
Ergod. Th. & Dynam. Sys. (1991), 11, 427-440
Printed in Great Britain

Rigidity of symplectic Anosov
diffeomorphisms on low dimensional tori

L. FLAMINIO't AND A. KATOK2

1 Department of Mathematics, 201 Walker Hall, University of Florida,
Gainesville, Florida 32611, USA

2 Mathematics 253-37, California Institute of Technology,
Pasadena, California 91125, USA

(Received 15 June 1989)

Abstract. We show that any symplectic Anosov diffeomorphism of a four torus T4

with sufficiently smooth stable and unstable foliations is smoothly conjugate to a
linear hyperbolic automorphism of T4.

1. Introduction
A diffeomorphism 0 of a closed connected manifold M is called an Anosov
diffeomorphism if the tangent bundle of M splits as a direct sum of two sub-bundles
E~ and E+ and the tangent map <f>* contracts the bundle E~ and expands the
bundle E~. More precisely, the latter property means that if we endow M with a
Riemannian metric there exist constants O 0 and 0 < K < 1 for which
(1) ||0*"fs|| < CK"||&|| for all £ e E~ and positive integers n and
(2) ||0*"£,|| < CV-"||£J for all £u e E+ and negative integers n.
One can easily verify that the definition does not depend upon a particular choice
of a metric and that the splitting TM = E'®E+ is continuous (in fact, Holder
continuous). The bundle E~ is called the stable or contracting bundle; similarly, £ +

is called the unstable or expanding bundle.
In all known examples of Anosov diffeomorphisms, M is an infra-nilmanifold,

i.e. a finite factor of T\N where N is a simply connected nilpotent Lie group and
F a uniform lattice in N. Franks and Manning [Fr, Ma] proved that any Anosov
diffeomorphism on an infra-nilmanifold M is topologically conjugate to an algebraic
model, i.e. to a map that is induced by a hyperbolic automorphism of the Lie algebra
of N. In general, the topological conjugacy is only Holder continuous and need not
be any smoother; to assure that, it is enough to make the eigenvalues of the
linearization at corresponding periodic points different. On the other hand, we
believe that the following fact is true:

CONJECTURE. If the stable and unstable bundles of a Ck Anosov diffeomorphism <f>
on a compact manifold M are C2 then M is an infra-nilmanifold and <f> is cmax<2'<)
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conjugate to an hyperbolic automorphism of M. {See [K] for a similar conjecture for
geodesic flows).

In [Hu-Ka], Hurder and Katok proved, among other things, this conjecture for
C°° Anosov diffeomorphisms in dimension two. Ghys has proved a similar result
for geodesic flows on surfaces [Gh].

Recently Kanai [K] introduced a method which allowed him to show that the
geodesic flow on a compact Riemannian manifold M with curvature strictly pinched
between -1 and -9/4 is C°° conjugate to the geodesic flow on a manifold of constant
negative curvature if (and only if) the geodesic flow on M has C00 stable and
unstable foliations. In fact Kanai's method also provides an easier proof of Ghys's
result (compare with Proposition 1 below). Feres and Katok have improved the
pinching condition in Kanai's theorem allowing the curvature to range strictly
between — 1 and —4 [FeKa 1 ] and removing the pinching assumption first for dim M =
3 [FeKa2], and finally for arbitrary odd dimension [Fe].

In this article we use Kanai's technique, together with a result from [FeKa2] to
investigate the structure of symplectic Anosov diffeomorphisms in dimensions two
and four. In the former case we improve on the smoothness assumption in [HuKa]:

THEOREM 1. Let y be an area-preserving Anosov C1 diffeomorphism of the two-torus
T2. Assume that the stable and unstable foliations of y are of class Cr for r>2. Then
y is C conjugate to the action of a linear map.

Remarks, (a) The previous theorem is optimal because from [HuKa] it is known
that the stable and unstable foliations of a C3 Anosov diffeomorphism are C2~f for
every e>0 ; more exactly they are c1+xlog*. More importantly, our proof is self-
contained in the sense that it does not use the deep Herman Linearization Theorem
for diffeomorphisms of the circle.

(b) A simple variation on the proof of the above Theorem also yields a new and
simpler proof of Ghys's result in [Gh].

The main result of this article is the following theorem:

THEOREM 2. Let y a C1 be an Anosov diffeomorphism of the four-dimensional torus
T4 preserving a smooth symplectic form d on T4. Assume that the stable and unstable
foliations ofy are of class C°°. Then y is C°° conjugate to a linear automorphism ofT4.

2. Preliminaries
We recall the definition of the Kanai connection. Let (M, il) be a smooth symplectic
manifold, with M closed and connected, and let 9*+ and 9*~ be two transversal
Lagrangian foliations of class Cr. Denote by E+ and E~ the bundles of vectors
tangent to the foliations !F+ and SF~, respectively. Kanai's connection is the unique
C " 1 linear connection V on the tangent bundle TM that satisfies the following
properties:
(i) Vn = 0;
(ii) the connection V is torsionless;
(Hi) VE + c E+ and V£~<= £~.
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To see that there exists a connection that satisfies the properties above let us
introduce the (1,1) tensor field t defined by the involution of TM

L:(€,V)ZE+@E-~({,-V)€E+®E-. (1)

The tensor field i is as smooth as the foliations &+ and $F~. If we consider the
identity mapping of TM as a (1,1) tensor field / we see that (7 + i)/2 and (7- i ) /2
are the projections of TM = E+@E~ onto E+ and E~. Therefore condition (iii) is
equivalent to

Vt = 0. (iii')

We define a non-degenerate symmetric tensor field g on M by setting g(X, Y) =
il(X, LY) for all vector fields X and Y. We claim that the Levi-Civita connection
V induced by g coincides with the Kanai connection. Indeed, as the Levi-Civita
connection is torsionless, condition (ii) is satisfied. Since Vg = 0, if we show that
the condition (iii') is also satisfied, that is Vi = 0, then the condition (i) will follow
immediately and we have proved our claim. To prove (iii'), it suffices to show that

g(vxty-tvxY,z) = o, (Hi")

whenever X, Y, Z are commuting vector fields and each of them is a section of E+

or E~.
Note that if X, Y and Z are as in (iii"), then the six vector fields X, Y, Z, LX,

IY and tZ commute. From the definition of g and the formula for the Levi-Civita
connection, we obtain

= Xg(iY, Z) + (iY)g(X, Z)-Zg(X, tY)

+ Xg(Y, LZ)+ Yg(X, iZ)-(iZ)g(X, Y)

(2)

Since the form fi is closed one has

un( v, w) + va{ w, u) + wa( u, v) = o, (3)

whenever U, V and W commute. By applying (3) twice to (2), we obtain

2g(vx<.y-iVxy,z) = xo(tY, LZ)+YCI(X, Z)-ZD.(X, Y) = Q

Thus (iii") holds and V is Kanai's connection.
Conversely, if V denotes Kanai's connection then the symmetric form g is parallel

and therefore V is also the Levi-Civita connection for g. Thus we have shown that
Kanai's connection exists and is unique.

Parallel transport along the leaves of ZF+ and ̂ ~ for Kanai's connection has a
simple geometric description. In fact, consider a curve y{t) included in a leaf of
9~ and let Xo be a vector tangential to &+ at y(0). Let F+{t) be the leaf of &+

passing through the point y(t). The holonomy map along the leaves of the foliation
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3F~ induces a local diffeomorphism of a neighbourhood of y(0) in F+(0) with a
neighbourhood of y{t) in F+(t). The derivative of the holonomy map sends Xo to
a vector X, at y(t) tangent to the leaf F+{t). The curve t^*X, is the parallel
transport of Xo along y(t). In this way we have described the parallel transport of
E+ along the leaves of &~. The parallel transport of E~ along a leaf of 9~ can
now be defined using the symplectic form: namely, a vector field Y,<=- E~ along a
curve y(t) included in a leaf of &' is parallel if the ft product with any parallel
vector field of E+ is constant. One can see from this description that the curvature
of Kanai's connection is the obstruction to the existence of local coordinates
(Pi, • • •, Pn, q\ • •, <?") such that the surfaces q' = const,, i = 1 , . . . , n, are locally
leaves of &*, the surfaces />, = constj, i = l , . . . , « , are locally leaves of 3F~ and
ft = dpi A dq'.

We want to consider only the case when Kanai's connection is invariant under
its own parallelism. When this is not the case, we replace Kanai's connection with
a new connection invariant by its parallelism and still satisfying the properties (i)
and (ii). Let V be either Kanai's or this new connection and let R and T be its
curvature and torsion tensors, respectively. It is well known that V is invariant under
its parallelism if and only if VT = 0 and VR = 0. In this situation every point of M
has a neighbourhood affinely diffeomorphic to a neighbourhood of a reductive
homogeneous space G/A endowed with its canonical connection [No, Prop. 18.1]
[KoNo, vol. 2, Prop. 2.4]. If the connection V on M is complete (i.e. if every tangent
vector is the initial velocity of a geodesic arc f e[0, l]i-» y(t)) then the universal
cover of M, which we denote by M, is affinely diffeomorphic to G/A [KoNo, vol.
1, Prop. 7.8]. Since the group of all affine transformations of M preserving ft and
the foliations acts transitively on M (cf. [KoNo, Cor. 7.9]), one can take this group
as G; then the subgroup A is identified with the stabilizer of some point paeM.
The fundamental group of M acts affinely on M and therefore is represented
faithfully as a discrete subgroup II of G acting without fixed points on G/A.

The Lie algebras g of G and a of A are given in terms of the torsion and curvature
tensors T and R. Let us chose a reference point poe M and denote by p+ and p~
the tangent spaces E^a and E~o. Let us also denote by a the linear subspace of all
endomorphisms si of T^M = E*o® E~a preserving the splitting E*o® E~o and satisfy-
ing the identity

? ) ° ^ for all ^,

Then we have

and the commutation relations are given by

/)- 7X6 ij), [rf,f] = j*f, [rf,a] = rfa-arf, (4)

where £ 77 e T^M and si, S3 e a.
It follows from the invariance of V under its parallel transport that the Lie algebra

above is independent of a choice of the reference point p0.
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Conversely, assume that g is a Lie algebra that splits linearly as g = a©p+®p~
and satisfies the following conditions

[a, a] «= a, [a, p+] c p+, [a, p"] c p , [p+, p+] = 0, [p", p"] = 0; (5.1)

if si G a and [si, p+] = [si, p~] = 0 then si = 0; (5.2)

there exists si0 e a with the property that [si0, a] = 0 and adsi0 has
roots with negative real part on p~ and positive real part on p+. (5.3)

Let G be a connected Lie group with Lie algebra g and A the Lie subgroup generated
by a. Then A is closed. The connection on the principal A bundle G-* G/A which
is denned by choosing as horizontal distribution the left translations under G of
p+©p~ is invariant under its parallelism. Denote by P+ and P~ the subgroups of
G generated by p+ and p~. Then, since P± are normalized by A, the orbit foliations
of the right actions of P+ and P~ on G project to two transversal foliations y1"
and &~ of G/A. Furthermore the leaves of the foliations §^ are totally geodesic
submanifolds of G/A. For future reference we point out that any leaf of &+ intersects
any leaf of &~ at most in one point. For a proof of this simple fact see Lemma 3.5
of [K].

Let G be a connected Lie group and A be a connected Lie subgroup of G and
let g and a denote their Lie algebras. Assume that there exists abelian subalgebras
p+ and p~ of g such that g = a + p+ + p~ and the conditions (5.1)-(3) are satisfied.
Then we shall call G/A endowed with its canonical connection a bi-polarized
homogeneous space.

Proof of Theorem 1

PROPOSITION 1. Let (M, (1) be a smooth two-dimensional symplectic manifold, 2F+

and &~ be two transversal foliations of class C2 and let V denote the Kanai connection.
Assume that F is a group of Cx diffeomorphisms of M which preserves ft and the
foliations and whose action on M is ergodic with respect to the measure induced by ft.
Then V is locally symmetric.

Proof. The curvature tensor R of V is a continuous tensor field on M. Since F is a
group of diffeomorphisms of M preserving both the form ft and the foliations 3F*,
the uniqueness of V implies that this connection is invariant by the action of F. At
a given point p€ M the expression

is independent of the choice of f e Ep, 17 e E~ and hence defines a continuous
function on M. This function is invariant under the action of F and therefore, by
the ergodicity of F, it is everywhere equal to a constant k. The usual symmetries of
R plus the identity

allow us to conclude that

(6)
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where i is the C2 tensor field defined in (1). It follows that R is differentiable and
since VO = 0 and Vi = 0 we also have VR = 0. •

It is well known (and easy to see) that the only connected compact two-dimensional
manifold admitting an Anosov diffeomorphism is the two-torus T2. Thus, we now
assume that F is the cyclic group generated by an area-preserving Anosov
diffeomorphism y of T2. Then we have:

PROPOSITION 2. Let y be a symplectic Anosov diffeomorphism of the two-torus T2

with stable and unstable foliations of class C2. Then KanaVs connection V is complete
and flat.

PROOF. By Proposition 1, V is locally symmetric. We postpone the proof of its
completeness till the next section, since it holds in greater generality. Assuming
completeness, it follows that V lifts to a connection V on R2 and that R2 is
diffeomorphic to G/A. Here G is the Lie group of affine symplectic transformations
of (R2, V) which preseve fi and the lift of the foliations 9* and A is the stabilizer
in G of a point p0 € R2. Furthermore the fundamental group of T2 acts by affine
transformations on (R2, V). Hence there is a discrete group FIc G isomorphic to
Z2 such that IT\G/A is diffeomorphic to T2.

The Lie algebra g is determined by the curvature tensor R via the formulas (4).
Since R = kfl® i{k e R) we see that if V is not flat, then g is isomorphic to sl2(R),
the Lie algebra of traceless 2x2 real matrices, and a can be taken to be the subalgebra
of diagonal matrices. We shall show that this implies a contradiction and hence
that V is flat.

Let G° and A° denote the components of the identity of G and A. Since G/A = R2

is connected and simply connected we have A° = An G°. The adjoint action maps
G° onto the group of inner automorphisms of s!2(R), which we identify with PSL2(R),
sending A0 onto a Cartan subgroup C of PSL2(R). So we have a covering map

G/A = G°/A°-> PSL2(R)/C.

Since G is a finite cover of G°, by possibly passing to a subgroup of finite index
in IT, we can assume that the adjoint action maps IT onto a subgroup IT* in PSL2(R).
But two elements in PSL2(R) commute if and only if they belong to some one-
parameter group. It follows that IT* is included in a one-parameter group (g,)<=
PSL2(R) and that we have a continuous map

n\G/A^(g,)\PSL2(R)/C.

However it can be easily seen that (g,)\PSL2(R)/C is never compact and this
contradicts the assumption that IT\G/i4 is a torus. •

Proof of Theorem 1. Now, let y be a lift of y to R2 and p0 be the fixed point of y.
Pick non-zero vectors Xpoe EPo and Xs

Poe EPo. Since the connection is flat, we can
transport XPn and XPo in parallel to any point in R2 hence defining two vector fields
X" and Xs on R2. The fields X" and Xs are C'~x because the connection is C'~x.
Since the connection is torsionless, X" and Xs, as well as the flows that they generate,
commute. In particular we see that X" and Xs are invariant by the holonomy of
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the C foliations &+ and F~ and hence are themselves C. For (t,, (2)€R2, we set
((,, r2) to be the point exp txX

u ° exp t2X
s(p0). It follows from the fact that y acts

affinely on R2 that in the above coordinates y has the form

Let IT be an element of the fundamental group II. Since v acts on R2 affinely and
preserves the foliations W" and Ws as well as the area, v is given in our coordinates
by

(f,, t2) ~ (A{Tr)h + B,(TT), A~ V)<2+ B2(IT)).

If A( ir) 5* 1, then TT has a fixed point and this contradicts the fact that the fundamental
group acts on R2 without fixed points. Hence n is a pure translation and II leaves
the vector fields X" and Xs invariant. Hence X" and Xs project to vector fields
on T2. This concludes the proof of Theorem 1. •

3. Completeness
In this section we prove the following proposition which completes the proof of
Theorem 1 and is also necessary to the proof of Theorem 2.

PROPOSITION 3. Let (M, V) be a compact locally bi-polarized homogeneous space and
y be an affine Anosov diffeomorphism of M. Then the connection V is complete.

Proof. Let U be the subset of TM where the exponential map is defined. We claim
that U => {X e TM: \\X\\ < e} for some e > 0. Otherwise there is a sequence Xn e TM
such that ||Xn||->0 and exp Xn is not defined. The compactness of M allows us to
choose a subsequence Xni so that p := lim, v(Xn.) exists (here ir: TM -* M denotes
the bundle map). Let e > 0 be chosen so that the set {X e TMP: ||X || < 2e} is included
in the domain of expp. Then there is a neighbourhood U of p such that for all q
in U and all X e TMq with ||X|| < e, exp, X is defined. This is an obvious contradic-
tion and proves our claim. Since the Anosov diffeomorphism y is affine the domain
of the exponential map is invariant under y%. It follows that U contains both the
stable and the unstable bundle.

Let M be the universal cover of M. The unstable and stable foliations 3>+ and
&~ lift to foliations ^ + and &~. The leaves of all these foliations are embedded
copies of R" and, in particular, they are simply connected. We are assuming that
M, and hence M, is locally modelled on a bipolarized homogeneous space G/A:
any point of M has a neighbourhood affinely diffeomorphic to a neighbourhood in
G/A. Without loss of generality we can assume that G/A is simply connected.
Consider the developing map D:M-*G/A. In order to establish the proposition
we need to prove that D is a diffeomorphism of M onto G/A. Since G/A is simply
connected it suffices to show that D is a covering map.

First, we claim that D maps the leaves of the foliation 9+ (3F~) affinely and
bijectively onto leaves of the foliation &+ (&~) of G/A. In fact, it is easily seen
that local affine maps must send the local leaves of the foliation 9+ affinely into
leaves of the foliation §>+. Since the leaves of 9+ are complete they are affinely
mapped onto the leaves of &+. If this mapping were not bijective there would exist
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a closed geodesic loop in a leaf of &* and hence in every leaf of this foliation. This
is impossible because by acting by the one-parameter group exp ts£0, where si0 was
denned in (5.3), one can shrink to zero the length of the loop in the leaf through
A. (The same argument is valid, mutatis mutandis, for the foliations ^~ and &~.)

For pe M let £*(/>) be the leaf of &* containing p; we define similarly Zr(/J)
fox pe G/A. Set also W(/>) = U , 6 L + < P ) £ ~ ( « ) and W(p) = {J^L^p)L~{q); W(p)
and W(p) are of course open. Now, let L, and L2 be two different leaves of !F*
(resp. &~) that intersect a leaf L3 of 9~ (resp. &+); then, since any leaf of !F*
intersects a leaf of &~ in at most a point (cf. § 2) we have DiLi)^ D(L2). This
implies that D maps W(p) injectively onto W(D(p)) for all p e M; it also follows
that if Pi*p2 and D(/>,) = D(/?2) then W(pt)n W(p2) = 0. So we have showed

.A w

that D covers evenly the open sets W(D(p)), pe M. In order to conclude that D
is a covering we need to argue that D is surjective. Since D(M) is open it suffices
to show that D(M) is closed because G/A is connected. Let xe G/A be a limit
point of D(M). Let V be a neighbourhood of x with local product structure, i.e.
such that L+(y) n L~(y') ^ 0 whenever _y, j / ' are in V. We denote by [y, y'] the only
point in L+(y)n L~(y'). Pick z = D(p)e U; then

D(L+((p)) = L+(z)=>[z, x] e D(M)=»£"([>, *])<= D{M)=$x e D(M).

Hence D(M) is closed and the claim follows. •

4. Diffeomorphisms of four-dimensional tori
In this section we prove Theorem 2.

PROPOSITION 4. Under the assumptions of Theorem 2, let V be the Kanai connection
associated with the stable and unstable foliation of y. Then V is locally symmetric.

Proof. Let us denote by E~ and E+ the bundles tangential to the stable and unstable
foliations. Let

«(X,, X2,..., X5):=n(VR(Xl,X2, X3)X4, X5).

Then by a result of Feres and Katok ([FeKa2, Theorem 1, Lemma 3 and Lemma
6]), by changing their notation from flows to diffeomorphisms, we have that under
the assumptions of Theorem 2 the following dichotomy holds: either
(1) V is locally symmetric (i.e. a> =0 and VR =0), or
(2) there exist y-equivariant C°° smooth splittings E~ = E~'@E~2 and E+ = E+1®

E+2 with the following properties:
(2a) the distributions £± ( extend the Oseledec decomposition of TM induced

by y and the Lyapunov exponent for almost every v e E±l is ±i\, with A > 0;
(2b) the line bundles £*' are invariant by the holonomy of the foliations ^T;
(2c) the codimension 1 bundles E~®E+l and E+@E~l are integrable;
(2d) at least one of the following is true:

or
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furthermore u>(E+1\, E~\ E+l, E'2, E + 1 )*0 if and only if E~l<=
[E+l, E~2]; similarly io(E~l, E+i, E~\ E+2, E'1) * 0 if and only if E+<=
[E-\E+2].

Thusinorderto conclude the proof we prove that the second case of the dichotomy
does not occur. Assume, in contradiction, that the second case occurs. First we
notice that

if T is a -y-invariant covariant r-tensor then

T(Ei<,E\...,Ei')*0 only if i, + i"2+- • • + ir = 0. (7)

There is an obvious reformulation of (7) which also applies to -y-invariant tensors
of the mixed type. Now let ir±i, i = 1,2, be the projection on £*' associated with
the splitting TM = £" '©£" 2 ©£ + 1 @£ + 2 . We define a new connection by setting
V' = Xi=-2.-i,i,2 TTJVTT,. Denote by T and R' the torsion and the curvature tensors
of V. We list some of the properties of V.

(a) Since the projections ir±1- are equivalent by y, the connection V is -y-invariant;
furthermore by definition we havce V'E' <= £ ' for all i = ±1, ±2.
(b) V'fl = 0. In fact, by (7) we have il(E+l, E~2) = il(E+2, E~l) = 0 and therefore

, Y) = I,=-2,-1,1.2 ftK-X, TT-tY). It follows that

= - 2

i = -2

(c) By (7) we see that T'(E', EJ) <= E'+j; hence, since the torsion is antisymmetric,
the only non-zero terms in the torsion are possibly given by T'{E\ E~2) and
T'(E~\ E2). Indeed, if X1 and X'2 are vector fields belonging to E' and E~2 we have

= -TT^EX 1 , X-2] + 7T2[X-2, X1] = -7r_,[X', X"2]

(here we have used the fact that since the bundle E'®E+l is integrable we have
[X"2, X ' ] c E~@E+i). Similarly we have T\X~\ X2) = —n-,[X~', X2].

LEMMA 5. The connection V is locally homogeneous i.e. V'7" = 0 and V'R' = 0.

Proof of the lemma. In fact we have

(V'EiT')(EJ,Ek)cV'EiT'(EJ,Ek))+T'(V'E'EJ,Ek)+T'(Ej,V'EiEk)

cV^£i + k + r ( £ j , £ ' ) c £ ' t l . (8)
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On the other hand by (7) we have (V'E>T')(EJ, Ek)c Ei+J+k. We conclude that
VT' = 0. Similarly we obtain inclusions analogous to (8) for R' and again by (7)
we conclude that V'R' = 0. Hence (T4, V) is locally homogeneous and the lemma
is proved. D

Pick a point p0 e T4 and let a be the algebra of linear maps

(here we have implicitly extended a to the tensor algebra: then, for example

M*£l(v, w) = £l(Mv, w) + il(v, siw)
and

si*R\v, w)z = R'(v, w)siz + R\$iv, w)z + R'(v,stw)z-si(R'(v, w)z)

for all v, w,zeTJ.

Notice that for all w, we T^T4, R(v, w) belongs to a.
Pick a basis in T^T4 of vectors u,e £j,o such that fl(ui, u_,) = £l(t>2) t>-2) = 1- Then

s£E'Po<^ E'Po implies that every .s/ea is diagonal in this basis, i.e. s£vi = aivi, and
s4*£l = 0 implies that a, - —a_,. Since, by the conditions (2b) and (c) above,
T'(vi,v-2) and T'(v^uv2) cannot vanish simultaneously, the equation si*T' = Q
implies that a2 = 2a, (hence a_2 = 2a_, =-2a , ) . Then a is one-dimensional and
generated by si0 where siovt = it?,.

Now we are able to compute the curvature R'. Indeed notice that VEk<=Ek

implies that R'(E', E')Ek c Ek; on the other hand, since R' is a tensor, by (7) we
have also R\E\ EJ)Ek <= £1+J+k. It follows that R'(E\ E~2) = R'{E2,E'X) = 0. Then
the Bianchi identities

I R'(v,w)z= I T'(T'(v,w),z),

where Z(i>,w,z) denotes the sum over the cyclic permutations of v, w and z, imply
that R'(E\ £" ' )£ ± 2 = 0. For all v, we T^T4, R(v, w) is a multiple of st0so we must
also have R'(El, E~l) = 0. Hence only R\v2, V-2) is left to be determined. Using
again the Bianchi identities we have R'(v2, i>_2)U] = T'(T'(v^2, vt), v2) and

Now we need to distinguish two cases:

Case 1. either T'(vlt v-2) or T'(v-lt v2) vanishes (we have already mentioned that
they cannot vanish simultaneously).

Let us assume that 7"(i>i, t>_2) ^ 0. The other case is similar. Then R'(v2, V-2)v-t =
0; since R'(v2, u_2) is a multiple of si0 we have R'(v2, u_2) = 0 and therefore R' = 0.

Define a Lie algebra g as the linear span of T^T4 and si0 with the only non-trivial
commutation relations given by

[«,, f_2] = -T'(ui, f_2) = const x v-x and [s?0,Vi] = iVj.

The Lie algebra g is a bipolarized homogeneous solvable Lie algebra. Hence T4 is
a locally bipolarized homogeneous space and by Proposition 3 it is complete. Hence
T4 can be represented as FI\G/A, where G is a connected Lie group with Lie
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algebra g and A a closed Lie subgroup with Lie algebra a and II is a rank 4 abelian
subgroup of G. We claim that G is simply connected and A = exp a. Let G be the
universal cover of G,ir:G-*G the covering map, N = ker IT and A = ir~l. Since
R4 = G/ A is simply connected, A is connected and hence equal to exp a; in particular
we have N c exp a. But we have Ad N\TPoT

4 = 0 and this together with the previous
inclusion shows that N = 0 and G is simply connected.

The ordering (v2, t>_,, vx, V-2, s$0) generates an increasing sequence of ideals of
g of dimension 1,2,..., 5. It follows that the exponential map is a diffeomorphism
of g onto G [Di]. Hence II is the exponential of the integer lattice of an abelian
subgroup of rank 4 of g. Since g does not have a rank 4 abelian subalgebra we see
that Case 1 cannot occur.

Case 2. In the second case T'{vi, u_2) = au_,, T\v_x, v2) = -fivx and a/3 # 0. Then
R'(v2,v-2)v-i= 7"(7"(i>-i,«2), t>_2) =-aySt;,, and therefore /?'(u2, u_2) = a/3^0.

Let us define a Lie algebra g as the linear span of T^T4 and Mo with the
commutation relations given by

[i>2, u_i] = -T'(t>2, w_,) = -j3u,.

The Lie algebra g is a bipolarized homogeneous Lie algebra isomorphic to sl2(R) tx R2.
Hence T4 is a locally bipolarized homogeneous space and by Proposition 3 it is
complete. It follows that T4 can be represented as Tl\G/A, where G is a connected
Lie group with Lie algebra sl2(R)txR2, A a closed Lie subgroup of G with Lie
algebra a and II an abelian discrete group of G of rank 4. As before we can show
that G is simply connected and hence equal to SL2(R)« R2. Also A is the exponential
of the diagonal matrices in sl2(R).
_ Let SQR)KR2 act on R2 by ((A, y), x) e (SL2(R)txR2) xR2^Ax + yeR2, where

A is the projection to SL2(R) of A. Let II' be the image of II in SL2(R)txR2. Then,
since II is abelian, either II' fixes a unique q e R2 or it fixes a direction on R2. In
the first case II' is conjugate in SL 2 (R)KR 2 to a subgroup of SL2(R) and in the
second case II' is a conjugate to a subgroup of (J f)xR2 (notice that this latter
group is isomorphic to the three-dimensional Heisenberg group). In the first case,
since y normalizes II, the projection of y to SL2(R)xR2 also fixes q and we obtain
that up to conjugacy II' is included in (£ „-•)• 1° both cases the fact that II is an
abelian group of rank 4 brings us to a contradiction. We conclude that also Case 2
is impossible.

We have therefore concluded the proof of Proposition 4 by showing that the
second case of the above dichotomy is impossible. •

From the fact that Kanai's connection V is locally symmetric and the fact that
the lift of the Anosov map y to R4 has a fixed point it follows that (M, V) is a
locally bipolarized symmetric space. Hence, by Proposition 3, Kanai's connection
V lifts to a complete connection V on R4. If we denote by G the Lie group of affine
symplectic transformations of (R4, V) which preserve fl and the foliations and denote
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by A the stabilizer in G of a point poe R4, we have that R4 is diffeomorphic to G/A.
Furthermore, notice that both the deck transformations and lifts of y act affinely
on R4. Hence there is a discrete group l i e G isomorphic to Z4 such that U\G/A
is diffeomorphic to T4 and an element y'e A such y'n(y')~' = II. We want to show
that V is flat. First we prove the following proposition:

PROPOSITION 6. Let r be the radical ofg. Then p+ + p~c r .

Proof. By the Levi decomposition there is a semisimple Lie algebra s such that
g = s + r. The Lie algebra g = p ' + a + p+ is graded in the sense that if we set go = a,
g±) =p±, we have [g,-,g>] = g/+,-. If we set r; = rng, one can show that r = r_, + ro + r+1

[K, eq. (3.2)]. Hence, via the sequence 0-»r-»g-»s-»0 the semisimple part s inherits
a grading s_, +so + s+1 from the grading of g. Let G, S, R be the simply connected
groups corresponding to g, s and r and let A, G±, So and 5* be the connected
subgroups generated respectively by the sub-algebras a = g0, g0 + g± i, s0 and s0 + s±,.
By Lemma 3.5 of [K] both G+ and S+ are closed. The epimorphism G-*S maps
G+ to S+ and has fibre R. Hence it induces a fibration of the homogeneous spaces
G/G+ -* S/S+ whose fibre is G+R and hence is connected. Since G/G+ can be
identified with the space of unstable leaves (cf. § 3.2 of [K]) we have that G/G+ is
diffeomorphic to a stable leaf, that is diffeomorphic to R2. If s does not have sl2(R)
factors intersecting p nontrivially, we have that S/S+ is compact by Lemma 3.3 of
[K]. Then S/S+ consists of a single point and therefore s_, = 0. Similarly one shows
that s+1 =0. We conclude that p+ + p c r. If instead s does have a sl2(R) factor s'
which intersects p nontrivially, it can be seen that s'o is a split Cartan and that the
decomposition s!_,+So + s+, is the corresponding root decomposition of s'. In par-
ticular we have S+S~ ^ S. Let L+(p0) and L~(p0) be the unstable and stable leaves
of p0

 m R4- The map (p, q) e L+(p0) x L~(po)>-^L+(q) n L~(p) e R4 is a diffeomorph-
ism, thus G+G~ = G. Thus S+S~ ^ S is impossible and we conclude that p+ + p <= r.

•
It now follows that the smallest subalgebra of g containing p+ + p~ is solvable.

We claim that in fact it must be abelian.

PROPOSITION 7. p+ + p^ is an abelian subalgebra of g. Hence V is flat.

Proof. Denote by g' the smallest subalgebra of g containing p+ + p~. It is clear that
g' = p+ + R(p+,p ) + p~. By Proposition 6, /?(p+,p~) belongs to the derived algebra
of r and hence it is a nilpotent subalgebra. It follows that there are £+ € p+ and
f ep" for which R(p+, p~)^* = 0. This implies that fl(f\) = 0. Let ^ e p * be
linearly independent of C such that 0(77% f) = ±1. If R(v+, 77") = 0 then V is flat
and we have concluded the proof. If R(~r)+, T)')^ 0 then, since R(T)+, TJ~) is nilpotent,
we have R(r)+, r]~)ri± = c±^± for some c± e R. Since the curvature operators R{ •, •)
are infinitesimally symplectic, from fl(R(r)+, T;~)TJ+, i7~) + fi(77+, R(t]+, t]~)v~) =0
we obtain c+ = — c~. Renormalizing our vectors we can assume that c+ = — c~ = 1 (or
that c+ = —c~ = —1, which corresponds to considering the opposite Lie algebra).
Hence g' is the five-dimensional Lie algebra with generators 77*; f * and &t whose
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only non-trivial commutation relations are

It is not difficult to verify that the relations (4) imply that g is six dimensional and
that the sixth generator is precisely the element Mo defined in (5.2) which satisfies
the relations

In particular we see that g is solvable. Consider the fundamental group n of T4;
by possible passing to a subgroup of finite index we may and shall assume that II
is included in the component of the identity G° of G. We claim that II is contained
in the derived group of G. In fact, let Gj be the analytic subgroup corresponding
to the abelian ideal of G spanned by 9?, £,+ and £~. Then G] is closed and normal.
The quotient group G0/ G, has a faithful matrix representation by matrices

ia b \
|0 1

a-1 c

0 1.
Here and later blank spaces in the matrices are assumed to be zeroes. We see that
either II is included in the derived group or its image in G0/ Gx is contained in a
one-parameter subgroup of G0/ G]. Since II is normalized by the Anosov map y e A
we conclude that in the latter case 11/G, is included in exptatfo/G,, (feR). It
follows that Ft is contained in the analytic subgroup G2 generated by s£0, 9t, £+ and
£~. Considerations similar to the one we just made imply that either II is included
in the derived group or in the stabilizer A. The latter possibility is absurd. We have
proved our claim that II is included in the derived group. Since the derived group
is nilpotent it follows that there is an abelian group of rank four in G. But an
inspection of the commutation relations shows that this is again impossible. Hence
we reach a contradiction starting from the assumption that the curvature tensor
does not vanish and conclude the proof. •

Now we have that the curvature is zero. We can therefore introduce coordinates
x = (x,, x2, x3, x4) in R4 where (x,, x2) coordinatize the stable leaf of the fixed point
of y and (x3)x4) coordinatize the unstable leaf and Q = dx, A dx3 + dx2 A dx4. For
simplicity, we shall call the plane (x,, x2) (resp. (x3, x4)) the stable (resp. unstable)
space. In these coordinates the map y is a symplectic linear map given by (E (EV 1 )
where £ is a contraction in the plane (x,, x2). The group II = Z4 is also a group of
affine symplectic transformations preserving the stable and unstable foliations; hence
for each m e Z4 we have a mapping

with Bm e R4 and Am = (C"' iClr')- Of course we have
— —. — _. MO^

LEMMA 8. The group FI is a group of translations. In other words Am = Identity for
all m e Z4.
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Proof. If some Am does not have 1 as an eigenvalue then we can solve the equation
x = Amx + Bm and therefore we find that irm has a fixed point. This is impossible
because the fundamental group acts without fixed points. Hence all Am have 1 as
an eigenvalue. We can assume that the fixed space of some Am restricted to the
stable space (xt, x2) is one-dimensional, otherwise the lemma is true. Then there is
a vector in the stable space and a vector in the unstable space that are fixed by all
Am. Let W be the two-dimensional subspace spanned by these two eigenvectors.
The maps Ttm are affine maps of R4/ W. If some Am had an eigenvalue different
from 1 we would find that some rrm has, and hence all vm have, a fixed point in
R4/ W. In other words there exist a two-plane W parallel to W that is left invariant
by all 7rm. Since II acts discretely on R4 there is a rank 2 subgroup of Ft which fixes
W pointwise. Again this contradicts the fact that II acts without fixed points.

Now we can assume that all Am have 1 as their only eigenvalue. Hence in a
suitable basis we have

\

1
0

1
-an

Now it follows that II is a subgroup of the nilpotent group N given by the affine maps

a
1
0

b
c
1

\

1
-a
0

0
1
0

\

Since II is discrete and abelian, it is included in an abelian rank 4 Lie subgroup of
TV. But there is only one such subgroup, namely the translations of R4. •

This concludes the proof of Theorem 2.
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