TOPOLOGICAL TRANSITIVITY OF BILLIARDS IN POLYGONS
A. N. Zemlyakov and A. B. Katok UDC 513.83
Consider a billiard in a polygon Q — R? having all angles commensurate with 7. For the ma-
jority of initial directions, density of every infinite semitrajectory in configuration space is

proved. Also proved is the typicality of polygons for which some billiard trajectory is dense
in phase space.

Introduction

A billiard in a polygon Q in the Euclidean plane Rlisa dynamical system produced by the frictionless
motion of a point-sphere inside Q with elastic reflection from the boundary 5Q of the polygon; the velocity
of the sphere may be taken to be unity. This motion is unbounded in time, so long as the sphere does not
run into a vertex of the polygon. In the confrary case, the motion is defined in time (in the positive or nega-
tive sense) up to collision with a vertex. The first of these cases will be termed the general case; the sec-
ond will be termed the exceptional case.

The phase space M = M(Q) of this dynamical system is obtained from the direct product @ x s!, where
s! is the circle of unit velocities, by identifying pairs of the forms (g, v), (g, v') for q€aQ, v and v' € S! and
v—v'=2 (n, v)n; here, n = n{g) is the unit exterior normal to 3Q at the point q. Consider the case that the
velocity vector makes an angle ¢ with some chosen direction e. Then, for each point q in a side AB of the
polygon the law for the above-described identification takes the form

(¢ 0) ~ (g ¢), ¢ =20—0q 1)

where « is the angle between AB and the direction e.

We denote by {Ty} = { T%} the phase flow of the system. The transformations Tt are defined for all t
only on the subset M' « M of the elements (g, v) € M whose carriers q never meet vertices of the polygon
Q. For the remaining elements of M the transformations T; are defined not for all t but just up to collision
of the carrier with a vertex. A volume element dm = dq-dg in Q X s! induces on M a finite measure m in-
variant under the flow {Ty}; note that m(M\M') = 0.

We denote by Q) the polygon Q x {v(g)} C @ X S'. Trajectories of the flow {T;} which come from
points (g, ¢) € Q(p) are line segments in Q{p) which form the angle ¢ with a chosen direction e. After re-
flection from a side AB these trajectories "cut over" into the polygon Q(@'), where ' is defined by formula
(1). If one views the polygons Q(¢) and Q(e') as lying in a plane, with Q(¢") obtained from Q{¢) by reflec-
tion with respect to the side AB (we write Q{o'} = SppQ(p)), then the pieces of trajectories which lie in
Q(p) U Qle') comprise not a broken line but rather a straight-line segment. The identification described
above amounts to gluing Q (@) to Q{y') along side AB and defines a natural smooth structure of class C”™ on
the set Int(Q{(w) |y Q(y')). By successive reflections with respect to sides of the polygons Q(¢), Qlv"), - ..
one may "straighten out™ any finite part of a trajectory of the flow { Tt}’ i.e., one may correspond to this
part a segment in the plane.

Finally, we may note that the direct product topology in Q x s! induces a topology in M, and the func-
tion Ty(x) of the variables t and x = (g, v) € M is continuous in t and x at each point of its region of definition.
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§ 1. Invariant Manifolds of a Billiard

In this section and the next we shall assume that all angles of the polygon Q are commensurable with
7. We shall fix a direction e for reckoning angles, by taking e to lie along one of the sides of the polygon.
We may then write down angles to e formed by the remaining sides in the form o, = mmy/ 20p, v=1,2,... .
Let N = N(Q) be the least common denominator of the fractions m,/np, r =1, 2, ...; then from (1) it fol-
lows that the function

F(z) =F (g v) =F(¢) = |¢|mod (a/N) @)

is well-defined on M and is invariant under the flow {Tt} Thus, for each number ¢, 0 < ¢ < 1/(2N), there
is a {T¢}-invariant subset M, = M (@Q) = {x: F(x) = c}. Suppose c= 0, 7/(2N). Then, as is evident from (2),
the set M, may be obtained as the union of 4N nonintersecting polygons Q((o:), where

S

¢s =4-c+ sa/N, s=0,1,..,2N —1, 3)

by pairwise identification of their sides in accord with formula (1).

PROPOSITION 1. For c¢= 0, 7/(2N) the set M¢ with the topology induced from M is homeomorphic
with a two-dimensional manifold. In fact, one may introduce on M, a smooth structure of class C* which
coincides with the structure described in the introduction except at the vertices of the finite set (3) of poly-
gons. The genus p of the manifold M¢ = M¢(Q) is determined by the shape of the polygon Q (i.e., p does
not depend oa c¢).

Proof. First of all, it is necessary to verify the existence, at those points of M, which are identified
with vertices of the polygons Q(<p§), of neighborhoods which are homeomorphic with the disk and which
possess a smooth structure which agrees with the smooth structure at the remaining points. Let Qg be one
of the polygons and let B, A, D be three consecutive vertices of Q). Let o = 7m/n be the size of the angle
BAD where m and n are relatively prime. We shall describe a neighborhood of that point of Mg which is
obtained from A; for this purpose we shall use the viewpoint whereby, with the aid of reflections, polygons
are glued together (i.e., their sides are identified). The polygon Q from the set (3) is joined to Q along
the side AB; this polygon Qq may be viewed as the image of Q; under the reflection Spop with respect to the
side AB:Qq = SABQ- The polygon Q, = 8A(CQ; is joined to Q; along the "free" side AC of Qq; ete. It is
easily seen that the polygon Q,,_4, which joins to Q,., 2along some other side emanating from the vertex A,
must also be joined to the polygon Qg along the side AD. Thus, a neighborhood Uy of the point A in Mg is
glued from 2n sectors having angle nm/n and constitutes an m-sheeted surface with branch-point A. If we
regard the k-th sector as lying in the complex plane

R, =0zcC |z| <& [(h —)m/nl-n <Carg z< (hmun)-7},
we can define a homeomorphism of Uy onto the circle by using the transformation z — w = 3 z. Thus, on
U, there is defined a chart which smoothly matches the charts on the sets Int Q(0) and Int (Q(0) | Q(0"),
so that on M, there is defined a smooth C” manifold structure. From formula (1) and the choice of the
number N = N(Q) it follows that the manifold M, is connected and that the gluing of the polygons of the set
(3) does not depend on the value of the constant c; consequently, the genus p of the manifold Me = Mg (@Q)
does not depend on ¢c: p(Mc(@)) =p(@Q). Proposition 1 is proved.

Let us now describe the topology of M, when ¢ = 0 or ¢ = #/(2N). The invariant subset M, is glued
out of 2N polygons Q(wk), where ¢ = kn/N, 0 <k < 2N. From formula (1) it follows that if a side AB of
the polygon Q((pk) forms an angle o = Oy with the chosen direction, then its points are not identified with
any other points: ¢'=2a—¢ = 20 — ¢k = ¢k = ¢- Such sides of the polygons Q(‘Dk) will be called "bound-
aries." Arguments in the proof of Proposition 1 show that M, is a manifold with boundary, with the bound-
ary of M, consisting of the points of the "boundary" sides. (Suppose a vertex A of anangle of measure mm/n,
where m and n are relatively prime, belongs to one of the "boundary" sides. Then, when n is odd a neigh-
borhood of A is glued from n sectors with angles mm/n, and when n is even a neighborhood of A is glued
from /2 such sectors. In both cases the neighborhood is homeomorphic to a semidisk.) Analogous con-
siderations show that the invariant subset M /(,N) is likewise homeomorphic to a two-dimensional mani-
fold with boundary. These two manifolds can be either orientable or nonorientable. (For example, when
Q is anh equilateral triangle, both mearifolds are Mobius bands.)
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Since in every phase space the sets My and My /(;N) are of measure zero, we shall henceforth consider
only the closed manifolds M, described in Proposition 1, where 0< ¢ < 7/@2N).

- Definition 1. Points of the manifold M, which are obtained by identifying vertices of angles of mea-
sure rm/n, where m > 1, will be called branch points of order m.

Let us now describe the flow { Tf} = {T¢|M¢} induced on the manifold M¢. It is clear that in the
neighborhood of each point of M, the flow { Tf} either is a local flow of parallel displacements or extends
by continuity to such a flow (in neighborhoods of vertices of angles 7/n). If A€ M, is a branch point of
order m, then on each sheet of an m-sheeted z-neighborhood of the point A the flow { Tg} likewise is a flow
of displacements (in one and the same direction); moreover, on each sheet precisely one trajectory ends at
A and precisely one trajectory begins at A: altogether, m "entering" and m "exiting" singular trajectories.
The vector field VC of the flow {Tf} has in the coordinates z the form V°(z) = ¢'¢, where ¢ = ¢(c) is a

constant; in the coordinates w ="z this field is given by the formula VC(w) = wiMelo/m (here z = 0 and
w = 0).

The flow {Tg} preserves the finite measure mg, which is induced on M, and which coincides with
Lebesgue measure on the polygons Q((pz). In a neighborhood of a branch point of order m the measure me
likewise coincides with Lebesgue measure in local coordinates z, while in local coordinates w, m, is given
by the density m|w|™L,

PROPOSITION 2. On the manifold Mg there is a smooth transformation of time which vanishes only
at branch points and which transforms the flow { TE} into a smooth flow { Tf} having the following proper-
tiess

(K0) The set Q({Tg}) of nondiffuse points of the flow {T‘?} coincides with M.
(K1) The fixed points of the flow { %g} are precisely the branch points of the manifold M.

(K2) A branch point of order m is a multisaddle point of index 1—m for the flow {i‘f}, in other words,
the phase portrait of the flow in a neighborhood of this point consists of 2m hyperbolic sectors separated
by m entering and m exiting separatrices.

Proof. Multiply the vector field VC of the flow {T,f} by a smooth function f, where f is defined in a
small neighborhood of each branch point by the formula f(w) = Iw{m, m being the order of the branch point,
and is distinct from 0 at all other points. We obtain a vector field V€ which satisfies a Lipschitz condition.
The flow { Tf} produced by this field preserves the measure mg,, where difi,(x) = dm¢(x)/f(x). In neighbor-
hoods of branch points the measure m¢ is given by the density i le'i; consequently, rT)c(Mc) < e and there-
fore Q({ Tf =M o Hwe multiply the vector field V° by a smooth function which vanishes only at branch
points and decreases sufficiently rapidly in neighborhoods of these points, we obtain a smooth field V€
which generates a smooth flow {%g}. Clearly, Q ({T%)) = @ ({T%}) and therefore {Tf} possesses property
(K0). Assertions (K1) and (K2) follow directly from the properties of the time transformation and from the
description of the structure of the flow { T?} given before the statement of the present proposition.

If all angles of Q have the form = /n then the manifold M¢ has no branch points and {TE} is an every-
where-defined smooth flow without singular points. Hence, M is a torus and p(Mg) = p(@) = 1. This case
is realized only for billiards in rectangles and in triangles of three types: with angles (r/3, /3, 7/3), (#/2,
/4, n/4) and (1/2, 1/3, 1/6). As is well known, the topological structure of a smooth flow onthe torus which has no
fixed points and which preserves Lebesgue measure is completely determined by the rotation number of
the flow. It is not difficult to see that in the situation being considered here the rotation number of the
flow { Tf } is a nonconstant analytic function of c. Consequently, for all values of ¢, except a countable set
of values corresponding to rational rotation numbers, the flow { Tg} is topologically transitive on the torus
M, and is ergodic —indeed, strongly ergodic —with respect to the measure m,. In the next section we will
show that this picture is partially preserved even in the general case, when p(@Q) > 1 and M, is not a torus
(see Propositions 3 and 4). We make two remarks.

1. From the point of view of analytic mechanics a billiard is a Hamiltonian system with two degrees
of freedom. In the case of a polygon whose angles are commensurable with 7, this system has two inde-
pendent first integrals: the energy integral H = |v]| %/2 and the above-defined integral ¥. The functions I
and F oceur in involution "almost everywhere," and a billiard may be regarded as "almost" integrable in
the sense of a Liouville system. The violation of commutativity of H and F at points with carriers which
meet vertices -f the polygon entails that the phase space of the system decomposes not only into fori but
also into invariznt knots (i.e., two—dimensional manifolds of genus p > 1).
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2. It is well known that a system of two solid spheres of masses m; and m, in an interval (with elas-
tic reflections from the ends of the interval) is equivalent to a billiard in a right triangle with acute angle
a = arctan Ym;/m, ({11, Lecture 10). X the angle ¢ is commensurate with =, then the system of two spheres
has two first integrals and reduces to flows on invariant knots in phase space (the invariant surfaces are
tori only when m; = m,, m, = 3m,, or m; = 3m,).

§ 2. Topological Transitivity in Invariant Manifolds

Definition 2. A flow {S;} on a two-dimensional manifold M? will be called quasiminimal if the follow-
ing conditions are satisfied:

(KM1) the number of singular points of the flow is finite;

(KM2) each singular point is a multisaddle point with a finite number of entering and exiting separa-
trices;

(KM3) each positive or negative semitrajectory which is not a separatrix is dense in MZ.

. A. G. Maier [2] dealt with the study of smooth flows on orientable surfaces and having a finite num-
ber of equilibrium conditions for boundary cycles and separatrices. We shall need a corollary of the basic
result ([2], Theorem IX) (a corollary used by one of the authors in [3]).

COROLLARY TO MAIER'S THEOREM. Suppose that the flow {S;} of class C! on the closed orient-
able two-dimensional manifold M? satisfies the conditions (KM1) and (KM2), and in addition the conditions
(MO) ©({8;}) = M*

(M1) {S¢} has no periodic trajectories;

(M2) no separatrix of the flow S; goes from one singular point to another.
Then, the ﬂow{St}possesses theproperty (KM3) (and, therefore, is quasiminimal).*

PROPOSITION 3. For all values c€ (0, 7/N) except a countable set of values, the flow {%tc} is qué,si—
minimal (and therefore the flow {Tf} is topologically transitive).

Proof. By virtue of Proposition 2 the flow {T‘f} satisfies conditions (M0), (KM1), and (KM2) of the
corollary stated above. Therefore it is sufficient to verify that for a billiard in a polygon Q, periodic tra-
jectories and "trajectories™ which go between vertices (corresponding to separatrices which join multi-
saddles) can go along only a countable number of directions. Let us apply totrajectories of these twotypes
the "straightening-out" procedure described in the introduction. We find that each of these trajectories
has on the plane R? a direction of the form AZ, where A is some vertex of the polygon Q ¢ R? and Z is the
image of one of the vertices of Q under a composition of reflections of the plane R? with respect to the
polygon Q. The set of such points Z in the plane is countable, and Proposition 3 is proved.

Definition 3 (see [3]). Suppose that the flow {S¢} of class C! on the two-dimensional manifold M? has
a finite number of fixed points. A Borel measure ; on M? is called a nontrivial invariant measure of the
flow {8t} if it is invariant, the measure of each trajectory of the flow is zero, and for every open neighbor-
hood U of the set of fixed points u(M?*\U) < .

The following assertion comes essentially from Theorem 1 of [3], although formally that theorem
concerns flow with nondegenerate saddles.

PROPOSITION 4. I the flow {TC} is quasiminimal, then this flow (and therefore also the flow {Tg})
has at most p distinet (up to multipliers) ergodic nontrivial invariant measures, where p is the genus of
the manifold M. (Q).

§ 3. Topological Transitivity in Phase Space

We now deduce some consequences for billiards in arbitrary polygons.

Denote by &, the set of all orientable nondegenerate n-gons with indexed vertices, considered as
distinet up to similarity. Anelement Q & %, shall be identified with the ordered set {a, b, q4, « .-, Qpp}
of the vertices of an n-gon in the plane R? having two points ¢ and b fixed. The embedding &, — R¥-2 in-
duces a topology in &,; it is not difficult to construct a metric for this topology in which the space P, is
complete.

*1t is possible to prove that for manifolds of genus p >1 condition (M1) follows from the remaining condi-
tions of this assertion.
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Let %) C &, be the set of those n-gons whose angles are commensurate with 7, and let »Y — {Q
& Pu: N (Q) > N} (the number N@Q) for Q = 2 is defined at the beginning of § 1). It is clear that for each
N the set 9 is everywhere dense in &,,.

PROPOSITION 5. Let £ be a closed subset of %, such that for each N the set N N # is every-
where dense in # . Then % includes an everywhere dense subset %, of type G such that for each n-gon
Q = R, the flow {TtQ} in M(Q) is topologically transitive.

Proof. We introduce a metric in the subset MYQ) = Int Q x S! cM(Q) by the formula
do (g, ), (¢, ¥)) =max {| ¢ — ¢ |, di (v, V) }

where d; is the natural metric in ! = R|Z. In distinction to M(Q), all spaces M%Q) are pairwise homeo -
morphic. Let us fix some "standard" n-gon Q, = %, and then define a homeomorphism hg :MYUQ)—~M"@Q)
by the formula hq (g, v) = (fq(q), v), where q' = fo@) = Fl@, Q) = (@5 q4s -+ dp-» € R? depends continuously
onq, qqs - -+ qp9s here, for each Q = P,,fo: Q@ — 0@ is a homeomorphism and fQo is the identity transfor-
mation. Finally, let us choose in MO(QO) a countable basis of open sets consisting of open balls By of radius
Iy in the metric on, k=1,2,....

Let £ be the set of those Q & # for which there is a trajectory of the flow { ’I‘?} which intersects

both hg By and hQBl, even if it may not be defined for all t. We set &, = kfjf] X and we shall show that the
4 s l=1
set #, possess all the properties mentioned in the statement of the proposition.

From the continuity of the function f and from the continuous dependence of each finite piece of the
configuration of a trajectory of the flow {T{"}, i.e., of a broken line q(t; qg, Vo3 Qs - - > dpp) = q(t; Xg5 Q) in
the plane R?, on the initial condition x, = (qg» vo) and on the vertices q4, ..., q,, of an ngon Q = %, it fol-
lows that all of the sets £ are open. Moreover, if N> min {r'ki, rf} and Q = %) (] £, then from the
definition of hg+ and By and formulas (3) it follows that for every ¢ the manifold M¢(Q!') intersects both
hQ'Bgk and thBl, and by virtue of Proposition 3 (' = #,; by the condition that the sets &5 [ £ are every-
where dense in %, the sets #,, are likewise everywhere dense in %#. Thus, J, is an everywhere dense
subset of £ and of type Gg (we recall that &, is complete, while £ is closed).

Since for every Q the sets hQBy, k=1, 2, .. .form a basis of open sets in MYQ) and in M(Q)), it follows
from the definition of %y and £, thatif Q & J,, then for every two open sets U, V c M(Q) there is a tra-
jectory of the flow {T?} which intersects both U and V. Since, by a time transformation which nowhere
vanishes on MO(Q), the flow {T?} may be transformed into a continuous flow, the topological transitivity of
{T?} follows. Proposition 5 is proved.

COROLLARY. A system of two solid spheres in an interval (with elastic reflections from the ends
of the interval) is topologically transitive on each surface of constant energy for values of the ratio m;/m,
belonging to an everywhere dense subset of the half-line of type Gg.

For the proof it is sufficient to apply Proposition 5 to the set & C %, of right triangles and to take
into account Remark 2 of §1. -

Propositions 3 and 5 proved above characterize the topological picture of the behavior of billiard
trajectories in polygons; the corresponding metric picture remains very unclear. The following two ques-
tions strike us as being interesting.

1. In a polygon whose angles are commensurate with 7, does ergodicity follow from topological
transitivity of the billiard flow on an invariant manifold ?

2. Are there polygons for which the billiard flow is ergodic in all of phase space ? How large is the
set of these polygons (from the point of view of density, category, measure, etc.,) in &, ?
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LETTERS TO THE EDITOR

*
The formulations in §1 of our article "Topological transitivity of billiards in poly-
gons" (Matematicheskie Zametki, 18, No. 2, 760-764 (1975)) contain errors. Namely, the
angles ar should be written in the form 7mr/ny. Formula (2) for the integral F must be as

follows:
F (z) = F (g, ) = F (¢) = <9 mod (22/N)),

where <pmod (2a/N)) 1s the distance along the axis O¢ from the number ¢ to the number near—
est to ¢ which is an integral multiple of 2m/n. The values c of the integral must lie in /
the interval 0<e< n/N ; moreover, the invariant subset M. is obtained from the 2N polygons

Q (¢¥) , where
- o =dc+2mn/N, s=0,1,...,N—1

(the formula (3) on p. 761). In the formulation of Proposition 1 and in the remarks after
its proof (before Definition 1) the exceptional values of c are O and m/N, and the set M,
in these remarks is obtained from the N polygons Q(9x), where ;= 2xk/N, 0 < k<N.

The proofs and all other formulations remain valid.

A. N. Zemlyakov and A. B. Katok
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