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Abstract. We give a complete description of smooth untwisted cohomology with
coefficients in R® for Z*-actions by hyperbolic automorphisms of a torus. For 1 <
n < k — 1 the nth cohomology trivializes, i.e. every cocycle is cohomologous to a
constant cocycle via a smooth coboundary. For n = k a counterpart of the classical
Livshitz Theorem holds: the cohomology class of a smooth k-cocycle is determined by
periodic data.

0. Introduction

Let us consider an action « of Zﬁ on a compact differentiable manifold M generated by
commuting C* maps Fy, ..., F;. We will use terms C* and ‘smooth’ interchangeably.
Later we will mention other classes of cocycles such as C!, Holder and real-analytic.
Let 1 <n < k. A n-cochain on M with values in R¢ (¢ > 1) is a function

(p:MX(Zﬁ_)"—)Re

that is multi-linear and skew-symmetric in the last n variables, and C*® in the first
variable. Since every such function is determined by its coefficients, such a ¢ can be
viewed as a smooth vector function '

o: M= ®RYW
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whose components are indexed by iy < ... < i,, i{,...,in € {1,...,k}. The
coboundary operator D is given by the formula

n+1

(), 0.1

,,,,, Bjyenringl
j=1

where the operators A; are defined on functions ¥ : M — R¢ by

Ay =y oF — . 0.2)

The cohomology of this cochain complex is called the smooth cohomology of the action
a.

Similarly, we define smooth cohomology for an action of R¥. In that case, which is
somewhat easier to visualize geometrically, n-cochains are smooth fields of differential
n-forms, cocycles correspond to the fields of closed forms, and coboundaries are given
by the restrictions to the orbit foliation of differentials of smooth globally defined (n —1)-
forms.

Let A be Z* , Z* or R, and « be an A-action on M. Let us consider a closed orbit C
of a. Restrictions of cochains, cocycles and coboundaries to C form cochains, cocycles
and coboundaries for the transitive action on the orbit. Thus, the cohomology class of
the restriction of a smooth cocycle ¢ to C is an obvious cohomology invariant of ¢. This
invariant is conveniently described as follows. The orbit C carries the unique normalized
a-invariant measure o¢. Integrating ¢ with respect to this measure produces a n-cocycle
independent on the first variable which determines an element {p]; € H"(A; R).

Let P(a) denote the set of all closed orbits of the action «c. We will say that the action
« satisfies the C® Livshitz property for n-cocycles if {[¢]¢ | C € P(«)} form a complete
system of cohomology invariants for smooth n-cocycles, i.e. if smooth n-cocycles ¢ and
Y are such that for every closed orbit C

lele = ¥le,

then there exists a smooth (n — 1)-cochain @ such that
v =¢+DoP.

Replacing C® in the above discussion by Holder, C! and real-analytic, we define
corresponding cohomology of the action and appropriate versions of the Livshitz property.
The situation of intermediate regularity between C' and C® is usually technically
somewhat more complicated, and we will not discuss it in the present paper. On the other
hand, although classes [¢]¢ can be defined already for continuous cocycles, continuous
cohomology of most actions is quite pathological and, in particular, Livshitz property
never takes place in the continuous category [6].

Integrating the cocycle ¢ with respect to any «-invariant Borel probability measure
p also produces a cohomology invariant [¢], € H"(A;R?). In particular, Livshitz
property implies that all cohomology classes [¢], are determined by the classes [¢]c.
For A = Z,, Z or R the first cohomology is the only non-trivial one, so in these cases
it 1s natural to call the Livshitz property for 1-cocycles simply the Livshitz property.
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The reason for calling the situation when the cohomology of an action is determined
by the periodic data the Livshitz property is the pioneering work by Livshitz [11] from
the early seventies who considered the first Hélder and C' cohomology for Anosov
diffeomorphisms (Z-actions) and flows (R-actions). He established the property for
those cases and also noticed that in the algebraic situations such as hyperbolic toral
automorphisms the C*-property holds as well. The C*-result for some geodesic flows
was proved by Guillemin and Kazhdan [2], [3] in the late seventies, and for arbitrary
Anosov flows and diffeomorphisms by de la Llave, Marko and Moriyon [13]; de la Llave
later proved the real-analytic version of the result {12]. See also [4] and [5].

Away from the hyperbolic case, the situation is much more complicated even for the
first cohomology of a Z- or R-action. An important result in that direction was obtained
by Veech in [14] who established the C* Livshitz property for partially hyperbolic toral
endomorphisms. In fact, Veech works in finite differentiability and estimates the loss of
differentiability for the solution of the coboundary equation. In particular, he constructs
examples showing that the C! Livshitz property does not hold in general in this case.
There are examples of partially hyperbolic systems of an algebraic nature, for which even
the C* Livshitz property does not hold. In this paper we are using a version of Veech’s
method to study cohomology of higher rank groups of hyperbolic toral automorphisms.
Let us point out that the original Livshitz method does not work in the case of higher
cohomology at all. On the other hand, Katok and Spatzier [7, Theorem 2.10] adapted
the original Livshitz method to establish Holder, C! and C* Livshitz property for 1-
cocycles for R¥ Anosov actions. Their result, however, is only a preliminary to a much
stronger result for k > 2. To put their result in a context appropriate to our discussion,
we introduce the following notion.

We shall say that C*® (C! etc.) n-cohomology for an A-action « trivializes if any
n-cocycle in the corresponding category is cohomologous to a constant cocycle. This
implies, in particular, that cohomology classes [@]¢ are equal for all closed orbits C; the
same is true for the classes [¢],. Thus, for Z- or R-actions a necessary condition for
trivialization is unique ergodicity; indeed, trivialization of C* cohomology happens for
translations of the torus satisfying Diophantine conditions. On the other hand, it never
happens for hyperbolic systems.

In the sharp contrast to that Katok and Spatzier proved that for a large class of partially
hyperbolic algebraic actions of Z* or R* for k > 2, which they call standard actions (see
{7, Section 2.2], [8, Section 3], [9, Sections 3 and 6] for exact definitions; notice that in
the widely distributed preprint version of {7] and [8], ‘Differential rigidity of hyperbolic
abelian actions’ the term principal was used instead of standard), the C* 1-cohomology
trivializes. Then using their version of Livshitz Theorem they extend this result in the
case of standard Anosov actions to Hélder and C' cohomology. Although [7] deals only
with invertible case, corresponding results are also true for standard actions of Z’j_ by
toral endomorphisms.

The contrast between Livshitz and Katok—Spatzier results can be explained if one
remembers that for the Z, or R action the first cohomology is also the highest. For
the highest cohomology every cochain is a cocycle, and hence there is one-to-one
correspondence between cocycles and R®-valued functions on M. In particular, the
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classes {¢]c are ‘independent’ since for any finite set of closed orbits one can find a
C®* function with prescribed averages over those orbits. Thus a ‘true’ generalization of
Livshitz Theorem should deal with the highest cohomology of an action.

Although in this article we deal exclusively with actions by automorphisms and
endomorphisms of the torus, in order to keep the general prospective we recall that
the standard partially hyperbolic actions of R¥ all come from the following construction.
Let G be a connected Lie group, A C G a closed abelian subgroup which is isomorphic
to R, S a compact subgroup of the centralizer Z(A) of A, and " a cocompact lattice
in G. Then A acts by left translations on the compact space M = S\G/T'. This class
includes suspensions of actions by automorphisms of tori and nilmanifolds which we
call the standard Z* actions. Furthermore, the standard actions of the semigroup VAR
partially hyperbolic actions by endomorphisms of a torus or a nilmanifold.

Conjecture. Let a be a standard partially hyperbolic action of Z*, Z* or R¥, k > 2.
Then C* n-cohomology of « trivializes for 1 <n < k — 1, and «a satisfies C* Livshitz
property for k-cocycles. If « is a standard Anosov action the same is true in C' and
Holder cases.

For n = 1 this statement is contained in [7, Theorem 2.9] for the Anosov case and in
[8, Theorem 3.6] for the partially hyperbolic case.

A positive solution of this conjecture for the highest cohomology in the Weyl chamber
flow case [7, Example 2.6] would provide a crucial step in the construction of the
spanning sets for cusp forms on some locally symmetric spaces of higher rank. Those
cusp forms are generalizations of relative Poincaré series associated with closed geodesics
[10] which in this case are associated with maximal compact flats.

The highest cohomology case, however, looks the most difficult. On the other hand,
in the case of intermediate cohomology, a combination of decay estimates for matrix
coefficients [7, Section 3] with the method of constructing solutions developed in the
present paper, is likely to work.

In this paper we prove this conjecture for arbitrary actions by Anosov (hyperbolic) toral
automorphisms. At the end of Section 3 we also outline the strategy for extending our
results to the more general case of actions by partially hyperbolic toral automorphisms.

THEOREM 1. Let o be an action of Z* by hyperbolic automorphisms of TV, and ¢ be a
C™ k-cocycle over a with values in R® (£ > 1) that vanishes on all periodic orbits of
ZF, i.e. [¢lc = O for each C € P(a). Then for x € TV, t € (Z*)*

p(x, 1) = DP(x, 1), 0.3)
where @ is a C*® (k — 1)-cochain.

THEOREM 2. Let a be an action of Z* by hyperbolic automorphisms of TV, and ¢ be
a C® n-cocycle over o with values in R® (£ > ) and 1 < n <k —1. Then ¢ is
C>®-cohomologous to a constant cocycle vy, i.e. for x € TV, t € (Z*)"

ex, ) =v)+DP(x,1), 0.4)

where @ is a C* (n — 1)-cochain.
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THEOREM 3. Let o be a faithful action of Z’; by partially hyperbolic endomorphisms
of TV. Then the linear combinations of invariant §-measures concentrated on periodic
orbits of the action a are dense in the space of all invariant pseudomeasures in the weak-
* topology of pseudomeasures, i.e. the dual space to the space of functions on TV with
absolutely convergent Fourier series.

An outline of the paper is as follows. The main tool is to pass to a dual problem.
The dual to a (vector-)function on the torus is a collection of its Fourier coefficients,
i.e. a (vector-)function on the lattice Z". Thus we associate to a cochain on the torus a
dual cochain on the lattice Z". The dual coboundary equation reduces to the equations
for the transitive action on each orbit O of the dual action. Smoothness of the original
cocycle corresponds to a super-polynomial decay of its Fourier coefficients, in particular,
it ensures that the dual cocycle is £'. In §1 we show that in the most interesting case n = k
the vanishing of a cocycle on all periodic orbits of the given action implies that the sum
of its Fourier coefficients over any dual orbit @ vanishes (Corollary 1.4). The statement
is valid in greater generality than Theorem 1 requires; it is true for actions by commuting
ergodic toral endomorphisms. Aside from Theorem 3, which is of independent interest,
these considerations provide the basis for treatment of the cohomology problem in this
more general case. We will come back to that in a later paper. The key result here is
Theorem 1.3 and the method is a generalization of Veech [14] to the case of several
commuting toral endomorphisms. Theorem 3 (Theorem 1.2 of the text) is also deduced
from Theorem 1.3. In §2 we discuss elementary properties of £! cohomology of Z* and
construct a solution of the coboundary equation on a dual orbit. There is an obvious
obstruction for solving this equation in functions decaying at infinity, namely, the average
value of the dual cocycle over the orbit O, i.e. the sum of the Fourier coefficients of the
original cocycle over O (Proposition 2.2). In Proposition 2.3 we show the vanishing of
this obstruction for n-cocycles for 1 < n < k — 1 by a generalization of the argument
given for n = 1 in [7] . Notice that in the contrast to this result, in the case n = k the
vanishing of the dual obstructions is a consequence of the vanishing of the periodic data
{plc for every closed orbit C of the original action (Corollary 1.4). In §3 we establish
the exponential growth of a dual orbit in terms of the norm of coordinates on the orbit
with respect to some initial point with estimates independent on the choice of the orbit
(Theorem 3.1). This result is only true for hyperbolic automorphisms. In §4 we deal
with solution of the coboundary equation for C* k-cocycles whose dual cocycles have 0
average over each non-trivial dual orbit. We prove that solutions constructed on all dual
orbits can be ‘patched together’ to ensure their super-polynomial decay and thus obtain
a C™-cochain that is a solution of our original coboundary equation (Proposition 4.1).
Theorem 1 now follows immediately from Proposition 4.1 and the previous results. The
proof of Theorem 2 is inductive, and the base of the induction corresponds to the case
n = k dealt with in Proposition 4.1 and the case n = 1.

Let us point out an essential difference between the first and higher cohomology. In
the former case a regular solution @ of the coboundary equation ¢ = D@ is unique up to
a constant and its existence is equivalent to the coincidence of two distribution solutions
@+ and @~ which always exist and which are obtained by integrating or summing
the values of the cocycle in the positive and negative direction along a one-parameter
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subgroup (see §4 and [7, Section 4] for details). For n > 2 the solution is not unique
and when it exists, there is no canonical procedure for constructing it. In the standard
de Rham cohomology theory the issue of non-uniqueness is handled by introducing a
Hodge structure. This method does not work in the case of cohomology of ergodic group
actions. Roughly speaking, the reason is the following. Normalization given by Hodge
theory requires choosing a particular solution on each closed orbit, but those solutions
cannot be glued together into a global solution. This is already apparent in the Livshitz
case (n = k = 1) where the solution is unique up to a constant so the normalization
on every closed orbit is uniquely determined once it has been fixed on a single orbit.
From a different viewpoint, one may say that Hodge theory requires solving second-order
differential equations whereas in the case of cohomology of an action one must stick to the
first-order equations since no ellipticity is present which would guarantee solvability of
higher-order equations. Assuming vanishing of the classes [¢]¢ we construct a particular
solution of the coboundary equation in the case n = k > 2 which depends on choosing
a point on each orbit of the dual action on the group of characters.

1. Periodic orbits and orbits for the dual action by toral endomorphisms
In this section we generalize results of Veech [14] to the case of several commuting toral
endomorphisms. Let A = A(T?) be the space of absolutely convergent Fourier series
on the torus TV R

f~ )" fmen-x),

neZV

where e(t) = exp(2mit), with £'-norm | f|l; = Y nez¥ |f(n)|. The dual space to A
is a space of distributions on TV denoted by P = P(T"), equipped with the £*°-norm
litlloo = sup,egn |A(n)], where fi(n) = p(e(n - x)). We shall call these distributions
pseudomeasures.

Any surjective endomorphism A : TV — TV is given by a non-singular integral
matrix which we will also denote by A; it induces a map f — f o A of A given by
f(x) = f(Ax). The dual endomorphism A* : Z¥ — ZV is given by the transpose
matrix fA. It induces a dual map on the characters:

e(n-x) — e(A™n - x).
In terms of Fourier coefficients A sends

f~ ) fmem-x) o foA~ ) (foA)(me(m-x)

nezZN meZN

where R
~ ot N
(f 5 AY(m) = [f(n), 1fm_' An for some n € Z (1.1)
0, otherwise.
It is clear that this map is not expanding with respect to £'-norm, and if A is an
automorphism, then it is an isometry. Similarly, it induces a mapping 4 — Ap of
P which is non-expanding with respect to the £°°-norm.
It is a fairly standard exercise in linear algebra to show that the following four

conditions are equivalent:
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(1) A is ergodic with respect to Lebesgue measure.
(2) The set of periodic points of A coincides with the set of points in TV with rational
coordinates.
(3) None of the eigenvalues of the matrix A are roots of unity.
(4) A has at least one eigenvalue of absolute value greater than one and has no
eigenvectors with rational coordinates.
We will call an endomorphism A satisfying these properties as well as the matrix A
partially hyperbolic.
Let @ be a faithful action by partially hyperbolic commuting endomorphisms of TV

given by N x N integer matrices A1, ..., Ay, k > 1, with determinants A, ..., A % 0,
and B be the dual action on Z" by transpose matrices B; ='A;.
We write

[ H ph e %
B'm*=B!'By...Bm

fort = (t1,..., %) and m* € ZV.
The following definition is useful while considering the non-invertible case.

Definition 1.1. A dual semiorbit of a given vector m* € Z" is a subset of Z":
Ot (m*) = {m = g'm*,t € Z}}.
A dual orbit of a given vector m* € Z" is a subset of Z":
Om*y={meZ" |m=pm*1telk).

Dual orbits form an equivalence relation on ZV.

A pseudomeasure p is invariant under « if for any A € «, Ay = p. For any dual
orbit O(m*) with the initial point m* € Z" we construct an a-invariant pseudomeasure
o+ by setting its Fourier coefficients

1, ifme O@m*

1.2
0, otherwise. (1.2

RomH(m) = {

Obviously fio(me) does not depend on the choice of the initial point m* and hence can

be denoted by [in. Pseudomeasures pe for different dual orbits @ form a basis in the
space of all ¢-invariant pseudomeasure denoted by IP(x).

To each periodic (finite) orbit C of o one associates an «-invariant measure o¢

concentrated on that orbit: )

=—9 6.
ICl

xeC

oc

Let us point out that in the non-invertible case not every point whose a-orbit is finite
belongs to a periodic orbit. Let P(a) be the set of all periodic orbits of TV. We denote
by (P(x)) the C-linear span of {o¢ | C € P(w)}.

Let g > 0 be an integer relatively prime to all determinants A, ..., A;. Notice that
B; are invertible if considered as matrices with entries in Z/qZ, §‘qu = (By,..., By)
as a subgroup of GL(N, Z/qZ) is finite. Fix m* € Z" and consider it as an element of
(Z/qZ)N . Then the factor group G4/C(m*) where C(m*) is the stabilizer of m* in G,
is finite, and the representatives can be always chosen of the form
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Blr'...Bkr" with 7;,...5% > 0. (1.3)

We pick a fundamental domain for G,/C(m*) satisfying (1.3) and denote it by F.

Let I'(g) be the set of points in the torus TV whose coordinates are rational numbers
whose denominators are divisors of g, i.e. the image in TV of g ~'Z" under the canonical
projection. Then I'(q) C P(x). We can define now a complex valued measure,

n = p(m*, q) by
p=pm,q)=q" ( > e(-B] ...B,f*m*-x))&,. (1.4)
xel'(q) * g plter
Notice that its Fourier coefficients are given by the formula

1, ifm=B".. B*m* (modq) forsome B]'...B} e F

1.5
0, otherwise. (1.5)

fi{m) = {

THEOREM 1.2. Let & be an action by commuting partially hyperbolic endomorphisms of
™ given by N x N matrices Ay, ..., Ay withdeterminants Ay, ..., Ay, and let m* € AR
If p™ is the product of the first n primes numbers relatively prime to Ay, ..., Ay, then
in the notations of (1.4) and (1.2),

lim u(m*, p) = pome
n—oQ
in the weak-* topology of P(TV).

This result is a consequence of the following theorem.

THEOREM 1.3. Let By, ..., By € GL(N,Z) be commuting partially hyperbolic matrices
with determinants Ay, ..., Ay, p™ the product of the first n primes numbers relatively
prime to Ay, ..., A If m*, m € ZV and there are k sequences {ji("), 1 <i < k}of
integers such that
.(n) S(n)

Bl ...B}f m*=m (mod p™) (1.6)

then there exists a vector (j, ..., j¥) € Z* such that
:(0) (0
Bljl B mt=m

and foreachO <reZandl1 <i <k

lim j” = j® (mod r).
n—oo

Proof. Following Veech [14] we let A(m*) be the smallest subgroup of Z" containing
the semiorbit OF(m*), Q(m*) be the Q-span of A(m*) and A*(m*) = Q(m*) N ZY.
Then A*(m*) is a B-invariant subpace and without loss of generality we may assume
that A*(m*) = Z" and m* is a cyclic vector of the action 8 on ZV.

The transpose matrices ‘ By, .. ., ' B, commute, hence they have a common eigenvector
§ = (&,...,&y) such that 'B;& = L& for 1 <i <k. Let K = Q(%). Then by the
Cramer’s Rule, all §; € K, and by solving the equation

(Bi—x)E=0
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for i = 2,...,k, we obtain that all A; € K. Moreover, there exists a cofinite set of
non-archimedian prime divisors of K, Sp, such that & € O*(Sp) for 1 < j < N and
A € O*(Sp) for 1 < i <k, where O*(Sp) is the group of units of the ring of integers
O(Sy) in K with respect to the set Sp. (For all necessary references see, e.g., [15,
Chapter 5]). Choose a non-singular matrix C having & as the last row and other integer
entries. Then C € GL(N, O(Sp)). Let o = Cm*, ¢ = Cm.

Let p be a rational prime and assume that the congruence

Bl'...Bl!m*=m (mod p)
admits a solution j = (ji, ..., jx) € Z". Then for the same j we have
CBl'...B¥C'to=¢ (mod pO(Sp)™).

The last row of the matrix CBJ" ... Bf*C~! will have the form (0, ..., 0, A ... A/*) and
we obtain the following congruence

A aa=b (mod pO(Sy)),

where a is the Nth component of ¢, and b is N-th component of ¢{. Since m* is a cyclic
vector, a # 0. Condition (1.6) implies that there exists a cofinite set of non-archimedian
prime divisors of K, S C & such that a, b € O*(S) and

M ara=b  (mod n(P)), (1.7)
admits a solution j = (ji,..., jx) for each finite set of P € S. Since matrices
By,...,By € GL(N,Z) and have no eigenvalues that are roots of unity, neither of
Al, ..., A 18 aroot of unity. The rest of the proof verbatim follows the scheme of Veech

[14]. It makes use of Chevalley’s Theorem [1, 14] in order to interpret (1.7) as a limit
in the profinite topology of the group O*(S) and the fact that the set

W a G i) € Z9)

which is a sublattice in O*(S) ~ Z,, x Z*, is closed in the profinite topology on O*(S).
O
Theorem 1.2 can be applied to k-cocycles over a Z;}-action « by toral endomorphisms

in the following way. A k-cocycle ¢(x, t) is uniquely determined by a function

e(x): TV > R (£>1)
(see Introduction for general definitions). Recall that a k-cocycle vanishes on a periodic
orbit C if
[ple = / pdoc =0. (1.8)
TN

COROLLARY 14. Let a be an action by commuting ergodic endomorphisms of TV given
by N x N matrices Ay, ..., Ag with determinants Ay, ..., Ay. Let ¢ be a C* k-cocycle
over a with values in R® (€ > 1) that vanishes on all periodic orbits of . Then for any
dual orbit O(m*) '

Y ém)y=0.

meQ(m*)
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Proof. Since ¢ vanishes on all periodic orbits of «, for any n > 1,

/ pdu(m*, p™) =0,
TN .
where p(m*, -) was defined in (1.4). By Theorem 1.2

Homn(p) =0.

But
Rom (@) = Y Gm)omn(m) =Y @(m).
meZVN meO(m*)

Thus if the condition (1.8) holds for any C € P(«), for any dual orbit O(m*)

> ¢m=o0.

meQ(m*)
O

In particular, since O(0) = 0 we obtain
COROLLARY 15. Let a be an action by commuting ergodic endomorphisms of TV given
by N x N matrices Ay, ..., Ay with determinants A, ..., A. Let ¢ be a C™ k-cocycle
over a with values in R® (¢ > 1) that vanishes on all periodic orbits of «. Then

@(0) = fpv @dX = 0, where X is the Lebesgue measure on TV.

2. The £' n-cohomology of ZF

Now we proceed to the consideration of the dual cohomology problem which appears
in the space of Fourier coefficients. The case of the highest cohomology plays a special
role since, together with the first cohomology, it is a base of the induction in the general
case. So we begin by discussing the case n = k. Let ¢ be a C® k-cocycle over a
Z; -action « by ergodic toral endomorphisms. Let us fix an initial point m* € ZV. The
dual orbit O(m*) can be identified with a subset of Z* via the correspondence

m=B{"'...B;”"m*—>(ml,...,mk).

If m* = 0 we obtain a trivial orbit. Throughout this section we assume that m* # 0.
Since all elements are ergodic, O(m*) has rank k. Since the original cocycle ¢ is C*°,
its Fourier coefficients decay super-polynomially, i.e.

VjeZ, 3C(j) suchthat VYmeZN |o@m)|<C)lm|™,
where || - || is any norm in R¥. Hence on each dual orbit O(m*) we have

D 1é0m) 1< 0.
meQ(m*)
If we restrict ¢ to O(m*), i.e. assign ¢(m) = 0 for m ¢ O(m*) we obtain a (untwisted)
¢! k-cocycle on Z* dual to ¢,
$:ZF >R, Y1 (m) |< oo,
meZk

We shall ignore its dependence on m* for the moment.
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A (k — 1)-cochain @ over o can be identified with a vector function
& TV - (RY*, & =(@y,..., Pp).

The coboundary operator is given by the formula

k
Do =) (-1 A,
i=1
where
Ajp=gpoA;—p. 2.1
According to the formula (1.1) A; acts on Fourier coefficients corresponding to the
points of the dual orbit exactly the way the ith left coordinate shift

oi(my, ...,m) =(my,...,mi,m; —1,mip, ..., my).
acts on the dual cocycle ¢:
(poA)=¢oo;.
Consequently, if we identify a dual (k — 1)-cochain with a vector-function
é:2" > RY, & =(,..., P,
the coboundary operator for dual cochains will be given by the formula
k
Dé =) (-1*'ad;,
i=t
where
Aip=@oa; — . (2.2)
We shall discuss here elementary properties of untwisted £'-k-cocycles on Z*. Now
let
(my,...,my) =m e Z*.
If ¢ is a £'-k-cocycle on Z*, it vanishes at 0o, i.e. | §(m) | 0 as ||m| — oo.
We use the following notations:
For ¢ € £1(Z5) let

$=>_ (m).

meZ*
For g e £1(Z",i=1,... .,k
o0
(Ti@)omy, . m) = D Glmy, . omiy, jomi, . m),
j=—00
m;—1
(Z7o)my,...,m) = Z Qlmy, ... mioy, jo Mg, ..., my),
jm—o0
(o]
(E?.@)(ml,---,mk)=_Z‘/A’(ml’--wmi—l’j’mwly--:amk)-
J=m;

Obviously £ — £} = Z; (as operators on functions). Thus £7¢ = ¢ if and only
if £;¢ = 0. Note that the operators ¥;, £;", £; do not preserve the £'-condition.



580 A. Katok and S. Katok
LEMMA 2.1. 7 ¢ and T ¢ vanish af oo if and only if they coincide.

Proof. (27 ¢)(my,...,m;, ..., my) converges to (X;@)(my, ..., mg) as m; — oo, and
similarly for =} 7 a

Furthermore, we have

TFA =%7A;=1d and AT =AZ =1 (2.3)
as operators on £!-functions.
Let (§;0)(my, ..., mg) = 8(m)@(my, ..., my), where
1, ifn=0
Sn)=1. )
() { 0, otherwise
is the usual §-function. Operators X4, ..., ¥; commute, hence we can define composition
operators
Eipy = Biy - By
for any set of pairwise distinct indices. Similarly, §y, ..., § commute and we define
6i| YYYY i = 8,‘1 . (Sij.
Operator T; ... X associates to every £!-function ¢ the constant function equal to .

PROPOSITION 2.2. An ¢! k-cocycle ¢ satisfies
¢ =Do, (2.4)

where ® vanishes at 0o (P may not be £! itself) if and only if 5 =0 If 5 = 0 a solution
of (2.4) & = (P, ..., D) is given in the form (2.5) below.

Proof. Let ¢ € £'(Z*). Then the function §; ;¢ € £'(Z*). An easy calculation shows
that £,(¢ — 8;Z1¢) = 0. Let

$1(9) = Z; (@ — HiTi9).
By Lemma 2.1 d31(¢3) vanishes at oo, and by (2.3)
¢ —8T16 = £1D1(@).

Since the function §;3;¢ vanishes outside the hyperplane m; = 0 one can proceed by
induction. Thus
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where
®(@) = (=1/ME781 .. 8-1(Bh,..j-10 — 8 Ei(Tii119)). (2.5)

®; vanishes at oo since

Zi1, ., 8(Bnj-10 — 8 5(E L j—19) =0

Thus, ¢ = (d31, e <13k) is a solution of (2.4) if and only if 5 = X; & = 0. In the
latter case formula (2.5) gives a solution. O
The map ¢ — (<131(¢3), e, <13k(</3)) is linear. It is not bounded in ¢!'-norm; in fact,

@ may not be ¢!. However, if ¢ decreases at oo fast enough so do @;s. The last
observation will be used in the next section.

Now let ¢ be a C* n-cochain on TV with 1 <n <k — 1. As before, the restriction
of its Fourier coefficients ¢ to a dual orbit O(m*) gives us an £! n-cochain on Z*. It
can be viewed as a vector-function

¢ 7 > RH)

whose components ¢;, ; are indexed by i; < ... <i,, i,...,i, €{l,...,k}. The
cocycle equation Dy = 0 gives us the following equations for components of ¢:
n+l
Z(—l)j-HAij(pil...i}...i,,ﬂ =0, (2.6)
j=1
where A; is given by the formula (2.1). Then on each non-trivial dual orbit the
components of the dual cocycle ¢ satisfy to the same equation

n+1

DDA o =0 Q2.7
i=1
with A; given by the formula (2.2).

The following Proposition is the generalization to the intermediate cohomology case
of the key argument for the first cohomology of the higher rank abelian actions which first
appeared in [7]. It demonstrates why for smooth cocycles the dual obstructions vanish.
We are going to use elementary facts about n-cocycles analogous to those proved for
k-cocycles.

PROPOSITION 2.3. If ¢ is an 2! n-cocycle on 7K with 1 < n < k — 1, then for each
component we have
Zinin @i, = 0.

Proof. 1t is sufficient to consider a component @;, ;, with iy > 1. From (2.7) we have

n

...... n

ji=l

Applying ¥, _; = Z; ... X; we obtain

iy
A]E,‘l .. Zin¢i1 qy = Zil i Al@il.“i,. =
ein 2oyt (S DI ALy e =0
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since ¥;,, ..., X;, commute and ¥;A; = 0. Therefore for each point (¢, ¢2,...,c) €
Z¥ we have

2,’1 e E,'n(i),-l,,‘i"(ml, Coy v ey Ck) = Eh N Z,’n(ﬁ,‘]m,‘n (Cl, C2y ey Ck) =C
for each m; € Z. But applying £, and using that ¢ is an £' cocycle, we see that
212,'1 .. E;néi,m,-"(c,, ey Ck) < O

which implies that C = Z;, ... Z; @, (c1, €2, ..., ) = 0. O

3.  Growth estimates for the orbits of the dual action
The following theorem gives us estimates on the growth of a given dual orbit in terms
of the norm of coordinates on the orbit.

THEOREM 3.1. Let o be an action by commuting hyperbolic automorphisms of TN, B be
the dual action, and © a non-trivial dual orbit in ZN. Then there exists an initial point
m* € O such that for some constants a, b, Cs, C¢ > 0

Csllm* |l exp(bliz]l) < |B'm™|| < Cellm™|| exp(allz]}).

Proof. Let By, ..., By € SL(N,Z) be generators for the dual action 8. Since B is an
action by automorphisms, O ~ Z*.

Since By, ..., By are commuting real matrices, the space R" can be decomposed into
a direct sum of subspaces invariant under all B;:

RV=L&..0l, 3.1

such that the minimal polynomial of B; on I; is a power of an irreducible
polynomial ¢;;(x) over R. According to this decomposition matrices By, ..., By can
be simultaneously brought to the following form with square blocks along the diagonal
of sizes Ny,...,N,, Ny+...+ N, = N:

An 0 A]k 0
: o= ] (3.2)

Al: . - .
0 ... An 0 ... Ax

If for a given 1 < i < r the minimal polynomials of all B; on I; are powers of linear
polynomials: g;;(x) = (x — A,-,-)N', all blocks A;; (1 < j < k) can be simultaneously
brought to an upper-triangular form with A;; on the diagonal. If for at least one
J.1 £ j < k, the minimal polynomial of B, is a power of an irreducible quadratic
polynomial with complex conjugate roots (&;;, T,,-), then the blocks A;; (1 < j < k) can
be simultaneously brought to the following form:

N |< cosf;;  sing;; R
ij .
—sinf;; cos6;

0 |)»ij| CO.SQ,“,' sm9,~j
— Sin 0,'.,' Cos 9,’]
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Notice that for some j, §;; may be equal to 0 or &, so the 2 x 2 blocks on the diagonal
will correspond to a pair of equal real eigenvalues. Each block A;; can be canonically
represented as a product

Aij = Si;Us; (3.3)

where S;; is semisimple and Uj; is unipotent (identity plus nilpotent) which commute.
The unipotent part U;; is upper-triangular, and the semisimple part S;; is either a diagonal
matrix with A;; € R on the diagonal, or is of the form

| co.sﬁ,-j sin 6;; 0
—sinf;; cos6;;

cosf;; sinf;;
0 cee A Y Y
| ”|< —sin;; cos;;

We shall refer to the invariant subspaces I; of being of the first or of the second kind
depending on the form of the semisimple parts S;; (1 < j < k) described above.

Unipotent matrices U;; have the following important property which will play a crucial
role in the argument:

CHI™ < USN < Clig ™. (3.4)

for some constant C > 0 independent on the choice of the orbit.

Let x = (X11,..»XIN;» -2 Xr1s - - - Xrn,) be coordinates in RY in which matrices
have the form (3.2), where x; = (xj1,...,xn) € L. Let x* = (xf,...,x7) with
x; = (x;...,x]y,) be an initial point in the lattice Z", then the orbit of this point is
given by

k k
O ={B'(xF, ..., x") = (HA'{I.xT, ...,]‘[A;fjx:> |t € Z¥}. (3.5)
j=I1 j=1

First, let us notice that for a unipotent matrix U;; its logarithm is uniquely defined, hence
it can be included into a 1-parameter subgroup by U,.’j = exp(tlogU;;),t € R. For a
semisimple matrix S;; its square can be also included into a l-parameter subgroup Sizj’
since the only obstacle for that is an odd number of equal negative eigenvalues. Then
we put AY = SHU. Taking products of block matrices with blocks of this form,
we obtain a finite index subgroup H C Z* such that both H-action and its semisimple
component can be included into R¥-actions, the latter being the semisimple component
of the former, whose semisimple and unipotent components commute. If we prove the
estimates in Theorem 3.1 for t € H, the estimates for the whole group will follow with,
possibly, different constants. Hence, without loss of generality, we may assume that both
the Z*-action B and its semisimple component S, can be included into R¥- actions which
we also denote by B and B,. The R¥-orbit of x*, Og(x*) is given=by the same formula
as (3.5) only with ¢ € R¥, and O(x*) = Ogr(x*) N ZV. Notice that not all R*-orbits
contain integral points, but if an R*-orbit contains one integral point, it contains the
whole Z*-orbit.
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Let us define linear functionals in R¥
k
Xi(®)=>_tiIn|ryl
. j=1
for 1 < i < r. The hyperbolicity condition is equivalent to the fact that all x; are

different from 0. However, the following Lemmas 3.2 and 3.3 are true for the actions
by partially hyperbolic automorphisms as well.

LEMMA 3.2.
Nix1(®) + Noyo(8) + ...+ Ny, (1) = 0. 3.6)

Proof. We have

k k
Nixi() = Ni Y _tiln|ai;l =Dt In|det Ayl.

i=1 i=1
Hence
r r k k r k
D Nixi(®) =YY tiln|det Al =) t;In[JIdetAy| =D tIn|detB;| =0,
i=1 i=1 j=1 j=1 i=1 i=1
since |det Bj| = 1. O
LEMMA 3.3.
(1) The number of linearly independent linear functionals among x,(t), ..., x,(t) is
equal to k.

(2) The function max x;(t) is a norm in R¥, i.e. there exist constants a, b > 0 such that
bllt]l < max xi(r) < al|.

Proof. Since linear functionals x,(¢), ..., x,(¢) are in k variables, the number of linearly
independent among them is not greater than k. Suppose it is less than k. Then there is
a point ¢t 7 0 such that x;(r) = 0 for all 1 <i <r. If all #; are rational, there exists an
integer n such that all nt; are integers. Then

nty nty
B ... B

has all eigenvalues of absolute value 1, which contradicts the ergodicity of the action
unless ¢t = 0. If some of t; are irrational, for any € > O there exists n = (ny, ..., ny) € Z¥
such that A = B;" . B,'("‘, A2, ..., AY have all their eigenvalues e-close to 1, and hence
their traces e-close to N. Since all traces must be integers, they all are equal to N. Let
eigenvalues of A be equal to A, ..., Ay. Then eigenvalues of A’ are equal to Aj, ..., A},
and we have the following system of equations:

A+...+Ay =N

It follows that all symmetric functions in Ay, ..., Ay, which appear as coefficients of the
polynomial (x — Ay)...(x — Ay) are the same as for A; = A3 = ... = Ay = 1. This
proves part (1). It follows from Lemma 3.2 that for any point ¢ # O there exists at least
one x; such that x;(r) > 0, hence max x;(¢) > 0. Since the functions x;(¢) are linear,
max x;(t) is a norm in R¥, hence equivalent to the || - ||, so part (2) follows. a
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Remark. 1t follows immediately from Lemmas 3.3 and 3.2 that the number r in the
decomposition (3.1) is greater than the rank k of the abelian action, and k < N — 1.

If (x{,...,x}) € O is an initial point, then

k k
Poo* £\ __ o %
ﬁ(xl,...,x,)~(|IAljxl,...,IlAmjx,>.
j=1 j=1

Using the decomposition {3.3) we can write 8° = u'f. as a product of an unipotent
and semisimple actions. It follows from partial hyperbolicity that for any integral point
m* € ZN, m* # 0, min, ez || f*(m*)|| > 0, so we arrive to the following definition:

Definition 3.4. A Rk-orbit Og(x*) is called admissible if min,cg« |8’ (x*)| > 0.

Since we are interested in an estimate on Z*-orbits, we shall study only admissible
R*.orbits thereafter. We choose the initial point x* € Og such that

min 18" G = llx*l (3.7

is assumed at t+ = 0. Since Or(x*) is admissible, ||x*|| > 0. Our goal now is to prove
that there exist constants C;, C, > 0 independent on the choice of the orbit such that

Callx”llexp(blizll) < 18'x*]| < Cillx*|lexp(alit]D. (3.8)

The following argument shows that the estimate on O = OgrNZ" follows. Since Og(x*)
contains an integral point, say m, x* = B7m for some T € R¥, We can write t = [t]+{t}
where

{tlels=G1,....50 |05 <1} = A,

the fundamental domain for R¥/Z*. But then 8!"'m = m* is also in © N Z", and
x* = B"m*. It follows from the compactness of A that there exist constants Cs, C4 > 0
independent on the choice of the orbit such that

Gsllx*|| < fm™]] < Callx*Il, (3.9)
and the estimates
Csllm* | exp(blit])) < [|B'm™|| < Csllm™ || exp(alz]])

follow for some constants Cs, C¢ > 0 independent on the choice of the orbit.

We first prove (3.8) in the leading special case when the matrices By, ..., By are
simultaneously diagonalizable over C, i.e. when B’ is semisimple. This happens, for
example, if the action is irreducible. Since all norms in RV are equivalent, it is sufficient
to prove (3.8) for a particular one. It is convenient to consider the following norm:
Il = NCers .oy x) = 30, llxill, where

lxill = HCxins - oo Xiw Il =[xl + .o 4 xin |2

if I; is of the first kind, and

il = W Cxins - xin ) = fxf + xh+ 4 xh oy + X,
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if I; is of the second kind.
Let us consider a function w : R¥* — R given by the formula

o(t) =Y llxfllexp xi(¢)
i=1

Then

r k r

k
o) =3 [Tl = 31T AGx I =18"GT, -6l
j=1

i=1 j=1 i=1

and an estimate from above follows immediately from Lemma 3.3(2) for any choice of
the initial point x* € Og:

w(t) < ||x* || maxexp xi (t) < |lx*| exp(afit|). (3.10)
On the other hand, we have
w(t) > min ||x]|| max exp x;(t) > min ||x] || exp(blit}) > O,

and since min x| may as well be equal to 0, we only get a trivial estimate this way.
In order to obtain a non-trivial estimate from below, we need the following definition.

Definition 3.5. Let A C {1,...,r}. The subsystem {y; | i € A} is called sufficient if for
any point t € R¥ there is j € A such that x;(¢) > 0.

If {x; | i € A} is a sufficient subsystem of linear functionals in R¥, the argument
of Lemma 3.3(2) shows that max;es x; (¢) is a norm in R* and the same estimates as
in Lemma 3.3(2) hold. Notice that the following lemma is the only place in the proof
where hyperbolicity is required.

LEMMA 3.6. Let A = {i e {1,...,r} | Ixfll > O} Then {x; | i € A} is a sufficient
subsystem.

Proof. By Lemma 3.3(1) there are k linearly independent linear functionals among
Xis ..., Xr; without loss of generality we may assume they are x,..., xx- Now we
make a linear change of variables

X1, - ) =1
X2(t, .o 8 = X2

Xe(ti, oo t) = Xk
Then

(k+1) (k+1)
1

Xk+l(tl"")tk)=a X1+--.+ak Xk

X () =a’x + .+
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so that

o(t) =p(x) = an lexp(x:) + Z Ixllexp@ xi + ...+ a x0).

Jj=k+1
By (3.7) we have min,cge @(¢) = @(0), hence

a
—¢]X 0o=0 forl<i<k.
3xi

From these equations we obtain for 1 <i <k

(
Ixl = - Z a? x|

J=k+1

Notice that the constants a‘.(j), 1 <i<k, k+1=<j<r depend only on the linear
functionals xy, ..., X, i.€. on the given action B.

Let/ =AN{l,...,k}and J = AN{k+1,...,r}. Suppose that the subsystem is not
sufficient, i.e. there exists t = (#;, ..., &) such that x;(tf) <Oforalli € I and x;(t) <0
for all j € J. In x-variables we have xi <0 foralliel and Z, la(’))(, < 0 for all
jelJ.

Then, on the one hand

Z flx Ilza(!)x, = Z "x;”(zai(j))(i+za(’)x,)

j=k+1 j=k+1 i¢l iel
r r
- (X 1)+ (3 i)
igl \j=k+1 iel \j=k+1
r
- 25 )
iel N\ j=k+1
= =) Ixlx ==Y Ixlx = 0.
iel iel

On the other hand,

Y i nZa(”xl >l ||Za<”x, +y % IIZa(”x,

J=k+1 j¢J jelJ
= > Il Za(’)x. Y XX <0
jed jedJ

Hence for this particular ¢, x;(tf) = O for all i € A. Then since the matrices 8’ are
semisimple, we obtain || (x*)|| = {lx*|| which contradicts hyperbolicity of the action.
a -

Let us assign to any admissible R*-orbit its initial point x* € R" (3.7) normalized by

its ¢!-norm:
x*

A:()»I’-"’)Lr):-m-
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The moduli space A for the collection of all admissible R*-orbits is described by the
following equations

i Inl =1

il = = X a1 for 1 <i <k

(3.11)

and is a compact subset of RY. Applying Lemma 3.6 and a remark preceding it to each
Ao € A we obtain the following estimate from below

|
w(t) > = min [|A; [ exp(bliz]])
2 icA

which also holds for all A € A close to Ay. It follows from the compactness of A that
there exists a constant C; > 0 independent on the choice of orbit such that

1Bx7[ = Cyllx*|l exp(bliz]]). (3.12)

Thus we have obtained estimates (3.8) in the semisimple case.

Now let us consider the general case. If O is an orbit in Z", then the corresponding
R*-orbit O is admissible, i.e. there exists a point x* € O such that {|8'x*|| assumes
minimum for ¢ = 0 and {|x*|| > 0. We decompose 8’ into the product of a semisimple
and an unipotent action:

B =u'B;.
Let O, be the R¥-orbit of B! through the point x*. It has to be also admissible. Otherwise,

there exists a sequence {t,} € R¥ such that ||fx*| decreases exponentially, and since
by (3.4)
18" x*]| < CliealI™ 11 B x*

we obtain that Og is not admissible. So, O,(x*) has a minimum which we denote by
g. We have x* = 8(g). Let w = B7(x*). Then, since x* is the minimum on Og, we
have JJw|| > [lx*||. On the other hand, ¢ = B, (x*), and we have ||w| < Cllto||" gl
by (3.4). So,

Ix*ll < Cligllizol™.

Using the estimates (3.12) for a semisimple orbit we obtain
Crexp(bliol)igl < x*I < Clgliinl®,
which gives us an estimate by an absolute constant Cg > 0:
5ol < Cs. (3.13)
Now, we have Blx* = gi~g, hence by (3.10) and (3.13)
I1Bix*Il < exp(a(llt — 10lDllgll < expla(llt — toIDllx*I} < Coexplalle i) lx*|
for some constant Cy > 0. On the other hand,
1B;x*1l = C7exp(b(llt — tol)ligll = Croexp(b(lit = tol)lx™l| = Ciy exp(b([lt])llx*|

for some constants C,g, C;; > 0. Now using the estimates

CHIE™MIBix* 1 < 1B ™1 < Clel™ 18 x7
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we obtain
Chlix*llexp(bliz)) < I8 x|l < Cilix* || exp(alit])).

O

Construction of dual solutions in §2 relies on invertibility of the action. If it is
literally carried out to the non-invertible case, i.e. an action by toral endomorphisms,
the resulting solution would, in general, not be defined on the torus, but on a solenoid
where the natural extension of our action operates.

On the other hand, in the partially hyperbolic invertible case the only difficulty is in
obtaining growth estimates like in Theorem 3.1. First notice that due to the presence of
eigenvalues of absolute value 1 the crucial estimates from below of Theorem 3.1, which
are uniform for all dual orbits, do not hold. Naturally, the estimates from above are
completely general. The reason why the uniform estimates from below break down is
that the lattice points can be found arbitrary close to the eigenspaces corresponding to
the eigenvalues of absolute value 1. Thus exponential growth can be established only
for the projection of the vector to the hyperbolic directions. However, since all invariant
subspaces come from algebraic equations with integer coefficients, the distance of a
lattice point to the neutral subspace satisfies Diophantine conditions. In other words, the
slow growth of the norm of the iterate with respect to the norm of the initial vector is
offset by the fact that this norm was sufficiently large to begin with. This argument yields
a non-uniform estimates from below which are still sufficient to produce a C* solution
of the original coboundary equation. In this argument the initial point m* on a given dual
orbit is chosen among those with the projection of minimal norm to the hyperbolic part,
i.e. the sum of the root spaces corresponding to non-zero Lyapunov exponents. Details
of this argument will appear in a subsequent paper.

4. Proofs of Theorems I and 2

We have seen that the average over a dual orbit is an obstruction for solving a coboundary
equation on an individual dual orbit (Proposition 2.2). We shall show that the vanishing
of this obstruction on all dual orbits allows us to obtain a global C* solution of the
original coboundary equation. The following Proposition plays a crucial role in the proof
of Theorems 1 and 2.

PROPOSITION 4.1. Let o be an action of Z* by hyperbolic automorphisms of TV, and ¢
be a C® k-cocycle over a with values in R® (£ > 1) such that for any non-trivial dual
orbit O, Y, o @(m) = 0. Then ¢ is C®-cohomologous to a constant cocycle ¥, i.e. for
x e TV, t € (Z¥)*

px, 1) =y (1) +DP(x,1), (4.1)

where @ is a C™ (k — 1)-cochain.

Proof. First we apply Proposition 2.2 to construct a dual cochain gﬁon each non-trivial
dual orbit. Since the cocycle ¢ is C® we have the following estimate on the decay of
the dual cocycle ¢: for any B € Z, there exists C = C(B) such that

|p(m)| < Cllm~%. “4.2)
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We want to obtain a similar estimate on the decay of each component of the dual
cochain @; (1 < j < k). Each 0 # m € Z" belongs to some dual orbit O(m*)

where m* is chosen by Theorem 3.1: m = Bim*. Lett = (t;,...,4). Formula (2.5)
shows that @;(B'm*y== 0 if at least one of the coordinates ¢, ..., #_; is not equal
to 0, hence it is sufficient only to consider the case when f; = ... = t;_; = 0. Let
s=1(0,...,0,t;,..., ) be fixed and consider the following half-lattice
W={reZ|r=(1,...,rj-1,7;,0,...,0), r; > t; if t; > 0, r; < t; if t; < O}.

Then again by formula (2.5)

1B (Bm*) < Y 1G(B m™). 4.3)
rel/
If fort =r+s weput ||t = ZLI |1, then (|7 + 5]} = {r|| + [Is}i- Using both estimates

from Theorem 3.1 we obtain:
|B°m*|| < Cellm™|| exp(alls|)
|B'm*|| = Cslim™|i exp(blisl) exp(®lirlD).
Hence for some constant Cy; > 0
IB'm* 1|15 < Crallm™ || exp(blisll) < Crzlim”* [l exp(lis|)

since ||m*}| > 1, so that

IB'm* |l = Cuall Bm*11* exp(blir )
for yet another constant Cj3 > 0. By (4.2) we have

19(B'm*)| < CllB m*||~#
< CCi|1B*m™ |22 exp(=Bb|r).

Then for some constants Ci4, Cis > 0 and m = B°m* we obtain the desired super-
polynomial estimate for &.

|;(m)| < Crallm||=%% 3" exp(—BblIr|)) < Cislim| 2. 4.4)
rel/

Since by Theorem 3.1 the estimates do not depend on the orbit, we obtain global estimates
on the decay of @j. Letting 431- (0) = 0 and using (2.1) and (2.2) we thus obtain a C*®
(k — 1)-cochain & = (@1, ..., P;) such that

DP = ¢ — ¢(0),
i.e. is a solution of our equation (4.1). O

Proof of Theorem 1. First we apply Corollary 1.4 to conclude that if a C® k-cocycle
over a, ¢, vanishes on all periodic orbits of «, then for any dual orbit O, including 0,
Y meo @(m) = 0. Now, by Proposition 4.1. D® = ¢ — $(0), and since $(0) = 0 (see
Corollary 1.5), we obtain a solution of (0.3) |
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Proof of Theorem 2. First, let ¢ be a C® l-cocycle on TV: ¢ = (¢,...,¢) and
@ = (@1, ..., ¢) be a dual cocycle. By Proposition 2.3. X;¢; = 0, and we can write a
solution of the dual coboundary equation

¢ =Do
D(p) = I @i The cocycle equations
Aigj = A
for i # j imply that £ ¢; = X ¢;, hence @ is well-defined. It is unique up to an
additive constant. As before, we construct a solution @ on each non-trivial dual orbit.
Now we recall that the solution of the coboundary equation in the case n = k was
constructed inductively (2.5). Hence the estimates (4.2) and (4.3) with j = 1 actually
give the super-polynomial decay for 1-cocycles. Thus we obtain a C* solution of the

equation
Do = ¢ —¢(0).

We are going to proceed by induction on k. Our hypothesis holds for the highest
cocycles for which their dual cocycles have 0 average over each dual orbit (Proposition
4.1) and for 1-cocycles. These cases will be considered as the base step in our induction
argument. Suppose the equation (0.4) has a C* solution for n-cocycles on Z?, where
2<p<k—-landl<n<p-—1.LetgbeaC®n-cocycleonTV ,1<n<k—1,ie.
a vector-function with (ﬁ) components satisfying cocycle equations (2.6). The (";1)

components not containing index 1 may be regarded as an n-cocycle of the Z*~!-action
by As, ..., A since for components with i} > 1 (Dg);,, ;. = 0 are just part of the
cocycle equations for ¢. If n < k — 1, by the induction hypothesis we can find C*®
solutions for the first (k;') equations. If n = k — 1, then by Proposition 2.3 the dual

cocycle has O average over each non-trivial dual orbit, hence a C* solution of (4.1)

can be found by Proposition 4.1. The remaining (ﬁ:}
Let ¢, i, = @1.4y...0, — D1Pi,...i,, Where @, ; are already obtained from the first

(k_l) equations. We need to show that ¢ is a C® (n — 1)-cocycle of the Z¥~!-action

> components contain index 1.

n

by A,, ..., A;. For,

(Dd)i,.....ins1 = Z;:;(*l)in, @ity — D1Poy b)) =
Ay, iy — D Z;:;(—l)in,d’;z ,,,,, Goinns = D1Pin i — D1y, =0
We used the cocycle equation for ¢:
n+l
Z(“l)inj‘Px,iz ,,,,, Doy = B1Pin i
= 3

and that

Pis,ingr = Z(—l)inj ¢i2 ..... iFrernsling + @i, i1 (0).
=
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Notice that ¢;, .. ;
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is C™ since @y 4,,...;

n

is, ®@;, . is by the induction hypothesis, and

n

the operator A; preserves the smoothness. Then by the induction hypothesis we can
solve the coboundary equation for (n — 1)-cocycles of the Z*~!-action:

- n
¢i2,...,i,, = (Dg)iz,.",i,. + (;)iz ..... in (0) = Z(_I)J‘FlAijgiZ,m" vosin + @iZW-,in (0)

i
j=2

But then, if we define components of ¢ that have index 1 by the formula

Diiyiny X)) = giy i (X))

and the components of the constant cocycle by

Viigoinas = Plis,.in_y (0)

we get

Oliigyin = Pig,oiy, T A1Piy, iy = (PP 1 iy, iy + Whiig,ines -
O
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