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C o n s i d e r  a b i l l i a r d  in a p o l y g o n  Q c R 2 hav ing  a l l  a n g l e s  c o m m e n s u r a t e  wi th  ~r. F o r  the  m a -  
j o r i t y  of i n i t i a l  d i r e c t i o n s ,  d e n s i t y  of e v e r y  in f in i t e  s e m i t r a j e c t o r y  in  c o n f i g u r a t i o n  s p a c e  i s  
p r o v e d .  A l so  p r o v e d  i s  the  t y p i c a l i t y  of p o l y g o n s  fo r  which  s o m e  b i l l i a r d  t r a j e c t o r y  i s  d e n s e  
in  p h a s e  s p a c e .  

I n t r o d u c t i o n  

A b i l l i a r d  in a p o l y g o n  Q in the  E u c l i d e a n  p l a n e  R 2 i s  a d y n a m i c a l  s y s t e m  p r o d u c e d  by the f r i c t i o n l e s s  
m o t i o n  of a p o i n t - s p h e r e  i n s i d e  Q with  e l a s t i c  r e f l e c t i o n  f r o m  the b o u n d a r y  0Q of the  po lygon ;  the  v e l o c i t y  
of  the  s p h e r e  m a y  be  t a k e n  to be uni ty .  Th is  m o t i o n  i s  unbounded in t i m e ,  so  long  a s  the s p h e r e  does  not  
r u n  in to  a v e r t e x  of the po lygon .  In the c o n t r a r y  c a s e ,  the m o t i o n  i s  de f ined  in  t i m e  (in the p o s i t i v e  o r  nega -  
t i ve  s ense )  up to  c o l l i s i o n  with  a v e r t e x .  The f i r s t  of t h e s e  c a s e s  wi l l  be t e r m e d  the g e n e r a l  c a s e ;  the  s e c -  
ond wi l l  be t e r m e d  the e x c e p t i o n a l  c a s e .  

The p h a s e  s p a c e  M = M(Q) of th is  d y n a m i c a l  s y s t e m  i s  ob ta ined  f r o m  the d i r e c t  p r o d u c t  Q x S 1, w h e r e  
S I i s  the  c i r c l e  of uni t  v e l o c i t i e s ,  by i den t i fy ing  p a i r s  of the  f o r m s  (q, v), (q, v ' )  fo r  qEaQ,  v and v '  ~ S 1 and 
v - v '  = 2 (n, v)n; h e r e ,  n = n(q) i s  the  uni t  e x t e r i o r  n o r m a l  to 0Q at  the p o i n t  q. C o n s i d e r  the  c a s e  tha t  the  
v e l o c i t y  v e c t o r  m a k e s  an ang le  ~ with  s o m e  c h o s e n  d i r e c t i o n  e .  Then,  fo r  e ach  p o i n t  q in  a s ide  AB of the  
p o l y g o n  the law for  the  a b o v e - d e s c r i b e d  i d e n t i f i c a t i o n  t a k e s  the f o r m  

(q, q)) ,-, (q, qo'), q~' ---- 2~ - -  % (1) 

w h e r e  ~ i s  the  ang le  b e t w e e n  AB and the d i r e c t i o n  e .  

We deno te  by {Wt} = {T~t } the  p h a s e  f low of the  s y s t e m .  The t r a n s f o r m a t i o n s  T t a r e  de f ined  fo r  a l l  t 
only  on the  s u b s e t  M'  c M of the  e l e m e n t s  (q, v) E M whose  c a r r i e r s  q n e v e r  m e e t  v e r t i c e s  of the  p o l y g o n  
Q. F o r  the r e m a i n i n g  e l e m e n t s  of M the t r a n s f o r m a t i o n s  T t a r e  de f ined  not fo r  a l l  t bu t  j u s t  up to c o l l i s i o n  
of the c a r r i e r  with a v e r t e x .  A v o l u m e  e l e m e n t  dm = dq �9 d e  in  Q • S 1 i n d u c e s  on M a f in i te  m e a s u r e  m in-  
v a r i a n t  unde r  the  f low {Tt}; note tha t  m ( M \ M ' )  = 0. 

We deno te  by Q(~) the  p o l y g o n  Q x {v (~)} c 0 z s 1. T r a j e c t o r i e s  of the f low {Tt} which  c o m e  f r o m  
p o i n t s  {q, q~)~Q@) a r e  l ine  s e g m e n t s  in  Q(cp) which  f o r m  the angle  e with a c h o s e n  d i r e c t i o n  e.  A f t e r  r e -  
f l e c t i o n  f r o m  a s ide  AB t h e s e  t r a j e c t o r i e s  "cu t  o v e r "  in to  the p o l y g o n  Q @ ' ) ,  w h e r e  e '  i s  de f ined  by  f o r m u l a  
(1). If one v i ews  the p o l y g o n s  Q(e)  and Q ( ~ ' )  a s  l y ing  in a p l a n e ,  wi th  Q(~ ' )  ob ta ined  f r o m  Q(~) by r e f l e c -  
t i on  wi th  r e s p e c t  to the s i de  AB (we w r i t e  Q(~ ' )  = SABQ(r  then  the p i e c e s  of t r a j e c t o r i e s  which l i e  in  
Q@) U Q ( ~ ' )  c o m p r i s e  not a b r o k e n  l ine  but  r a t h e r  a s t r a i g h t - l i n e  s e g m e n t .  The i d e n t i f i c a t i o n  d e s c r i b e d  
above  a m o u n t s  to g lu ing  Q(e)  to Q ( e ' )  a long  s ide  AB and de f i ne s  a n a t u r a l  smoo th  s t r u c t u r e  of c l a s s  C ~ on 
the s e t  Int(Q@) U Q(~ ' ) ) "  By s u c c e s s i v e  r e f l e c t i o n s  wi th  r e s p e c t  to s i d e s  of the p o l y g o n s  Q(e ) ,  Q ( e ' )  . . . .  
one m a y  " s t r a i g h t e n  out" any f in i te  p a r t  of a t r a j e c t o r y  of the f low ~Tt}, i . e . ,  one m a y  c o r r e s p o n d  to th i s  

p a r t  a s e g m e n t  in  the  p l a n e .  

F i n a l l y ,  we m a y  note tha t  the d i r e c t  p r o d u c t  topo logy  in  Q x S 1 i n d u c e s  a topo logy  in  M, and the func-  
t i on  Tt(x) of the  v a r i a b l e s  t and x = (q, v) E M i s  con t inuous  in t and x a t  e a c h  p o i n t  of i t s  r e g i o n o f d e f i n i t i o n .  
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1.  I n v a r i a n t  M a n i f o l d s  o f  a B i l l i a r d  

In th is  s ec t i on  and the next  we sha l l  a s s u m e  that  a l l  ang les  of the po lygon Q a r e  c o m m e n s u r a b l e  with 
r .  We sha l l  fix a d i r e c t i o n  e for  r e c k o n i n g  ang les ,  by tak ing  e to l ie  a long one of the s ides  of the po lygon.  
We m a y  then  wr i t e  down ang les  to e f o r m e d  by the r e m a i n i n g  s ides  in  the f o r m  o~ r = 7 r m r / 2 n  r ,  r = 1, 2 . . . . .  
Le t  N = N(Q) be the l e a s t  c o m m o n  d e n o m i n a t o r  of the f r a c t i o n s  m r / n  r ,  r = 1, 2 . . . .  ; then f rom (1) i t  fol-  
lows tha t  the func t ion  

F (z )  = F ( q ,  v) =F(qD) = ]q~ lmod(a /N)  (2) 

is  w e l l - d e f i n e d  on M and is  i n v a r i a n t  unde r  the flow {Tt ) .  Thus,  for  each n u m b e r  c, 0 _< c _< lr/(2N), the re  
is  a { T t } - i n v a r i a n t  s u b s e t  M e = Me(Q) = {x : F(x) = c}. Suppose c ~ 0, ~r/(2NT. Then,  as is  ev iden t  f rom (2), 
the se t  M e m a y  be ob ta ined  as  the un ion  of 4N n o n i n t e r s e c t i n g  po lygons  Q ( ~ ) ,  where  

r = -q- c -~- s~t/N, s = 0, t ..... 2N - -  1, (3) 

by p a i r w i s e  i den t i f i c a t i on  of t he i r  s ides  in  a c c o r d  with f o r m u l a  (17. 

PROPOSITION 1. Fo r  c ;~ 0, 7r/(2N) the se t  Mc with the topology induced  f rom M is  h o m e o m o r p h i c  
with a t w o - d i m e n s i o n a l  man i fo ld .  In fact ,  one m a y  in t roduce  on M c a smooth  s t r u c t u r e  of c l a s s  C ~ which 
co inc ide s  with the s t r u c t u r e  d e s c r i b e d  in  the i n t r o d u c t i o n  except  at  the v e r t i c e s  of the f in i te  se t  (37 of po ly -  
gons .  The genus  p of the man i fo ld  M c = Mc(Q) is  d e t e r m i n e d  by the shape  of the po lygon Q (i.e.,  p does 
not depend on c). 

P roof .  F i r s t  of al l ,  i t  is  n e c e s s a r y  to ve r i fy  the e x i s t e n c e ,  a t  those po in t s  of M c which a r e  iden t i f ied  
with v e r t i c e s  of the po lygons  Q(r  of ne ighborhoods  which a r e  h o m e o m o r p h i c  with the d isk  and which 
p o s s e s s  a smooth  s t r u c t u r e  which a g r e e s  with the smooth  s t r u c t u r e  at  the r e m a i n i n g  po in t s .  Let  Q0 be one 
of the po lygons  and le t  B, A, D be th ree  conse c u t i ve  v e r t i c e s  of Q0. Let  o~ = ~ m / n  be the s ize  of the  angle  
BAD where  m and n a r e  r e l a t i v e l y  p r i m e .  We sha l l  d e s c r i b e  a ne ighborhood of that  po in t  of M e which is  
obta ined  f rom A; for  th is  p u r p o s e  we sha l l  use the v iewpoin t  whereby ,  with the aid of r e f l e c t i o n s ,  po lygons  
a r e  g lued toge the r  (i .e. ,  t h e i r  s ides  a r e  ident if ied)~ The po lygon  Q~ f rom the se t  (37 is  jo ined  to Q0 along 
the s ide  AB; th i s  po lygon  Q1 may  be viewed as the i ma ge  of Q0 unde r  the r e f l e c t i o n  SAB with r e s p e c t  to the 
s ide  AB :Q1 = SABQ 0. The po lygon  Q2 = SACQ1 is jo ined  to Ql a long the " f ree"  side AC of Q1; e tc .  It i s  
e a s i l y  s e e n  that  the po lygon  Q2n-1, which jo ins  to Q2n-2 along some  o ther  s ide  e m a n a t i n g  f rom the v e r t e x  A, 
m u s t  a l so  be jo ined  to the po lygon  Q0 along the s ide  ADo Thus,  a ne ighborhood U A of the po i n t  A in  M c is  
g lued f rom 2n s e c t o r s  having angle  7rm/n and cons t i t u t e s  an  m - s h e e t e d  s u r f a c e  with b r a n c h - p o i n t  A. If we 
r e g a r d  the k-th s e c t o r  as ly ing  in  the complex  p l a ne  

Rn = {z ~ C: ] z ] ~ e, [(k - -  1) m/nl . r l  ~ arg z ~ (km:n).rr},  

we can  def ine a h o m e o m o r p h i s m  of U A onto the c i r c l e  by us ing  the t r a n s f o r m a t i o n  z ~ w = ~ z. Thus,  on 
UA the re  is  def ined a cha r t  which smooth ly  m a t c h e s  the cha r t s  on the se t s  Int Q(cs) and Int (Q(co) U Q(c0')), 
so that  on M c the re  is  def ined  a smooth  C ~ man i fo ld  s t r u c t u r e .  F r o m  f o r m u l a  (17 and the choice of the 
n u m b e r  N = N(Q) it  fol lows that  the man i fo ld  M c i s  connec ted  and that  the g lu ing  of the po lygons  of the se t  
(3) does not depend on the va lue  of the cons t an t  c; consequen t ly ,  the genus  p of the man i fo ld  I~{ c = Mc(Q) 
does not  depend on c: P(Mc(Q)) = p(Q). P r o p o s i t i o n  1 is  p r ove d .  

Let  us now d e s c r i b e  the topology of M c when c = 0 or  c = 7r/(2NT. The i n v a r i a n t  s u b s e t  M 0 is  glued 
out of 2 N p o l y g o n s  Q(<Vk), where  ~k  = k~r/N, 0 __< k < 2N. F r o m  f o r m u l a  (17 i t  fol lows that  if a s ide AB of 
the po lygon Q(q~k ) f o r m s  an ang le  ~ = <Pk with the chosen  d i r ec t ion ,  then i ts  po in t s  a r e  not iden t i f i ed  with 
any o ther  p o i n t s :  ~o' = 2 ~ - ~  = 2 ~ k - r  = ~k  = q~- Such s ides  of the po lygons  Q(Ok) wil l  be ca l led  "bound- 
a r i e s ~  A r g u m e n t s  i n  the p roo f  of P r o p o s i t i o n  1 show that  M 0 is  a man i fo ld  with boundary ,  with the bound-  
a ry  of M 0 c o n s i s t i n g  of the po in t s  of the "boundary"  s ides .  (Suppose a v e r t e x  A o f a n a n g l e  of m e a s u r e  lrrn/n, 
where  m and n a r e  r e l a t i v e l y  p r i m e ,  be longs  to one of the "boundary"  s ides .  Then,  when n is  odd a neigh-  
borhood of A is  glued f r o m  n s e c t o r s  with ang les  7rm/n, and when n is  even  a ne ighborhood of A is glued 
f rom n/2 such s e c t o r s .  In both c a s e s  the ne ighborhood is  h o m e o m o r p h i c  to a s emid i sk . )  Analogous  con-  
s i d e r a t i o n s  show that  the i n v a r i a n t  s u b s e t  Mv/(2N) is  l i kewise  h o m e o m o r p h i c  to a t w o - d i m e n s i o n a l  m a n i -  
fold with bounda ry .  These  two m a n i f o l d s  can  be e i t h e r  o r i e n t a b l e  or  n o n o r i e n t a b l e .  (For  example ,  when 
Q is  an e q u i l a t e r a l  t r i a n g l e ,  both ma~ ifolds  a r e  Mhbius  bands . )  
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Since in every  phase space the sets M 0 and MTr/(2N ) are  of measu re  zero,  we shall henceforth consider  
only the closed manifolds M c descr ibed in Proposi t ion 1, where 0 < c < rr/(2N). 

�9 Definition 1. Points of the manifold M c which are  obtained by identifying ver t ices  of angles of mea-  
sure 7rm/n, where m > 1, will be called branch points of o rder  m. 

Let us now descr ibe  the flow {T~} = {Ttl Mc} induced on the manifold M c. It is c lear  that in the 
neighborhood of each point of M c the flow {T~} ei ther is a local flow of para l le l  d isplacements  or extends 
by continuity to such a flow (in neighborhoods of ver t ices  of angles zr/a). If AE M c is a branch point of 
order  m, then on each sheet of an m-sheeted z-neighborhood of the point A the flow {T~} likewise is a flow 
of displacements  (in one and the same direction); moreover ,  on each sheet p rec i se ly  one t ra jec tory  ends at 
A and p rec i se ly  one t ra jec to ry  begins at A: altogether,  m "entering" and m "exiting" singular t r a jec to r ies .  
The vector  field V c of the flow {T~} has in the coordinates z the form VC(z) = e 1,~, where r = r is a 

constant; in the coordinates w =m~fz this field is given by the formula  vC(w) = w~-meir (here z ~ 0 and 
w ~  0). 

The flow {T~} p r e s e r v e s  the finite measure  m e which is induced on M e and which coincides with 
Lebesgue measu re  on the polygons Q(r In a neighborhood of a branch point of order  m the measu re  me 
likewise coincides with Lebesgue measu re  in local coordinates z, while in local coordinates  w, m e is given 
by the density m [w I m-1. 

PROPOSITION 2. On the manifold Me there is a smooth t ransformat ion  of t ime which vanishes only 
at branch points and which t r ans fo rms  the flow {T~} into a smooth flow ~e {T t } having the following p rope r -  

t ies :  
~ C  

(KO) The set  ~({T~}) of nondiffuse points of the flow {Tt} coincides with M c. 

(El) The fixed points of the flow {T~} are p rec i se ly  the branch points of the manifold M e. 

(K2) A branch point of o rder  m is a multisaddle point of index 1 - m  for the flow {T~}; in other words,  
the phase por t r a i t  of the flow in a neighborhood of this point consis ts  of 2m hyperbolic  sec tors  separated 
by m entering and m exiting separa t r i ces .  

Proof.  Multiply the vector  field V c of the flow {T~} by a smooth function f ,  where f is defined in a 
smal l  neighborhood of each branch point by the formula  f(w) = [w ]m, m being the order  of the branch point, 
and is dist inct  f rom 0 at all other points.  We obtain a vector  field Vc which sat isf ies a Lipschitz condition. 
The flow {T~} produced by this field p r e s e r v e s  the measu re  ~qc, where dfflc(X) = dmc(x)/f(x) .  In neighbor- 
hoods of branch points the measu re  mc  is given by the density fnlw I-l; consequently, ~-nc(M c) < ~ and there-  
fore ~2({T~}) = M c. If we multiply the vector  field V c by a smooth function which vanishes only at branch 
points and dec reases  sufficiently rapidly in neighborhoods of these points,  we obtain a smooth field ~c 
which genera tes  a smooth flow {T~}. Clearly,  f] ({~}) = ~Q ({ t}) and therefore  {T~} pos se s se s  p roper ty  
(K0). Asser t ions  (K1) and (K2) follow direct ly  from the proper t i es  of the t ime t ransformat ion  and from the 
descr ipt ion of the s t ruc ture  of the flow {T~} given before the s ta tement  of the p resen t  proposi t ion.  

If all angles of Q have the form lr/n then the manifold M c has no branch points and {T~} is an every-  
where-defined smooth flow without singular points.  Hence, M c is a torus  and p(M c) = p(Q) = 1. This case 
is real ized only for bi l l iards in rectangles  and in t r iangles  of three types:  with angles (7r/3, zr/3, ~/3), (7r/2, 
~r/4, 7r/4) and (7r/2, 7r/3, lr/6). As is well known, the top ological s t ructure  of a smooth flow on the torus which has no 
fixed points and which p r e s e r v e s  Lebesgue measu re  is completely determined by the rotat ion number of 
the flow. It is not difficult to see that in the situation being considered here  the rotat ion number of the 
flow {Tt} is a nonconstant analytic function of c. Consequently, for all values of c, except a countable set 
of values corresponding to rat ional  rotat ion numbers,  the flow {T~} is topologically t ransi t ive on the torus  
M c and is e r g o d i c - i n d e e d ,  s trongly e r g o d i e - w i t h  respec t  to the measure  m e. In the next section we will 
show that this picture is par t ia l ly  p r e se rved  even in the general  case,  when p(Q) > 1 and M c is not a torus  
(see Proposi t ions  3 and 4). We make two r e m a r k s .  

1. From the point of view of analytic mechanics  a bi l l iard is a Hamiltonian sys tem with two degrees  
of f reedom. In the case of a polygon whose angles are commensurable  with r, this sys tem has two inde- 
pendent f i r s t  in tegrals :  the energy integral  H = Iv[ 2/2 and the above-defined integral  F. The functions H 
and F occur in involution "a lmost  everywhere ,"  and a bil l iard may be regarded  as "almost"  integrable in 
the sense of a Liouville sys tem.  The violation of commutativi ty of H and F at points with c a r r i e r s  which 
meet  ver t ices  ~f the polygon entails that the phase space of the sys tem decomposes  not only into tori  but 
also into invari~nt knots (i.e., two-dimens ional  manifolds of genus p > 1). 
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2. It is well known that a sys tem of two solid spheres  of masse s  m s and m 2 in an interval (with elas-  
t ic ref lect ions f rom the ends of the interval) is equivalent to a bil l iard in a r ight  tr iangle with acute angle 

= arc tan  ~mmi/m 2 ([1], Lecture  10). If the angle o~ is commensura te  with 7r, then the system of two spheres  
has two f i r s t  integrals  and reduces  to flows on iavar iant  knots in phase space (the invariant  surfaces  are  
tori  only when m s = m 2, m 2 = 3m I, or m s = 3m2). 

w 2 .  T o p o l o g i c a l  T r a n s i t i v i t y  i n  I n v a r i a n t  M a n i f o l d s  

Definition 2. A flow {St} on a two-dimensional  manifold M 2 will be called quasiminimal  if the follow- 
ing conditions are  sat isf ied:  

(KM1) the number of singular points of the flow is finite; 

(KM2) each singular point is a mult isaddle point with a finite number of entering and exiting separa-  
t r ices ;  

(K1V[3) each posit ive or negative semi t r a j ec to ry  which is not a separa t r ix  is dense in M 2. 

A. G. lViaier [2] dealt with the study of smooth flows on orientable surfaces  and having a finite num- 
ber  of equilibrium conditions for boundary cycles  and separa t r i ces .  We shall need a corol la ry  of the basic 
resu l t  ([2], Theorem IX) (a coro l la ry  used by one of the authors in [3]). 

COROLLARY TO MAIER'S THEOREM. Suppose that the flow {St} of c lass  C ~ on the closed orient-  
able two-dimensional  manifold M 2 sat isf ies  the conditions (KM1) and (KM2), and in addition the conditions 
~ 0 )  ~({st} )  -- M2: 

(M1) {St) has no per iodic  t ra jec tor ies ;  

(M2) no separa t r ix  of the flow S t goes from one singular point to another.  

Then, the f low{St )possesses  t hep rope r ty  (KM3) (and, therefore ,  is quasiminimal) .* 
- 

PROPOSITION 3. For all values eE (0, 7r/N) except a countable set of values, the flow {T is quasi-  
minimal  (and therefore  the flow {T~} is topologically transit ive).  

Proof .  By virtue of Propos i t ion  2 the flow {T~}satisf ies conditions (M0), (KM1), and (KM2) of the 
coro l la ry  stated above. Therefore  it is sufficient to verify that for a bi l l iard in a polygon Q, per iodic  t ra-  
jec tor ies  and " t ra jec to r ies"  which go between ver t ices  (corresponding to separa t r i ces  which join multi-  
saddles) can go along only a countable number of direct ions.  Let us apply to t r a j ec to r i e s  of these two types 
the "s t ra ightening-out"  p rocedure  descr ibed in the introduction. We find that each of these t ra jec tor ies  
has on the plane R ~ a direct ion of the form AZ, where A is some vertex of the polygon Q ~ R z and Z is the 
image of one of the ver t ices  of Q under a composit ion of ref lect ions of the plane R 2 with respec t  to the 
polygon Q. The set  of such points Z in the plane is countable, and Proposi t ion 3 is proved.  

Definition 3 (see [3]). Suppose that the flow {St} of c lass  C 1 on the two-dimensional  manifold M 2 has 
a finite number of fixed points.  A Borel  measure  # on M 2 is called a nontrivial invariant  measure  of the 
flow {St} if it is invariant,  the measu re  of each t ra jec to ry  of the flow is zero,  and for every  open neighbor- 
hood U of the set of fixed points p(M2\U) ~- ~. 

The following asse r t ion  comes essent ia l ly  from Theorem 1 of [3], although formal ly  that theorem 
concerns flow with nondegenerate saddles.  

PROPOSITION 4. If the flow {~c} is quasiminimal,  then this flow (and therefore  also the flow {T~}) 
has at mos t  p dist inct  (up to mult ipl iers)  ergodic  nontrivial invariant measu res ,  where p is the genus of 
the manifold M c(Q). 

w 3.  T o p o l o g i c a l  T r a n s i t i v i t y  in  P h a s e  S p a c e  

We now deduce some consequences for bi l l iards in a rb i t r a ry  polygons.  

Denote by ~,~ the set  of all orientable nondegenerate n-gons with indexed ver t ices ,  considered as 
dist inct  up to s imi lar i ty .  An element  Q E .3~ shall be identified with the ordered set  {a, b, q~ . . . . .  qn-2} 
of the ver t ices  of an n-goa in the plane R 2 having two points a and b fixed. The embedding 3~ -+ R-~(,,-2) in- 
duces a topology in 3~; it is not difficult to const ruct  a me t r i c  for this topology in which the space 5~,~ is 
complete.  

*It is possible  to prove that for manifolds of genus p > 1 condition (M1) follows f rom the remaining condi- 
tions of this asser t ion .  
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Let  :P~ C 2~ be the se t  of those n-gons whose angles  a r e  c o m m e n s u r a t e  with v, and let  2 ~  = {Q 
,~o: N (O)/> N} (the number  N(Q) for  O ~ 5~ is  defined at the beginning of w 1). It is c l ea r  that for  each 

N the se t  :P~ is eve rywhere  dense in :P,~. 

PROPOSITION 5. Let  N be a c losed subse t  of 2~ such that for  each N the se t  :P~ n 57 is  e v e r y -  
where  dense in 57 �9 Then 57 includes an eve rywhe re  dense subse t  57. of type G 5 such that  for  each n-gon 
0 ~ ~ .  the flow {T~} in M(Q) is topological ly  t r ans i t ive .  

Proof .  We introduce a m e t r i c  in the subset  Ma(Q) = Int Q x S 1 c M (Q) by the fo rmula  

dQ ((q, v), (q', v')) = max (] q - -  q' l, dl (v, v')}, 

where  dl is the natural  m e t r i c  in S 1 = RI Z. In dist inction to M(Q), all spaces  M~ are  pa i rwi se  h o m e o -  
morph ic .  Let  us fix some  "s tandard"  n-Non (20 ~ : ~  and then define a h o m e o m o r p h i s m  hQ :M~176 
by the fo rmu la  hQ(q, v) = (fQ(q), v), where  q ' =  fQ(q) = f (q ,  Q) = f (q ;  ql . . . . .  qn-2) ~ 112 depends continuously 
on q, ql . . . . .  qn-2; he re ,  for  each (p ~ ~nj]Q:Oo-+(2 is a h o m e o m o r p h i s m  and fQo is the identi ty t r a n s f o r -  
mat ion.  Finally,  let  us choose in M~ a countable bas i s  of open se ts  consis t ing of open bal ls  B k of radius  
r k in the m e t r i c  dQo, k = 1, 2 . . . . .  

Let  57h~ be the se t  of those Q ~ ~ for  which there  is  a t r a j e c t o r y  of the flow {T~} which i n t e r s ec t s  

both hQB k and hQBI, even if i t  may  not be defined for  all t. We se t  57. = ~ 57kz and we shall  show that the 
k , l ~ l  

se t  57. p o s s e s s  all the p r o p e r t i e s  ment ioned in the s t a t ement  of the propos i t ion .  

F rom the continuity of the function f and f rom the continuous dependence of each finite p iece  of the 
configurat ion of a t r a j e c t o r y  of the flow {TtQ }, i .e. ,  of a broken  line q(t; q0, v0; ql . . . . .  qa-2) = q(t; x0; Q) in 
the plane R 2, on the initial  condition x 0 = (q0, v0) and on the ve r t i c e s  ql . . . . .  qn-2 of an n-gon Q ~ 57, i t  fol- 
lows that  all  of the se ts  57~ a re  open. Moreover ,  if  N > min  {r~ 1, r~ 1} and Q ~ :P,~' A 57, then f rom the 
definit ion of hQ, and B k and fo rmu la s  (3) it  follows that  for  eve ry  c the manifold Mc(Q') i n t e r s ec t s  both 
hQ,B k and hQ,B/, and by vi r tue  of P ropos i t ion  3 Q' ~ 57kz; by the condition that the se t s  :P~ n 57 a r e  ev e ry -  
where  dense in ~ ,  the se t s  57~ a re  l ikewise eve rywhere  dense in 57. Thus, 57. is  an eve rywhere  dense 
subset  of ~ and of type G6 (we r eca l l  that  :Pn is complete ,  while 57 is closed) .  

Since for  every  Qthe se t s  hQB k, k = 1, 2 . . . .  fo rm a b a s i s  of open se ts  in M~ (and in M(Q)), it follows 
f r o m  the definit ion of 57~ and ~ ,  that if Q ~ ~ . ,  then for  eve ry  two open se ts  U, V cM(Q)  there  is a t r a -  

of the flow ~TQ~ which in t e r sec t s  both U and V. Since, by a t ime t r an s fo rma t ion  which j ec to ry  nowhere 

vanishes  on M~ ~ ~"the flow {T Q} m a y  be t r a n s f o r m e d  into a continuous flow, the topological  t rans i t iv i ty  of 
{TtQ } follows. P ropos i t ion  5 is p roved .  

COROLLARY. A s y s t e m  of two solid sphe re s  in an in te rva l  (with e las t ic  re f lec t ions  f rom the ends 
of the in terval)  i s  topological ly  t rans i t ive  on each sur face  of constant  energy  for  values  of the ra t io  m l / m  2 
belonging to an eve rywhe re  dense subset  of the half-line of type GS. 

For  the p roof  i t  is suff icient  to apply Propos i t ion  5 to the se t  57 C ~3 of r ight  t r i ang les  and to take 
into account  R e m a r k  2 of w 1o 

Propos i t ions  3 and 5 p roved  above c h a r a c t e r i z e  the topological  p i c tu re  of the behav ior  of b i l l iard  
t r a j e c t o r i e s  in polygons;  the cor responding  m e t r i c  p ic ture  r e m a i n s  ve ry  unclear .  The following two ques-  
tions s t r ike  us as  being in teres t ing .  

1. In a polygon whose angles  a re  c o m m e n s u r a t e  with ~, does ergodic i ty  follow f rom topological 
t r ans i t iv i ty  of the b i l l i a rd  flow on an invar ian t  manifold ? 

2. Are there  polygons for  which the b i l l ia rd  flow is ergodic  in all of phase  space  ? How la rge  is the 
se t  of these polygons (from the point  of view of density,  ca tegory ,  m e a s u r e ,  etc. ,)  in :P~ ? 

1o 

2. 

3. 
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