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THE COHOMOLOGY OF EXPANSIVE Zd ACTIONS BY
AUTOMORPHISMS OF COMPACT, ABELIAN GROUPS

ANATOLE B. KATOK AND KLAUS SCHMIDT

Based on the structure of the Z ̂ actions by automorphisms
of compact, abelian groups and on techniques for proving the
triviality of the first cohomology of higher rank abelian group
actions we prove that, for d >  1, every real valued Holder co
cycle of an expansive and mixing Zd action by automorphisms
of a compact, abelian group in Holder cohomologous to a ho
momorphism.

1. Introduction.

In this paper we explore one of the facets of a rather striking phenomenon,
namely that the 'good' actions of the higher rank abelian groups, i.e. of TLά

and Kd for d > 2, are much more rare and 'rigid' than similar actions of
Z or R While neither the total extent of this phenomenon nor the proper
definition of a 'good' action are as yet clear, it definitely manifests itself in
principal Anosov and partially hyperbolic actions of Md, d > 2 ( [KSpl]), in
Zd actions by automorphisms of compact abelian groups ([KSp2] and the
present paper), and for a large class of higher dimensional shifts of finite
type ([S2]).

An essential part of rigidity present in the higher rank abelian group ac
tions is due to the triviality of the untwisted first cohomology for sufficiently
regular classes of cocycles. Recall that, if Γ is a group, and Γ : 7 4 Γ7

is a continuous action of Γ on a compact, metrizable space X, i.e. a ho
momorphism from Γ into the group of homeomorphisms of X, then a map
c : Γ x X 1—> Z is a continuous (l )cocycle for T if 0(7, • ) : X 1—> R is
continuous for every 7 E Γ, and

(1.1) c( ',x)= c( ,T ,x)+ c( ',x)

for all x E X and 7,7' E Γ. The cocycle c is a coboundary if there exists a
Borel map b : X 1—> R with

(1.2) c( ,x)

105
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for all x E X, 7 E Γ. T h e funct ion b in (1.2) is called t h e cobounding
function of t h e coboun dary c. T wo cocycles C i, c 2 : Γ x I 1—> R a re coho
mologous (with transfer function b) if their difference cλ — c2 is a cobound
ary with cobounding function 6, and C\ , c2 are continuously cohomologous if
the transfer function b can be chosen to be continuous. Finally, a cocycle
c : Γ x X 1—> IR is a homomorphism if 0(7, •) is constant for every 7 E Γ. If
Γ is a discrete group then, given a certain notion of regularity for functions
on X, such as smoothness, Holder continuity, etc., we will call a cocycle
c : Γ x X 1—> M  regular if, for each value 7 E Γ, the function 0(7, •) has
the required kind of regularity. Having fixed a notion of regularity for trans
fer functions we will say that cocycles from a given class are trivial if they
are cohomologous to homomorphisms, with transfer functions of required
regularity.

To demonstrate the source of the difference between rank one and higher
rank let us consider the untwisted ^i cohomology of the action of Z d on itself
by translation for d = 1 and d = 2. This is both a model and a building
block for the cohomology trivialization results in the present paper as well
as in [KSpl], [S2].

For d =  1, an lχ cocycle is represented by its value on the generator 1
of Z, i.e. by an absolutely summable sequence x =  ( # n , n E Z), and the
coboundary condition (1.2) means that xn =  τ/ n + 1 — yn for another sequence
y = (yn). Since x is absolutely summable we can define y+ =  (y+ ) where,
for every n E Z,

n

vt =  Σ Xi'
i= —00

and obtain that x is a coboundary. However, if we want in addition the
cobounding function y to be in ί1? or at least to vanish at infinity, an ob
struction appears. Obviously, y+  —» Σ^oo χn a s n ~^ + °°5 a n d y+ vanishes
at infinity if and only if Y^^Xn = 0 or, equivalently, if y+ =  y~", where

Even if this obstruction vanishes, the (uniquely defined) cobounding func
tion vanishing at infinity may itself not be absolutely summable. However,
this will be the case if x satisfies a reasonable decay condition at infinity: if
x decays super polynomially, exponentially, or super exponentially, so does
y

For d = 2, a cocycle is given by its values on the two generators (1,0) and
(0,1) of Z 2, i.e. by two double sequences x ^ = (x&#) and x^1^  ( )
in ίx (Z 2) satisfying the equation

(1 3) r r ( 1 ' 0 )  r r ( 1 ' 0 )  x ( 0 ) 1 )  ^ ( 0 ' 1 }



COHOMOLOGY OF EXPANSIVE Zd ACTIONS 107

for every (ra,n) G  Z 2. The cobounding relation (1.2) becomes

The cocycle equation (1.3) can be re written as
(1,0) (1,0) , (0,1) (0,1)

and hence
771 771

Σ U ) _ V^ (!»o) , (o,i) (o,i)
i= —m i= —m

Since x^Oi1^ is summable and hence vanishes at infinity one has, for every
neZ,

oo oo
V^ r(i>o) _ V^ (i,o)

m= —oo m= —oo

Since x^1^  is absolutely summable we deduce that Σm s o o ^ n ~ 0 f°Γ

every n £ Z (£Λe difference between rank one and higher rank lies precisely
at this point). Hence y+ = y~, where y+ n =  ΣH oo^ln a n ( l 2/m,n =

"" Σi^m+ i ^i,1^0^ Thus y+ is a cobounding function for x^1^  which vanishes
at infinity due to the summability of χ(li0\  The cocycle equation (1.3) shows
that

so that y+ cobounds the cocycle. By imposing super polynomial, exponen
tial, or super exponential decay conditions on the cocycle we obtain similar
conditions for the cobounding functions.

The proof of C°° cohomology trivialization for a mixing action of Z rf,
d > 2, by automorphisms of a finite dimensional torus or, more generally,
for a mixing action of Zrf+  by toral endomorphisms, is a more or less straight
forward application of the above argument to the Fourier duals of the action
and the cocycle ([KSpl], Section 4.1). An approximation argument using
Livshitz' theorem [Liv] extends this result to Holder cocycles if the action is
Anosov (i.e. expansive). For non expansive mixing actions the result is prob
ably not true for Holder cocycles, as Veech's example for rank one indicates
[V]

When one passes from finite dimensional tori to a Zrf action a by auto
morphisms of a more general compact, abelian group X, the notion of a
C°° structure becomes problematic, since the group is typically either not
locally connected, or infinite dimensional, or both. There is, however, a nat
ural Holder structure associated with a given action, which coincides with
the usual one for an expansive action on the torus (cf. Section 2, (2.3)). As
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we indicated above, even on the torus the proof of cohomology trivialization
for Holder cocycles is not totally straightforward. Thus we have to take a
more indirect route, which also leads to trivialization results with continuous
transfer functions for cocycles with the weakest possible regularity condition
(summable variation—(2.2)). We abandon a direct reference to Fourier se
ries in favour of a more geometric construction somewhat reminiscent of
the proof of Livshitz' theorem [Liv]. In the Fourier series argument the
obstruction to cocycle triviality is the sum of the Fourier coefficients along
individual Zd orbits of the dual action. In the general situation this summa
bility may no longer hold. We overcome this difficulty by constructing, for
a Holder cocycle c, a tentative solution on the set of points asymptotic to
a given one (the identity) along a certain double cone in Z d. An obstruc
tion to extending this solution to a continuous transfer function is expressed
in (2.11), which is a geometric counterpart of a sum of Fourier coefficients
along an orbit of a regular element of the Zd action. In the simplest pos
sible terms this obstruction can be described as follows: if an element y of
the group X is positive asymptotic to the identity element 0 with respect
to some element n E Z d, then the difference of the values of any possible
cobounding function at x and at x + y has to be equal to the infinite sum
Σk>o(c(ni αk,n{x)) — c(n, αkn(x + y))). A similar expression is obtained for
negative asymptotic points. Since both expressions are defined if y is ho
moclinic to 0 with respect to n, they must coincide for any such y in order
for a cobounding function to exist. Proposition 2.6 not only shows that this
condition is sufficient, but establishes a relativised version of it, which is
used in an induction process.

As expansive Zd actions by automorphisms of compact, abelian groups
may have a very complicated structure, this argument cannot be applied to
the action as a whole, but to a sequence of algebraic quotients of the original
action. These quotients are obtained as duals of a suitable prime filtration of
the dual group viewed as a Noetherian module. This structure is summarized
in Theorems 3.1 and 3.2, and Lemma 3.3. The individual quotients which
can appear in this decomposition are characterized in Corollaries 3.5 and
3.7. The key Proposition 2.6 allows us to carry out an inductive reduction of
the cocycle to cocycles for the successive quotient actions, assuming that the
geometric obstruction (2.11) vanishes for each of the successive quotients.

The vanishing of the obstructions is established in Section 4 for the four
different types of quotient actions (Lemmas 4.2, 4.4, 4.6, and 4.8). It is
interesting to note that in the last two of those cases we have to appeal to a
slightly weaker version of the summability of Fourier coefficients.

We would also like to point out somewhat unequal contributions by the
two authors of this paper. The original idea came in a conversation in
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December 1991 during the second author's visit to Penn State, when we
realized that techniques for proving trivialization of cohomology developed
in [KSpl] could be combined with the structure theory of Zd actions by
automorphisms in [SI] and [KiS2] to produce trivialization results for such
actions. We found a proof which worked in many, but not all cases. The rest
is due to the second author who substantially modified the original approach
and put the complete proofs in final form.

Finally we would like to acknowledge the support from the Mathematical
Sciences Research Institute (now pronounced EMISSARY) during the final
stage in the preparation of this paper.

2. Statement of the main theorem, and a Livshitz type result.

Let T be a continuous action of Zd on a compact, metric space (X, δ). We
write | | and (• ) for the Euclidean norm and inner product on Rd D Z d, and
put B(r) =  {n G  Zd : |n | < r}. If /  : X ι—> R is a continuous function we
set, for every r > 0,

(2Λ)ωδ
r(f,T,ε)= sup \ f(x) f(x')\ ,

{{x,x')£XxX:δ(Tn{x),Tn{x'))<ε for all n6B(r)}

and we say that /  has T summable variation if there exists an ε > 0 such
that

(2.2) α/ (/ ,T,ε) =  f>*( / ,T,ε) <  oo.
r= l

The function /  is T Holder if there exist constants ε, ω1 > 0 and ω with
0 <  ω < 1 such that

(2.3) ωr(f,T,ε)<ω'ωr

for every r > 0. These notions are obviously independent of the specific
metric ί o n l , and every Γ Holder function has Γ summable variation. If
the Z d action T is understood we simply say that /  has summable variation
or is Holder. N ote that , if d > 1 and /  has T summable variation (or is
T Hόlder), then /  will in general not have the corresponding property with
respect to any of the Z actions k »» Tkn, n € Zd. A cocycle c\ZdxX \—> E
for T has T-summable variation (or is T-Holder) if c(n, •) : X \—> R has
T-summable variation (or is T Hόlder) for every n G Z d.

Let X be a compact, additive, abelian group (always assumed to be
metrizable), with identity element 0χ, and let Aut(X) be the group of con
tinuous group automorphisms of X. If d > 1, then a Zd action by auto
morphisms of X is a homomorphism a : Zd \—> Aut(X). The action a is
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ergodic or mixing if it is so with respect to the normalized Haar measure
\χ of X, and a is expansive if there exists an open set O C X such that
f)nezd an{O) =  {0χ}, where 0x is the identity element of X. We shall prove
the following theorem.

Theorem 2.1. Let d > 1, and let a be an expansive and mixing Zd action
by automorphisms of a compact, abelian group X.
(1) Every cocycle c : Zd x X ι—> R with a summable variation is continu

ously cohomologous to a homomorphism;
(2) Every a Hδlder cocycle c : Zd x X \—> R is cohomologous to a homo

morphism, with Holder transfer function.

The proof of Theorem 2.1 will occupy Sections 2 4, and will depend on the
structure theory of Zd actions by automorphisms of compact, abelian groups
presented in Section 3, where we also discuss briefly the notions of functions
with α summable variation and of α Hόlder functions (Remark 3.10).

Let a be a Zd action by automorphisms of a compact, abelian (additive)
group X, and let

(2.4) ∆ α  ίx € X : lim α k( s) =  0 x |

be the homoclinic group of a. For every nonzero element n G  TLd and every
ξ with 0 < ξ < 1 we define the cones

C ( n , 0 =  {m G  Zd : (m,n) > ξ |
" C ( O { G Z d ( m n ) < e

and consider the group

Aa(n,ξ) = {xeX : lim βk( x ) =
k—> oo

+(2.6)

=  lim αk(α;) =  0χ for some £' G  (0,
k—>oo

k€C-(n,ξ' )

Note that

(2.7)

for every m E Zd.
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Examples 2.2(1) Let F be a compact, abelian group, and let σ be the shift
action of Zd on Fχd defined by

(2.8) ( V) m =  Zm+n

for every n G Z d and x =  (xm) =  (xm m G Z d) G  F z d . Then

∆ σ ( n , 0 D∆σ D {z =  (aτn) G l : ^ n =  0F

for all but finitely many n G Z d} ,

and these groups are therefore dense in X; if F is finite, then

∆ σ =  {x = (xn) G  X : xn =  0F for all but finitely many n € Zd} .

(2) Let F be a finite, abelian group,

X = jα; =  (χn) £ F Z : X(m,n)

for every (m, n) G  Z 2

and let α be the restriction of the shift action σ in (2.8) to X. It is easy to see
that ∆ α =  {0*}, and that ∆α( ( l, l),ξ) is dense in X for every ξ G  ( ^ , l ) .

(3) If a is an expansive and mixing Z2 action by automorphisms of a finite
dimensional torus or solenoid X, then ∆ α =  {0χ}. However, if n G  Z d is
an element such that an is expansive (such elements obviously exist), then
∆α(n ,£ ) is dense in X for some ξ G  (0,1) (this can be proved by looking at
the local product structure of an at 0χ, which is described in some detail in
Lemma 4.7).

Let a be an expansive Zd action by automorphisms of a compact, abelian
group X, and let c : Zd x X ι—> R be a cocycle with α summable variation.
We fix a primitive element n G Z d and ξ G  (0,1), and define a cocycle
c<n) : ∆α(n ,ξ) x X ι—> R for the action of ∆α(n ,£ ) on X by translation by

(2.9) c( n )(y,s) =  Σ ( c ( n ' α *n ( *) ) c(n,akn(x

for every y G  ∆α(n ,£ ) and ϊ G l . Since y G  ∆α(n ,ξ) , (2.9) is well defined,
and the cocycle equation (1.1) implies that

for every m 6 Z d (cf. (2.7)). For y e Aa C ∆β(n , £ ) we obtain

c^(y,x)= lim c< n>(αm(y),αmθE)) =  0
m—>oo

(m,n>= 0
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for every x G  X, as a consequence of (2.1) and (2.4). In Example 2.2 (1),
∆ α is dense in ∆ α ( n , ξ), and an elementary approximation argument yields
that c^(y, • ) =  0 for every y G  ∆ α ( n , ξ). In general, however, Aa will not
be dense in X (cf. Examples 2.2 (2) (3)), and other techniques have to be
employed in order to show that c^n>)(y: • ) vanishes for all y G  ∆ α ( n , ξ) .

The next step of the argument is to show that the vanishing of c^  implies
that c(n, • ) is cohomologous to a constant. We begin with a definition. Let
δ be an invariant metric on a compact, abelian group X (invariant means
that δ(x,y) — δ(x +  z,y +  z) for all x,y,z G  X) , and let a a Z d action by
automorphisms of X

D efin it ion 2.3. Let 0 φ n G  Z d , and let ξ G  (0,1). The Z d action a has
weak (n, £) specification if ∆ Q ( n 5 ξ) is dense in X, and if there exist, for every
ε > 0, constants s' > 1, t' > 0, with the following property: for every r > 0,
and for every x G  ∆ α ( n , ξ) with ί (α m ( # ) ?0χ) < ε for every m G B( sV K ') ,
one can find a y G ∆ α ( n , ξ) with

(2 10) S(ak(y),ak(x)) < ε for all k e C + (n ,ξ) +  B( r ) ,
ί ( ( ) ) 0 x < ε for all k G  C " ( n , 0 +  B( r ) .

We say that α has weak n specification if it has weak (n, ^ specification
for some £ G (0,1).

Examples 2.4(1) Let F be a compact, abelian group, and let σ be the shift
action (2.8) of Z d on X — Fzd. Then σ has weak (n, ̂ specification for
every nonzero element n G Z d and every ξ G  (0,1).

(2) Let a be an expansive Z d action by automorphisms of a finite dimen
sional torus or solenoid X. For every n G Z d for which an is expansive,
a has weak n specification. This is proved by looking at the local product
structure of an (cf. Lemma 4.7).

Other examples of Z d actions with weak n specification will arise in Corol
lary 3.5 and 3.7. Before describing how weak n specification helps in proving
that the function c(n, • ) is cohomologous to a constant if the cocycle c^  in
(2.9) vanishes we have to establish a preliminary result. If X is a compact,
abelian group and Y C X a closed subgroup we denote by λx and Ϊ8χ the
normalized H aar measure and the Borel field of X, write 55χ/ y C 53χ for
the σ algebra of Borel cosets of Y, and consider the conditional expectation
EXχ (/ |93χ/ y) of a function /  : X \—> R with respect to the σ algebra

L e m m a 2.5. Let a be a Zd action by automorphisms of a compact, abelian
group X, and let f : X \—> R be a function with a summable variation.
If Y C X is a closed, a invariant subgroup, then EXx(f\ ^x/ Y) has a
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summable variation. Iff is a Hδlder, then Eχx (i^|9Sχ/ y) is again a Hδlder.

Proof. We fix an invariant metric ί o n J , set

Xδ(r,ε) = {x G  X : ί(α k(x) , 0χ) < ε for every k G B(r)}

for every r > 0 and ε > 0, and note that

sup m a x|/ ( x) / ( x +  y)| =ωδ
r(f,a,ε).

yexs(r,ε)
 χ£χ

Iΐfy(x) = f(x + y), then

\EXχ {f\<Bx/γ)(x) EXχ (fy\<Bx/γ)(x)\<ωδ
r(f,a,ε)

for all x G X and y G X<j(r, ε), which proves that Eλχ {f\ X/γ) has summable
variation (or is H older). D

The following proposition is similar to Livshitz' theorem ([Liv] and [K Spl] ,
Theorem 2.14), which guarantees the vanishing of Holder cocycles for an
Anosov system, given that the cocycle vanishes on all periodic orbits. This
proposition shows that the obstruction to reducing a cocycle to a cocycle on
a quotient group is given by the expression (2.11).

Proposition 2.6. Let a be a Zd action by automorphisms of a compact,
abelian group X, Y C X a closed, a inυariant subgroup, and assume that
the restriction of a to Y has weak (n , ξ) specification for some ξ G  (0,1)
and some nonzero n G  Ld. Let f : X ι—> R be a function with a summable
variation. We set ∆ (n ,ξ) = ∆ α ( n , ξ)Γ\Y and define a cocycle c^  : ∆ ( n , ξ) x
X i—> E for the action o/ ∆ ( n, ξ) on X by translation by

(2.11) cf{y,x) =  £ (/  aim(x)  f •  akn(x + y))

for every x G  X and y G  ∆ ( n , ξ) If ^(y.x) = 0 for all y G  ∆ ( n, f)
and x G  X, then f is cohomologous—with bounded transfer function—to
EXχ{f\<8x/γ).

Suppose furthermore that there exists a closed, a invariant subgroup Z C
X such that Y Π Z =  {0x} and X = Y + Z. Then f is continuously
cohomologous to Eχx ( / |93χ/ y) . Moreover, if f is a Hόlder, and if δ is a
metric on X, then the transfer function b : X ι—> K can be chosen so that
there exist positive constants ε, ω, ω' with 0 < ω < 1 and \b(x + y) — b(x)\  <
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ω'ωr for all x eX, r> 1, and y G  Y6(r,ε) = {y EY : δ (c*k(y),Ox) < ε for
all k G B(r)}.

Proof. For every α; G  X and y G ∆ (n , ξ) we put

c+(y,x) =  ]Γ( /  αjfen(ar)  /  akn{x + y)),

(* +  I/ )),

and note that the maps c^  : ∆ (n , ξ) x X \—> R are well defined cocycles,
and that

c+  (y,x)+ c  (y,x) = cf] (y, ar) =  0

for every ϊ G l and y G  ∆ (n ,£ ).
We fix an invariant metric δ on X and an ε > 0 such that Σr>o ω£(/ , α, ε) <

oo, and use the weak (n, ̂ specification of a on Y to find constants s' > 1,
t' > 0 with the following property: for every r > 0 and every y G  ∆ (n , ξ) with
^(<^m(y)5 0χ) < ε for all m G B(sV +  t ;) , there exists an element y' G  ∆ (n , ξ)
with ί(αk(y/ ) ,αk(y)) < ε for all k G C+ (n,£) +  B(r), and 5(0^(1/ ), 0^) < ε
for all k G C "( n , 0 +  B(r). Then

| ( y ι ) ( ^ ) | ( e τ
(2.12) r>M

), and |c+ (y,α:)| < 2C'(M)
for every y G ∆ (n , ξ) Π1^ (s'M  + 1' , ε) and x E X. By varying M we see that

(2.13) lim max|c+ (y,α;)| =  0.
0 χ€χ

Since ∆(n ,ξ) is dense in y, (2.13) allows us to extend c + uniquely to a
continuous function c + : Y x X 1—> R, and c + is again a cocycle. We write
θ : X 1—> X/ Y for the quotient map and choose a Borel map θ' : X/ Y \—> X
such that θ θ'(x + Y) =  a; +  Y for every a; G  X (cf. [P], Lemma 1.5.1). The
map b : Y »—> R, defined by 6(ar) =  c + ^ θ ' θ ^ ) , ^ ^ ^ ) ) for every x G  X,
is bounded and Borel and satisfies that c+ (y, # ) =  6(x +  y) — b(x) for every
x e X and i / G F .

If there exists a closed, o invariant subgroup Z C X with Y Γ\  Z — {0}
and Y + Z = X, then we can write every x E X uniquely as x =  y(x) +z(Z)
with y(x) G  y and z(α ) G  Z, assume that

ί(a;, 0χ) =  max {ί(y(ar), 0x) +  5(z(α;
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and set θ'(x + Y) = z(x). Then θ' is continuous, and b : X \—> R is
continuous.

If /  is Holder we assume without loss of generality that ε is sufficiently
small and choose 0 < ω < 1, ω1 > 0, such that (2.3) is satisfied. Prom (2.12)
we see that there exists a positive constant ώ' such that |c+ (y, x)\  < ώ'ωM for
all x G  X and y G  A(n,ξ)nYδ(s

fM + t',ε), and we conclude that |c + (y, # ) | <
ώ'ωM for all x G  X an d y G  Yδ(s'M + t',ε). H ence \b(x + y)~ b(x)\  < ώ'ωM

for all x G  X a n d y G  Yδ{s'M + t', ε).
Let Γ — Z x Y with the product topology, and with group operation

(n,y) (n',y') =  (n + ri,an,n(y) + y'), (n,y), (n',y') G  Γ, and let Γ ' c Γ b e
the subgroup consisting of all (n,y) with n G  Z and y G ∆ (n , ξ). We write
T for the action of Γ on X given by T(n^(x) = ann(x + y) and define a
continuous map φ : Γ x X ι—>•  R by setting, for every (n, y) G  Γ and α; G  X,

i=o

a jn(x + y) + c+ (y, re) if n < 0.

A straightforward calculation shows that the restriction of φ to Γ" x X is
a cocycle for the restriction T" of T to Γ', and the definition of c + as a
continuous extension of c+ implies that φ is a cocycle for the Γ action T. In
particular,

b(x + y) — b(x)

 ^(( 1,0),an(x + y)) + φ((0,an(y)),an(x))

= φ((l, 0), (x +  y)) +  V((0, αn(y)), αn(a:)) +  ^((1,0), x)
 / ( a +  y) +  c+ (α n (y) , αn(x)) +  f(x)

=  / ( x +  y) +  6 αn(a; +  y)  6 αn(x)

for all x G  X, y G F , so that /  — b α n +  b is invariant under translation
by F . Hence /   b •  an + b =  £ λ χ (/   b •  an + b\<&x/γ) =  £ λ χ ( / |»x / y) 
^ λ χ (b\<Bx/γ) •  an + EXχ ( 6|® χ / y) , so that /   EXχ (f\<Bx/γ) =b' an V for
some bounded Borel map b1 : X \—> M. Finally, if the conditions of the last
assertion are satisfied, then b' — b — EXχ (6|Q5χ/ y) is continuous or Holder in
the required sense (cf. Lemma 2.5). D

C o ro lla ry 2.7. Let X', X" be compact, abelian groups, a', a" ergodic In
actions by automorphisms of X1 and X", respectively, and let 0 Φ n G  Z d be
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an element such that a" has weak n specification. Put X = X' x X", a =
af x a"', and assume that f : X ι—> M. has a summable variation. Suppose
that there exists a Borel map b : X ι—> R such that f =  Eχ(f) 4  b α n — b,
where E1(f) =  £ !

λχ(/ |55χ/ {Oχ/ Xχ"}). Then there exists a continuous map
b' : X i—>R such that f =  Ex(f) + b' α n  V.

Proof. We set ∆ =  {0x,} x ∆α» (n, ξ) and define a cocycle cf] : ∆ x X \—> R
by (2.11). Suppose that there exist elements x E X and y E ∆ such that
Cf(y,x) = o ^ 0 . Then there exists a neighbourhood iV(a ) C X such that

^djjz) > a/ 2 for all z E iV(a ), and λx(N(x)) is obviously positive.
On the other hand, since /  =  E\  (/ ) +  b an — b for some Borel map

b : X i—> R, and since there exists, for every ε > 0, a compact subset
C ε C l such that λχ(Cε) > 1 — ε and the restriction of b to C ε is continuous,
we obtain that c^\y, ) =  0 λχ α.e., which contradicts the conclusion of
the first paragraph of this proof. Hence c^\y,x) =  0 for all y E ∆ and
x E X, and the conclusion follows from Proposition 2.6. D

3. The structure of Zd actions by automorphisms of compact,
abelian groups.

Let X be a compact, abelian group with dual group X. For all x E X and
a E X we denote by a(x) =  (x, α) the value of the character a at x, and we
write ή for the automorphism of X dual to an automorphism η E Aut(X),
where ή(a) — α η for all α E X.

Let d > 1, and let 9\ d = Z [ufx, ... ^ J 1 ] be the ring of Laurent polyno
mials with integral coefficients in the commuting variables ιz1?. . . ,ud. An
element /  E £Hd will be written as /  =  J2nezdCf(n)un w ^ h c / ( n ) ^ ^?
ΣneZd \cf(n)\  < oo, and n n =  T/J11 un

d
d for every n =  [nu... , n d) E Z d,

and we denote by S(f) =  {n E Z d : c/ (n) 7̂  0} the support of / . If α is a
Zd action by automorphisms of a compact, abelian group X, then the dual
group 9Jί =  X of X becomes an D^module under the ^ act ion defined by

(3.1) /  α =

for all a E 971 and /  E 9^, where /3n =  δ^ is the automorphism of DJl — X
dual to α n . In particular,

(3.2) άnia) =  /3n(α)  ^ n α

for all n E Z d and α E 9Jΐ. Conversely, if 9Jί is an 9Vmodule, and if

(3.3) / 3f(α ) = n n α
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for every n G Z d and a G  37ί, then we obtain a Z d action

(3.4) am : n H> af =  # *

on the compact, abelian group

(3.5) X271 =  9JΓ

dual to the Z d action βm : n H> / 3f on an.
If SDΐ is an 9ΐd module, then a prime ideal p C d\ d is associated with 9Jt if

p =  {/  G  Did : /  a =  0} for some a G  9JΪ, and DJl is associated with a prime
ideal p C 9ίd if p is the only prime ideal in ΣHd associated with 9Jt. For every
ideal J C 9ΐd we set

(3.6) Vb(J) =  {c =  ( C l , . . . , cd) e C : / ( c) =  0 for every /  G  J) .

A nonzero Laurent polynomial /  G  ίH^ is a generalized cyclotomic polynomial
if there exist m , n G Z d , n ^ O , and a cyclotomic polynomial c in a single
variable such that /  =  umc(un). The following assertions were proved in
[SI] and [KiS2] , Theorem 3.3.

Theorem 3.1. Let a be a Zd action by automorphisms of a compact, abelian
group X, and let$Jl = X be the ^K^module arising from a via (3.1) (3.2).
(1) The following conditions are equivalent.

(a) a is expansive;
(b) The V\ d module M is Noetherian, and Vc(p) Π Sd = 0 for every

prime ideal p C 9td associated with 371, where S =  {c G  C : \ c\  =  1}.
(2) TΛe following conditions are equivalent.

(a) a is mixing;
(b) α n is ergodic for every nonzero element n G  Z d ;
(c) or**I* is mixing for every prime ideal p C 9ΐd associated with UJl;
(d) Λfone of the prime ideals associated with 9Jt contains a generalized

cyclotomic polynomial.
(3) / /  UJl is Noetherian, the following conditions are equivalent.

(a) a is ergodic;
(b) an is ergodic for some element n G  Zd;
(c) αW d / p iβ ergodic for every prime ideal p C ίH d associated with SDt.

We identify Z with the set of constant polynomials in 9ΐd and note that ,
for every prime ideal p C 9td, p Π Z is either equal to pZ for a unique
rational prime p =  p(p), or to {0}, in which case we set p(p) = 0. The
next result is taken from [ KiS l, Theorem 5.2 and Proposition 3.12] and
[SI, Theorem 3.3].
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Theorem 3.2. Let a be a /  action by automorphisms of a compact, abelian
group X. The following are equivalent.
(1) X is zero dimensional and a is expansive;
(2) The 9id module M defined in (3.1) (3.2) is Noetherian, and p(p) > 0

for every prime ideal p C ίH d associated with Tt;
(3) There exists a finite, abelian group F and a continuous, injective group

homomorphism φ : X \—> Fz such that

(3.7) φ an = σn φ

for every n E TLd, where σ is the shift action (2.8) on Fz . If a is expansive,
then a is ergodic if and only ifD\ d/ p i>s infinite for every prime ideal p C ίRd
associated with 9JI.

Let DJl be a N oetherian 9td module. Corollary VL4.8 in [La] implies the
existence of !SHd modules

(3.8) {0} =  <π0 c σii c c <ns =  απ

such that , for every j = 1, . . . , s, 9rl7/ 9rl7_i =  DKd/ (\ j f°r some prime ideal
c\ j C 9̂ d containing one of the prime ideals associated with SDt (Corollary
2.2 in [SI]). The sequence % C C 9t s in (3.8) is a prime filtration of
9JI. The following lemma helps to overcome the problem th at the successive
quotients in a prime filtration of QJt may involve prime ideals which are not
associated with DJt.

L e m m a 3.3. Let DJl be a Noetherian tRd module with associated primes
{pu . . . , p m }. Then there exists a Noetherian 9\ d module 51 =  9t ( 1 ) Θ Θ
9T(m) and an injective R module homomorphism φ : DJl ι—> 9t such that
each of the modules Ww has a prime filtration {0} =  9t£ j) C C

If X = Xm and Y = X* = X*( 1 ) x •••  x X*{m\  then the homomor
phism φ : Y i—> X dual to φ is surjective and satisfies that φ α ^ =
φ  ( c ^ ( 1 ) x x c ^ ί m ) ) =oξ* φ for every n E Zd.

Proof. Theorem V .5.3 in [La] allows us to choose submodules 2H i, . . . , 2Πm

of 9Jt such that ffl/ Wi is associated with p< for ϊ =  1, . . . , m , f |£ i 2# i =
{0}, and C\ ies®0i ^  ί°} f o r e v e r Y subset S C {1, . . . , m }. In particular,
the map φ : a ^ (a +  Wu... , a + 2Πm) from 9Jί into t = φ^ Wl/ Wi is
injective. We fix j E {1, . . . , m } for the moment and apply Lemma 3.4 in
[KiS2] to find a prime filtration {0} =  % C C 9t s =  9tt/23X, such that

i j ) i i  Md/ qίj) for e v e r y k =  !>• • •  >sj> where q[j) C V\ d is a prime
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ideal containing pj, and where there exists an rj € {1,. , s^} such that
fl*0 = Pi for fc = 1, ,rj, and q£} D p; for k = rό +  1, ... ,5, . If rό < Sj
we choose Laurent polynomials gk G  q^ \  pj for k — r3 , + 1, ... , sj, set
gU) = ĝ +ι... gU), and note that the map ψU) : M/ fΰfj '—> 91^ consisting
of multiplication by ĝ  is injective. Since 9ΐ£^ has the prime filtration
{0} =  Olo^ C C 91^ whose successive quotients are all isomorphic to
9td/ pj, t h e module 91 =  91^ θ θ ^ ^ } has the required properties. The
last assertion follows from duality. D

Let Wl be a Noetherian ̂ module, and let {0} =  % C C 9t5 =  DJl be
a prime filtration of M with tftfc/ tftfc i =  5Hd/qfc for it =  1, ... , 5. We write
χk =  OT̂  =  {x € X971 = 9ϊl: (x, α) =  1 for every α £ 91*} for the annihilator
subgroup of Vlk in X971. and obtained closed, αr^ invariant subgroups

(3.9)

such that

(3.10)

for every fc =  1, ... ,s. In view of Theorem 3.1 we conclude that every
expansive Zd action by automorphisms of a compact, abelian group X has
the property that there exist closed, α invariant subgroups {0} =  Xs C C
Xo =  X such that, for every k =  1, ... ,5, the Zd action aXh'1^Xh induced by
a on Xk_ι/ Xk is of the form α^d/ qfc for some prime ideal q& C £Kd (cf. (3.3)
(3.5)). In order to complete the picture we recall the explicit description of
a*d/ P for a p r i m e id e a i p c 9trf given^in [SI] and [KiS2]: if T =  R/ Z, and if
σ is the shift action (2.8) of Zd on iHd =  z\  then

(3.11) X** = {x = (xn) e χd : f(σ)(x) =  0τZ , for every /  G p} ,

where

(3.12) / (σ)(a;) =  £ C/ (n)σn(x)

for every /  =  £nez<* c/ ίn)?/ 11 G <Kd, and α ^ ^ is the restriction of σ to
In the special case where p = p(p) > 0 we set Fp = {k/ p(mod 1) : 0 < k <
p} C T  and observe that X**l* c Fzd C χd. The obvious isomorphism
of Fp with F p =  Z/ pZ allows us to regard X**/ * as a closed, shift invariant
subgroup of F j .

Our next task is to investigate in more detail the structure of Zd actions
of the form a =  αm d / p , where p C 9ίrf is a prime ideal. Recall that an
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element n =  (rii, .. . ,π d) G  Z d is primitive if gcd{ni, ... , n d} =  1; more
generally, a subgroup Γ C Zd is primitive if the group Z d/ Γ is torsion free.
If p =  p(p) > 0, then the following proposition shows that there exists a
maximal primitive subgroup Γ C Zd and a finite, abelian group G such that
the restriction aΓ of a to Γ is topologically and algebraically conjugate to
the shift action of Γ on G Γ.

Proposition 3.4. Let p C £Hd be a prime ideal with p = p(p) > 0 such that
the Zd action a =  a**'* on X =  **' / > =  jjζ/ p C F p

z d iβ er5oώ'c (c/ . (3.3)
(3.5), Theorem 3.1, and (3.11)). Then there exist an integer r G  {1, .. . ,d},
α primitive subgroup Γ C Z d, and a / ϊmϊe se£ Q C Z d with the following
properties.
(1) Γ S Z r ;
(2) O G Q , and Q Π (Q +  m) =  0 whenever O ^ m E Γ ;
(3) IfT  =  Γ +  Q =  {m +  n : m G Γ, n G  Q}, έΛerc £Λe coordinate projection

πf : X i—> Fp, which restricts any point x E l C ί J £0 its coordinates
in Γ, is a continuous group isomorphism; in particular, the Γ action
a Γ : n 4 a n , n G  Γ, w a Bernoulli action with finite alphabet Fjp.

Proo/ . This is Noether's normalization lemma in disguise. We write VKd^  =
F p [wf *, . . . , uj1] for the ring of Laurent polynomials in t*i, . . . , ud with coef
ficients in the prime field F p, and define a surjective homomorphism /  »>> f/ p

from 9\ d to ^K^P>} by reducing every coefficient of a Laurent polynomial
/  G  9\d modulo p. Then q =  {f/ p : f G  p} is a prime ideal in 9i/ P\

( )/ /
We write e ^ for the i th unit vector in Z d and claim that there exists a

matrix A G  GL(d,Z) and an integer r, 1 < r < d, such that the elements
Vi = uΛe(t) + q are algebraically independent in the ring TZ =  ίKd^/ fl f°r

i =  1, ... , r, and both Vj =  uΛe 3 + q and υ~ ι = u'Λe 3 +  q are algebraic
integers over the subring F p [υf,... , vf}x] C 7£ for j =  r +  1, ... , cf. Indeed,
if u[ =  tii +  q, , tx Jj =  ι*d +  q are algebraically independent elements of Tl,
then q =  {0}, and the assertion holds with r =  d, and with A equal to the
d x d identity matrix. Assume therefore (after renumbering the variables, if
necessary) that there exists an irreducible Laurent polynomial /  G  q of the
form /  =  go+ gγud + gλu

ι
d, where g{ G  F p [uf1, ... , u%\] and gQgt φ 0.

If the supports of g0 and gι are both singletons, then ud and ud
λ are both

integral over the subring F p m ^ 1 , . . . ^d i"1"1] C TZ. If the support of either
0̂ or gι is not a singleton one can find integers kλ,... , kd such that the

substitution of the variables Wi =  i^i^*, ΐ =  1, ... ,rf — 1, i n /  leads to
a Laurent polynomial g(wι,... )Wd ι,ud) = ud

df(uι^... ,ud) of the form
9 = 9o + 9[ud + ' gl'Ud,  w h e r e 5l ^ Pp [^fS ,WdiiL a n d where the
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supports of g'o and g[, are both singletons. We set

f\  0
0 1

0 0
0

w'i = Wi + q =  uBe(t) + q, i =  1, . . . , d — 1, and note that w'd and w'd
 ι

are integral over ¥p U ui*1, j ^ d ^  C ^ ^ *^ e elements w[,... , ^ i
are algebraically independent in 7£, then our claim is proved; if not, then
we can apply the same argument to wι,... , Wd i instead of ^ i , . . . , wd, and
iteration of this procedure leads to a matrix A G  GL(d, Z) and an integer
r > 0 such that the elements v^ = uΛe +  q G  TZ satisfy that v[,... , υ'r
are algebraically independent, and υ'j and t ^ "1 are integral over TZ^j~^ =
¥p [ t ^ *1 , . . . , ^ _ i ± 1 ] C 7i for j > r, where ft(0) =  F p if r =  0 (in which
case TZ must be finite). From Theorem 3.2 it is clear that the ergodicity of
a implies that r > 1, and this completes the proof of our claim.

For the remainder of this proof we assume for simplicity th at A is the d x d
identity matrix, so that υ< =  u{ for i =  1, . . . , d (this is—in effect—equivalent
to replacing a by the Z d action a' : n • )•  a'n = aAn). The argument in the
preceding paragraph gives us, for each j = r + 1 , . . . , d, an irreducible polyno
mial fj(x) = Σ!Lo 9k)χk w i t h coefficients in the ring ¥p [u^1,... u ^ * 1 ] C
£Kjf such that hj(uj) =  hj(uι,... , ^ j_ l 5U j) G  q and the supports of ^Q a n d
<7; are singletons. Let Γ C Z d be the group generated by {e ^ , . . . ,e^r^},
Q =  {0} x . . . x {0} x {0, ... Λ+ i  1} x {0, ... ,Zd  1} C Z d , and let
f =  Γ +  Q = {m +  n : m G Γ, n G  Q}. We write π? : X \—> ϊ£ for the
coordinate projection which restricts every x E X to its coordinates in f and
note that πf : X \—> F^ is a continuous group isomorphism. In other words,
the restriction of a to the group Γ =  Z r is a Bernoulli shift with alphabet
F«. D
Corollary 3.5. Le^ p C 9^ 6e α prime ideal such that p — p(p) > 0
r =  r(p) > 1, and a ^ d / p is ergodic. Choose a primitive subgroup Γ =  Z r

in Z d according to Proposition 3.4 and / ix a primitive element n G  Γ. TΛβn
a ^ / p Λa5 tί eaA; n specification. Furthermore, if 91 is an dKd ^odule with a
prime decomposition {0} =  9t0 C C Vls =  VI such that %/ %.x =  9\ d/ p
for every j =  1, . . . , s, then a31 has weak n specification.

Proof. We assume for simplicity that Γ C Z d is the subgroup generated by
the unit vectors e ( 1 ) , . . . , e ( r ) , and th at n =  e ( 1 ) . Choose a finite set Q C Zd

with the properties stated in Proposition 3.4, set f =  Γ +  ζ), and note that
the projection πf : Xm<1^p —> F£ is a continuous group isomorphism.
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Prom Proposition 3.4 it is clear that there exist ξ E (0,1) and t' > 0,
which depend on the supports of the polynomials / j, j =  r +  1, . . . , d, in the
proof of that proposition, and on the set Q C Z d , such that the following
condition is satisfied.

For every x = (xm) E X^d^  C Ffd, let y±  E X be the unique
points with

+ _ jxk if k =  (fci, ... , kd) E f with kλ > t \
y k ~~ \ θ F p if k =  (ku... , kd) E f with kλ < *' ,

v ; _ _ \ xk if k =  (Jfci,... , kd) e Γ with A?i < £ ' ,
y k "" \ θ F p if k =  (jfel5... , kd) e f with kx > V.
Then π c + ( β ( 1 ) ^ ( s ) =  πc+ (e(υξ)(2/ + ) and π c _ ^ e ( 1

The weak ( e ( 1 \  ^ specification of <x*d/ p is an easy consequence of (*).
If 01 is an arbitrary ίH d module satisfying the assumptions of this corollary,

we choose elements 6 l 5 . . . , bs E 91 such that Vlj = 9ϊd bι \  +^d bj for
j =  1, . . . , 5, write 0 : X ι—> ( s)zd = *Rs

d for the injective homomorphism
dual to the surjective map θ : (hi,... , hs) t t hi bι H  \ hs bs from 9ΐ^ =
ίKdθ θ5Kd to 91 =  9V&i +  •   +  9V&., and identify X with θ(x) C (T s) z < £ .
U nder this identification the Z rf action α ^ becomes the restriction to X of
the shift action σ of Zd on ( T ) 2 *.

We set Fm =  {A / m : 0 < fc < m } C T, m > 2, and claim the following.
(1) The restriction to X of the projection map π f : (TP)z<i ι—»•  ( T S ) Γ is

injective.
(2) There exist ξ E (0,1) and t' > 0 such th at the following conditions are

satisfied
For every x = (xm) E X C ( T 5 ) z d , let y* E X be the unique
points with

+ _ ί z k if k = ( *? !, . . . , y G f withfcx > t',
y k ~ lθ(τ^)Q if k =  (ku . . . , kd) e f with kι < t ; ,

fxk if k =  (fci, ... ,fcd) E f with kλ < t\
n I /

\θ(τ*)Q if k =  (ku . . . , kd) E f with fci > *' .
Then π c + ^ β ( 1 ) ^ ( a r ) =  7r c + ( e(D ξ) (y+ ) and π c _ ( β ( 1 )

(3) There exists a continuous group isomorphism ζ : πf (X) • —̂  ί Fp'

which intertwines the shift actions of Γ =  Z r on π?(X) and ίF p I Q I J .
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In order to prove the first assertion we identify ( T s) z with ί T z J in the
obvious manner, write each x G  X as x — (x^\ ... , x^ ) with x^  G  TZ d,
and denote by π ^ : x > > x^  the j th coordinate projection. Put Xj — Wlf C
X and observe that X, =  {x = (x^\ ... ,χW) G  X : x( 1) =  =  z ( i ) =  0}
and π ^ X ^ i ) =  X^ / X, for j =  1, ... , s. Proposition 3.4 implies that any
x =  (α^1), ... ,a?W) G X with πf (a?) =  0 must lie in Xλ. Furthermore, since
π«( Xi) ^ Xλ/ X2 =  C/ Wi =  *VP , we know that z<2> G  X**'* C T z ' ,
and Proposition 3.4 implies that x^  =  0. By repeating this argument we
eventually obtain that x = 0, i.e. that πf is injective on X, as claimed in
(i)

If we choose ξ G  (0,1) as in (*), then (2) is an immediate consequence of
the proof of (1).

For the third assertion we set ΰ\ r = Z [uf1,... , uf1] C ίHd, view 9t as
a Noetherian 9tr module 9t;, and observe that W  is associated with the
prime ideal (p) =  p!EHr. Fix an enumeration Q =  {0 =  m^\  . . . τn^Q^} of Q,
where \Q\  is the cardinality of Q, set αy_i)|Q|+jfc =  ϊ/ m bj for j =  1, ... , s
and k = 1, ... , |Q|, and put 9tό =  {0} and % =  ίHr αi +  +  ίHr αz

for /  =  1, ... , s|Q|. The prime filtration {0} =  % C C 9ζ | Q | =  W
satisfies that (ΠJ / ^ i =  ίHr/ (p) for J =  1? ^ |Q |, and ^ Q | is equal
to VIj (regarded as an iϊr module) for every j = 0, .. . , 5. Write Yj =
Wj 1 for the annihilator of 9tJ in X = X* = W for j =  0, .. . ,s\Q\ ,
and note that each Yj is invariant under the Zr action a1 = oft', X =
% D •••  D ^ |Q | =  {0}, and Y^/ Yj S X^/ W for j =  1, ... , *|Q |.
The dual of the surjective homomorphism ώ : IK^I ι—>•  W defined by
ώ( / i, . . . ,  fs\ Q\ ) =  / i aλ H +  / S |Q | αβ|Q| is an injective homomorphism
ω: X ^ { sMf\  and we identify X with α (X) C (Tsl^l)Z r and a' with
the restriction to X of the shift action σ of Z r on ( T I Q I ) Z r . Each x G  X can
be written as x = {x^\ ... , x( s |Q I ) ) with η&(x) =  x( i ) G  F ^ " C T z r , and
ŷ  =  {x = ( x( i) ? . . . ,x(s\Q\)) e X : x{1) = • •  = rcϋ) =  0} for every j . Note
that yϋ i) / y(i) ^ ^ ( l . . !) =  ίRr/ (p) C T z r for j =  1, ... , s|Q|, so that
^m € Fp for every j = 1,... , s\Q\ - 1, x G ̂ - i , and m G Zr.

Put F = FP.IQI, F' = F/Fp, write 0 : F ι—)•  F' for the quotient map,
choose a map V> : F ' ι—̂  F such that φ Ψ is the identity map on F ' , and
define maps φ : F z r ι—> F / Z r and ^ : F / Z r H > F z r by setting (φ(tx))m =
0(u m ) and (^(v)) m =  ^(^m) for every m G Z r, tx =  (txm) G  F z r , and
ix =  (  G  F ' z r . The map

x =

is a shift commuting homeomorphism from X onto X/ XS |Q |_ I X F ^ \  Since
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X/ X8\Q\ I C  (TrW q) is the dual group of 9ΐs|Q| i, we can repeat this
argument and construct inductively a shift commuting homeomorphism ζ1 :
X i—> \Fp) The proof of (3) is completed by setting ζ =  ζ' π jΓ1 :

In order to prove the weak e^ specification of a*1 we go back to the
description of X as a closed, shift invariant subgroup of (T 5) z used for the
proof of (1) and (2). Prom the proof of (3) we know that ps^x = Qx for

— "Wr

every x G  X. In particular, πf (X) C  (FPS\Q\)Γ = (F*j$}A , and the shift

commuting homeomorphism ζ : ττr(X) ι—> [F^n is a block map, which
means that there exists a finite set Q' C Z r such that, for every v G πf (X)
and k G Z r, the coordinate C'(v)k °f C'(v) i s completely determined by the
coordinates of υ in the set k +  Q'. If <f G  (0,1) is the constant chosen in (2),
and if ζ' =  £ πf, then (2) implies that there exists a constant t" > 0 such
that the following condition is satisfied.

For every x = (xm) G  X C  { s)z\  let ̂  G I be the unique
points with

)̂c? if k =  (ku... , kd) G f with kx < t\

lθ(T.)Q if k =  (jfel5... , kd) G f with jfei > t ' .

Then πσ+ ^β ( 1)^(a?) =  π σ + ^ β ( 1 ) ^ ( y+ ) and

The weak (e^\  ̂ specification of a*1 is again a straightforward consequence
of (**). D

If the prime ideal p C ίHd satisfies that p(p) = 0, then the analysis of the
action a*d/ p becomes slightly more complicated. We write K =  Q for the
dual group of Q and denote by K : K —> T the surjective group homomor
phism dual to the inclusion k : Z ι—>•  Q. If p C ίH^ is a prime ideal with
p(p) =  0 we regard X*d/ p as the subgroup (3.11) of T z , and define a closed,
shift invariant subgroup X^d^  C 5? d by

(3.13) X**'* = {x = (xn) G  Kzd : f(σ)(x) = O^a for every /  G p} ,

where σ is the shift action (2.8) on K? and f(σ) is again defined by (3.12).
The restriction of σ to X^ / p will be denoted by ά*d/ p. Define a continuous,
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surjective homomorphism K : K? ι—> T z by (κ(x))n = κ(xn) for every
x =  (xm) € K?* and n G Zd, and write

(3.14)

for the restriction of K to
In order to obtain an algebraic description of X*d/p, ά r *^ , and

and to define the corresponding objects Xm, άm, and K?1 for an arbitrary
N oetherian ίH^ module associated with p we consider the ring

of Laurent polynomials with rational coefficients in t i i , . . . , u^  regard %\d as
the subring of 9 ^ consisting of all polynomials with integral coefficients, and
denote by p =  Q ® z p C 9Kd the prime ideal in ϋ\ d corresponding to p. Since
p(p) =  0, every 9td module 51 associated with p is embedded injectively in
the <nd module 9Ϊ =  Q ® z 91 by

(3.15) f1 :a^l®za

for every a G  9ΐ, and 91 associated with p^ SinceJH d C ίH d, 01 is an ϋ\ d

module, and we can define the Z d action α ^ on Xm as in (3.1) (3.2). N ote
th at the set of prime ideals_associated with the D^ module 91 is the same as
that of 91; in particular, o?1 is ergodic if and only if or* is ergodic and, for
every ocE Z d , a^  is ergodic if and only if a^  is ergodic. The homomorphism

(3.16) i*:X*^

dual to

(3.17) i : 91 H > 5Ϊ

is surjective, and for 91 =  9ΐd/ p we obtain that

(3.18)

Proposition 3.6. Let p C 9ΐd be a prime ideal with p = p(p) =  0 such that
the Zd action a = α ^ / p on X =  X*r f/ p =  gζ/ p C ϊ j " tβ eryorfic. TΛen
^Λere ea:i5ί5 an integer r G  {0, ... , d} wi£Λ £Λe following properties.
(1) If r = 0 then X has finite topological dimension, i.e. X is a finite

dimensional torus or solenoid.
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(2) Ifr>l there exist a primitive subgroup Γ c Z d and a finite set Q C 7Ld

such that
(i) Γ S Zd,

(ii) O G Q , and Q Π (Q + m ) =  0 whenever O / m G Γ ,
(iii) J 7 f =  Γ +  Q =  {m +  n : m e Γ , n e Q}, then the coordi

nate projection πf : X^d^p ι—>> K Γ
; which restricts any point

x E X°*d/ p C K? £o its coordinates in Ϋ, is a continuous group
isomorphism; in particular, the Γ action n H > δ̂ d^p, n G Γ , is α
Bernoulli action with alphabet KQ.

Proof. The proof is completely analogous to that of Proposition 3.4. We
find a matrix A € GL(d, Z) and an integer r E {0, . . . , d} with the following
properties: if Vj = uΛe 3 and v'j =  Vj +  p for j =  1, . . . , d, then v^, ... , v£
are algebraically independent elements of TZ =  £H d/ p, and there exists, for
each j = r +  1, . . . , d, an irreducible polynomial / j(x) =  Σk=o9k χk with
coefficients in the ring Z [vf1, ... , vf ι] C 9t</  such that fj{v\ ,... , Vj_ι,Vj) £
q and the supports of g ^ a n d ft^ are singletons.

If r =  0, then Vc(p) is the orbit of a single point c E Cd under the
G alois group, and X is a finite dimensional torus or solenoid ([SI ], Section
5). If r > 0 we assume again that A is the d x d identity matrix, so that
Vj = Uj for j =  1, . . . ,cί and Γ =  Z r is generated by e ^ , . . . , e ( r \  set
Q = {0} x . . . x {0} x {0, ... , / r + 1  1} x x {0, ... Λ  1} C Z d , and
complete the proof in the same way as that of Proposition 3.4, using (3.13)
instead of (3.11). D

Corollary 3.7. Let p C 9td be a prime ideal such that p(p) = 0, r(p) > 1,
and Qr*d/ p is ergodic, choose a primitive subgroup Γ =  Z r in Z d according
to Proposition 3.6, and fix a primitive element n E Γ. Then όrfKd^ has
weak n specification. More generally, if 9ΐ is an 9ϊd module with a prime
filtration {0} =  %> C C 9t2 =  W such that %/ %^  =  ΐRd/ p for every
j =  1, . . . ,s, then or* has weak n specification. Finally, if Fix(ctf}n) =
Ix G  Xm : θί^{x) = x\  for every k>l, then Γ\ k>i Fiχ(a<kL) Z 5 dense in Xn.

Proof P u t % = Q ®z % and note that %/ mj i = <Rd/ p = <Rd/ p for every
j = 1, . . . , 5. We write Xj = 51 for the annihilator of 51^ in X = Xm for
j — 1, . . . , s. Each Xj is invariant under the Z d action a — α 9 1 , X =  Xo D
•  D  Xs =  {0}, and Xj ι/ Xj = X**'* for j =  1, . . . , s. Choose elements
α i , . . . as in 51 such that 51j =  51j_i + *H r aά and hence 51j =  51j_i + 9 ί r ί(βj)
for j =  1, . . . , 5. The dual of the surjective homomorphism θ : 9{s

d \—> 51
defined by θ(f1,... , fs) =  fλ αx H h Λ α s is an injective homomorphism
0 : X >—> (Ks)z\  and we identify X with β(X) C (Ks)χd and α with
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the restriction to X of the shift action σ of Z d on (Kf)zr. Every element
x G  X will be written as x =  ( z ( 1 ) , . . . ,a;W) with x^ = πu\ x) G K2" for
j =  1,... ,5.

We choose a set Q C Zd according to Proposition 3.6, set Γ =  Γ +  Q,
and claim that the coordinate projection πf : X \—> (K S)Γ, which sends any
x € X C (Ks)z to its coordinates in f, is a continuous group isomorphism.
Since π^(X) = Xmd/ p, Proposition 3.6 shows that the coordinate projection

—> KΓ is a continuous group isomorphism. Furthermore, since
TΓ(2)(XL) =  X*d/ p and hence πf π ( 2 ) (X2) ι—y K f, and since each element in
π^(Xι) is completely determined by its coordinates in f, we can prescribe,
for any x G X, the coordinates of x^  and x^  in f arbitrarily and thereby
specify x uniquely up to an element in X2. By applying this argument s times
we obtain that πf : X •—> (Ks)τ is indeed a continuous group isomorphism.
In particular, if n G Γ is a primitive element, then άn is the shift on Z z ,
where Z is a compact group isomorphic to ]K?r , and the set of αn periodic
points is dense in X.

The weak n specification of w*d/ p and ά is proved exactly as in Corollary
3.5. D

Remarks 3.8. (1) The integer r =  r(p) appearing in the Propositions 3.4
and 3.6 will be called the free rank of the Zd action a =  cc**'* on X. If
X is zero dimensional, then the proof of Proposition 3.4 shows that the free
rank of a is equal to the smallest integer r > 1 such that 7Ld has a primitive
subgroup Γ =  17 for which the restriction of a to Γ is expansive, and to the
smallest integer r > 1 such that there exists a primitive subgroup Γ =  Z r of
1/  such that αΓ has finite entropy.

If X is connected the restriction of a to the group Γ c Z d obtained in
Proposition 3.6 has infinite entropy; however, aτ> has finite entropy if Γ' C Z d

is a subgroup which is isomorphic to Z r for any r' > r(p).
(2) Even if the Zd action a^  in Proposition 3.6 is expansive, the action

cr* is nonexpansive. By proving a more intricate version of Proposition 3.6
one can analyze the structure of the group Xm directly, without passing
to X**1. However, the weak n specification of or* is a little more difficult
to see than that of α0*, which explains the apparent detour of Proposition
3.6 and Corollary 3.7. For 91 =  9Wp one can show that the projection
πf : X*dl* i—> TΓ is still surjective, but no longer injective, and that the
kernel of πf is of the form Y^  for some compact, zero dimensional group Y
(cf. Example 3.9 (2)).

(3) There is considerable freedom in the choice of the subgroup Γ in Propo
sition 3.4 and 3.6, which will be exploited later in the proof of Theorem 2.1
(2)
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Examples 3.9 (1) Let p =  (2,1 +  uλ + u2) = 2ίR2 + (1 +  uλ +  u2)9\ 2 C 5H2

Then p(p) =  2, r(p) =  1, and we may set Γ =  {(Λ,Λ) : k E Z } 2* Z and
Q =  {(0,0), (1,0)} C Z 2 in Proposition 3.4. In this example X =  X*2/ *3 =
{x = (Xm) E ϊ f ^ : I(mi,m 2)+ 2(m 1+ l,m 2)+ ^(mi,m2+ l) =  0F 2 fi)Γ all ( m i , m 2 ) E
Z 2}, and the projection πf : X —•  F£ sends the shift α**/ * =  σ(i, i) o n ^
to the shift on F 2 =  (Z / 4Z ) Z . N ote that , although «(i,i) acts expansively
on X, other elements of Z 2 may not be expansive; for example, α(i,o) is
nonexpansive.

(2) Let p =  (3+u1+2u2) C <K2. Thenp(p) =  0, r(p) =  1, and Γ and Q may
be chosen as in Example (1). N ote that X*2/ p = X = {x = (xm) E T z d :
a?(mi,m2) + ^(m1+ i,m2) + ^ίmi,ma+ i) =  °τ for all (mum2) G  Z 2}; the coordinate
projection πf : X 1—> T Γ in Proposition 3.5 is not injective; for every x E X ,
the coordinates # ( m i , m 2 ) with m x > m 2 are completely determined by πf (# ),
but each of the coordinates x^k+i)^ G  Z , has two possible values. Similarly,
if we know the coordinates # (mi,m2)? m i ^ m 2 —^ of a point x =  (rrm) G  X for
any r > 0, then there are exactly two (independent) choices for each of the
coordinates Xfe^+r+i)? & G Z . This shows that the kernel of the surjective
homomorphism πf : X 1—> T ^(T 2) Z is isomorphic to 7ζ, where Y = Z 2

denotes the group of dyadic integers.
If p is replaced by the prime ideal q' =  (1 + 3uχ +2u2) C 9K2, then Γ and Q

remain unchanged, but the kernel of πf becomes isomorphic to (Z 2 x Z 3 ) Γ ,
where Z 3 is the group of tri adic integers.

We end this section with a brief discussion of the notions of Holder con
tinuity and summable variation.

Remark 3.10. If a is an expansive Z d action by automorphisms of a com
pact, abelian, zero dimensional group X, then Theorem 3.2 allows us to
embed X as a closed, shift invariant subgroup of Fz for some finite, abelian
group F and to assume that a is the shift action of Zd on X C Fz . Any
function /  : X »—> M which depends on only finitely many coordinates is α
Holder, and other examples of Holder functions and functions with summable
variation can be constructed quite easily. If X =  X^d/ p and a = GΓ*d/ p for
some prime ideal p C U\ d with p ( Z =  {0} (so that X is connected), then
we regard X as the closed, shift invariant subgroup (3.11) of T z . For every
ίG T w e write |t | =  m in fc 6 Z \ t — k\  for the usual arc length distance of t from
0. Then one can prove that there exist constants ε > 0 and c G  (0,1) with
the following property: for every finite set F C Z d we can find a K > 0 such
that , for every r > 1,

(3.19) {x E X : \ xm\  < ε for every m E B( r )}
C {x e X : |arm| < Kcr for every m E F } .
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If the free rank r(p) is equal to 0, then X = X0**/ * is a finite dimensional
torus or solenoid, (3.19) can be obtained from the proof of Lemma 4.7.
If r(p) > 0, then (3.19) follows from the estimate used in the calculation of
entropy in [LiSW]. If F C Zd is a finite set and /  : TFι—> R a function which
is Holder in the usual sense, then (3.19) shows that the map / ' =  /  πp •'
X\—> R is α Hόlder. The last statement can be generalized as follows: if
a is an expansive Z d action by automorphisms of a compact, abelian group
X, then there exists an integer n > 1 and a continuous, injective embedding
φ : X i—> ( T n ) z d of X as a closed, shift invariant subgroup of ( T n ) z < ί which
sends a to the shift action σ of Zd on X. If JP C Zd is a finite set and
/  : (T n) F ι—> R a Holder function, then one can again show that the map
/ ' =  /  7Γp : X\—> R is α Hόlder. There exist, of course, α Hόlder functions
on φ{X) C ( T n ) z which do not depend on only finitely many coordinates.

4. The proof of Theorem 2.1.

For the proof of Theorem 2.1 we need several lemmas.

L e m m a 4.1. Let d > 1, and let p C 9id be a prime ideal such that p(p) — 0
and the Zd action a =  a**/ * is expansive, mixing, and has free rank r —
r(p) > 1. We define the Zd action a =  or**/*' on X =  X**/ p as in (3.13) and
set, for every nonzero element n G  Zd, Fix(άn) = {x € X : δίn(x) — x}. Let
Γ =  Z r be a subgroup ofZd with the properties described in P roposition 3.6,
and let n G  Γ be a primitive element. Then there exists an integer K > 1
with the following property: for every k > K there exists an element m G  Z d

such that the restriction of άm to Fix(άkn) C X is ergodic.

Proof. 'We assume for simplicity that Γ is generated by e ( 1 \ . . . ,
e ( r ) , and that n =  e ( 1 ) . If k is greater than the maximum K of the de
grees in the variable Uι of the polynomials / j, j = r + 1, . . . ,d, occurring
in the proof of Proposition 3.6, then the explicit description of the group
X =  X9**/ * in (3.13) allows us to conclude that F ix(o:A;n) is (isomorphic to)
KΓfc and hence connected, where j k =  {0, ... , k  1} x Z 7""1 x {0} x x {0}
and f k = Γk + Q. If r > 2, then the restriction of ά ^ ) / P to Ϋk = F ix (άfcβ(i>)
is obviously ergodic, which implies our assertion.

Consider therefore the case r = 1, and assume that the Z d action induced
by ά on Ϋk is nonergodic. By Lemma 2.2 in [ KiS l] there exists a nonzero

element a e Yk =  9ld /  ίp +  (u\   1) SKdJ and an integer N > 1 such

that (uj1 — l j a = 0 for j — 1, . . . ,d. We choose an /  G  SR̂  such that

a = f + p +  (wf  1) ΪKd and obtain that ( u f  l ) /  G  p +  (ti{  1) ^ d for

j =  1, . . . ,d. Since Ϋ̂  is connected, mf $.$+ (u\  — I) y\ d for every m > 1,
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and we choose m > 1 so that mf G  fRd and (u*  ί) f G  p +  (txf  1) %\ d

for j =  1, . . . ,d.
We have found a nonzero element b =  m /  +  p +  (wf — 1) U\ d G  9^d/p +

(wf  1) 5Hd such that ( u f  l ) b = 0 for j =  1, . . . ,d. Set y* =
F i z (αΛβ(i)) C l =  X*d / p and note that , according to (3.13), y* =  #c*W> (Ϋ*),
where K^d/ p is defined in (3.14). In particular, Yk is a connected, uncount
able, α invariant subgroup of X, and the restriction of a to Yk must obviously
be expansive, and hence ergodic by Theorem 3.3 and 3.7 in [SI ]. On the
other hand, Yk =  9^/ p +  (u^ — 1) fRdi and the existence of the element
6 =  mf found above shows that a is nonergodic on Yk. This contradiction
implies that ά is ergodic on Ϋk.

Now assume that the restriction of α m to Ϋk is nonergodic for every m G
Z d . The argument in the preceding paragraph shows that we can find, for
every m G Z d , a Laurent polynomial j G ^ such that (um —J.) g G  p +
(u\  — 1) £Kd, which implies that α m is nonergodic on Yk. Since yfc =  %Kd/ p +
(txf — 1) 9\ d is a N oetherian D^ module, Theorem 3.1 implies that a is
nonergodic on Yk, which is absurd. We conclude that there must exist an
element m G Z d such that άm is ergodic on Ϋk, as claimed. D

L e m m a 4.2. Let d > I, p C 9\ d a prime ideal such that p(p) =  0 and
ϊ*(p) ^ 1; o^^ ίeί Γ =  Z r be a subgroup ofLd with the properties described in
Proposition 3.6. Suppose furthermore that &, £  are Noetherian ίRd modules,
and that £  has a prime filtration {0} =  £ 0 C C £«, =  £ such that
£ , / £ ,_! £ 9 Vp / or j =  1, . . . , 5. Λrf Xx =  X^ ; X2 =  Xz, X =  Xx x X2

and a =  o^ x a £ . TΛen every cocycle c : Z d x X»—)•  R i/;2ΪΛ a summable
variation is continuously cohomologous to the cocycle Eγ (c) : Zd x X\—> R
defined by Eι(c)(\a, (x,x')) — / c ( k, (x,y))dλχ2(y) / or every k G  Z d , a: G  Xi,

a;' G  X2 •

Proo/ . We choose a primitive subgroup Γ C Z d for p with the properties
described in Proposition 3.6, and fix a primitive element n G Γ. But X =
Xx xX*,ά = aSix a , Ϋ = {0Xl} x Ϋs U where Ϋό =  £ " ^ 1 ^ for every
j — 0, . . . , s, and define a continuous, surjective homomorphism^ : X \—> X
by p{x,x') =  (x,ιz(x')) for every (x,x') G  X, where z£ : X £ 1—> X2 is
defined by (3.16). For every j =  0, . . . ,5 we set Yj = Zf C X2 and note
that z £ ( ί ) = y , .

Apply Corollary 3.7, choose ξ G  (0,1) such that ά*d/ p has weak (n ,ξ)
specification, put ∆ =  ∆ δ ( n , ξ) Π Ϋ, and consider the cocycle cjj*' : ∆ x
X —> R defined by (2.11) with ά replacing α, and with h =  c(n ,p( )) .

We claim that 4 n ) ( y, x) =  0 for all y G  ∆ and x G  X. Prom Theorem 7.3
in [ KiS l] we know that Ufc>i Fiχ (akn) ι s dense in Xi, and the density of
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fc>1 Fix (akn) in X£ was proved in Corollary 3.7. Since the restriction of

az to Ϋs ι is (algebraically ad topologically isomorphic to)
Corollary 3.7 also implies that \ Jk>i \Fix (akn) ^ Ϋs i) ιs dense in Ϋs~i. If
there exist y G  ∆ and x G  X such that e^(y,x) φ 0, then we can also
find an integer k > K and elements y G  Fix (άkn) Π7 , x G  Fix (ά&n),
such that ϋΓib(a ) — Hk(x +  y) 7̂  0, where iί* =  Σ *I Q ^ ' **jn The cocycle
equation (1.1) implies that Hk(x) — Hk(x + y) = Hk> άm(x) — Hk άm(x + y)
for every m G Z d, so that the continuous function Fk : (Fix (άkn) Π Ϋ) x
F ix (ά/kn) '—* K, defined by i^. (y, rr) =  Hk (x) — Hk (x + y), is invariant under
the Zd action ά' induced by ά on (Fix (άkn) Π 7 ) x Fix (άkn). If k is large
enough, then Lemma 4.1 guarantees the existence of an element m G  Zd

such that α m is ergodic—and hence mixing—on Fix (άkn)ΠΫ. This implies
that the α' invariant function Fk must be constant in the first variable,
so that Hk(x)  Hk(x + y) =  Fk(y,x) =  Fk(0,x) =  0 for every (y,x) G
(F ix (άjfcn) Π 7 ) x Fia; (άkn). As explained above, this contradiction shows
that the cocycle c^  vanishes on ∆ x X.

Since a has weak (n, ̂ specification on Ϋ ^ X^7? =  X**/ * by Corol
lary 3.7, Proposition 2.6 implies that there exists a bounded Borel map
b : Xι—> R such that h =  £;λje (Λ|95jf/p) +  6 άn  b. We regard 6 =
Eλjί (6|p"1(95χ)) as a bounded Borel map from X to R and obtain that
E\χ (h\&x/γ) =h + b an b, where y =  {0Xl}x Ys_i C X and h =  c(n, • )•

Since X/ Y =  ^ Θ £ s~ i we can regard J5ΛX (h\*Bχ/γ) as a function on X/ Y
with summable variation and repeat the above argument with £ s_ i replacing
£ =  £ β . After 5 steps we obtain that h is cohomologous—with bounded
transfer function—to the function hλ =  Eχx (Λ|95wfOχ ) xχ 2 ) P u t ^1 =

hι*ρ=EXχ ί^|53χ/ {θχ }χ i i ) : ^ —> M and note that Λx =  Λ +  δ' αn 6 ' for
some (bounded) Borel map V : X\—> R. Since ά has weak (n, ^ specification
on {0Xl} x Xz by Corollary 3.7, Corollary 2.7 implies that there exists a
continuous function 6" : X\—> R such that Λi =  /i +  b" α n — 6". We regard
b" = EXχ (6/ / |p"1(95χ)) as a continuous map from X to R and obtain that
h = h + b" an  b".

The proof is concluded by noting that the ergodicity of α n and the co
cycle equation (1.1) together imply that c is cohomologous to 25i(c), with
continuous transfer function b". D

Lem m a 4.3. Let d > 1, and Ze£ p C 9\d be a prime ideal such that the
Zάι action a — a^d/ p is mixing, p =  p(p) > 0, and r =  r(p) > 1. Choose
a subgroup Γ = Zr of Zd with the properties described in Proposition 3.4,
and let n G  Γ be a primitive element. Then there exists an integer K > 1
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such that the Σd action induced by a on the closed, a invariant subgroup
Fix (akn) C X is ergodic for every k > K.

Proof. This is proved in the same way as Lemma 4.1, by using Proposition
3.4 instead of Proposition 3.6. D

Lemma 4.4. Let d > 1, p C 9\d a prime ideal such that p(p) > 0 and
r(p) > 1, and let Γ =  Z r be a subgroup ofZd with the properties described in
Proposition 3.4. Suppose furthermore that &, £  are Noetherian R(ι modules,
and that £  has a prime filtration {0} =  £ 0 C C £ s =  £  such that
£ , / £ , _ ! 2 Kd/ p for j =  1, . . . , s. Put Xλ = X*, X2 =  X£, X =  Xx x X2

and a = aR x α £ . Then every cocycle c : Z d x X\—> R with a summable
variation is continuously cohomologous to the cocycle Ex (c) : Z d x X\—> R
defined as in Lemma 4.3.

Proof. The argument is slightly simpler than , but otherwise completely
analogous to, the proof of Lemma 4.2, and~uses Proposition 3.4, Corollary
3.5 and Lemma 4.3, instead of Proposition 3.6, Corollary 3.7 and Lemma
4.1. D

Lemma 4.5. Let d > 1, p C ίH^ a prime ideal such that p = p(p) > 0,
r(p) =  1, and a = &*d/ p is mixing, and choose a subgroup Γ =  Z in Z d with
the properties described in Proposition 3.4 and a primitive element n G Γ. / /
h : X =  I ^ ^ i —> R is a function with a summable variation and Fourier
transform h : ίH^/p —> C, then

(4.1) lim y\h(ukn+m'a)\=0
(m,n,)= 0 *=eZ

/ or evert/  nonzero element a E O^d/p

Proo/ . Let Q £ Zd be the set defined in Proposition 3.4 and let F = %.
The coordinate projection πf : X \—> F^ =  Fz = Y defines a continu
ous group isomorphism η : X \—> Y, and we denote by σ the shift on
Y = Fz and note that η an = σ η. There exist constants L,L' >
0 (which depend on Q and on the polynomials / , , j = 2 , . . . ,d, in the
proof of Proposition 3.4), such that , for every r > 1, τr{_r,...,r}(v(x)) —
π {_ r v. . ) r }(7?(z/ ) ) whenever πB{r+L)(x) = πB(r+ L)(z')> a n d πB(r)(^) =  πB(r)(x')
whenever τr{_L/ r)...)L/ r}(ry(a;)) =  π{ L'r,...,L'r}('n(x')) (here πE again denotes
the coordinate projection onto a set of coordinates E). For every r > 1 we
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set

ωr(h) = sup \h(x) — h(x')\  >

ω'r(h')= sup \h'{y) h'{y')\ ,
{  }

where /&' : Y —> K is defined by h = h1  η. Since Λ. has summable variation,
Σ r> iα ; r (^) < 00; furthermore α;r(/ ι) >  ω'L,r{h!) for every r > 1, so that

For every r > 1 we can find a function h'r : Y —» M, which only depends
on the coordinates {—r,... , r} G Z, such that |/ i'(y) —/ ιj.(y)| < ωj.(/ i') for
every J / G 7 . If ή : Y 1—>•  9̂ d/p is the isomorphism dual to η : X 1—)•  y,
then \h (ή(χ))  K(x)\  < ω h') for e v e r y X G 7 and r > 1. We set

S(h,r) = {ae 9id/ p : h(a) > ω'r(h')}

and observe that

ή ι(S(h,r)) = S(h',r) = {X G  Ϋ : h(η(χ))\  > ω'r{r)\
(4 2)

c 0 } .
For every nonzero element a G

DΓ(r,o) =

and
|T ( r , o ) |< |5 ( r , o ) |< 2 r +  l

whenever 0 Φ a G £ and r > 1, where |»S  denotes the cardinality of a set S.
In particular, if ω'0(h

f) =  maxyGy |/ i'(y)| and T(0,α) =  0, then

(4.3) £  |A (ufcn α)| <  Σ (u/ r_a(V)  ϋ/ r(Λ')) |Γ(r,α)| <  oo
r>\

for every nonzero element a G  9ίd/ p.
We fix a nonzero element a G 9Wp. Since ΛJ, depends only on the coordi

nates { r,... , r}, (4.2) shows that \S(h,r)\  = \S(h',r)\  < \S(h'r)\  < | F | 2 r + 1 .
Furthermore, since a is mixing, um a φ um> a whenever m φ m ' G Z d,
so that there exist, for every r > 1, at most |jF |2 r + 1 elements m G Z d with
T(r,um a) φ 0. In particular we can find, for every M > 1, an integer
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M' > 1 such that Γ(r, um a) =  0 whenever r < M, (m, n) =  0, and
||m || > M', in which case (4.3) implies that

α) I < Σ W t(Λ')  < l(h'
>M

< 2
r>M l

By letting M » oo we obtain (4.1). D

Lemma 4.6. Let d > 1,  and /e£ p C 9ίd δe a prime ideal with p = p(p) > 0
andr — r(p) =  1. Suppose furthermore that &, £  are Noetherian *Rd modules
with the following properties.
(1) The Zd actions a^ and az are expansive and mixing;
(2) Every prime ideal q C £Hd associated with  satisfies that either p(q) =

r(q) =  0; or p(q) > 0 and r(q) =  1;
(3) £  has a prime filtration {0} =  £ 0 C C £ 5 =  £  with £j/ £j i =  ίHd/ p

/ or j =  1, ... , s.
Xeί Xx =  XΛ, X2 = X^, X = Xtx X2 = X ^ £

? a =  aR x a £ , and
let c : Zd x X\—> M. be a cocycle with a summable variation. Then c is
continuously cohomologous to the cocycle Eλ (c) : Z d x X\—> R defined as in
Lemma 4.2.

Proof. We choose a primitive subgroup Γ =  Z in Z d for p with properties
stated in Proposition 3.4, fix a primitive element n G Γ and a ξ £ (0,1)
such that α £ has weak (n, ̂ specification (Corollary 3.5), set h — c(n, • ),
and put Yά =  £+  c X2 for j =  0, ... , s. Then I 2 = y 0 D . . o 7 s =  {0}.
We set Y =  {0Xl} x F s_ x C l , ∆ =  {0Xl} x (∆α £ (n ,ξ) nY J C X, and
consider the cocycle ch = c^n : ∆ x X\—> R defined in (2.11). We claim
that c*jj?\y,x) = 0 for every y £ A and x G X; since the set \ Jk>ι Fiχ (akn)
is dense in X by Corollary 7.4 or Theorem 7.5 in [KiSl] this is easily seen
to be equivalent to the assertion that c™ (y,x) = 0 for all y E ∆ and
x € Uk>iFix(akn).

Suppose that there exist k > 1 and z G Fix (α*.n) such that

(4.4) 4n ) (y, 2r)# 0

for some y £ δ. The conditions (l) (2) imply that a^d^q is ergodic and has
finite entropy for every prime ideal q C 9ίd associated with £ Θ £ , so that
Fix (αfcn) is finite (cf. [SI]).

For every j G  Z we define a function <̂  : y ι—> R with summable variation
by 5j(y) =  Λ(α^n(^) +y) for every y G y, and consider the cocycle c :
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∆ x Y\—> R defined by

i ' otjn(x)  g3 ajn(x + y)
jez

for y G  ∆ , x G  y. Since Firr (αΛn ) is finite, Ω(n)' =  {m G Z d: (m ,n ) =  0
and am(z) =  2:} has finite index in Ω(n) =  {m G Z d : (m, n) = 0 }. As
Y c* χ^/ p^  Lemma 4.5 shows that

(4.5) lim
m—>oo

m 6Ω ' ( n )

for every nonzero element a £Ϋ. The cocycle equation (1.1) implies that

<*jn{x) ~ 9j ' otjn(x + y))

j <*jn+m(x)  93 ' ajn+m(x + y))
(4 6) i€Z

jez

for every m G Ω'(n). By combining (4.5) and (4.6) we obtain that the
cocycle c vanishes. This contradicts (4.4) and proves that the cocycle c^ :
∆ x X\—> R vanishes.

The proof is completed in exactly the same manner as that of Lemma
4.2. Proposition 2.6 implies that h is cohomologous to EXχ (/ ι|95χ/ y), with
bounded transfer function, and by viewing EXχ (h\*Bχ/γ) as a function on
X/ Y with summable variation we can apply the above argument again and
obtain after s steps that h is cohomologous EXχ (^|35χ/ ({Oχ }xχ2 ) ) Since
az has weak n specification by Corollary 3.5, we conclude as in the proof of
Lemma 4.2 that h is continuously cohomologous to EXχ (^l®χ/ f/ ox \χx2 w'
and that c is therefore continuously cohomologous to Eι(c). D

Lem m a 4.7. Suppose that d > 1, and that p C 9ίd is a prime ideal such
that p(p) — r(p) — 0 and a =  or**/ * is expansive and mixing. Then there
exist primitive elements m, n G Z d with the following property: if h : X =
X^d/ p^—y ]g is a function with a summable variation and Fourier transform
h : 9id/ p i—> C, then

(4.7) lim Σ |λ (^ fc n + / m o) I =  0

for every nonzero element a G  ̂ d/ p

Proof. There exists a point c = ( c i, . . . , cd) G  Q C C 1 such that p =  {/  G
£Hd : / (c) =  0} and Vc(p) is the orbit of c under the Galois group of ΓQ : !
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where Q is the algebraic closure of Q. We write Q(c) for the algebraic
number field generated by {ci, . . . , Q }, O(C) for the ring of integers in Q(c),
and φ , φ / , φoo for the sets of places, finite places, and infinite places of Q(c).
for each i / G φw e write Q(c),, for the corresponding completion of Q{c)u,
choose a H aar measure \ v on the locally compact field Q(c)u (regarded as
an additive group) and a compact set Cu C Q(c)u with nonempty interior,
and define the valuation | \ u : Q(c)J/\—> R+ by \a\ u — \ v(aCv)l\ v(Cv) for
every a G  Q(c),,, where aCu — {ay : y G  Cv}. With this choice of | •  !„ ,
v G  φ , we have that ΓLeφ H " = * ^ o r e v e r y α ^ Q( c) If ^ G  φ /  we
write ou = {y G  Q(c),, : |y|,, < 1} for the maximal compact subring of Q(c)u

and choose a prime element ^ E o,,, i.e. an element such that πuov is the
maximal ideal in ov. For v G  φoo w e s e ^ ov =  o(c).

Let φf(c) = {veφf : \a\ p φ 1 for some % G  {1, . . . , d}}, 5(c) =  φ/ (c) U
φoo, and denote by j : Q(c) ι—>  ΓLe5(c) Q( c)^ ^ e diagonal embedding
o 4 ( α , . . . ,α) , α ^"Q(c). If

flc =  {α e Q(c) : lα^ < 1 for every v G  φ \  5(c)} ,

and if ηc : /  ι> / (c) , /  G  91^, is the evaluation map, then ηc{^d) — 9ΐrf/p>
and ηc{9\ d) is a subgroup of finite index in Rc (Lemma 5.1 in [SI]). We
continue as in Section 5 in [SI]. The subgroup j(Rc) C Z = ΓLes(c) Q( c)^
is discrete and co compact, and Y =  Rc = Z/ j(Rc). A typical element
of y G  Y will be written as y — {yv) =  (yv,v G  S(c)) +  j{Rc), where
2/i/  ^ Q(c)i/  for every v G  «Sf(c). For every v G  <ί?(c) and ε' > 0 we set
α ( ε ' ) =  {|/ E Q ίc) , : \ y\ u < ε'}, and put Q(ε') =  Π , 6 s ( c ) Q ^(^) Since j( i ϊ c )
is a discrete subgroup of Z there exists, for every sufficiently small ε' > 0, a
neighbourhood N(ε') of Oy in Y which is homeomorphic to Q(ε') C Z , and
we identify these neighbourhoods and regard Q(ε') as a neighbourhood of
Oy in Y.

In order to understand how an element of Rc defines a character on Y we
follow [W]: there exists, for every v G  φ , a character χv G  o^  C Q(c),, with
the following properties.
(1) If v G  φ / 5 then X l /  (π^ov) =  {e 2 ^ ' ^ ^ : jfe G  Z } C S;

(2) lives xΛb) =  1 for every 6 G Q(c).
For every z = [zv,v £ S) C Z we set ψ(z) =  Π I / G 5 ^ ( ^ ) a n ( ^ obtain that
ψ(j(a)) = 1 for every α G  i?c, so that φ G  j{Rc)

λ' C Z . Hence 0 induces a
character χ G 7 . Every character in Y is of the form x^  : y »>  χ(a y) =
ΠLG S *> ( a ' 2/ )̂ for s o m e a e Ro where y =  {yu) G  y and a y = (ay,,).

We define a Z d action a1 by automorphisms of Y by «n (y) — c n y for
every n =  ( n j, . . . ,nd) E Zd and ί / G 7 , where c n =  cj11 c£ d, write ^ ; :
n * + β'n = a'n for the Z d action on Ϋ = Rc dual to α ', and observe that
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β^{b) = cnb for every n G  Zd and b e Rc. The homomorphism τ : Y ι—> X
dual to the inclusion map 9id/ p = ηc{W>d)  c~^ Rc is surjective and finite to
one, and α n r =  r α^ for every n G Z r f. We shall prove (4.7) for the function
/ ' =  /  r : Y\—> R, which has α' summable variation, and for every nonzero
a £ Rc; this will imply that (4.7) holds for the function / .

If Vc(p) = {c = c ( l ) , . . . , c( ί)} with c(j) = (c(j)u... ,c(j)d) for every
j — 1, . . . ,£, then Theorem 3.1 (1) implies that c(j) £ Sd for j = 1, . . . ,£ .
Since a and α ' are mixing, c4 is ergodic whenever 0 ^ k =  (fci, ... , fed) G  Z d ,
so that the eigenvalues c^j)^ = c^')*1 c(j)k

d
d, j = 1, . . . , £, cannot all have

modulus 1. An element k G Z d will be called hyperbolic if none of these
eigenvalues has modulus 1, which is equivalent to saying that \ ck\ u φ 1 for
all v G  φoo N ote that there exist finitely many one dimensional linear
subspaces Lj C Rd such that every n G  Zd \  [j Lj is hyperbolic.

We claim that there exist primitive, hyperbolic elements

m =  ( m i , . . . , m d ) , n =  (nu... ,nd)

in Z d with the following properties.
(1) For every v G  ̂ oo, either ^ ^ > 1 and \ c% > 1, or \ cm\ u < 1 and

(2) There exists at least one v G  φoo such that \ cn\ u > 1;
(3) If \ cn\u > 1 for all v e Vβ^  then there exists a v1 G  φ/ (c) with

|cm|,< ΓL eφ . | c m | , < 1 and |c X Π , G φ o o | c n | , < 1.
In order to prove that such choices are possible we set α^ =  Πj= i c(j )k ^ Q

for k = 1, . . . ,d, and let ε > 0. Then there exist relatively prime integers
fei, k2 such that αf1^ 2 — 1 < ε, and we set k =  k(ε) =  (fci, k2,0,... ,0) G
Z d . If a^a*2 =  1 then the product of the eigenvalues of the ergodic automor
phism c4 is equal to 1, and we conclude that there exist jf, j ' G  {1, . . . ,£}
such that |c ( j) k | < 1 < |c ( / ) k | , which is equivalent to saying that there
exists valuations ι/, v1 G  ψoo with \ (^\ v < 1 < 1^^, . P u t k' =  m k +  e^1^
for some large m > 1, and divide the entries of k' by their highest common
factor, so that k' becomes primitive. Then c k | > 1 for every v G  φoo with

\&\ v > 1, and c k' < 1 for every v G  φoo with \ cu\ u < 1. If either k or k'
are nonhyperbolic we choose a primitive hyperbolic element n ' G  Z d and set
n =  n ' +  mk, m =  n ' +  m k' for a suitably large m > 1 (if these elements
turn out not to be primitive, divide them by the highest common factor of
their entries). Then m , n are hyperbolic and satisfy ( l) (2) .

Now assume that , for every primitive k G Z d , either \ ck\ u > 1 for all
v G  φoo5 or 1̂ 1 ̂  < 1 for all v G  φoo, in which case the preceding paragraph
shows that a*1 a*2 φ 1 whenever (0,0) φ (kι,k2) G  Z 2, and that 1 is a limit
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point of jα^α^ 2 : (0,0) φ (kXik2) G  Z 2 | . For every ε > 0 we can choose
k(ε) =  (A;i(ε),A;2(ε),0,... ,0) 6 Z d as above, but with considerably more
freedom, such that k(ε) is hyperbolic, and 1 ^ ^ ^ > 1 for every v G  φoo
Then 1 < Π , €ϊ u |^ ( e ) L =  α j l ( ε ) 4 2 ( ε ) < 1 +  ε. However, ΓL€S ( c ) \*\v = 1,
which implies that, if ε is small, some of the valuations \ (?*\  , v G  φ/ (c), must
be very large, and others very small, as their product is close, but not equal,
to 1. In particular there exists, for every M > 1, a primitive, hyperbolic
element k G  Zd such that |c k |^ ΓLeφ^ | c k L <  M~X for s o m e u' G ^P/ (c)
By increasing M we obtain distinct primitive, hyperbolic elements n, m in

d and a i / 'E φ/ (c) such that \ cm\ u > 1 and \ cn\ v > 1 for all v G  φoo, and
\ cm\v Π.eφ^ \ cm\v < 1, |c n |, , Π , G φ o o |c nL for some i/  G  φf(c).

Having found primitive, hyperbolic elements m, n in Zd satisfying (l) (3)( ) ( )
/ ' (ckn) , k G Z. Choose an invariant

)
we estimate the Fourier coefficients

metric δ on Y and ε > 0, and find a (small) ε' > 0 such that

(4.8) y,(ε) =  {y e Y : <5(y,0y) < ε} D Q(ε')

and hence

(4 9) Π a'm(Yδ(ε))DQ(ε'/ \ \ c\ \ ^),
m€B(r)

where

||c||W = .max max{|cΓ|, , , |CrI }
1= 1, ...a

for every r > 1. We claim that, for every r > 1 and a £ R

(4.10)

whenever

(4.11)

α 6 P (ε'/ ||c||W) =  {66/ ^ : X(6) (Q (ε1/ \ \4ίr))) = §}

Indeed, write Y^  =  ker (χ(α ) ) C y for the kernel of the homomorphism
γio ) : Y ,—). § a n d choose a Borel set

J?<°> C Q (ε'/Hcll W) C

which intersects each coset of y( α ) C 7 in exactly one point ([P], Lemma
1.5.1). Next choose a probability measure µ o n F such that µ (B^) =  1
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and JγM µ(B + y)d\ γW(y) = X(B) for all B € φγ, and set h'(y) = f f'(y +
z)dµ(z) for every y e Y(a). Then \h'(y)  f'{y)\  < ωδ

r(f',a,ε) for all y e Y,
0 =  JyX^dXy = fγwfγχ

ίa){y + z)dµ(z)d\γ(y) = fγXω(z)dµ(z), and
f'(a) = J (fh'(z)χ(a)(z)dλy(z)d\y(y) = θ) , which proves (4.10).

The next step is to investigate, for every ζ > 0, the set

There exists, for every v € φoo a £„(£) > 0 such that

for v € φ/ (c) there exists a unique integer ra(^, ζ) > 1 such that Qu(ζ)

π^^ov and hence xAQΛO) = le2**^"'0^  : fe E z | , and we set tu(ζ)
()||π m(z/ ,c)|̂  A nonzero element a G Rc lies in P (ζ) if

(4.12)

or if there exists a v G  φ/  (c) with

(4.13)

We also note that, for every i/ G S and r > 1,

(4 14)

For every nonzero element a G  Rc we put P(a,r,ε') =  {fe G Z:
c*nα G  P ^ e ' ) }. Then we can estimate the cardinality |P (α, r, ε') | as fol
lows. According to property (2) of n there exists a valuation v G  φoo with
|cn |^ > 1, and we denote by M =  M(α, î ) the smallest nonnegative real
number such that 2\crτί\™ tv(ε')\a\ v > \ \c\ \ {J? for every r > 1. If there exists
a ^' G  φoo such that (c11^ < 1, then we can find a smallest nonnegative real
number M' = M'(a, v1) > 1 such that 2 \ c~rn\™' tv,{e')\a\ ε, > \ \c\ \ ιj} for every
r > 1. If no such v1 exists, then the property (3) of n and (4.14) imply that
there is a valuation v1 G  φ/ (c) and a smallest nonnegative real number M' =
Mf(a, v1) such that 2 (Σξ^oo ̂ ( ε ' )M ξ) '\ c~rnff > \ \c\ \ {J? for every r > 1. In
either case (4.12) (4.13) imply that |P (α , r ,ε ' ) | < r(M(α,i/ ) +  M/(α,i/ / )) f o r

all r > 1, and hence that |{& G Z : |Λ# (cΛnα) | > ^ ( / i ' , ^ ^ ) } < r(M(α,ι/ ) +



140 A.B. KATOK AND K. SCHMIDT

M'(a, u')) for all r > 1. Since h! has summable variation this shows that
Σfcez ^ ' (cnA;α) < oo for every nonzero element a e Rc.

If we replace a by c~lma for I > 1 then M (c~ / mα, ẑ ) < M(a, v) and
M ' (c"/ mα , z/ ) < Af'(α, i/ '), and there exists an V > 1 with M (c"/ mα , ι/ ) =
M ; (c~lτna,v') = 0 for every /  > / '. Hence l im / . ^ Σkez \h' ( c *n / mα ) | =  0,
which proves (4.7) (after replacing m by — m ) . •

L e m m a 4.8. Let d > I, and let p C ίHd be a prime ideal with p(p) =
r(p) =  0. Suppose furthermore that , £  are Noetherian 9ld modules with
the following properties.
(1) The jd actions aR and α £ are expansive and mixing;
(2) Every prime ideal q C 9td associated with & satisfies that either p(q) =

r(q) =  0, or p(q) > 0 and r(q) =  1;
(3) £  has a prime filtration {0} =  £ 0 C C £ s =  £ with £ j/ £ j i =  ίH d/ p

/ O Γ J =  1 , . . . , 5 .
Zeί X2 =  XΛ, X2 = X£ , X =  Xλ x X2 =  X^ θ £

; a =  a^ x a £ , and
let c : Z d x Xι—)> IR be a cocycle with a summable variation. Then c is
continuously cohomologous to the cocycle Eλ (c) : Zd x X\—> R defined as in
Lemma 4.2.

Proof. The proof of this lemma is completely analogous to that of Lemma
4.6, except that we use Lemma 4.7 instead of 4.5. D

Proof of Theorem 2.1 (1). Let SDt =  X be the N oetherian 9td module arising
from (3.1) (3.2) (cf. Theorem 3.2), and let {p i, . . . , p m } be the set of prime
ideals associated with SPΐ. Lemma 3.3 implies the existence of a N oethe
rian 9Vmodule VI with associated primes {pi, . . . , p m } and of an injective
module homomorphism φ : 971 ι—> VI such that 9t =  9t ( 1 ) Θ θ 9 t ( m \
where each 9t ( j ) has a prime filtration {0} =  9ΐ£ j) C •••  C 9 1 ^ with
9tfcJ'V9tfcJ2i =  ^d/ pj for k =  1, . . . ,rj. We assume without loss in generality
that exist integers 5, s7, s", 0 < s < sf < s" < m, such that p(pj) =  r(qj) =  0
for j =  1, . . . ,θ, p(p) > 0 and r(q, ) =  1 for j =  5 +  1, . . . , s' , p(p) =  0
and r(q^) > 1 for j =  5; +  1, . . . , s", and p(p) > 0 and r(pj) > 2 for
j s'7 +  1, . . . , m . Prom Theorem 3.1 we know that a713 is mixing for
j = 1, . . . , m . We write ^ : X' = Xm • —•  ϊ =  X*1 for the surjec
tive homomorphism dual to φ and define a cocycle d : Zd x X'\—> R with
summable variation by c'(k, • ) =  c(k, VK*)) Repeated application of Lemma
4.4 shows that d is continuously cohomologous to the cocycle # (i, ... , S")( c ') ί
where £7(i,... ,j)(cr) : Z d x Xm\—> R is defined as in the last paragraph of Sec
tion 2 for every j =  1, . . . , m. By applying Lemma 4.2 repeatedly we see that
^(i, ...,s")(c') ( a n d hence d) is continuously cohomologous to JE ( I V. . ) 5 / ) ( C ' ) , and
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Lemma 4.6 implies that d is continuously cohomologous to ^ ( i , . , . , , ) ^ ) . F i
nally we use Lemma 4.8 to conclude that d is continuously cohomologous to
the homomorphism k h> fχ t c'(k, )dλχ>. We choose a continuous function
V : X'H —> R such that c'(k, x) =  / λ χ /  c'(k, )dλ*, + V α ? 6 / for every k G Z d ,
set δ =  £ λ χ , {b\ψ 1 (ΦΛ ) ) , and obtain that c(k, s) =  / λ χ c(k, ) dλx+ fc α k &
for every k G Z d , which completes the proof. D

Proof of Theorem 2.1 (2). Let p i , . . . , p m be the prime ideals associated
with the SH^ module 9Jt =  X, and assume as in the proof of part (1) of this
theorem that there exist integers 5, s', s", 0 < 5 < s1 < s" < m, with the
properties described there. We fix j G  {s + 1, . . . , m } for the moment and
consider the subgroup Γ =  Γj? =  Z Γ^ p j ) associated with the prime ideal p7 by
Proposition 3.4 or 3.6. F ix the polynomials fr(Pj)+i,... , fd in the proof of the
relevant proposition, denote by C(fi) C Md the convex hull of the support
S(fi) C Z r f, and write iff**, fc =  1, . . . , ί J 5 for the finitely many distinct
hyperplanes which are parallel to the faces of C(fi). Then any primitive
subgroup Γj =  Z r in Z d will satisfy the conditions ( l) (3) in Proposition
3.4 or 3.6, if it is not contained in any of these hyperplanes. By varying
j G {s +  l , . . . , m} we obtain a finite collection of hyperplanes to be avoided.
F urthermore, if we fix j G  {1, . . . , s}, and if Vc(pj) is the variety of pj (cf.
Lemma 4.7), then there exist finitely many elements v ^ G  Rd, k =  1, . . . , l^
such that |c i |Vl |cd|Vd φ 1 for all c =  ( c i , . . . , cd) G  Vc(pj) whenever
v =  (vι,... , vd) G  Mrf is not orthogonal to any of the vj , k =  1, . . . , lj ,. In
particular, α m

d ' P i is expansive whenever m is not orthogonal to any vj ,
k — 1, . . . , / j, and by varying j G  {1, . . . ,«s} we obtain a finite collection
of hyperplanes of Wd which have to be avoided. By taking into account all
these restrictions we can choose a primitive element n G Z d and, for every
j =  s + 1, . . . , ra, a primitive subgroup Γ̂  =  Z r ^ p ^ in Z d which satisfies
the requirements of Proposition 3.4 or 3.6, such that amd^pj is expansive for
j =  1, . . . , s, and n G Γj for j =  2 +  1, . . . , m.

We choose φ : 9Jί ι—> 9t =  ϋΐ ^ θ Θ ^ ( m ^ as in the proof of Theorem
2.1 (1) and write ψ : X™ \—> X for the dual surjection. For every j G
{*' +  1, . . . , s"} we define ^ P *, α ^ 7 7 , X 5 ^ , and z5^77 : X^^  H ^ ^ a s

in the discussion preceding Proposition 3.6, set

X =  X ω x x X*m>) x Xw< 3'+ 1 ) x x Jf

x a J t x x a ι
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and consider the surjective homomorphism ψ % : X \—> X induced by ap
plying either the identity map or i313 to each factor of X, and by composing
the resulting map from X to X^  with φ : X^  ι—> X. Our choice of n guar
antees that α n is ergodic and has weak (n, ̂ specification on X for some
ξ e (0,1) (Corollaries 3.5 and 3.7). We put h =  c(n, •) and know from The
orem 2.1 (1) that there exists a continuous function b : X\—> R such that
^ ~ Ix h dλx — b an — b. Put h =  h i : X\—> M, b — b i : X\—> R, and note
that h  jχh d\χ =  6 α n  6. Hence the cocycle c^n) : ∆ a ( n , ξ) x X\—> R
in (2.11) vanishes, and Proposition 2.6 (with X — Y =  X) implies that b is
ά Hόlder (note that 6 is determined uniquely up to a constant). By Lemma
2.5, b is Holder, and the ergodicity of α n implies that c is cohomologous to
a homomorphism, with transfer function b. D
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