 
a pair of complementary subgroups, copies of SL(~, Z) and EL(m, Z), respec- 

tively, sitting inside F. For example, if n = 5 and the partition is {1, . . . ,  5} = 

{1, 2} O {3, 4, 5}, we obtain a copy of EL(2, Z) in the upper left-hand corner and 

SL(3, Z) in the lower right. 

Note that under the standard action, the set of fixed points for SL(*, Z) is 

an m-toms through 0, likewise, SL(m, Z) fixes an £-torus, and the two tori 

intersect in a single point, 0. Also, both tori are invariant under the action of 
the product SL(~, Z) xSL(m, Z) C F. The next step is to show that this structure 
persists for the perturbed action. That is, the fixed-point sets for SL(*, Z) and 

EL(m, Z) under the perturbed action are topological tori of the appropriate 
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dimension intersecting in p, and both are invariant under the perturbed action 

of the product. 
Next we observe that the intersections of the various tori corresponding to 

different partitions are topologically the same as in the unperturbed ease. In 

particular, we show that the two 2-tori fixed by two distinct copies of S L ( n - 2 ,  Z) 

sitting inside a copy of SL(n - 1, Z) C r intersect in a circle through p, and 

that this circle is precisely the set of fixed points for the perturbed action of 

S L ( n  - 1, z ) .  
Now fix a copy, A, of SL(n - 1, Z) in r ,  mad let S denote the corresponding 

circle of fixed points for the standard action, and S for the perturbed action, of 

A on T". We exhibit a sequence of elements AN E F such that each subgroup 

EN = (A,;~NA$~ 1) has finite index in I', S n )~NS is a set of N points, and 

U~=I(S n )~NS) is dense in S. Now since EN has finite index in r and each 
generator 7i has infinite order, some non-zero power of 7i lies in EN for each 

i. Also, for each 7 E r ,  P(7) induces the same action on homology as does 7. 

Combining these observations, we are able to conclude that .~ N p()tN)S (which 

is the fixed-point set for the action of EAr under p) is also a set of N points, 

and that each of the conjugating homeomorphisms hi restricts to give the same 

identification hi: S n AArS--% S n p()qv)S. Since U~=I(S n ANS) is dense in S, 

this implies that the hi's agree on S. Finally, since the orbit of S under the 

action of F in T '~ is dense, we conclude that the hi's coincide, which completes 
the proof of (3.1). 

Finally, we shall comment briefly on the relationship between our proof of (3.1) 

and the argument by which Hurder [H3] establishes the corresponding result for 

deformations. In rough outline, the two arguments are similar: Both begin 
by fixing hyperbolic generators and conjugating homeomorphisms, obtained via 

structural stability, then show that the conjugating homeomorphisms agree on 

a dense set of rational points, hence coincide. Also, both arguments use Stowe's 
theorem (2.3) together with classical cohomology-vanishing results. 

The essential difference is that Hurder applies (2.4) at each point in a count- 
ably infinite set, while we make one appeal to (2.4), to fix the origin, and another 

to (2.5), to obtain the circle S of fixed points for the perturbed action of A. Since 
there is no uniform estimate on the size of the neighborhood in (2.4), Hurder's 

approach requires the existence of a path joining p to the standard action (to- 

gether with local rigidity of the standard linear representation of F) in order 

to obtain stability for this infinite collection of periodic points simultaneously. 

On the other hand, our approach requires more detailed information about the 

structure of F. In particular, this accounts for the exclusion of the case rt = 3 in 
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(1.3) as opposed to (1.2). 

We now begin the detailed proof of Theorem (3.1). 

LEMMA 3.2: For n > 2, SL(n ,Z)  is generated by a finite collection of hyper- 

boric matrices. 

Proof." It is well-known that SL(n, Z) is generated by the elementary matrices 

of the form I+eij, i ~ j, where eij is the matrix with a I in the i,jth entry and 
0's elsewhere. (This follows by the Gaussian elimination algorithm.) The lemma 

follows by observing that each such elementary matrix is itself the product of a 

pair of hyperbolic matrices, viz., 

(101)__(_11 
1 = - 1  4 2 - , 
0 0 1 - - 2  

and for n > 4 

(ii)(1_i)(23) 
0 1 = - 1  2 1 2 

I n - 2  A A -1 

with A any hyperbolic matrix in SL(n - 2, Z). 

Fix generators 71 , . . - ,T t  for r as in (3.2). By (2.1), for p sufficiently Cl-close 

to the standard action, there exist unique homeomorphisms h i , . . . ,  hk of T n, 

isotopic to the identity, such that  P(7i) = hiTih~ 1, 1 < i < k. 

LEMMA 3.3: For p su~cient]y Cl-dose to the standard action, p(r) has an 

isolated t~xed point p near the origin in T n. 

Proof." The linear representation of F on the tangent space to T"  at the origin 

under the standard action is simply the standard linear representation of r on 

R n. The cohomology H 1 of F with coefficients in this linear representation is 

known to vanish (cf. [R], [B] for the case n > 5, [Zu] for the case n > 4, and 

[Ma2] for the case n >_ 3). Thus (3.3) follows via (2.3). n 
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LEMMA 3.4: Fix a partition {1,...  ,n} = {i~,. . . , i t} U {i t , . . .  ,J,,} of the in- 
dices into disjoint subsets with ~, m > 2. Define V1, V2 C R ~ via 

V1 = R , , , $ " - $ R e t ,  112=Rej l@'"$Rej , , , ,  

where ei denotes the ith standard basis vector. Set 

Ax _,2 SL(m, Z) = {7 • F 13'V~ = V1, 7V2 = V2, and 7lv, = Iv, }, 
A2 ~- SL(~ ,Z )  = {'r • r I-rV, = v~, -rv2 = v2, a n d  7lv~ = Ivy}. 

Let 7r: R" ~ T" denote the natural projection and set T1 = It(V1), T2 = 

~r( V2 ), so that TI is the fixed-point set for the//near action OrAl, T2 for A2. Then 
for p sufficiently C 1-dose to the standard action, there exists a homeomorphism 

h ofT"  such that 

(i) 7"i = hTi = {z • T" I p(7)x = z for every 7 e A,}, i = 1 or 2, 

Oi) h(O) = p (so that ~, n ~ = {p}), and 
(iii) p(7)Ti = Ti for every 7 • A, x A2. 

Moreover, the map p ~ h, which maps a neighborhood of the standard action 

in R(F, Diff~(T")) to a neighborhood of I in Homeo (T") is continuous (uniform 
topology on Homeo (T")). 

Proof." Fix hyperbolic generators a l , . . . ,  ar  for SL(m, Z) ~- A1 and f l l , . . . , f l ,  
for SL(t ,Z) ~_ A2, and so that (ai, t3j) generate SL(m,Z) x SL(e,Z). Note 
that the matrices in Am x A2 C r corresponding to (ai,/3j) are hyperbolic; 

henceforth we abuse notation by writing (qi,/3j) for the matrix as well. Then by 

(2.1) there are unique homeomorphisms hij of T" isotopic to the identity with 
hii(O) = p, p(ai,131) = hii(ai,l~j)h~ 1, and each hij varies continuously with 
respect to p. 

For fixed j ,  (I,/~j) and (ai ,~i)  commute for every i, hence 

p(z,/~j) = hi i (z , /~j)h~ 1, 

by the second part of (2.1). The set of fixed points for the linear action of (/,/3j) 

on T" is a finite union of parallel f-tori; call this set X i. The leaf of X i through 

0 is T2. Also, 7'1, may be characterized dynamically as the closure of the stable 

manifold for (I, Bj) at 0. It follows that hijXj is the set of fixed points for 

p(I, Bj), hljT2 is the leaf of fixed points through p, and hijT1 is the closure of 

the stable manifold at p. (This is the critical application of (3.3).) 

Similarly, for fixed i, (ai, I) and (ai, Bj) commute for every j, T2 is the closure 

of the stable manifold for (ai, I)  at 0, and T1 is the leaf of fixed points for (oti, I)  
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through 0. Thus hijT2 is the closure of the stable manifold for p(ah I) at p, and 

hijT1 is the leaf of fixed points through p. Thus Tz = hijT2 and ~'1 = hiiT1 are 
defined independently of i and j .  

By construction, each point of T2 is fixed by the generators for A2 under p, 

hence 

~2 c {~lp(~)~ = • for every ~ • A2}. 

& To obtain the reverse inclusion, observe that T2 = Ni=IX J. We need to show 

that ~'2 = N~=I hoXi  for any i. 

Fix jo, and suppose L is one of the other leaves of Xio, distinct from T2. Then 

for some j ' ,  L N X i, = ¢. For fixed i, hiioL N hij, X i, = ~b is an open condition 

on (hiio, hii,), hence on p. Thus for p near the standard action, 

The equality 

$ 

n= hiiXi c h,~oT~ = ~. 

~1 = {x I p(~)x = • for every 7 • h i  } 

is obtained similarly. 

Establish notation as follows. Suppose 2: = { i l , . . .  ,/m}, 2 _< m < n -- 2 is a 

subset of the indices {1 , . . . , n ) .  Denote by Az C r the corresponding copy of 

SL (n - rn, Z), and Tz, Tz the m-tori of fixed points for A~ under the standard 
and perturbed actions, respectively, as in (3.4). 

LEMMA 3 .5 :2"1  C 2"2 :::F T2:1 C T:r2- 

Proof." Obvious since Az2 C Az,. 

For i • {1, . . .  ,n}, let e~ denote the subspace of R n orthogonal to eh and 

denote by Ai C F the subgroup 

Ai = {7 • F I7ei = el, 7(e#) C e#} ~- S L ( n -  1,Z). 

LEMMA 3.6: Suppose { i , j ,k )  C {1, . . . ,n}  is any &dement subset. Then 

A{i,/} and A{i,k} together generate Ai. 

Proof." This amounts to showing that the two copies of SL(n - 2, Z) in SL(n - 
1, Z) obtained by imbedding SL(n - 2, Z) in the upper left and lower right 

corners, respectively, generate SL(n - 1, Z). This is easy to see, for example, by 

exhibiting the two "missing" elementary matrices in the subgroup generated, u 
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LEMMA 3.7: For {i,j, k} as in (3.6) and p in a suitable neighborhood, 

S, = T(i,j} N T{,,k} = {z e T" [ P(7)z = z for every 7 • A,} 

is a C 1 circle through p. 

Proof." The equality follows immediately from (3.6). 

Set Si = Ir(Rei), which is a circle through 0, the fixed-point set for Ai under the 
standard action. For each point z • Si, the linear representation of Ai on TzT n 
is equivalent to the direct sum of the standard representation of SL(n - 1, Z) on 
R "- I  with the trivial representation (on R). 

Since n - 1 > 3, we can conclude that HI(Ai,TzT n) = 0: We have already 

observed (under 3.3) that t t l ( S L ( k , Z ) , R  k) = 0 when k > 3, and in this case 
SL(k,Z) is Kazhdan, hence HI(SL(k,Z) ,R)  - 0 as well. (Cf. [Zi3]. Observe 

that H 1 (., R) with coefficients in the trivial representation may be identified with 
the space of additive homomorphisms Hom(., R).) 

Thus we can apply (2.5): There is a tubular neighborhood U of Si in M such 
that for suitable p, :~i N U is a C 1 circle through p, and since T{i,j} and ~'{i,k} 
vary continuously with p near the transverse tori T{i,j} and T{i,k}, respectively, 

TIi,j} N T{i,k} C U is an open condition on p near the standard action, n 

LEMMA 3.8: For each N > 2 set 

A ~ =  N N + I  • r .  
/ . - 2  

Then the subgroup ~lv generated by A1 together with ANA1A~v 1 is a subgroup 
of finite index in F. 

Proof." In fact, EN is precisely the subgroup consisting of matrices whose first 
column is congruent to 

We provide the following elementary proof since we know of no reference in the 

literature. To simplify notation, we carry out the argument for the case n = 3; 

the generalization to the case n >_ 3 is obvious. So for the time being, write 

F = SL(3, Z), A I =  { (  1 ) A [A • SL(2, Z) C F}, and 

AN= N + I  • F .  
1 
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Now suppose  

= e • F  
h 

with a = 1 rood N and  d, g - 0 rood N.  We must  show 7 • ~N.  

(i) There  exists A • SL(2,  Z) with (b, c)A = (b', 0). T h e n  

so it will sufilce to  check the case c = 0. 

(ii) T h e n  f and  i are relatively prime, so there exists A • SL(2,  Z) with 

• ' A 7 . . . .  , 

so suppose c = f = 0, i = 1. 

(iii) 1 7 = • 

(iv) Wri te  a = kN + 1. T h e n  

) ,  so in part icular ,  we m a y  assume c = 1. 

( , )  (, b :1) 
1 , 1 • EN 

- k N  1 

(v) 

and 

7 1 1 . . . . .  
- k N  1 

So suppose a = 1, b = c = 0. 

A = • SL(2, Z), 

and 

7 A = 1 E EN, 
1 

since d and  g are mult iples of  N.  v 
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For each N > 2, set S~ = ANS1, which is the fixed-point set for ANAIAN 1. 

Note that $1 and S N intersect in N points, evenly distributed along 5'i, so that 

UN(S1 N S N) is dense in 5'1. Recall that 71,...,Tt denote a fixed collection of 
hyperbolic generators, and h i , . . . ,  hk E Homeol(T") such that P(Ti) = hiTih~ 1. 

LEMMA 3.9: Let {0 = qo,.-.,qN-1} ---- $1NSN. Then thehi'sagreeon s i n s  N, 
i.e., hl(q$) . . . . .  hk(q$), 0 _< j < N - 1. 

Proof: Fix/~ = ~r-'(p) E R". For each 7 E r ,  P(7) fixes p, so p(7) lifts uniquely 
to a diffeomorphism P(7): Rn -'* Rn such that/~(7) fixes/~. Note that for each 
generator Vi, P(Ti) is homotopic to 7i, hence induces the sarne map on H1 (T"). 
Thus P(7) and 7 induce the same map on H1 for every 7 E r .  Consequently 
we have/$('),)(:r + z) =/~(qf)x + 3,z for every :r E n", z E Z n. Also, each hi lifts 
to a homeomorphism L: R" --. R" such that L(0) = ~, ~(7~) = L'r~h?', and 

h,,(z + z) = h / (x )  -I- z for every z E R" ,  z E Z" .  

Consider the pre-image ~r-](S1) C R n. It is a countable collection of lines 
parallel to the first coordinate axis. For z E Z n-l ,  let £z denote the component 

of ~r - ' (S , ) through the point ( 0 z ) E  Z" C R". Then ~ may be characterized 

a s  

Similarly, 

~-'(s,~)= ,u if, 
zEZ - t 

where 

iN = {z E R" 17z = Z + T A N  ( ~ )  for every 7 E ANAIA~,I }. 

Likewise, 

zEZ - 

where 

Set S~  = p(AN)S1, the circle of fixed points for p(ANA1A~r~). Then 

~-'(~)= u ~N, 
zEZ"- i 
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where 

t ~ = { z E R " I # ( 7 ) z = z + T A N ( ~ )  f o r e v e r y T E A N A 1 A ~  1} 

= ~(~N)~,.  

RecM1 that S, C T{1,2I, al'ld )~N • A{3 ..... n} implies p()~lV)e{,,2} = ~'{,,2}. 
Thus ~ c ~ , , ~  as wel l  ~ - ~ ( e O , ~ ) i s  a collection of p ~ l l e l  suaaces indexed 
by Zn--2; let 

s = so = {x • ~"  I ~(-1)x = x for every "r • A~1,2}}. 

Note that ~z, ~ C so whenever 

z = • Z n-1 

satisfies zs . . . . .  z~ = 0. (In general, ~z,l[~ C s,, ,  where 

z' = " • Z"-2 . )  

Zn 

Now the distances d(£,, tz) = d(S,,  S,)  and d(£Nz , tNz ) = d(S N, S N) are small (in 

particular, finite), and t~ and t ~  both lie in s provided zs . . . . .  z .  = O. Thus 
for such ~, ~, n ~0 N # ¢. 

For each j = 0 , . . . ,  N - 1, set 

z i = (1) zn 1 

so that t,~ n to N = {~i}, where q0 = 0, ~r(~j) = qj, a n d  set X j  = ~#i n ~0 N # ¢. 

We will show that X i consists of a single point X i = {#i} and that 7t~(~i) = #i 

for each i. Then hi(qj) = hi(Tr(~i)) = 7r(hi(¢j)) = ~r(#j) for each i and the proof 

of (3.9) will be complete. 

So s u p p o s e x  • Xj  = Q n~0 N. Then for each 7 • A, we have #(7)x = 

x + 7  zj a n d  
\ / 
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ANA1AN 1 together generate EN, it follows that there is a cocycle a :  EN --* Z N 

such that  ~(7)x = x q- a(7  ) for every 7 • -EN. 
Fix one of the generators 7i. Then since 7i has infinite order and ~N has 

finite index in 1", it follows that -r K • ~N for some K >_ 1. Now we have already 

ensured that  the diffeomorphism P(7i) is hyperbolic. In particular, the mapping 
p(Ti) K - Id: T n ~ T n is non-singular at each point of T n, and is therefore a 

covering map, and t5(7i) K - Id: R n --* R n is a diffeomorphism. 

Since/5(7i) K - Id is invertible, there is a unique point 

= - id)-1 (7, • a n 

such that  k(Ti)K~j = ~j + a(Tff).  Thus X j  = {/Sj}. Moreover, ~j is the unique 

point of R" such that  7K~j = ~tj + a(TK), hence 

p('Ti)Khi(qj)  = hi("[iK(qj)) "~- hi(qj + ot('TiK)) 

= L( i) + 

Thus hi((ti) = Pj and the proof of (3.9) is complete. [] 

COROLLARY 3.10: hi(x)  . . . . .  h~(x) for every x • S1. 

Proo~ UN(SI f3 S N) is dense in $1. 

COROLLARY 3.11: Fix • r .  Then hi(x)  . . . . .  hk(x) for every x • 70S1. 

Proof." The subgroups 70A17o 1 and 70)~NA1AN17O 1 together generate ~/0 "--N"/O 1 , 

which is again of finite index in I'. Then the same argument as in (3.9) shows 

that  hi(7oqi) = p(~/o)hi(qj), qj • S1 N S N. m 

Since U~erTS1 is dense in T n, this completes the proof of (3.1). 

4. S m o o t h  C o n j u g a e y  

In this section, we show that  for suitable p, the conjugating homeomorphism h 

in (3.1) is in fact a Coo diffeomorphism. Since neither (3.1) nor the argument 

below requires more than C 1 control on the perturbed action p, we will actually 

establish the following 

THEOREM 4.1: Suppose 1" = SL(n, Z), or any subgroup of finite index, n >_ 4, 

and let Diff*(T n) denote the group of C °O dL~feomorphisms o f T  n under the C 1 

topology. Then there is a neighborhood U of the standard (linear) action o f f  on 

T n in R(Y, Diff*(Tn)) such that for every p E U there exists a Coo diffeomorphism 

h o f T  n such that P(7) = h7 h-1 for every 7 E 1". 
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Once again, the basic outline of our argument is the same as Hurder's. We 

begin by selecting a free abelian subgroup A of 1  ̀generated by n - 1 hyperbolic 
matrices. A simultaneous diagonalization of this subgroup yields n transverse, 

one-dimensional foliations ~'i of T n which are each invariant under the action of 

A, and the topological conjugacy h carries each ~'i to a foliation h.~i which is 

invariant under the perturbed action of .A. An application of the "stable manifold 

theorem" [H-P] shows that each foliation h.~i has C ~ leaves. The argument is 

completed by showing that h is smooth along the leaves. 

The essential difference between our approach and Hurder's is the argument 

which establishes smoothness along the leaves. Hurder applies finite-dimensional 

cohomology vanishing to show that the infinitesimal representation of the sta- 

bilizer at each periodic (rational) point is stable, then invokes some recently- 

developed machinery from the theory of smooth Anosov systems. The argument 

we give below is based on a simple idea which first appeared in Koppel [Ko]. Very 

briefly, we construct a smooth local linearizing parameter g for the perturbed 
action of .A along each leaf, then show that the composition g o h is smooth, 

hence h is smooth. 

An important advantage of our approach over that of [Hu3] is that it takes 

place entirely within the group .,4 itself, without referring to the action of the am- 

blent group I" at all. In fact, the discussion in this section is logically independent 

from that in the preceding section, since the action of a hyperbolically-generated 

abelian group is automatically topologically rigid (in the sense of (3.1)) by struc- 

tural stability (2.1). Thus we need not assume that the action of A extends to 

an action of 1" and we shall actually prove the following 

THEOREM 4.2: Suppose A C SL(n, Z), n ~_ 3, is a free abelian group of rank 
n - 1, generated by n - 1 hyperbolic matrices. (Such groups exist; c£ below.) 

Then the standard action of  A on T"  is locally rigid in R (A ,  Difl~(T")). 

In fact, the proof gives a global rigidity result for smooth actions of .4 under 

appropriate hypotheses; these will be summarized under (4.12) below. Moreover, 

it is easy to see that the argument extends to hyperbolically-generated abelian 

group actions of rank k > 2, provided that they satisfy certain conditions on the 

eigenvalues of the generators. The precise consequences of these ideas for hy- 

perbolic Z~-actions are currently under investigation. This work may be viewed 

as a complement to the recent program of Palls and ¥occoz [P-Y] who show, in 

part by related arguments, that "generically" Anosov diffeomorphisms commute 

only with their own powers. 
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We now begin the detailed proof of (4.1) and (4.2) by establishing the necessary 

algebraic data. 

LEMMA 4.3: Let r = SL(n, Z), n > 2, or more generally, a subgroup of finite 

index in SL(n, Z). Then there exists a Cartan subgroup H of  SL(n,  R) such 

that the quotient H / (H  f3 r) is compact. In partictdar, there exists a subgroup 

.4 C r such that (i) the dements of A are simultaneously diagonalizable over R, 

and (ii) A is isomorphic to a free abelian group of rank n - 1. 

This follows from the general results in [P-R]*, although in the special case 

r = SL(n, Z) it can be established more directly. For example, -4 corresponds to 

a subgroup of finite index in the group of units of norm 1 in the ring of integers 

in a suitable algebraic number field. 

Let v l , . . . ,  vn E R n be a basis of simultaneous eigenvectors for the group -4, 

and Ai: -4 --} R × the character on -4 defined via Avi = Ai(A)vi, A E ,4. In order 

to simplify notation, we pass to a subgroup of finite index and assume that  

each Ai takes values in R +. Then H ° = the identity component in H,  above, 

is a maximal R-split torus in SL(n, R) with eigenveetors vi and ~i extends to 

Ai: H ° ---} R + so that  

x . . .  x ,x,,: H o  ._, = I }  

is an isomorphism of analytic groups and 1"I/.4 is compact. As an immediate 

consequence of the cocompactness of .4 in H °, we have that  for each i, 1 < i < n, 

there exists Ai E .4 such that Ai(Ai) < 1, A.i(Ai ) > I for each j ~ i. 

By standard results, the torus H ° is Q-anisotropic. Equivalently, none of 
the eigenspaces Rvi is a rational line in R P  n. In fact, let ~r: R n - ,  T n denote 

the natural projection. Then ~r(Rvi) is the stable manifold through 0 for the 

hyperbolic diffeomorphism Ai on the torus; in particular, 7r(Rvi) is dense in T n 

for each i. 

LEMMA 4.4: Suppose A E A, A ~ 1. Then Ai(A) ~ 1 for each 1 < i < n. 

Proof: Otherwise Avi = vi  ~ A fixes each point of ~r(Rvi) = T" =~ A = 1. [] 

*We are indebted to S. Hurder for directing our attention to this reference. 
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LEMMA 4.5: Fix generators B 1 , . . . , B , - 1  for ,4 -~ Z "-1. Then there is no 

nontrivial relation of the form A~(B~)p, . . .  A~(B,_I)P--~ = 1, with 1 < i < n, 

pj • Z, and at least one pj # 0. 

Proof." Otherwise B~' .. B r"-I  , -1  # 1 and $i(B[ '  P"- '  . . . .  B , _  1 ) = 1, contradicting 

(4.4). = 

The particular consequence of (4.5) which we need is the following: 

COROLLARY 4.6: For each 1 < i < n, {)q(A)[A • A} is a dense subgroup in 

R + . 

For each I < i < n, fix Ai • .4 such that  Ai(Ai) < 1, Aj(Ai) > 1 for j # i. Let 

~ s ,  ~ u  denote the stable and unstable foliations, respectively, for the hyperbolic 

diffeomorphism Ai of 'r n. I.e., the leaves of 2 "s are the images under ~" of lines 

in R"  parallel to vi, those of ~ u  the images of hyperplanes parallel to the span 

of the remaining v j, j # i. 

For suitable p, each p(Ai) is Anosov; ~ s  = h(y-s) and ~ u  = h(y-u) are the 

stable and unstable foliations for p(Ai). The following properties of the foli- 

ations ~'i s and ~ u  are all described in [H-P]. Recall that  a family {W~}xeM 

of k-dimensional C °o submanifolds of M is said to v a r y  c o n t i n u o u s l y  if for 

each x • M there exists a neighborhood U of z in M and a continuous map 

~: U ~ Coo(D k, M)  such that  ~x maps D k diffeomorphically onto a neighbor- 

hood centered at x in Wx, where D k denotes the unit disk in N k. 

LEMMA 4.7: ("Stable manifold theorem") For each 1 < i < n, the one- 

dimensional foliation ~i s and the (n - 1)-dimensional foIiation f~i u are trans- 

verse continuous foliations with Coo leaves. The families {~f(x)}  and {~-v(x)} 

of/eaves wary continuously. Moreover, the foliations are H51der continuous. /.e., 

let ~s,  ~u denote the corresponding tangent distributions. Then ~s  and ~u are 

uniform/y ft61der continuous with respect to the standard R/emannian metric on 

T n and corresponding induced metric on the bund/e of  distributions. 

Fix an index i0, 1 < i0 < n. Set A Aio, .~ ~Fiso, ~: = "s  - - = = ~'i0" The leaves of 
both ~" and .~ inherit natural Riemannian metrics as submanifolds of T". For 

each z E T",  let ~x : R ~ 2"(z) denote the arc-length parameterization based 

at z ,  oriented so that  vio points in the positive direction. I.e., ~x(0) = z, the 

distance along U(X) between x and ~x(t) E ~'(x) is ]t[, and (v i , (~x) , (~ ) )  > 

0 (standard inner product on I x ' r "  ~ R"). Define ~x: R ---* fi'(x) similarly, 



222 A. KATOK AND J. LEWIS Isr. J. Math. 

oriented so that  - -1  ~h(x) o h o ~0x : R --* R is an orientation-preserving (monotone 

increasing) homeomorphism. Our next objective is to show that  h is smooth 

along the leaves of .~'. More precisely, we shall show that  x ~ ~-(1 ) o h o ~x is a 

continuous map M ~ C°°(R) 
By construction, ~0~: R --* ~'(z)  and ~ :  R --, ~'(x) are diffeomorphisms for 

every x E T n. Let £ = T n x R denote the trivial line bundle over T n. It follows 

easily from (4.7) that  ~o: £ --* T n, (x , t )  ~ ~x(t) and ~: £ --, T",  (z , t )  

~ ( t )  are continuous, and that  x ~ ~ ,  z ~ ~x are continuous maps T"  --* 

Coo(R,T") .  

Let f = p(A) E Diff(Tn). Extend f and h to transformations on £ in the 

obvious way, namely, define 

F: £ ---, £, (x,t) ~ (.f(x),Fz(t)) and H: £ ---* £, (x,t) ~ (h(z) ,H,( t))  

so that  

~(F(x, t ) )  = f (~(x , t ) )  and ~(H(z , t ) )  = h(~(x,t)) .  

Then F and H are continuous, Fx E Coo(R) for each x E r " ,  0 < F'~(t) < 1 for 

every x E T",  t E R, and x ~ F~ is a continuous map T"  ~ Coo(R). We must 

show that  Hz E Coo(R) and x ~ H~ is continuous. 

By the "non-stationary Sternberg lemma" described in the appendix, there 

exists a unique continuous linearization 

G: £ ~ £, (x,t) ~ (x,G~(t)) 

such that  

(i) Gx E Coo(R) with G~(0) = 1 for every z E Tn, 

(ii) T"  --, Coo(R), x ~ ax  is continuous, 

(iii) and GFG-X(x, t )  = ( f (x ) ,F ' (O) t )  for every x e T"  and t E R. 

LEMMA 4.8: Suppose p E T n is rational (i.e., p is a periodic point for the 

standard action of  every matr ix  in SL(n,Z)) .  Then Gh(v) o Hvlz+ : R + ~ R + 

has the form Gh(p) o Hp(t) = %ffP for some cp, vp > O. 

Proof." Since ,4 is abelian, it follows from the uniqueness (A.2) tha t  G simultane- 

ously linearizes the transformations on £ corresponding to p(A) for each A E ,4. 

By (4.6), we can find B , C  E ,4 such that  ~ , ( B )  = #, ~ , ( C )  = 7 wi th /~ ,7  > 1 

such that  fl and 7 generate a dense subgroup in R +. By replacing B and C with 

appropriate powers, we may assume that  p is a fixed point for the action of both  

B a n d C .  
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Let r = p(B), s = p(C), mad define R , S :  £ ~ £ as above, so that  ~ R  = r~ 

and ~ S  = s~. Then 

G R G - ' ( x , t )  = (r(z) , f l . t ) ,  G S G - ' ( z , t ) =  (s (z ) ,~ . t ) ,  

where ft. = R~(O), ~. = S~-(O). In particular, since h(p) is fixed by r and s, 

Gh(p) o Rh(p) = ~Gh(p) and Gh(p) o Sh(p) = ~fGh(p), 

with/~ --/~h(p), 7 -- 7h(p). Also, since h intertwines p and the standard action, 

Rh(,) o Hp(t) = H~(/~t) and Sh(~) o ~ , ( t )  = H ~ ( ~ 0 .  

Let 

= Gh(p) o Hp[l+ : R + "--* R +. 

Then we have shown that for every t E R +, 

,~(/~t) = 3,~(t) and ,~(-rt) = ,~,~(t). 

By construction, ~ is an orientation-preserving homeomorphism. 

Let c = ~,(I). Then ¢(flk./) = c/~t for every k,t ~ Z. Hence 

is an order-preserving map between these two subsets of R +. It follows easily 

that 
log ~ log 

log 7 log ~ '  

hence 

~b(t) = ctv for every t E {j3tVt}, 

where 

log fl lOg,o 
log/~ = -~- '  g'r. 

But this set is dense in R + and ~ is continuous, hence ~(t)  -- cff for every 

t E R  +. v 
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Now for each z E T",  set ez  = Gh(z) o Hz[l :  I --* R +, I = [0, 1]. Since I is 

compact and G o HIT- ×z is continuous it follows that  T"  --* C°(I) ,  z ~ ¢ ,  is 

continuous with respect to the uniform topology on C°(I) .  By (4.6), ep(t)  = 

%t~p for a dense set of p E T" .  It follows that  p ~ % and p ~-~ ~,p must extend 

to continuous functions T"  ~ R + such that ¢ , ( t )  = c, f f"  for every z E T".  An 

entirely analogous argument works with - I  = [-1,0]  in place of I and R -  in 

place of R +. Also, we can replace I with any compact interval [0, T]. 

Thus we have proved the following: 

LEMMA 4.9: There exist continuous functions c +, v ± : T" 

every z E T",  Gh(z) o H ,  : R --+ R has the form 

Gh(,) o H, ( t )  = I 
c~z tv~ , t O, 

-c;Itl :, o. l 

--+ R + such that for 

Now for each x E T" ,  Gh(x) o H~ is smooth away from 0, and Gh(~) is a C °o 

diffeomorphism, hence H~ is smooth away from 0. But ~ maps T"  x (R - {0)) 

onto T n, so this implies that  h is C °o along each leaf of ~-, more precisely, 

h[~'(z): ~ ( z )  ~ f r (h ( z ) )  is C °O for every x E T".  Thus Gh(z)o Hz must be 

smooth at 0 as well, hence c + = c~, and v + = v~- = 1 for every x E T" .  

We have shown that  z ~ Gh(,) o Hx defines a continuous map T n --~ Coo(R). 

The same is true for x ~ Gh(,), and each G~(z) is a diffeomorphism. Since 

the diffeomorphisms of R form a topological group with respect to the subspace 

topology inherited from Coo(R), we conclude that  T"  ~ Coo(R), z ~ H ,  = 

Gh--(1 ) o (Gh(,) o Hx) is continuous. 
We will say that  a topological foliation of a smooth n-dimensional manifold 

M by k-dimensional leaves has u n i f o r m l y  Coo leaves  if there exists an atlas 

of continuous foliation charts of the form ¢:  I " -k  × I k -* M,  (x ,y )  ~-* ez(y) ,  

with ¢ ,  bounded in Coo(I k, M), i.e., with uniform bounds on ¢ ,  and each of 

its derivatives of all orders independent of x E I " -k .  In this case, a function 

f :  M ~ N is said to be u n i f o r m l y  Coo a long  leaves  if f ,  is bounded in 

Coo( I~ ,g ) ,  where h is defined via f o ¢ ( z , y )  = f , ( y ) ,  for each of the charts 

¢ as above. Note that if x ~ f ,  defines a continuous map I n-k ~ COO(Ik,N) 

then this condition is automatically satisfied since I n-k is compact. 

The foliation jc is smooth (in fact, the leaves of •-/s, 1 < i < n, constitute a 

smooth parallelism on T")  and the smooth foliation charts determine a uniformly 

Coo structure along the leaves. For each z E T ~, we can construct a continuous 

foliation chart for ~" centered at x as follows. First fix a small transverse slice with 
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continuous coordinates centered at x, e.g., a smooth coordinate chart centered 

at z in ~'~(x). Then extend along the leaves of ~" via the arc length parameter 
to obtain a continuous foliation chart centered at z with Coo leaves and such 
that the Coo coordinate charts along the leaves vary continuously with respect 

to the transverse coordinate. In particular, this determines a uniformly Coo 

structure along the leaves of ~'. We can encapsulate all that we need from 

the preceding discussion as follows, again making use of the fact that inversion 

defines a continuous involution on the Coo diffeomorphisms of R. 

LEMMA 4.10: For each i, 1 < i < n, the one-dimensional foliations ~'s,~is 
have uniformly C °o leaves, and h, h- l :  T n --* T" are uniformly Coo along the 
leaves of.~'/s, ~-is, respectively. 

We are now in a position to apply the following theorem of Joum$ [J]: 

LEMMA 4.11: Let M be a Coo manifold and YZ and 5 c' be two HSlder foliations, 

transverse, and with uniformly Coo leaves. If  a function f is uniformly Coo along 
the/eaves of the two foliations, then it is Coo on M. 

For 1 < j < n, define Coo j-dimensional foliations 9i of T" as follows. The 

leaves of ~j are the images under 7r of j-planes in R" parallel to the span of 

the first j basis vectors vi, 1 < i < j ,  so that ~1 = 2 "s and ~,, is the trivial 
foliation with one leaf. Then ~j-1 and 2 "s restrict to transverse foliations on 

each leaf of ~j. Let Oj = h(~j). Since A is co-compact in H °, there exists 

Cj E A, 1 < j < n - 1, such that Ai(Cj) < 1, i < j ,  and ,~i(Cj) > 1, i > j ,  i.e., 
so that 9j is the stable foliation for the standard action of Cj on T". For suitable 

p, each of the diffeomorphisms p(Cj) is Anosov, and ~j is the stable foliation 

for the Anosov diffeomorphism p(Cj). Thus we can apply the stable manifold 

theorem to conclude that the foliation ~ is HSlder continuous with continuously 
varying C °O leaves. 

Now apply (4.11) inductively. I.e., suppose that we have shown that h -1 is 
uniformly Coo along the leaves of ~i. Then the restrictions of ~i, " s  ~'~+ 1, and 
h -1 to the leaves of ~i+1 satisfy the hypotheses of (4.11), and we can conclude 

that h -1 is C °O along the leaves of ~i+1. Also Journ6's argument yields uni- 

form bounds on the derivatives of h -1 along the leaves of ~j+l which depend 

only on the bounds on the derivatives of h -1 along the leaves of ~i and -~f+l 

and the (uniform) HSlder constants associated with the foliations. Thus h -1 

is uniformly Coo along the leaves of ~j+l, the induction goes through, and we 
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conclude that h -1 is C °°. A similar argument shows that h is Coo. Thus h is a 

C ~ diffeomorphism, and the proof of (4.2) is complete. 

In fact, the proof yields the following global result, which we summarize here 

for future reference. 

THEOREM 4.12: Suppose ,4 C SL(n, Z), n > 3, is a free abelian group of rank 

n - 1, and p • R(A, Diff*(T")). Then i fp  satisfies 

(i) the induced action p, on ~rl (T n) is conjugate to the standard one, and 

(ii) for some collection {Ai [ 1 <_ i < n)  C .A of codimension-1 hyperbolic 

matrices satisfying the conditions Ai(Ai) < 1, Aj(Ai) > 1 for each j ~ i (as 

described under (4.3) above), the diffeomorphisms p( Ai) are all Anosov 

there exists a subgroup .A' C .4 of finite index and a C °° diffeomorphism h of 

T ~ such that p(A) = hAh -1 for every A E .A I. 

The only additional observation needed to establish (4.12) is that by a theorem 

of Franks IF], condition (i) implies that the action of each Anosov generator 

p(Ai) is topologically conjugate to the standard linear action of Ai, and the 

conjugating homeomorphism hi is unique in the homotopy class of the identity 

up to a finite set of rational translations, corresponding to the fixed points of the 

linear Anosov diffeomorphism Ai. Since .A is abdian, each of these finite sets is 
invariant under the full group A, and there exists p E T n and a subgroup A' C .4 

of finite index such that p(A)p = p for every A E ,4 ~. As we have remarked above, 
once we require that hi(O) = p, the eonjugacies hi for the commuting Anosov 

diffeomorphisms p(Ai) must coincide. Thus (i) immediately implies the existence 

of a topological conjugacy between p and the standard action on a subgroup of 

finite index. 

5. S u b g r o u p s  o f  F i n i t e  I n d e x  

In this section we extend the proof of (3.1) to the case in which F is a subgroup 
of finite index in SL(n, Z). The first step is to obtain a suitable set of hyperbolic 

generators. 

LEMMA 5.1: Suppose A, H E SL(n, R) with H hyperbolic. Let Es ,  Ev  denote 

the stable and unstable subspaces of R n, respectively, for the action orB,  so that 

R n = E s @ E u ,  H E s  = Es,  H E u  = Eu, and there exists e, 0 < e < 1, such that 

[]Hz[[ _< (1 - e)[[z][ for every z • Es and ][Hz[[ __ (1 + e)[[z[[ for every z • Eu. 

Then either HN A is hyperbolic for some N • Z or AEu N Es  ~ O. 
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Proof." Suppose H N A  fails to be hyperbolic (i.e., has an eigenvalue on the unit 

circle) for every N > 0. Then there exist sequences VN, WN E R n such that  

H N A v N  = WN, [IvN[[ = [[WN[[ = 1, and WN = ANVN, with ,~N E C,  [AN[ = 1. 

Passing to a subsequence, we may assume VN ~ v, WN --* W, with Ilvll = I1~011 = 

1, w = a , ,  A e c ,  IAI = 1. 
Denote by r s :  R n + Es  and ru:  R" --* Eu the complementary projections 

corresponding to the decomposition R" = Es ~9 Eu. Since I IHNz II >- (1+ e) N I Ix II 
for every x E Ev,  convergence of WN = HNAvN implies rvAvN ---* O, i.e., 

Av 6 Es.  

On the other hand, ][vNll = 1 for every N, hence IIAvNII is bounded, and 

since IIHN~II _< (1 -- ~)NII~II for every ~ e E s ,  a-SWN = a - sHNAvN --. 0, i.e., 
w 6 Eu. B u t w = A v .  T h u s v 6 E u a n d A v # 0 E E s .  v 

LEMMA 5.2: Suppose F is a subgroup of finite index in SL(n,  Z). Then F is 

generated by a finite collection of hyperbolic matrices. 

Proof'. As a subgroup of finite index in the finitely-generated group SL(n, Z), F 

is finitely-generated (see, for example, [Ku]), say r = (71,.. . ,7~>. Also, as we 

have observed above, F must contain some non-zero power of each hyperbolic 

matrix in SL(n, Z), so in particular, there exists a hyperbolic matrix 70 6 F. 

Denote by Es and Eu, respectively, the stable and unstable subspaces in R n 

for the action of 70- Then for A 6 SL(n,R) ,  the matrix AToA -1 is hyper- 

bolic with stable and unstable subspaces AEs  and AEu,  respectively. Then 

by (5.1), the condition that  (AToA-I)N7i is not hyperbolic for any N implies 

that  7iAEv f3 AEs  ~ O. For fixed i, this is a non-trivial polynomial con- 

dition on A e SL(n,R) :  One can easily construct A E SL(n ,R)  for which 

7iAEu N AEs  = 0, and the condition 7iAEu n AEs  ~ 0 is equivalent to 

det(a-uA-17i A IEv) = O, where a'u: R n ~ Eu is the projection with kernel 

Es,  and this is a polynomial condition on the entries of A E SL(n,  R). Thus 

{A I 7 iAEv n AEs  = 0} is a non-empty Zariski-open subset of SL(n, R). 

But F is a lattice in SL(n,R) ,  and is therefore Zariski-dense by the Borel 

density theorem (see [Zi3]). Thus there exists ai  E F such that 7i~iEv fq d iEs  = 

0 and Ni E Z such that  (otiToOt~l)N'Ti is hyperbolic. 

Then F is generated by the 2k hyperbolic matrices aiToa.~ 1 and (aiT0a~ "l)N'7i , 

l < i < k ,  v 

Fix n > 2, and establish notation as follows: For each m E Z +, let F(m) C 

SL(n,  Z) denote the p r lnc lpa l  c o n g r u e n c e  s u b g r o u p  mod m, 

r ( m )  = {7 e S L ( n , Z )  1 7 -- I m o d m } .  
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A subgroup in SL(n, Z) is called a c o n g r u e n c e  s u b g r o u p  if it contains F(m) 

for some m. Obviously any congruence subgroup has finite index in SL(n, Z). In 
fact, for n _> 3, the converse is also true, by a celebrated theorem first established 

independently by Mennicke [Me] and Bass-Lazard-Serre [B-L-S] (see also [B-M- 

S]). 

PROPOSITION 5.3: For n >_ 3, every subgroup of fimte index in SL(n, Z) is a 
congruence subgroup. 

By combining (5.2) and (5.3), we reduce the proof of (3.1) to the case in which 
r = r ( m )  is a principal congruence subgroup. For by (5.3), r D r ( m )  for some 

m, and by (5.2), F is generated by a finite collection of hyperbolic elements, say 

71,-. . ,7k. Since F(m) has finite index in 

Ni E Z + such that 7 N' • r(m). 
Now suppose that the theorem has been 

F, for each i, 1 < i < k, there exists 

proved for F(m). Then for suitable p, 

there exists a unique homeomorphism h • Homeol(T n) such that P(7) = h7 h-1 
for every 7 • r(m);  in particular, p(7~ v') = hT~'h -1, 1 < i < k. But this implies 

P(Ti) = hTi h-1 by (2.1). 
So we shall assume henceforth that F = F(m). 

In place of the single fixed point 0 for the action of SL(n, Z) on T n, the sub- 
group r = F(m) fixes m" points, the m-division points ( m - I Z ) " / Z "  C R" /Z"  = 
T n. The linear representation of F at each of these points is again simply the 
standard representation, and we again have H 1 vanishing for n > 3 by [Ma2]. 

Thus we obtain 

LEMMA 5.4: For p sufficiently Cl-dose to the standard action, p(F) has an 
isolated fixed point near each m-division point in T". 

We adopt the notation of (3.4), and extend it as follows. Set Ai(m) = Ai N 
r(m), i = 1 or 2, and set Ti(m) equal to the fixed-point set for the action 

of Ai(m). Then Ti(m) is a finite collection of tori parallel to Ti; Ti is the 

leaf of Ti(m) through 0. Each m-division point is uniquely determined as the 

intersection of some leaf of Tl(m) with some leaf of T2(m). Then the argument 

which establishes (3.4) yields 

LEMMA 5.5: For p su~ciently Cl-close to the standard action, there exists 

h E Homeol (T") such that 

(i) Ti(m) = hTi(m) = {z e T" ] p(7)z = x for every 7 • Ai(m)}, i = 1 or 2, 
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(ii) h maps each m-division point on T n to the corresponding nearby fixed point 

for p(r) ( ~  5.4), and 
(iii) p(7)Ti(m) = Ti(m) for every 7 • A,(m) × A2(m). 

Moreover, the map p ~ h is continuous. 

We continue to extend the notation of Section 3 as follows. For each subset 
27 = {i l , . . . , ik},  2 < k < n - 2, of the indices {1,.. .  ,n}, we set Az(m) = 

Az N F(m), and denote by Tz(m) and Tz(m) the fixed-point sets for Az(m) 

under the standard and perturbed actions, respectively, as in (3.5). Obviously 

27, C 2"2 =~ Tzt (m) C 7~z2 (m). 
For each i • {1,... ,n}, define &(m) = & nr(m) ,  with Ai as in (3.6). Denote 

by Si(m) and Si(m) the fixed-point sets for Ai(m) under the standard and 

perturbed actions, respectively. Note that Si(m) is a finite union of circles 

parallel to Si (Si as in (3.7)); Si is the leaf of Si(m) through 0. 
Now suppose {i,j, k} C {1, . . . ,  n} is any 3-element subset. Since 

and 

A{ij}(m), A{i,k}(m) C Ai(m), 

Si(m) C T{i,j}(m) n T{i,k}(m) 

Si(m) C T{ij}(m)n T/i,k}(m). 

Also, for n _> 4, Ai(m) is again (isomorphic to) a lattice in the higher-rank group 
SL(n - 1,R), and we have 

H '  (Ai(m), TrT  n) = 0 for every x • Si(rFt). 

Thus the argument which establishes (3.7) yields 

LEMMA 5.6: Si(m) is a finite union of(disjoint) C 1 circles. 

LEMMA 5.7: For each N >_ 2 set 

(1 m ) 
AN(m) = N m  Nm 2 + 1 E r(m).  

In-2 

Then the subgroup "~N(m) generated by A, (m) together with 
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is a subgroup of  finite index in F(m). 

Proof: In fact, E N ( m )  contains the principal congruence subgroup r (N2m~) .  

Again, to simplify notation, we carry out the argument for the case n = 3; the 

generalization to n > 3 is obvious. The first step is to exhibit the four elementary 

matrices 

1 , 1 , 1 , and N m  3 1 
1 N m  2 1 1 

in --=N(m). 

\ m : /  \ : / = \  m : /  

m 1/= \ 1) 
\ 

1 m 

| -Nm 1 | = | 1 1) 
\ 1 ] \ - N m  2 m 

, _ ~  , /  \_Nm2 1/ 
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(1)(1 (1 
1 - N m  s 1 = - N m  s 1 

N m  2 1 - N r n  2 

1 - N m  s 1 = - N m  3 1 
1 

The lemma now follows from the following proposition, first observed by Vaser- 

stein [V], which is a special case of the main result in [T]. 

PROPOSITION 5.8: For n > 3, the subgroup generated by the elementary ma- 

trices in the principal congruence subgroup r (m)  C SL(n, Z) contains r(m2). 
13 

For each N > 2, set SN(m)  = ) ,N(m)Sl(m),  which is the fixed-point set 

for AN(m)AI(m))~NI(m). Then Sl(m)  and SN(m)  intersect in a finite set, and 

UN(SI(m) N S~(m) )  is dense in Sl(m). 
Now fix a finite collection 71, . . . ,  7k of hyperbolic generators for F(m) and 

h i , . . . ,  hk • Homeol(T n) such that P(Ti) = hi7ih:, ~. Then the argument which 

establishes (3.10) shows that the hi's agree on Sl(rn) N S ~ ( m )  for each N, and 

hence on S~(m). Finally, since U~er(,07S~(m ) is dense in T n, the theorem 

follows exactly as in Section 3. 

6. Addit ional  Results  and Future Directions 

The purpose of this section is to indicate, without detailed proofs, some results 

extending those of the preceding sections, and to discuss very briefly the direction 

of future research. 
Recall that if t3 C GL(n, C) is a semi-simple algebraic Q-group, then by a 

theorem of Borel-Harish-Chandra [B-H-C] the group Gz = G N GL(n, Z) is a 

lattice in G = G m =  G N GL(n, R). Then as a subgroup of GL(n, Z), F = Gz 
acts naturally on T n. We expect that the argument we have given above for 

SL(n, Z) can be generalized to establish local rigidity for many of these actions. 

For example, a fairly straightforward modification of the proof of (1.3) yields the 

following 

THEOREM 6.1: 

and 7 t indicates transpose) or any subgroup of finite index, n > 3. 

natura/action of F on T ~n is locally rigid. 

Let r = Sp( . ,  z )  (= {~ e SL(2~, Z) I ~'J~ = J}, where 

Then the 
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Sp(n - 1, Z) imbeds in Sp(n, Z) via 

D 6 S p ( n - l , Z )  
li o o o) A O B 

0 1 0 ~Sp(n ,Z) ,  

C O D  

and this subgroup has as its set of fixed points a rational 2-torus. The argument 

which establishes (3.4), above, shows that this structure persists for small per- 

turbations of the action. (In this case no appeal to (2.5) is necessary, and this 

much of the proof works for Sp(2, Z) as well.) Conjugating by the matrix 

N 1 - N  
I . - 2  

1 - N  - N  ' 
N I + N  

1,-2 

we obtain a second imbedding of S p ( n -  1, Z) in Sp(n, Z), and the corresponding 

2-torus of fixed points intersects the first in N 2 rational points. The hypothesis 

n >_ 3 is necessary to ensure that the two subgroups together generate a subgroup 

of finite index. The proof of topological conjugacy is now entirely analogous to 

that for SL(n, Z), above. 
In order to establish smoothness for the conjugacy, we begin by observing that 

there exists a Cartan subgroup H in Sp(n, R) such that H/(H n r )  is compact 
([P-R]). In particular, there exists a subgroup .,4 C r ,  free abelian of rank n and 
simultaneously diagonalizable over R. The matrices in .4 are again hyperbolic, 
but in this case the eigenvalues are paired; each eigenvalue appears together 

with its inverse. Thus the stable and unstable foliations corresponding to each 
element of ,4 are n-dimensional, and we cannot hope to recover the 1-dimensional 

foliations as stable foliations for any element. However, each of the invariant 1- 

dimensional foliations can be identified as the "fast-contracting" foliation for 

some element (i.e., corresponding to the unique eigenvalue of minimum absolute 

value) and is therefore a H61der foliation with G °° leaves. It again follows easily 

from co-compactness of .,4 in H that M acts densely along each leaf, and the 

remainder of the discussion in Section 4 carries over verbatim. 

It is interesting to observe that although the restriction enters at a different 

point in the argument, we again require real rank 3 in order to obtain topological 

conjugacy, whereas the appropriate hypothesis for finite-dimensional cohomology 

vanishing, super-rigidity, and Hurder's proof of deformation rigidity is real rank 

2. It appears that this may reflect a fundamental limitation on the scope of our 

technique. 
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THEOaEM 6.2: For each i E {1, . . . ,k} ,  let Fi be asubgroup of finite index in 

SL(n i ,Z ) ,  ni _> 4, or Sp(ni ,Z),  ni >_ 3, and set mi = ni or 2hi, respectively. 
Then the naturalproduct action o f f  = F1 x --- x Fk on T n = T 'nl x- - -  x Tm*, 

n = ~ mi,  is 1ocally rigid. 

Again by the argument which establishes (3.4), the product structure for the 

action persists under small perturbations. More precisely, there is an isotopy 

h of T" near the identity such that h(T m~) is invariant under the perturbed 

action of r for each i, and is fixed pointwise by the perturbed action of r i for 

all j ~ i. Moreover, it is easy to see that the (perturbed) action of Fi on h(T m') 

is C°°-close to the original action of Fi on T '~. Direct application of (3.1) (and 

the corresponding result for Sp(n, Z)) now yields topological conjugacy. Finally, 

to establish smoothness for the conjugacy, we fix an appropriate diagonalizable 

abelian subgroup in F and proceed in the obvious way. 

Among other natural examples are the remaining noncompact classical groups, 

certain rational representations of the exceptional groups, and the Q-rational 

realizations of semi-simple algebraic groups defined over number fields obtained 

by restriction of scalars. (Recall that if K is a number field of degree d over Q 

with integers O and G C GL(n, C) is a semi-simple algebraic K-group, then the 

restriction of scalars functor (due to A. Well) provides a realization of G as a Q- 

group, usually denoted RK/0(G), in GL(dn,  C) such that GK = G N GL(n, K) 

corresponds to (RK/o(G))o and Go  = GO GL(n, O) to (RK/o(G))z.  For more 
details see chapter 6 of [Zi3].) We are currently investigating the extent to which 

our technique can be used to establish local rigidity for these examples. 

Ultimately, for any given lattice F and compact manifold M, we would like to 
obtain a complete description of the "representation variety" 

/~(F, Diff(M)) = R(r ,  Diff(M))/Dif f (M),  

the space of actions of F on M up to equivalence. In case F is a subgroup of finite 

index in SL(n, Z), n _> 3, or Sp(n, Z), n >_ 2, and M is T" or T 2n, respectively, 

then (modulo finite quotients) we know of only three inequivalent actions of F 

on M: the standard action, the trivial action, and the contragredient action 

(given by composing the standard action with the automorphism of F obtained 

by taking inverse conjugate transpose). Obviously the argument we have given 

for the standard action applies equally to the contragredient action, and version 

(2.5) of Stowe's theorem implies directly that the trivial action of any Kazhdan 

group on any compact manifold is locally rigid. Moreover, it follows from super- 

rigidity and classical finite-dimensional representation theory that for any action 
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of r on M, the induced action on Irl (M) must coincide (up to conjugacy and 

finite quotients) with one of these three. 

Thus we are led to consider the following problem: Suppose p: F ~ Diff(M) 

is any smooth action whatsoever. Must p be conjugate in Diff(M) to the lin- 

ear action corresponding to the induced action on lr1? In this connection it is 

probably worth remarking that  for n > 5, a variant of the preceding argument 

can be used to obtain a smooth conjugacy without assuming that  p is a small 

perturbation, provided that  we impose the following two hypotheses directly: 

(i) There exists a finite orbit for F under p. 

(ii) For each of the (finitely many) hyperbolic generators 7 for F, for the various 

"split subgroups" (cf. 3.4), and for the "Cartan subgroup" .A (cf. 4.3), P(7) 

is Anosov. 

Details will be provided in [K-L].* 

Finally, we shall comment briefly on the relationship of our results to the 

general program. As discussed by Zimmer in [Zil], it is a striking fact that  the 

only known examples of smooth, volume-preserving actions of lattices in semi- 

simple Lie groups of higher rank on compact manifolds are essentially of three 

types: 

(i) Isometric actions (i.e., p(F) has compact closure in Diff(M)). 

(ii) F acts on M = H/A via p, where F C G and A C H are lattices, with A 

co-compact, and p: G --* H is a homomorphism. 

(iii) F acts on M = N/A, where A is a (necessarily co-compact) lattice in a 

nilpotent Lie group N, and F is a lattice in G, where G is a semi-simple 

group of automorphisms of N, such that F preserves A. 

Of course, the examples we have been considering are of type (iii), with N = R" 

and A = Z n. We expect our argument to yield at least partial results for some 

more general actions of type (iii), where hyperbolicity is still available, although 

it appears that  there may be substantial new obstacles to obtaining smoothness 

for the conjugacy. A variant of our technique may also be useful for examples of 

type (ii), although in this case no element of F acts hyperbolically, and we will 

*In fact, we have recently succeeded in extending our technique to obtain global results under 
more general conditions. These will appear in [K-L]. An alternative argument, making use of 
Zimmer's super-rigidlty theorem for cocycles {Zi3], will appear in [H-K-L-Z]. This approach 
provides a more general proof of local rigidity, which in particular covers the case of finite- 
index subgroups in S L ( n ,  Z),  n _~ 3, and Sp(r~, Z), n ~ 2, and yields global results without 
postulating the existence of a periodic orbit, but assuming instead that the action preserves a 
finite volume. 
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need to introduce some entirely new ingredients in order to exploit the normal 

hyperbolicity which is present instead. 

A p p e n d i x .  N o n - s t a t i o n a r y  S t e r n b e r g  L i n e a r i z a t i o n  

In this appendix, we establish the following extension of the standard lineariza- 

tion lemma for contracting diffeomorphisms. Although the statement will admit 

considerable generalization, we restrict ourselves to the special case which we 

need in Section 4. The argument is patterned on that given by Sternberg in 

[Ste]. 

PROPOSITION A. 1: Let M be a compact manifold, £ = M x R the trivial real 

line bundle over M,  and let 

F: C -+L, ( ~ , t ) -  (f(~) ,F.(t)) ,  

with F~ a C ~ diffeomorphism of R for each x 6 M,  satisfy 

(i) F~(0) = 0 for every x E M (F  preserves the zero section), 

(ii) 0 < F~(t) < 1 for every x 6 M, t 6 R, and 
(iii) x ~-* Fx is a continuous map M ~ C~¢(R). Then there exists a unique 

repararneterization 

G: C -~ c,  ( ~ , t ) ~  (x,G.(t)) 

such that 

(iv) each Gx is a C °° d/ffeomorph/sm of R,  

(v) G~(0) = 0, G~(0) = 1 for every z 6 M,  
(vi) x ~-* Gx is a continuous map M -~ C ~ ( R ) ,  and 

(vii) G F G - I ( x , t )  = ( f ( x ) ,F ' (O) t )  for every x 6 M,  t 6 R.  

We begin by establishing uniqueness. So suppose G1 and G2 both satisfy (iv)-  

(vii). Then G1FG'Z 1 is linear, G2 G~ -1 satisfies (iv)-(vi), and (G2 G7 I ) G 1 F G [  ~ = 

G~FG-~(G2G-~I). So it will suffice to prove the following: 

LEMMA A.2: Suppose F:  £ ---* £ is//near, i.e., F ( x , t )  = ( f ( x ) , a z  . t ) ,  where 

x ~-. ~ is a conti~uous map M - .  (0, 1), and suppose g satis~es ( iv)-(vi i)  for 

this F,  so that G F  = FG.  The G is the identity map on £.  

Proof." The condition G F  = F G  is equivalent to 

g;(~) (~ . ,  t) = ,~.. C.(t), 
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hence 

O~(t) = ~;1. O ~ ( ~ .  t) . . . .  

= a; -n .  G ~ . ¢ ~ ( a ~ .  t) for every ~ >_ 1. 

Since x H ax is continuous and M is compact, there exists e > 0 with trz < 

1 - e for every z • M. Also, since Gz varies continuously with z in the C ~ (C 2 

is enough) topology, the difference quotients G~(5)/5 converge uniformly in x to 

G~(0) = 1. Consequently 

n - - * o o  0 / ~  

We now establish existence. We begin by solving the corresponding problem 

for formal power series. 

LEMMA A.3: Suppose 

{20 

F: ( x , t ) H  ( f (x ) ,Fz( t ) ) ,  Fx ( t )=  ~ a , ( z ) t '  
i----1 

is a formal power series based at the zero section in £, with ai: M --* R contin- 

uous/'or each i and 0 < al(x) < 1/'or every x • M. Then there exists a/ 'orma/ 
power series 

o o  

c :  (~ , t )  ~ ( ~ , G x ( t ) ) ,  G~(~) = t + Zb,(~)t' ,  
i----2 

with bi : M --* R continuous for each i, such that 

i.e.~ 

( , )  

GFG -1 (z, t) = ( f ( z ) ,  al (z)t) ,  

Gi(~)(Fz(t)) = a l (x ) .  Gr(t) for every z • M,  t • R. 

Proof.- We solve for the functions bi inductively. To begin, we solve for b2 by 

equating quadratic terms in (*): 

b2 ( f ( x ) )  al (x)  2 + a2 (x)  = al (x)b2(w), 

b2Cz) = a2(z) + alCx)b2 (fCx)). al(X) 
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Since M is compact, there exists e > 0 such that e < al(x)  < 1 - e for every 

x • M, and 

a s ( x )  = 
b2(x) - a,(x---~ + E {a'(x)ax ""a1(fi-i(x)) al (fi(x)) 

converges uniformly to give a continuous solution for b2. 

Now suppose that  we have obtained continuous solutions for b2 through bn-1 

such that  the first n - 1 coefficients in ( . )  agree. We solve for b. by equating 

the n th  term in (*): 

b. ( / ( z ) ) a ,  (z)" + r(z) = a , (z)b. (x) ,  

b.(~) ~(~) = a,(~---~ + a,(~)"-'b.(/(~)), 

where ~: M -~ R is continuous; ~(x) is a polynomi~ in b,(/(.)), 2 < i < .- :, 
and ai(x), 1 < i < n. Since r is continuous and M is compact, r is uniformly 

bounded, hence 

= al(x----~+ [ a l ( x ) a l ( f ( x ) ) . . . a l ( f i - l ( x ) ) ]  n-1 r ( f i ( x ) )  
= a , ( f i ( x ) )  

converges uniformly to a continuous solution for b.. n 

COROLLARY A.4: Given F satisfying (i)-(iii) above, there exists 

H: £ --* £,  ( z , t )  ~ (z ,H~(t) )  

such that 

(viii) each H ,  is a C °° diffeomorphism of R, 

(ix) H. (0)  = 0, H~(0) = 1 t'or every x • M, 

(x) x ~-* Hz is continuous M ~ C~(R) ,  and 

(xi) HI( , )FxHx:  R --4 R has a tangency of infinite order with the identity map 

on R at 0 for every x • M.  

Proof." Fix a • C¢¢(R, [0,1]) such that a(z )  _= 1 for Ix] < 1/4, a(x)  - 0 for 

[x[ > 3/4. Let ~ = l a i ( x ) t  i be the Taylor series expansion for F ,  at 0, so that  

ai: M --* R is continuous for each i and 0 < al(x)  < 1 for every x • M. Then 

define H ,  E C°°(R) via 

O O  

Hz( t )  = t + E bi(x)ti a(i!b'(x)t) '  
i=2 
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with bi as in (A.3). v 

The next step is to obtain a C k solution for G in a suitable neighborhood of 

the zero section. Fix a compact neighborhood K of 0 in R, and set 

s = min{r~(t ) lz  • M, t • g } ,  

S = max{r~(t)[x • M, t • g } ,  

so t h a t 0 < s _ < S < l .  

LEMMA A.5: Suppose k > log s / log  S. Then there exists a neighborhood 

U C K of 0 i n R a n d a  uniqueG: M x U  ~ £ ,  ( z , t ) ~  (z ,G~(t))  such that 

(iv') each G~ is a C ~ diffeomorphism of U onto its image, 

(v) a~(0)  = 0, a ' ( 0 )  = 1 for every  x • M ,  

(vi') x ~ Gx is continuous U --* Ck(U), and 

(vii) G F G - i ( x , t )  = ( f ( x ) , F ' ( O ) .  t) for every z • M, t • G,(U).  

Proof." Given a neighborhood V of 0 in R, let A~. denote the space of functions 

R: i x V --* f.., (x , t )  ~ (x ,Rz ( t ) )  such that x ~ R ,  is continuous U --* Ck(V)  

and R ,  vanishes to order k at 0 for every x • M 

For R E A~. and 0 < i < k, set 

IIR]l'v =sup{IDiR~(t)]  : x • M, t • V} .  

A standard application of the mean value theorem yields the following 

LEMMA A.6: Given V and e > O, there exists a neighborhood V ~ C V of 0 

such that 

+ iiRliv~ + + liRliv, < ~ l i a l i ,  
k 

for every R E A v • 
k k 

Now define an operator (I,: A v --~ A v via 

( ~ R ) ( x , t )  = (x ,F) (x ) (0 ) - ' .  R/(=)(F~(t))). 

LEMMA A.7: Given V C K ,  there exists a neighborhood W C V of O such that 

k 

[[(I,R[[ w _< A[IR[I~v for every R • A~, 

for some A < 1. 

Proo~ 

D~(n~( , )  o F,) ( t )  = (D~R~( , ) ) (F , (O) .  (F'(t))  ~ + P, 
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where P = P(x,  t) is a polynomial in derivatives of Rf(x) of order < k and in 

derivatives of Fx of order _< k. Thus by (A.5), given e > 0 there exists W C V 

(depending on F but not on R) such that  

IP(x,t)l < IlaH v fo  v ry 

Thus 

x E M ,  f E W .  

II 'RII , < s - ' ( S  k +  )IIRII , for every R e A~v . 

In view of the hypothesis on k, we can choose e small enough so that  

A = s - l ( S  ~ + e) < 1. 

To complete the proof of (A.5), observe that for H as in (A.4), H - CH 

(restricted to V) is in A~,. Then by (A.6) and (A.7), the sequence of mappings 

n - - 1  

G , , = ~ n H = E ¢ i ( ~ H - H ) + H  
i=0 

converges uniformly on some neighborhood M × U, U C K of the zero section, 

and the limit G: M x U ~ £ clearly satisfies (iv')-(vii). Uniqueness follows from 

(A.2). 
To complete the proof of (A.1), we first observe that the C k repaxameterization 

G in (A.5) can be extended from the neighborhood M x U to all of / : .  In fact, if 

K is any compact neighborhood of the zero section in £,  then F r ( K )  C M x U 

for large enough r, and we can extend G to G on K by setting G = ¢rG.  

Finally, since the C k solution is unique, it coincides with the solution in C k+l 

for each k > log s~ log S, hence Gx is C °O for each x E M. This completes the 

proof of (A.1). 
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