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Introduction

1. In this paper we use a uniform construction method in order to obtain
examples of measure-preserving ergodic C"-diffeomorphisms defined on
certain smooth manifolds which have various, sometimes unexpected metric
properties. The manifolds to be considered will be compact, connected,
smooth manifolds (with or without boundary) possessing a nontrivial
smooth free group of circular rotations,” or, as we shall call it, a periodic
current. The invariant measure in our examples will have a positive smooth
density. The metrical properties of the diffeomorphisms which we shall con-
struct may have the following properties depending on the choice of the
parameters in the construction:

a) a discrete spectrum with an arbitrary given (finite or infinite) number
of basic (i.e. linearly independent over the ring Z of integers) frequencies;

b) a simple continuous singular spectrum in the absence of the mixing
property; 7

¢) properties a) and b) combined.

e —————
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Nontrivial in the sense that each point of the manifold is displaced by at least one ele-
. ment of the group.
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2 D. V. ANOSOV AND A. B. KATOK

These examples obviously show that ® there is but a rather weak con-
nection between the topological properties of a manifold and the ergodic
properties of the diffeomorphisms defined on it.

2. It is well known (cf. [6]) that an arbitrary ergodic automorphism of
a Lebesgue space with discrete spectrum generated by h basic eigenfrequencies
is metrically isomorphic to some shift transformation of the h-dimensional
torus. The problem of the realization of such metric automorphisms by
diffeomorphisms of smooth manifolds with smooth invariant measure is con-
siderably more difficult. It is easy to prove that the manifold must necessarily
be an h-dimensional torus if, in addition, the eigenfunctions are assumed
to be smooth. The diffeomorphism is in this case smoothly equivalent to a
shift operator. On the other hand, in the case of the two-dimensional torus
A. N. Kolmogorov [11] has constructed a real-analytic diffeomorphism with
an analytic invariant measure which is metrically isomorphic to the group
shift and which possesses discontinuous eigenfunctions. (This implies that
these diffeomorphisms can be not even topologically conjugate to a shift.)
Until now no smooth realization of automorphisms with discrete spectrum
having h basic frequencies have been known on any manifolds other than
the h-dimensional torus. There exists a conjecture (cf. [10]) to the effect
that on a real-analytic m-dimensional manifold an ergodic, analytic diffeomor-
phism with analytic invariant measure may have a discrete spectrum with
only m basic frequencies. This problem is still open even though our results
also show that the C® version of it is not true.

3. Even in the simple case of the two-dimensional circle

D= {(x,y): x*+y' s 1}

the problem is still open whether there exists an ergodic diffeomorphism
conjugate to Lebesgue measure. However, for different special functions
p the topological properties of those mappings of the circle which are ex-
pressible in polar coordinates in the form

(0.1) (r,0) = (o(r.0), o + <)

were analyzed a long time ago. An equivalent problem was first studied by
Poincaré ([19], Chapter 19). In connection with the investigation of the
neighborhood of a periodic orbit of a three-dimensional dynamic system, L. G.
Snirel'man [20] and A. S. Besicovitch (2] have constructed examples of
topologically transitive” mappings of the form (0.1). Their examples were

% We refer to the case of two or more dimensions.

b Topological transitivity means that there exists an gverywhere dense orbit (which must
then be a continuum; cf. {15]). It is interesting that Snirel’'man and Besicovitch at first
calculated as if all points of the circle, except the center and the points of its boundary, had
everywhere dense orbits. The error was corrected in |3 and [5].
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not smooth, but smoothness can be attained without essentially altering the
construction (cf. {21]). However, it is easy to prove that a transformation
of the form (0.1) of the circle cannot have an ergodic invariant measure
equivalent to Lebesgue measure. A careful analysis of the examples given
by Snirel'man and Besicovitch has alsosbeen one of the starting points for
the present paper.

4. The diffeomorphisms which we will exhibit form a nowhere dense set in
the space of all diffeomorphisms of a given manifold which preserve a given
measure, provided with the topology of C* or C* for some n = 1. This is
related to the fact that our diffeomorphisms belong to the closure of the
set of periodic diffeomorphisms, which is nowhere dense in that space, and even
to the set of those diffeomorphisms among them which are shifts with respect
to the orbits of periodic flows. It is evident that even the set of all ergodic
diffeomorphisms is not everywhere dense in the space described (in the two-
dimensional case this follows from results by J. Moser [13], [14] under a
sufficient smoothness assumption).

In the class of homeomorphisms the situation is different. In 1941 it was
shown by Oxtoby and Ulam [17] that for any triangulated manifold and for
an arbitrary measure satisfying natural conditions, the ergodic homeomor-
phisms which preserve that measure form a set of the second category (an
everywhere dense G, set) in the space of all {measure-preserving) homeomor-
phisms under the corresponding topology.” From the purely metrical point of
view Halmos [7] (cf. [6]) showed that the situation is analogous: In the
space of all automorphisms of a Lebesgue space provided with the weak to-
pology, the ergodic automorphisms form a set of the second category. At
the basis of both results there lies the same phenomenon: The periodic auto-
morphisms (in the metric case) and the homeomorphisms which are periodic
outside a set of sufficiently small measure (in the topological case) are
everywhere dense in the corresponding basis. This is in good agreement with
the fact that also in the smooth case the metric situation on the closure of
the set of periodic diffeomorphisms resembles the topological case and the
purely metrical case in many respects.

5. The methods of this paper are suitable for establishing also a number
of additional results. Thus on manifolds with periodic flows A. B. Katok
has constructed nonergodic diffeomorphisms which have an arbitrary finite
or denumerably infinite number of ergodic components, where for each of
them any one of the subcases a), b) or ¢) of subsection 1 is possible and,
furthermore, the following modifications may occur:

& s 2
4 This is also true with respect to polyhedra of a somewhat more general type.

An application of the uniform approximation technique allows one to derive sharper
results from the work of Oxtoby and Ulam (cf. [9]).
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a) Asergodic components one may choose open sets (with complementary
sets of measure zero). '

b) Each ergodic component intersects with any open set in a set of posi-
tive measure; hence, in particular, almdst all orbits are everywhere dense.

As we have already stated, all these results are concerned with a special
class of manifolds. Recently E. A. Sirodov [21] has proved that on many
manifolds of dimension three or larger there exists a topologically transitive
smooth flow (and consequently a diffeomorphism). Using some modifications
of the methods of our paper, D. V. Anosov has proved that on an arbitrary
manifold of dimension three or larger there exists an ergodic smooth flow
and consequently a diffeomorphism (cf. [1]). (This was preceded by a more
complicated construction of analogous flows with four or more dimensions
due to A, B. Katok.) For the sake of completeness we also wish to mention
that recently A. A. Blohin has constructed examples of smooth ergodic
currents on all closed surfaces excepting spheres, projective planes and Klein
bottle, on which no such flows exist. Similar examples were also investigated
by J. Milnor.

6. In the first two sections we present here for convenience auxiliary
material which is undoubtedly well known. §3 is the basic part of the paper.
There we introduce an inductive process on an arbitrary manifold with
periodic flow which enables us to construct, for a given smooth measure
#, a sequence of periodic u-preserving diffeomorphisms which converges to
an ergodic diffeomorphism under the C~ topology. This construction possesses
a significant nonuniqueness property. In §§4 to 6 it is shown that, under a
suitable choice of the parameter in the construction, we may obtain a diffeo-
morphism with given metrical properties. Furthermore we can construct a
diffeomorphism which is metrically isomorphic to a circular rotation. (For the
construction of such a diffeomorphism, subsections 5, 6 and 7 of §3 are not
needed except for the almost trivial verification of the inductive assumption
at the end of subsection 5.) In §7 it is shown that in the closure of the set
of diffeomorphisms belonging to a periodic flow, the ergodic diffeomorphisms
form a set of the second category. The basic results of this paper have been
announced in [1].

§1. Background material about measures on smooth manifolds

1. A measure x4 on an n-dimensional manifold M™ of class C® is called
a measure of class C* if on any coordinate neighborhood it induces an in-
finitely differentiable density relative to the local coordinates. For brevity
such a measure will be called positive if this density does not vanish identically
on any coordinate neighborhood. If x, and u, are two positive measures of
class C* on M™ then there exists a positive function p(x) of class C= such
that uy = p(x)p,. Consequently all positive measures have the same class
of null sets.
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THEOREM 1.1. Let M™ be an m-dimensional open connected manifold of
class C*, and let u, and u, be positive measures of class C= on M™ which
are identical outside a compact set N C M™, for which u,(M™) = u,(M™). Then
there exists a diffeomorphism S: M™— M™ which is the identical mapping
outside a compact set Ny C M™ such that 8*u, = u,, using the notation

(8*m) (A) = 1 (S71(A4)).

This theorem is formally different from Theorem 1 of Moser [16] inasmuch
as we do not assume the manifold to be closed, but the theorem follows from
the same Lemmas 1 and 2 of the paper [16].

By a “manifold” we shall henceforth always mean a connected, compact
manifold of class C*, closed or with boundary, unless something else is
specified.

TrEOREM 1.2. Let u; and u, be two normalized positive measures of class
C™ on the manifold M™. Then there exists a diffeomorphism S: M™— M™ of
class C~ such that S*u, = u,.

For closed manifolds this assertion reduces to the Theorem 1 from the paper
{16] which we have already mentioned. For manifolds with boundary it
follows from Theorem 1.1 if the measures u, and g, coincide on some neighbor-
hood of the boundary. Therefore it suffices to prove the existence of a
diffeomorphism S such that the measure S*u, coincides with x; on some
neighborhood of the boundary.

In order to prove this we consider nonoverlapping tube-shaped neighbor-
hoods B; of the connected components A; (i = 1, - - -, n) of the boundary. Then
B; is diffeomorphic to the direct product A;x[0,10]. Hence we can introduce
coordinates (y,#) on B, where yE A;, 0 ¢ < 10. We consider some fixed
positive measure X of class C* on A;, and we let

Then we introduce the function «(y,# by the relation

t aly.b)
Gfp;(y, yds= [ _py(y, ) ds.

0
The function «(y,¢) is defined for any y and for all sufficiently small posi-
tive £, Let § € (0,3) be such that for 0 <¢ < & the function a(y,t) is defined
and satisfies the condition |a| < 1. We construct functions ¢, ¢ € C*[0,10]
with the following properties:
The function ¢ is nonincreasing, ¢(f) =1 for t€10,25/8] and o(t) =0
for t 2 5, with ¢’(t) > — 4/4 for all ¢.
The function ¢ is nondecreasing for t& [0,5], with ¢(8) =0 for tE

[0,6/3] and ¢() =4t/5 for tc[25/3,8), with w(t)> —1fort2 6 and
¥() =0fore 2 8.



6 D. V. ANOSOV AND A. B. KATOK

It is easy to verify that the function
Fg.)y=9()a(y, ) +(1—o@) -+ %)

coincides with a(y,f) for t€[0,8/3] and with ¢ for ¢ 2 8; furthermore, it
satisfies F/ (x,t) > 0. Therefore the mappmg 8i: B,— B; defined by the formula

s.(y.t) - (yn F(.Y,t)),

is the identity mapping for ¢ 2 8; it may be extended to all points M™ outside
B; in a unique manner, and for X C A; X [0,5/3] we have u(X) = ua(5:X).
Hence the diffeomorphism & =I1;S; has the property that S*u; =4 in
some neighborhood of the boundary.

2. THEOREM 1.3. Let O™ be an open, connected manifold of class C=, let
F,and G, (i=1,-+-,k) be two systems of open subsets from O™ whose closures
E__gnd G. are C--diffeomorphic to the m-dimensional sphere D™, with F;N
F;=9 and GiN\Gj=9 for i=j. Then there exists a C"-diffeomorphism S':
0™— O™ which is equal to the identity mapping outside some compact set
N; C 0" and which maps F; into G

This fact is well known and easily derived, for example, from [18].

In this paper we always denote by Diff*(M™, u) the space of those diffeo-
morphisms of class C* of the manifold M™ which preserve a given positive
finite measure x of class C~, provided with the natural topology.

LeMMA 1.1. Under the conditions of Theorem 1.3 let u be a given measure
of class C= on the manifold O™ such that u(F) = pu(G), i=1,.--,k. Then
for any ¢ > 0 there exists a diffeomorphism S & Diff*(0",u) which coincides
with the identity mapping outside a given compact set N C O™ and which satisfies
the inequality® u(SF; AG) <e¢,i=1,.+,k.

Proor. We construct a diffeomorphism S' by means of Theorem 1.3. Let
(8" *u = p(x)u = p;. By the assumptions of the lemma we have

Hz(G:)adfp(x)duf—u(G:). el .. .k
3

We choose open sets G/, G{, G! whose closures are diffeomorphic to D"
and which furthermore satisfy
Gl GG GG ca,

RE) =pG) =8, pE<BE) — 2, W@)>mG)— 3

“where the number 3 > 0 is small enough so that

% As A. B. Krygin has shown, this lemma is in reality true with SF; = G;. But we shall
not need this version.



SMOOTH ERGODIC THEORY ¥ ;

(1.1) 1(G) > p(G) — .
We construct on G; a positive function p;(x) of class C* which satisfies

pi(x)=1 for x€G}, p, (x) =p(x) for x€ G\G;,
f pi (%) dp = p.(G)).
%

(This is possible since u(G? + u(G\GD) > u(G) — 6/3.)

Now we let 4" = p;(x)u. By Theorem 1.1 there exists a diffeomorphism
§": G;— G; which is the identity mapping along the boundary of the sphere
G, and which satisfies the equation S *y, =", Extending S as the iden-
tity mapping on the entire manifold 0", we obtain 8 = [1,S". Now we consider
the manifold 0" = 0™\ N,G.. On O™ we have the two measures u and
i =8*u,. They coincide within the compact set N, N (0™ U.G;*) where N,
stands for the same set as in Theorem 1.3. Furthermore, x(0™) = i(0™).
Applying once more Theorem 1.1, we obtain a diffeomorphism S: Q\"-—»O”', .
equal to the identity mapping outside some compact set N, for which S"i = u.
We extend S as the identity mapping to all points of 0", and we let S= SSS".
Clearly S*u = u. The diffeomorphism S is the identity outside some_compact
set, since this is true for each of the diffeomorphisms S', § and S.

Now we define F} = (S') "'G}. Obviously SF! C G, and therefore by (1.1)
we have

B (F) =y (G) > 1 (G) — -,

ie. u(SF; AG) <e¢ This proves the lemma.

§2. Periodic flows
A flow {S,}: M™"— M" is called periodic if S, is the identity mapping
for some 7 > 0. In the sequel we shall always assume that on the manifold
M™ there exists a nontrivial periodic flow of class C* (i.e. generated by a

vector field of class C*), and this flow will be denoted by {S’'}. For x& M"
we define

t(x) =inf {r:1>.0, Scx=x}.

Without loss of generality we may assume that max,t(x) = 1.
The following assertion follows immediately from a theorem by Bochner on
the smooth operation of a compact group (cf. [19], §56.2, Theorem 1).

: PROPOSITION 2.1. The closed set 0 = {x|t(x) <1} has measure zero and
s complementary set is connected.

Indeod,. by Bochner'’s theorem, in the neighborhood of a fixed point,
expressed in some coordinates, a group acts as a linear transformation. There-
fore, the set of fixed points of our flow is a submanifold of codimension 2 2.
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The points x with t(x) = 1/q (g = 3,4, --.) are fixed points under the cyclic
group of mappings generated by S,,,. Consequently they form locally a sub-
manifold of codimension 2 2. Only the points with t(x) =} have to be
considered separately. They may form a submanifold M™' of codimension
one which is a local decomposition of M™. But S, transforms the points on
one side of M ™' into points on the other side. Consequently these points
are joined with each other by orbits of the flow 1S}

ReMARK. Each periodic flow possesses a positive invariant measure of
class C* on M™. Let S*u = p(x), and define

= (j Pt (%) df) P

Then the measure i is positive, it belongs to the class C~ and is invariant
with respect to {S,}.

PROPOSITION 2.2. Let u be a positive measure of class C™ on M™. If there
exists on M™ a periodic flow {Si}, then there exists also on M™ a periodic
flow with the same period which preserves the measure .

Proor. We construct a positive measure /i of class C” which is invariant
with respect to |S,|. We may assume that x(M™) =i(M™). By Theorem
1.2 there exists a diffeomorphism S: M™— M™ satisfying S*i =u. Hence
it follows that the measure p is invariant with respect to the periodic
flow | S 18,S}.

We introduce some simple examples of periodic flows:

1) A one-parameter group of rotations of the unit sphere, or spherical
surface, in R"*' about a fixed (n — 1)-dimensional linear subspace.

2) If on a Riemannian manifold there exists an oriented field of two-
dimensional tangential planes, then this induces on a single tangential
fibering a periodic flow of rotations about the orthogonal complement to that
plane. For example, this is true on a tangential fibering of an oriented surface.

3) The existence of the periodic flow .on a manifold M™ allows us, in an
obvious manner, to construct a periodic flow on the direct product M™xY,
where Y is an arbitrary manifold of class C~.

Now we consider a manifold M™ with a periodic flow {S;}. We need the
following assertion on the existence of a special kind of mutually related
fundamental domains for the mappings S, for the different values of g¢:

PROPOSITION 2.3. There exists a system of sets ACM" (g=1,2,.:.)
with the following properties:
' 2.3.1. The set A, Is contained in the closure of the set of its interior points.
2.3.2. The boundary of A, is a null set.
2.3.3. The set of interior points of A, is open.
2.3.4. Uizis,.a, = M™.
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2.3.5. U1z1(Skeldy N A)) C 9y (where 0, is the exceptional set from Proposition
21

2.3.6. The intersection of A, with any orbit is connected.

23.7. 4= UKLS,maa for any positive integer k.

ProoF. Let 0, be the boundary of the manifold M™. Then the set

@.1) Q=9,UQ

is obviously closed. The open manifold M™\Q may be decomposed into
equivalence classes each of which consists of the points belonging to the
same orbit of the flow. On the factor-space N™~' so obtained we introduce
in a natural way the structure of an open manifold of class C~. The set
M™\Q is a fibering with the basis N"~' and the circumference S' as fiber.
Let = be the natural projection of M™\ @ onto N"'. Then the formula
i(A) = u(x'(A)) defines a positive measure of class C* on N"'. In N™*'
there exists a closed subset E of measure zero such that the closed submanifold
N™'\ E is connected and on it the fibering is a direct product. We construct
a smooth decomposition & of this direct product. To the decomposition
A we add the entire set @, and one point belonging to = '(E) U (2\%)
from each orbit of the flow {S,}, such that these points belong to the closure
of A We denote the set so obtained by A, and we let &, = Usgic1SiA.
The verification of properties 2.3.1-2.3.7 does not present any difficulty.

§3. The basic construction

1. Suppose on the manifold M™ there is given a (nontrivial) periodic flow
which preserves a given positive normalized measure u of class C*. We shall
augment the exposition by figures related to a simple case, namely the
two-dimensional disk D* with Lebesgue measure and with the flow {S,} which
is expressible in the form S,(r,¢) = (r,¢ + 2xt) in polar coordinates. As
sets A, we select the sectors A, =|{(r,¢): 0=¢ =2r/q} which clearly
satisfy the conditions 2.3.1-2.3.7.

2. Returning to the general case, we introduce the following notation.
We let SiA = Ar,. The sets &y £=0,---, ¢—1, form a decomposi-
tion mod 0 of the manifold M™. We denote this decomposition by 5, The auto-
morphism S,, where a = p/g (with integer p), maps the decomposition
7 into itself; if p and ¢ are relatively prime then the factor-automorphism
S./n, permutes the A, cyclicly. We observe that the interior Inta, is an open
manifold for which

S_L (Int AD. q) = Int Ak‘q.
q
‘On M™ we introduce an arbitrary Riemannian metric of class C* which is
invariant under {S,|. All distances which will be mentioned in the sequel
are taken in this fixed metric. (In the case of the disk D* we consider the
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Euclidean metric.) By a standard method we introduce in the space Diff* (M™)
of all diffeomorphisms M™ of class C* a sequence of metrics p.(T}, T2)
measuring the proximity of the r-flows of T, and T; as well as T;' and T3'.

3. We construct inductively a sequerice T, of diffeomorphisms of the
manifold M™ satisfying the following conditions which involve arbitrarily
small numbers ¢, > 0, positive integers k,, /, and positive integers a,(i) < ¢,,
defined for { =0,+.,k, — 1, where g, is expressed inductively in terms
of k, and I, with s <n.

First Step. Let T, = B;‘S.,,B,, where B, = A, .-+ A,, and each A;isan
element of Diff"(M™ u) which is the identity map within some neighbor-
hood of the set @ (cf. (2.1)). Here we define the numbers a, = pa/g., Where
P» and g, are relatively prime positive integers. Finally, we let

= S e S

@3.1) o = S B P kaln @2
San Ay = Ay Sa,,'
Thus :
Pntr = knlnqlnpn -+ 1 Qut1 = kn’nqﬁ’
(3.2)
Tn+l = B,Tl San A-,.—,‘IJ Spn A,,.H ,Bn'

No conditions will be imposed directly on k, and [, but for the Second, Third,
and Fourth Steps it will be necessary to choose these parameters sufficiently
large (see subsections 4 and 5 below); furthermore, in §§5 and 6 additional
stipulations will be made on the size of &, and [,.

Second Step. Let £,y = B,}in,,,, There exists a set E,,, C M" such that
u(E, 1) > 1 — ¢, where the diameter of the intersection between elements
of the decomposition &,,, with the set E,,, is less than 1/2"*! (which implies
that £,,,—e¢ as n tends to infinity provided, of course, that lim, ..¢, = 0).

Third Step. py; ., (Tas1, Tn) < ¢ (which implies that the sequence T, con-
verges under the topology of the space Diff*(M™u) if D i < ).

Fourth Step. We let -
&,
(3.3) R = Akt kya,
(=]
so that
5e B (At R® A Agg,) < &y

It should be noted that the arbitrariness in our construction, which will
be used in §§4 to 6 in order to obtain diffeomorphisms T = lim7, with
different metric properties, arises from the possibility of choosing the
parameters a,(i).
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REMARK 3.1. We introduce the decomposition”
N, a4t ={SL RM r=0,1,..., Gn— l}'

In

En, ntt = Bt M, na® & = Bkt N e,
It follows from the Second Step and (3.4) that £, — ¢ as n tends to infinity.
But since f.,41 < £:, this implies that #, —e.

4. The number ay = p,/¢o may be chosen arbitrarily. Suppose the numbers
a, +*+,a, and the diffeomorphisms A,,--:,A, have already been defined
in such a way that for each k < n the conditions listed under Steps 1-4 are
satisfied (with n replaced by k).

Since the mapping B;' is uniformly continuous, there exists a number
yas: > 0 such that the diameter of the set U is less than 1/2"*' if the
diameter of the set B,(U) is less than v,y

Let k, be a fixed, sufficiently large number (to be determined later) and
consider the decomposition m, .. For any choice of a,(i) the set R™
contains with any one point all the orbits of periodic diffeomorphisms S, (or
Si/,» Which amounts to the same) outside 0.

It is our aim to construct a diffeomorphism

A4 € Diff= (M™, ),

which is the identity mapping within some neighborhood of the set @ and which
possesses the properties (3.1), (3.4) and (3.5).

For a suitable positive integer A, and for every s, 0 =5 < h,k,, there exists
a set

N G

(3.5) such that

BR™ >—L=81_ and diam Ar}i R™ < YVpua.
L
The existence of such a diffeomorphism will be proved in two steps.
First we consider the special case where R™ = Ay, (i.e. where a,(i) =0
for all i =0,...,k, — 1). In this case it is possible to choose h, =1 in (3.5)
as we have done. We select a number &, of mutually disjoint open sets
FiClIntag,, i=0,--,k, — 1, with the following properties:

n .
= 'Td!;t DOLALion f,n+1 and a4 is explained by the fact that in subsection 6 of this section
introduce decompositions £, and n,., with m >n of which the decompositions
“ fnn+1 80d nnp4y are special cases.
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the numbers p (F;) areequalforall i =0,...,k—1;
1 —en/2
F — s,
p(F) > =
F, is diffeomorphic to D™;

diam F[ < 'Yn.'.].

(3.6)

On the other hand we select within each of the sets Ay, 7 =0, ks — 1,
an open set G; whose closure is diffeomorphic to D" and which satisfies

R (G) = pn(F).

FiGure 1 ~
We apply Lemma 1.1 to the open set O™ =Int Ao, and the family of sets
F,, G, choosing ¢ = ¢,/2k,g,. We denote the set SF;N\ G by R!".Since S
is the identity mapping outside the compact set N C 0", we may extend
it as the identity on the entire set A, and subsequently we may define
it on the entire set M™ by the formula

Sx=8,88 , xfor x€A.,,
(3.7 9n n
r=1,...,q,,-—-l.

Such an extension guarantees that S and S, commute. Letting S = A,y
we obtain a mapping which satisfies the conditions (3.1), (3.4) and (3.5).

FIGURE 2

5. We now turn to the general case where not all a,(i) in (3.3) vanish.
Let br e qnl‘(Rw N Ar.q,,)! e 0: seo ol — 1; then br o kn.r/km where
(3.8 kop=#11:0< (< by, @, (i) =1}.

As in §2, we consider the factor space N¥ ' of the open manifold M"\2
(see (2.1)). As a result we obtain an identification of the orbits of the flow { S}
and the measure i on them. We choose open sets ¢, -+ +.¢, ., C N™ ! with
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mutually nonoverlapping closures. dxﬂ'eomorphxc to IntD” and such that
b silc) 2 b, — ¢ /4k,q:. We consider on U c, the function which is equal
tor/g, if x€¢, r=0,-.-,¢,—1. This functxon may be extended to the
entire set N™! in such a way that the resulting function f is of class C* and
vanishes outside a compact set N C N®~'. We introduce on M™ the function

eix _jHin(x), # x¢£Q,
“x)"'{ 0, # S8

Clearly this function belongs to the class C*. We define the mapping
S€ Diff*(M™, ) by Sx = Sj.yx. Thus S is the identity mapping along Q.
We note that

3.9) |u (8h0q, N Arg,) — —| %

4knqn

Now let us consider the set T, = Aq,, N7 'c.. Obviously

‘M(F,)——bL e
q 4kng?

so that for b, = 0 (in which case b, = 1/k,) one has

Rl ) ——

If the integer A, > 0 is sufficiently large, then outside each of the sets I,
we may choose h,k,, (see (3.8)) nonoverlapping open sets Fj (j=0,---,
hk,, — 1) in such a way that

l-—- 4
e

the values 4 (F7) are equal foralljandr;

sn/4
pify > 10 e

F’ is diffeomorphic to D™;
diamF} < Yn1-

We consider the decomposition mu, = |Amug,}- In each of the sets
Acpkog, With 8 =0, - - -, h,k, — 1 we choose an open set G, with x(G,) = u(F)
whose closure is diffeomorphic to D™

Let

0<i, (<, (N<... <i, (knr—1) <&,

be those indices i for which a,(i) =r. We associate with each set F; the
set G, with the index

=0 =ni ([ ])+1-n| ]
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FIGURE 3

Remark on the sketch. For the disk D? the factor space N™ ! is identical with an in-
terval. In this case the set ¢, is also an interval. This case is illustrated by Figure 3.

We apply Lemma 1.1 to the open manifold Int A, with the two systems of

sets F7 and G.j and with e,/4h.k.g, instead of e.

The mapping S so obtained can be extended as the identity on the entire
set Ay, and subsequently it can be extended to the entire set M™ by formula

3.7.

We will show that we can make A,,, = SS and that the conditions (3.1),

(3.4) and (3.5) are satisfied.

Condition (3.1) holds for A,,, since it is satisfied with respect to the sets

SandS.

Let us verify condition (3.4). Since A,,, preserves the
suffices to show that u(An.180,AR™) <e, It follows from
that

PN Gp—l hykp ol
B U U S.L A‘("/)"'n-kn In’

r==0 j=0 n

i Gyl hpRp—1 F’ -
p’( 0.9, b U igo /)<'-4';n—’

r=0

and also

En
B Astritgky N\ Gstr)) < ey

Therefore

measure g, it
our definitions
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1] (An+lA0,qn A R(n)) < "2“;';""

et 1y N i .
u £t A r Mibig Ry .
wt Y ][Jo i '{U‘o ingo £ Ay tae,

On the other hand, F/CT,, and on I, the mapping S equals S,,; thus
AuiiFy = SBFj =S, SF,

9n

Now the inequality u(SFIAG,.;) < e./4h.k.g, implies that u(-:-) < e/4q,
on the right-hand side of (3.10). Consequently the left-hand side is less
than ¢,/q, < ¢,.

Finally, condition (3.5) is satisfied if there exist numbers r and j for
which s=s(r,j), and as the set R{” we may choose SF;N G,..

Thus the construction of the diffeomorphism A,.; is completed, and it
is evident that for any arbitrary multiple [, of h, formula (3.2) yields a
diffeomorphism T,,, which satisfies the conditions of the First and the
Fourth Step.

If we now choose as [, a sufficiently large multiple of k,, then it follows from
the condition of the Third Step that

&,

P[ L] Tapr. Ta) < &,

since in (3.2) T,4, converges to T, under the C° topology as 8, tendsto
zero.

It remains to verify the conditions of the Second Step. Since diam A, )R
< vn41, we have diam B, R/™ < 1/2""' (see the beginning of subsection 4).
We take as E,., the set

g1 hyk,—1
Eppy = ) .
=R L
It follows from (3.5) that #(Eay1) > 1 — ¢,. The intersection of an arbitrary
element of the decomposition £,,, with E,., is contained in some set of the
form S,,R” (since an element of the decomposition .4, is contained
in some An,,,,), and since Sy, is an isometry, the diameter of this inter-
section does not exceed 1/2"*!.

6. The sequence ¢, = B;'5, of decomposition is, generally speaking,
not monotonic if R™ = A, . We show how from this sequence a monotonic
one may be obtained.

We associate with the element A,,, of the decomposition n,, the element
Si/, R™ of the decomposition u,,,, (see Remark 3.1). This correspondence



16 D. V. ANOSOV AND A. B. KATOK

defines a mapping
Cp:M™ g = M™ | Nanti.

For a set E consisting of elements of the decomposition 5,, we consider as
image E’ under the mapping C, the projection of this set into M"/5,, and
we denote by C,E the complete inverse image of the set E’ under the canonical
projection M™— M"/n,,,,. Since the elements of the decomposition
ams1 consist of elements of the decomposition »,,,, we may map the sets
Cooi++Culyg, for m<n. We denote by nm, the decomposition
{Ca-t ++ « Culng, ). It is not difficult to see that nmyin > ma. Now we define
bmn = By tma.

LEMMA 3.1, IfD g, < =,® then the sequence tn, for fixed m converges
to a decomposition &, . as n tends to infinity. The sequence tn . has the following
properties:

311 Enpre D bmesm=1,2,--.

3.1.2. Thtne = tma, where the factor-automorphism Ty/tm. is a cyclic
permutation of the elements of the decomposition &, ...

3.13. tpo—eform— o,

Proor. We define a correspondence P; between the elements of the
decompositions £, and £,,. Let ¢ € ¢, be the element ¢ = B;'A,, We define

Penll C.... CrBrg,,
For a set E consisting of elements ¢; of the decomposition ¢, we let PrE
=UP?c. It is easy to see that PT=P.P!" for n> 1> m. Wewillgivean

upper bound for
}; p(Prc A Pryic).
2

The element d = C,_; - - - Cndsg,, consists of §,/qn sets A, Similarly, the ele-
ment d’ = A;},C,Ca_; - Cndig, consists of the sets A,),S,,R"withthe
same . From (3.1) and (3.4) we have_
BAA D)< p(Bog, &5 AhiR) < 2oty
qm 9m

Since the mapping B, ' is measure preserving, the same inequality is valid
for u(Pl'c A P?..c) for any ¢ E &, Therefore

(3.11) Y B (PRC & PRyic) < ot
€l

From this we obtain for n, > n; > m the in_e_quality

8 We choose the numbers ¢, after having determined the numbers gy.
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Ry—I1

3.12) Z MPI-’iCA Pro)< 2 P

which shows the convergence of the sequence £, as n tends to infinity, and
also the existence of the limit lim,..P%¥, which we denote by Ptc.

Property 3.1.1 is satisfied, i.e. £ni10 > éma for any n.

Property 3.1.2 is also satisfied, since the corresponding assertion holds true
for the decomposition £, for arbitrary n.

Next we verify Property 3.1.3. From (3.12) we have

(3.13) Z plcA P Z qe =,

I=m
Let A be an arbitrary measurable set. Since £,—e¢ for m — », there exist,
in the Boolean o-algebra B (¢.), sets A, for which u(4 AA,)—0. Let
An=Uig;,c”, where c® €, and let A, = Uc,, Poc?. Clearly A;, € B(tn,.).
On the other hand, (3.13) implies

BAA AR <p(AA An) + &m,

and consequently u(A A A}) converges to zero as m tends to infinity. This
proves the lemma,

REMARK 3.2. The mapping Py: M™/t, — M"/&, . is measure preserving
and commutes with 7.

7. Let T=lim,_..T,. By 3.1.2 and 3.1.3 the decompositions §,. and
the automorphisms 7, define a cyclic approximation of the automorphism T'
by periodic mappings (APM) with a certain speed of approximation in the
sense of [8]. In order to estimate the speed of approximation we have to find
a bound on the expression

% p(TcA’r,c)<2 2 p(TH.;cAT,‘c)<2 Y BT Ty)
€tn0 k=n c€8 0

(here 3.1.1 is satisfied). In each term ¢ = P*d, where dE€§. We obtain

Y #(TeniPed ATPLD) < z B (Tas1Pad A Tapid)
det,

+ Y, B(TWPed AT) + 2 #(Tanid A Tyd).
e,

Since T}, and T} are measure preserving, it follows from (3.13) that here
the first two summations do not exceed .

Now we give an estimate for each individual term in the last summation.
_There d has the form d = Bi'A,,. Since (3.1), (3.2) and (3.4) hold, and
since B, and S, are measure preserving, we have
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B (Tepsd A Tyd) = (B 'TaniBibrg) A (Bi'TiBibrgy)
=} ((A;‘:'ISGHIAk"'lALﬂk) A SGAAL’*) =p ((A;-;-lsﬂ.Ah-HAl.qh) F i A‘v‘k)
<B(SpS1RY A St RY)+ 26 =p (Sp,RY A RY) + 2¢,.

LN %
The set R™ consists of k, sets of the form A,,,. Clearly

® (As,kqu A Sﬂh l,kﬁqk) - 23"

i.e.
B (Ss,R® A RM) < 20,8, =—2,
A
Finally, = = - 5
‘ , 2 — 9
(3.14) 2 p(TeATe) < 22 e, +2 8""‘2 _l:;k_< 42 e, 2 =,
c€EEn, o k==n k=n heent R

From this inequality it is evident that if I, increases sufficiently rapidly
and if ¢, decreases sufficiently rapidly, then the summation ZEE,.,Q“(TC A Tho)
may be made less than f(g,), where f(n) is a sequence of positive numbers
which can be made to grow arbitrarily fast. In other words, we can construct
the automorphism T in such a way that it possesses a cyclic APM with a
speed f(n) of approximation given in advance.

If, for example, f(n) =o0(1/n), then the diffeomorphism T is ergodic
(ef. [8)) but it is not mixing, and the shift operator Ur in the space
L,(M™,u) has a simple singular spectrum.

§4. A diffeomorphism which is metrically isomorphic
to a circular rotation
1. It turns out that in the most natural case R™=4,, we may obtain
considerably more extensive information on the metric structure of the
limiting diffeomorphism T than what was given at the end of the preceding
section,

THEOREM 4.1. If in the mappings of §3 the set R™ equals Aog, for all n,
then the limiting diffeomorphism T is metrically isomorphic to the circular
rotation by the angle 2na = lim,_..2ra,.

The proof is based on the following abstract lemma.

LemMma 4.1. Let M, and M, be Lebesgue spaces and let £V (i =1,2) be
monotonic sequences of finite measurable decompositions of the spaces M,
) 7 ¢ furthermore, let T\ be automorphisms of the spaces M, for which T
=¢9 and lim,_.TY =TY, where the limit is taken in the weak topology of
the space of automorphisms. Suppose there exist metric isomorphisms
for which
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KT =100
and .
(4.1) - KED, =32,

(in the last case, £ stands for the corr%sponding decomposition of the factor
space M;/t\"). Then the automorphisms T, and T, are metrically isomorphic.

The proof of the lemma is shorter than its wording. First we observe that
(4.1) implies the equation K,&" = ¢f* for any & <n. Hence there follows
also the existence of an automorphism K: M; — M, for which K/¢{" = K,. [In-
deed, let xE M, xEc,(x), c(x) EE". Then {x}= N ... (x) for almost
all x&eM,. We let Kx= n,‘.‘.,K.,(c,.(x)).} It is easy to see that
K 'T#K /£ = TV, Therefore

T = imT = limK~'TPK = K~ 1imT@K = K~'TPK.

ProoF oF THEOREM 4.1. Under the conditions of Lemma 4.1, let M, = M™
and M,=S8’ and let ¢ =¢, and £ be decompositions of the circle
S '=|{: t€C, |¢{| =1} into the arcs

Cap = {C: = <arg{;<w}.
qdn qn
k=0,...,9,— &

furthermore let T\ = T,, and let T\® be the circular rotation by the angle
2xpa/qn. By K, we denote the mapping which maps the element B;'A,,
€&V onto the element c,, €£”. The condition (4.1) turns out to be a
consequence of the equation R™ = 4, . Thus Theorem 4.1 follows from
Lemma 4.1.

REMARK 4.1. Theorem 4.1 may be reworded by stating that the shift
operator Uy in the space L,(M™, x) has a discrete spectrum with one inde-
pendent eigenfrequency, i.e. in the space L,(M™,u) there exists a basis con-
sisting of eigenfunctions

fn (x) = (,I (x))* and UTi‘ (x) =exp (2“ina) ,n (x)'

These eigenfunctions must necessarily be discontinuous. It can be shown
that in the case of continuous eigenfunctions the manifold M™ must be the
circumference (but the functions f,(x) may, of course, be continuous at
some points).

REMARK 4.2, Even if the metrical structure of the diffeomorphisms con-
structed above is simple, their topological structure may turn out to be
quite complicated. These diffeomorphisms may have closed invariant sets
~ of a complicated type, singular invariant measures which are positive on
'f‘y open set and relative to which the metrical properties of T are completely
different from those relative to u, etc.
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§5. A weakly mixing diffeomorphism

1. In this section we show that by a suitable choice of the set R™ the
limiting automorphism 7 can in general be, made not to have eigenfunctions.
For this proof we need some facts from ergodic theory which are summarized
in the following theorem.

TuEOREM 5.1. Let T be an automorphism of a Lebesgue space (M,u). Then
the following assertions are equivalent.

5.1.1. The shift operator Uy does not have eigenfunctions other than constants.

5.1.2. For an arbitrary pair of measurable sets F,. GC M there exists an
increasing sequence n, of positive integers with density one such that

p(T"F N G) = p(F)-p(G) for k- o00.

5.1.3. There exists a sequence of positive integers ny— = such that for any
pairofsets F, GC M

p(T"F  G) > p(F)-p(G) for k- oco.
5.1.4. There exists a sequence of finite measurable decompositions & — ¢ and
a sequence of positive integers ny— o such that

Y @™ N a)— e ple) | -0

- "lttlegk
as k tends to infinity.

The equivalence of the assertions 5.1.1 and 5.1.2 is the subject of the well-
known “Weak Mixing Theorem”, a proof of which may be found in [6], Russian
pp. 58-60. The equivalence of 5.1.2 and 5.1.3 is a simple fact; a proof may be
found, for example, in [22].

We now give a proof of the equivalence of the assertions 5.1.3 and 5.1.4
which is also very simple.

Suppose 5.1.3 is satisfied. We consider a fixed sequence of measurable
decompositions £ —e. Let ¢, -+ ,c, be the elements of the decomposition

£, In view of 5.1.3, for each pair (i, j); 1 S i, j S g there exists a number
k; j» such that

| (T N &) — plep(e) | < —
ong?
for k2 kj,. Let k,=max;k;,. Then for k 2k, one has the inequality
In
i
Y @™ Ne)—penE) <5
i,i=1
Conversely, suppose 5.1.4 is satisfied. We show that for any two measurable
sets F, GCM the sequence u(T*FNG) converges to u(F)u(G). Let
¢> 0 be fixed. We choose a number K such that for every k> K there exist
sets F, and G, which are measurable relative to the decomposition & and
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for which w(FAF,) <e¢ and x(GA Gy) <e. Then we have
; BT F OGO —p (ARG | <| p (T F ) G) — 1 (F) r (Go)|

(5.1) +u(FaFk)+p(GAG.Z+tu(F)—u(Fk)§
+ |1 (G) — 1 (G | < |(T™Fe N Gp) — p (F) 1 (G) | + 4.

Suppose that sets F, and G, consist, respectively, of the elements ¢, --

and ¢, ,c;, of the decomposition &. We use the abbreviation
I (T™e N e) —p eI r(c)| =y

Adding the inequalities
Diyjy 2 W (T"kc,‘ New) —n(c)ple,) >—aoi,),
fora=1,-.-,r and b=1,.-..,s we obtain
Z Z o, 2> w(T "*Fy () Ge) — 1 (FO p (G) > — Z 2 @i, j
a=1bd=1 a=i b=I
and hence

9
[ T#FNG) —p (FARGYI< ¥

i, j=l

21

‘,C,"

It follows from 5.1.4 that here the right-hand side converges to zero as k

tends to infinity. Thus we obtain 5.1.3 from (5.1).

2. We show how the parameters in the construction of §3 have to be chosen
in order for the limiting automorphism to have property 5.1.4. We shall
apply the notation from §3. Inasmuch as in the First Step of the induction
the numbers p,,, and q,,; are relatively prime, there exists for any r with
0 <r < gnyy @ number k', 0 < k" < ¢a4y, such that k'payy/gass = r/asr (mod1).

This means that
r
Tasr = BrhiSyrg,, Buti = BitiS_s Bup.
In+1
Now we let r, = [,g,. Then we have .
n+l --Bu-HS i Bap
k“q,,
It follows from (3.3) that
&2

n) 2

68 L R = ( U Aottt y0,) U Beaytymintint ke
nn »

- We compute the measure of the intersection
®.3) £ 1, R‘ 3

kn n
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For an arbitrary integer 2 we denote by a the smallest nonnegative number
which is congruent to @ modulo g,. Clearly

o |
) ﬂ ‘f
(5.4) S £ R" U G Fik . Ry dp.

We denote by @, the number of elements of the decomposition 7;,,, in the
intersection under consideration. Thus

B 1_R7NS L R = S

nq R ll
and also ; Q
p(S_1_S.R"NS : RW) =i
E kndn
3. We show that for sufficiently large k,. there exists an a,(i) such that
Tn—1
Q.x 1 3
(6.5) e L
kgo kngn a 9

Let k= Mg, + 1, where 0 <y, <q,. We define the number a,(i) for
i=0,---,k,— 1 as follows:

0, ifiiseven
orifA\g,<isk,—1 and g, isodd;
a,=1{" where r is defined by the condition
n
(5.6) 2r — A, < i< (@2r + 1A, r=0,,,_,[.%"._].
if i is odd.

FIGURE 4

In this drawing we have taken ¢, = 8, k, = 16. The dark sectors belong to the set R™,
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For this system a,(i) the number @,, is A, if &k is different from 0 and
¢./2. For example, for 0 <k <g,/2 the intersection (5.3) is obtained
by only taking the sets A, +mi iy With (i) =0 in (5.4) and
Qg +isihyen With @,(0) =k in (5.2), where this intersection contains exactly
all A, sets of the latter type. Conversely, for ¢,/2 < k < g, — 1 the intersection
(5.3) consists of all sets of the form A um,+it14ye, With@,(i) =0 in(5.2)
which overlap with sets Aq .imk tikyg, With @.(i) = ¢, —k in (5.4). This
case also involves all A, sets of the latter type. The reader may verify without
difficulty that for the excluded values of & the number @,, lies in the range

between 0 and 2)\,.
Therefore we have
- Te ] A i 2 i 2
£y nk n
—_——— g Yy — | — .
k%io kndn g2 by R ¢ Gt g

Choosing X, > g,, we obtain the inequality (5.5).

4. LeMma 5.1. If |, increases sufficiently rapidly and if ¢, decreases
suffictently rapidly, then
r
Y g Na) —pEn) -0
€30 C2€8p nt|
ProoOF. The left side does not exceed

Y mn@fhana —pene)

(6.7 oheian 4
2 Z e (Tk ncx Ne) — P’(ﬁ-i-n!cl Neal.
€1.¢s€8y 1 1y

The relations (5.5), (3.1) and the fact B,,, is measure preserving imply
that for A, > ¢, the first summation in (5.7) converges to zero as n tends
to infinity. On the other hand,

(T" "er Ne) —p (Taies N e | < ((T* "ey 2 Ty N o).
Therefore the second summation in (5.7) does not exceed
Z w(T "cA T"'"c) < Z p.(T*’"c A T,f.,.'.’c).
C€8n, ny c€8n4t

= It remains to estimate the summation on the right-hand side of this last
inequality. Since T}, £,y = £n41, it is not difficult to see that, for any integer &,

5.8 Y veaTno<iel ¥ w@caTuo.

€t €8y,

gl.order to estimate the last summation we use the mapping P.""' between the
ements of the decompositions ¢,,, and £.,,. as well as the inequalities
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(3.13) and (3.14): .
Y w@cATuio< Y u@eaTP o

€84y €8y
oy
+ Y BOPHCAT P+ Y B(Tanic A Tan PR
. C€Eny
A1 L1
<22 “(C&P” C)-{v- L u(TCATn-HC)
t€§n+1 ce§u+’.w.
: . =
SEe * 24 ek+22l e
k:z’l-f-l k=n-;|-l

Thus, the second summation in (5.7) is not larger than

) o0

Tn Y s : .___’.._

: (6 2-' 8h+.2 2 e /'’
k=n-1 k=n+-1

Since k™ < gu.1, this expression may be made arbitrarily small by a suitable

choice of €41, €nq2 *++ and b, (which we select after having determined

¢..1). This completes the proof of Lemma 5.1.

5. It follows easily from (3.11) that &,,,, converges to ¢ (using the fact
that &, converges to ¢ and an argument analogous to that given in §3.6 for
the convergence of £, . to ¢). By Theorem 5.1, Lemma 5.1 and §3.7 we obtain
the following theorem:

THEOREM 5.2. If a,(i) is chosen according to (5.6), and if l, increases
sufficiently rapidly and ¢, decreases sufficiently rapidly, then the shift operator
Uy on the space L,(M™,u) has a continuous simple singular spectrum but it
is not mixing.

§6. A diffeomorphism which is metrically isomorphic to a shift on the torus

1. In §4 we proved that on any manjfold with a periodic flow there exist
ergodic diffeomorphisms with discrete spectrum generated by a single eigen-
value. In the present section we generalize this result to the case of a dis-
crete spectrum generated (over Z) by an arbitrary number h of linearly
independent eigenvalues.

As before, our procedure is based on a special choice of the sets R". However,
this problem presents some additional difficulties in comparison with the
problems solved in §§4 and 5. In §4 the isomorphism which existed between
T and a circular rotation was in a certain sense natural. The essence of the
version of the limiting process used there lies in the fact that a sequence of
decompositions »,, converging to some decomposition n whose elements are
“transversal”’ to the orbits of the flow {S;} (in the case of D* and the flow



SMOOTH ERGODIC THEORY 25

of rotations this is simply the decomposition into radii), is transformed into a
sequence of decompositions ¢, which converges to ¢ such that the shifts S,
are transformed into automorphisms 7T, (precisely, A.m =& for k <n).
Somehow we have joined together all ergodic components on the flow |S, } into
one unit. B :

It is evident that this approach does not lead to any other automorphisms
except those which are isomorphic to circular rotations. (In any case, for that
purpose it would be necessary to start from flows with properties other
than periodic ones.)

In §5 we obtained an automorphism which is not isomorphic to a circular
rotation, but in that case we were concerned not with showing it to be
metrically isomorphic to some automorphism of specified form, but only
with a specific property of it. Now we shall obtain at each step of the con-
struction an isomorphism between 7, and some periodic shift on the torus
such that the sequence of these shifts converges to an ergodic one. Here the
isomorphisms at each step will necessarily be of a more “artificial” character
than those in §4.

2. By T* we denote the h-dimensional torus:

Th={o=(9, ... . P): 9, ER/Z}.

Furthermore, we denote the group shift on T" by T%: ¢ —¢ + ¢. We shall
be concerned with a periodic flow { 7'}, where v = (74, - - -, v4) with relatively
prime integers ;.

In T* there is contained the (h — 1)-dimensional torus

Tl={o=(91 ... » Pa-1 O}

We consider the restriction of the shift 77" to T*~'; this restriction turns
out to be a shift on T*~!, Let Ty, be an open Dirichlet domain of the point
0=1(0,.--,0). We enlarge I'; by a part of the boundary in such a way as to
obtain a fundamental domain, to be denoted by I'. Obviously I is also a fun-
damental domain for the flow | 7"'}. For each natural number k the set

e 1] PeT
0<l<—:—

is a fundamental domain of the shift 77",

We show that under certain conditions a sequence 7% on the torus T*
converging to an ergodic shift 7° has a monotonic sequence of fundamental
domains. The conditions which we shall now formulate are of course not
necessary, but they are adapted to the inductive process by means of which we
‘?flll construct on a manifold with a periodic flow a diffeomorphism which
is metrically isomorphic to 7" = lim 7. The shift 7" will be included
‘in the flow {T"),
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LeMMA 6.1. There exist sequences
a(u) = (asu)' b u&u)) G Thv Y‘"’ = (YY‘): LA | YSIR))E ”9

L

with the following properties:
6.1,. The greatest divisor of the ™ is (v{", -, v{") =1.
6.2,. There exist relatively prime inlegers p., Ga such that a{”® =
pn"hw/Qn (mod 1),
6.3,. There exists an integer r, such that g, = r,vi".
6.4,. There exists an integer s, , such that v’ =s, v{'™".
6.5, ¥ =y"" (mod gay), i=1,..., h.
6.6,. There exists an integer m,_, such that
Pn___ _Pn b 1
qn Gn-1 et Snes Bt
6.7.. Let ' C'T""! be a fundamental domain of the flow | T*™ | described
above. Denote the diameter of '™ by d,, and by o, the (h — 1)-dimensional
wlume of the boundary of I'. Then

d, <

1

2e-1yit—D g,y :
6.8,.

1 1 1
™ PN e,
.Ysln) Ys:l-—l) 21 G,y Gpy

(Distances, diameters and (h — 1)-dimensional volumes are always taken relative
to the Euclidean metric.)

ProOF. Suppose numbers o'’ and 7' satisfying 6.1,-6.8; have already
been defined for j < n. First we construct a number y"*" satisfying the
conditions 6.1,,,, 6.4441, 6.5,11, 6.7,,; and 6.8,,,. Here we shall use only
the conditions 6.1,, 6.2, and 6.3,.

We construct a matrix A € SL(h,Z) whose last column coincides with the
vector vy, This is possible in view of 6.1, (see for example [4], Chapter 1,
§2, Corollary 4). Here we can ascertain that the (h — 1)-dimensional matrix B
obtained from the matrix A by canceling the last column and the last row is
nonsingular. Indeed, it is easy to see that in the case where det B = 0, the vec-
tore; = (0, -+ -,0,1) belongs to the lattice spanned by the first A — 1 columns
of the matrix A, and in this lattice we may choose a basis beginning with e,. Let
e, @i, +++,04_; be the vectors of this basis. Then we may replace A by the
matrix whose columns are

e+ Y™, 8, ..., Gyy, YO,

By applying the matrix A, the subspace RV = {(x,+++,%-1,0)} is
mapped onto a subspace AR""! with equations of the form x, = DA lbx. We
observe that, denoting by U, a sphere of radius ¢ in the space R"-!, the cylin-
der U,xR intersects the subspace AR*"' in an ellipsoid contained in the
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sphere of radius bs, where b2 =1+ b + -+ + bi.,. The matrix A transforms
the unit cube 0 < x; <1 of the space R* into some parallelepiped in such
il

a way that the edge e of this cube is mapped onto the vector v

Let
1

vt yPonbll Al
We choose any vector o = (3, -+, %-1,0 € Z" with (9, "+, 0h-1) =1,
using the property that in T*~' every orbit of a periodic flow | T} intersects
an arbitrary sphere of radius 5. We let

1) YD = A 8+ (cg, + 1) yW = A~ (8,8 + (g, + D ew)

and we show that the corresponding conditions are satisfied under a suitable
choice of the integer c¢. Condition 6.1,,, follows from (6.1) and the fact that
the numbers v, are relatively prime; condition 6.4, follows from (6.1)
and 6.3,, and condition 6.5,,, is an immediate consequence of (6.1). Let ¢
be so large that at the same time when the point tg,9 is shifted by 3, the
point {cg, + 1)t is moved by not less than one. Then in T* every orbit of
the flow | 7% ~“= 'Y | intersects with the torus AT""' in a 2bs-net. It is
easy to see that this ensures the validity of condition 6.7, Finally, it is
perfectly clear that in 6.8,;, one has

lim | —L—qetn 1m0,
=00 Y;:H.” Y};ﬂ)

The number m, which occurs in condition 6.6,,, may be chosen arbitrarily.
From 6.6,,, we automatically obtain relatively prime numbers pu.i, Gasy,
and then 6.2,,, defines a""*". Condition 6.3,,, follows from 6.6,,, and
6.4,,,. This completes the proof of the lemma.

3. The set I =1Uysc1, T is a fundamental domain for the
shift T %, and thus also for 7*", since the numbers p, and g, are relatively
prime.

We denote by {, the decomposition of the torus T" into the sets

£ am
rk,ﬂ:'an :;D k=0| see lqn"—lv

and by ¢ the decomposition of T"! into the sets
v(_:r.,(n)
Tha=T" TI® k=0, .. ,yW—1L
It follows from condition 6.3 that
e U MO o0, .. -1
<1< o
Now we consider how the decompositions {, and {, are related to the de-

‘{‘fwmpositions {as1 and (... We begin with the decompositions {, and
w4 1e
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It follows from conditions 6.3 and 6.5 that
1 (D) 1 gm
o v
We shall consider this shift only on the"torus T" '. Denoting it by V", we
obtain from conditions 6.4 and 6.5 the equation iy VY
Let

K= {k:0<k AT, (VrtD)r0€ I},

We define ' *" = Uik Tins- Then T""*" is a fundamental domain for
V™. The decomposition into the sets V™'r" !, [=0,---,8 — 1, will be
denoted by {i.:1. Clearly &1 < a1 We estimate the (h — 1)-dimensional
Lebesgue measure ;. (I'™ AT""'"). The set '\ 1" t? is contained in
a neighborhood of width d,,, of the boundary of '™, Since I'™” is a convex
set, one has )
( (n,n+1) e
iy (T "’\f"""’ ) < 0l < B

(in view of condition 6.7). But since sk ol F"Y =gy ("), this implies
the inequality

(6.2) Paor (00 A Tomtiy L
on-1 Y}lﬂ)

Now we turn to the decompositions ¢, and (. We define

(nn1 1
e [} Pes
i< W’
The set I'™ ! consists of elements of the decomposition £, (since
3 . uqn
Gn,1 is divisible by r,v{"'") and is a fundamental domain of the shift
«™ We note that the set I'"'" depends only on the choice of the flow
T5"*" but not on the choice of m, The decomposition into the sets
k otmy
R : i
e 07 el ... .0

will be denoted by {,.,;. Evidently &ni1 < fasre Now we estimate the A-
dimensional Lebesgue measure u(Iy"'" ATY).
We define
‘I“.(;','n—}—l) e U lTh,(ﬂ) [t
UL, —
n
Since
() 2 T = L (0 4 T
n

it follows from (6.2) that
~(n 1
(6.3) N red . reame EoEE

n on-1gq,
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The sets T "p"*+) gndq Tw®+p®ath pelong to the same torus ¢, = const
by 6.4. Here the latter one of these sets is obtained from the former through
a shift by the vector

Y —a ol ..., B — ).

In view of 6.8 the length of this vector does not exceed iy{”(2%s,g,) ~'. For
t < 1/q, this length is not greater than (2"0,g.r.) '. Thus for these ¢ the set
Tow™ prati\ Pvttlpaa+d o contained in the (2"0ug.r») ~'-neighborhood
of the first of these sets, and the last one, as is evident from what was said
above, lies the (2"yf"s,) ~'-neighborhood. Therefore we have

Pt (r'nv"" (@atn ATM"“’,-(»,AH)) < drn
1) A At 1 i
(T ATE) <

(remembering that the Ath coordinate is shifted by r,). Finally, comparing
this with (6.3), we find that
1

(6.4) ll,.(rfy':,'"-'-" A r(:::) < 2n-3¢g, .

4. Now it is already easy to obtain from the sequence of decompositions
{» a monotonic sequence of decompositions {,. by a procedure which is
analogous to that used in the proof of Lemma 3.1. For this purpose we establish
a correspondence @5 ., between the elements of {, and those of {,,,; by putting

and

£ ym
(6.5) Qulon=T" I“:’;“'*'”.

In analogy to §3.6 we define for any set E an image @1, E which consists of
complete elements from the decomposition {,; furthermore, we introduce

=" ... G, and Lua=QC L, for n>m,

re) rme)

LEMMA 6.2. For given m, the sequence of decompositions {,, converges to a
decomposition {m«- The sequence {,. has the following properties:
bEL £ > fnor M=1,2, -+,
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6.2.2. T*™, . = §, ., where the factor-automorphism T/, . is a cyclic
permutation of the elements of the decomposition G
6.23. {mo—ecas m— o, .

The proof of this lemma is completely analogous to the proof of Lemma 3.1,
with the inequality (6.4) playing the role of (3.4).

We make some remarks which will be important in the sequel. The element
lim,_.. @'Ty» of the decomposition {,. will be denoted by Q:lym. In the
same manner we define the mapping

' Qg . T"/Cm = Th/;m.on
which is measure preserving and copmutes with / it
5. We shall construct simultaneously a sequence of shifts 7™ of the
torus T* which satisfies Conditions 6.1-6.8 and a sequence of diffeomorphisms
T, on the manifold M™ with a periodic flow which satisfy the conditions of the

First through the Fourth Step of §3. These sequences will be related to each
other as follows: We introduce a mapping

Ku : Th/t,. -y Mmle,l
by the equations

(6.6) . KaTea=B7'Mrg, k=0,1,...,¢,—1.
Then the factor-automorphism satisfies
6.7 Kps1/bnntt = Py Ky Q).

We show that in this case the limiting diffeomorphism T on M™ is metrically
isomorphic to the limiting shift 7° on the torus T*. For this purpose we
consider the mapping

kn: Th/&"." = Mm/aﬂ,un

where

R =P, W‘Kn (Q:a)_l'
It is easy to see that

1. B, 7" =T,R,.

2. The restriction of K,,, to T"/{,. coincides with X

It follows from Lemma 4.1 that the automorphism T° is metrically iso-
morphic to 7.

It remains to construct the sequences 7T, and 7™, We proceed by induc-
tion. Assuming the sequences to be defined for some n, we show how to de-
~fine T,,; and T°"*" such that condition (6.7) is satisfied.

In order to define the shift T°"*" it suffices to construct a vector gt
and to exhibit a number m,. Let the vector v"*" be constructed by the
relevant part of Lemma 6.1. Then, in particular, a number s, is defined by
condition 6.4. In the First Step in the induction of §3 we let k, = s,yj"*".
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We define the fundamental domain

n41) TL“"MH’
M. U 7'M of the shit T ™
— [
" L 4
and the decomposition {, into the sets
-3 n+1

s i »
Tas T % P 20, ....00—1
The set I'y»"*", as we mentioned, does not depend on the choice of m,; further-
more, it is easy to verify that this set consists of elements of the decompo-
sition {,, and thus { > {,,,;. We define a mapping K, T*/{,—M"/n,
by letting

nn

(6.8) R,.rk.n == Ah.k,‘qnv k=0,...,R0,— L
Now we introduce
(6.9) R = R resty, ,,
The set R is a fundamental domain for S\, such that we have
: 7(")’.. = >
(6.10) Rr*™ R.=8.K,
n

by (6.8). The quantities k, and R"™ thus defined determine the numbers
a,(i) for i =0,---,k,_;. Now we define a mapping A,,, and we choose a
number [, such that the conditions of the Second, Third and Fourth Steps ¥
are satisfied.

We introduce m, =+v{"*"l, and we construct a decomposition {,,;. We
have {,,, > {,, where the fact that every element of the decomposition {,
contains elements of the decomposition {,, may be accomplished in such a way
that each following element is obtained from the preceding element by applying
the mapping 7" i Similarly the fact that every element of the de-
composition ny,e, contains elements of the decomposition 5., ,, may be accom-
plished in such a way that each following element is obtained from the pre-
ceding element by applying the mapping Si/gp4,- Hence it follows from (6.8)
that the diagram

R
T /ot g M"m
©.11) ! =

- 'Rﬂ
™8 = MM,

is commutative; here Riiatr = Ayg,,p» 8nd the vertical arrows stand for
: 't,“!_‘ al embeddings of the decompositions.

e ———

9
.~ Even though ly does not occur explicitly in these conditions, the possibility of satisfying
them is related to the choice of I, in §3.5.
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Now let K,., be a mapping defined according to (6.6) with n + 1 instead
of n. We have to verify that K,,, satisfies (6.7), i.e.
(6.12) Kni1QapiTan = M-HK 16
Here we rewrite the left-hand side, using the relations K,,, = B,.+|K., (6.5),
&> tansr and (6.11), in the form

A £y
n-HK T ¢n rg:n-!—l) = BrT-[!-lR,,T n rgll;a-H)'

To the right-hand side of (6.12) we apply (6.6), the definitions of P;,, and
C, from §3.6, and (6.9), thus finding it equal to

PitiBi'Bug, = BatiCobug, = BihiS &« R™ = BzhiS » R,I9™.
9n

n
Now the equation (6.12) follows from (6.10).
Thus the following theorem has been proved.

THEOREM 6.1. Let M™ be a manifold on which there exists a periodic flow
of class C*, let h be an arbitrary positive integer and let u be a positive measure
of class C* on M™. Then there exists a diffeomorphism T & Diff*(M™,u)
which is metrically isomorphic to some ergodic shift of the h-dimensional torus T*.

REMARK 6.1. By means of minor modifications in our construction we may
also obtain a diffeomorphism T € Diff* (M™, u) which is metrically isomorphic
to some ergodic shift of the infinite-dimensional torus T* (i.e. a diffeomorphism
with discrete spectrum generated over Z by a countable set of independent
eigenvalues).

6. Finally, it is possible to construct also a diffeomorphism T & Diff* (M™, u)
which is metrically isomorphic to the direct product of some ergodic shift on
T"or T* and some automorphism with continuous simple singular spectrum
which is a realization of a diffeomorphism 7' & Diff*(N*,») of an arbitrary
manifold N* with a periodic flow by means of the construction from §5. In
order to accomplish this one has to construct simultaneously a sequence 7+
of shifts of the torus as described in Lemma 6.1, a sequence T of periodic
diffeomorphisms of manifold of N* as described in §5, and a sequence 7T, of
periodic diffeomorphisms of a manifold M™ as described in §3. For this pur-
pose one has to apply a certain lemma on the existence of a sequence ¢, /¢
of finite measurable decompositions which are invariant with respect to the
automorphisms T, = T, xT: of a Lebesgue space and which furthermore
have the property that T,/t, is cyclic if the sequences T, have invariant
finite decompositions &, ¢, if these sequences themselves converge sufficiently
rapidly under the weak topology and if the mappings T%,/¢. are cyclic. Such
a decomposition enables us to choose a,(i) for T,,, if y"*" and g¢,,, have
already been determined for T°"*" and if the corresponding quantities
8,(i) have been chosen for 7T,,,. Thereafter the number I, (for 7,.;) must
be chosen sufficiently large in order to guarantee that the condition of the
Third Step is satisfied simultaneously for T,,, and 7),,,.
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§7. Ergodic diffeomorphisms contained in the
closure of periodic diffeomorphisms

We consider all possible periodic flows of class C* on M™ which preserve
a given positive measure x4 of class C*, and we denote by B(M", u) the
set of all diffeomorphisms contained in such flows. The closure _ P(M™, x)
of this set in the space Diff*(M™, 4) is a nowhere dense, perfect subset of
this space. Any diffeomorphism T obtained by the construction of §3 obviously
belongs to the set T(M™, p).

Lemma 7.1. The set of diffeomorphisms which as automorphisms of the
Lebesgue space (M™, u) possess a cyclic APM with a given speed of approximation
f(n) is everywhere dense in B(M™,y).

Proor. It suffices to show that in any neighborhood of a diffeomorphism
SE PB(M™, u) there exist diffeomorphisms which have a cyclic APM with
a speed of approximation f(n). Let S=S,, where {S;| is a periodic flow.
We choose a fixed open neighborhood U of the diffeomorphism S in the space
Diff*(M",u) and we determine a rational number o, such that S,ER.
Then we let 7o = S, in the construction of §3. The difeomorphism T may
be constructed in such a manner that it is contained in any neighborhood of
the automorphism T, given in advance (in order to accomplish this is only
necessary to choose ¢, in the conditions of the Third Step sufficiently small}.
If, furthermore, ¢, and I, are suitably chosen such that the expression on
the right-hand side of (3.14) becomes less than f(g,), then the diffeomorphism
T = lim T, possesses a cyclic AMP with the speed of approximation f(n).

THEOREM 7.1. The set of diffeomorphisms from P(M™ ) which as auto-
morphisms of the Lebesgue space (M™,u) possess a cyclic AMP with a given
speed of approximation f(n) is a set of the second category within B(M™ u)
(it contains an everywhere dense G;-set).

(We note that Diff"(M™,x) may be considered as a complete metric space
with the metric

S.T = - ealS, T) ;
peh 12 27(1 o (S, T))

n=I|

hence Baire’s Theorem holds for any closed subset in the space.)

Proor. We consider all possible sequences of diffeomorphisms | T.} which
satisfy the inductive hypothesis of §3 with values of ¢, and I, for which the
expression on the right-hand side of (3.14) does not exceed f(g.). Let U(T,) be
a neighborhood of the diffeomorphism 7T, defined as follows:

W(T,) = {S :S¢€ Diif™ (M™, p),

p[__eL](Tm S)<28m Z P'(SC PN Tnc)<f(qn)}'

€8, 00
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We denote by ©, in the union of the neighborhoods U(T,) for all T, which
occur in the sequence described above, and we denote by @ the set

o-nye.

The set @ is a G, set since the set @, is open for every n. For any of the se-
quences | T, | under consideration, the limit T belongs to ® (since the Third
Step and (3.14) imply that '€ U (T},) for all n). Hence by Lemma 7.1 the set
® is everywhere dense in P(M™,u). We show that any diffeomorphism
SE ® possesses a cyclic APM with speed of approximation f(n). Indeed,
there exists a sequence my— o for which TE®,, ie. T€ll (T, k=
1,2,-.., where T}) is the myth term of the sequence {T}.

All decompositions which correspond to the sequence { T} will be labeled
by the upper index (k). By the conditions of the Second Step we have f‘,’.‘,’, —e,
and (3.13) implies that also E“”,Q —e. Hence it follows from the definition
of U(TY) that S possesses a cyclic APM with speed of approximation f(n).

By combining the theorem just proved with the results of [8] we obtain the
following corollary:

CoroLLary. The ergodic but nonmixing diffeomorphisms for which the shift
operator Uy in the space L*(M™,u) has a simple singular spectrum lie in the
space B(M™,u) and form a subset of the second category there.

REMARK. The results of the present section carry over to the case of
diffeomorphisms with finite smoothness.

The present article is not a joint paper in the usual sense; it was written
by A. B. Katok. However, the construction described in §3 was preceded
by a construction of a topologically transitive, (Lebesgue-) measure-preserving
C~-diffeomorphism of the two-dimensional circle due to D. V. Anosov. That
construction involved the inductive conditions of the First and Third Step from
§3, but instead of the Second and Fourth Step another argument was used.
Mindful of this fact and also of the help rendered by D. V. Anosov for the
writing of this paper through invaluable advise and comments, we thought it
most fitting to publish the article under joint authorship. The ordering
of the authors’ names is alphabetical and does not have any additional
significance.
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