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ERGODIC PERTURBATIONS OF DEGENERATE INTEGRABLE

HAMILTONIAN SYSTEMS
UDC 517.9-513.78
A. B. KATOK

Abstract. Hamiltonian systems arbitrarily close in the C” topology (r=1, 2,
-++) to a given integrable degenerate Hamiltonian system of class C* which generate
an ergodic flow on each manifold of constant energy are constructed. Applications:
Small perturbations of a system generated by independent oscillators and Finsler met-
rics close to standard Riemannian metrics on symmetric spaces of rank 1.

Introduction

1. The concept of an integrable Hamiltonian dynamical system, notwithstanding
its respectable age, has no generally accepted formal definition. Exceptionally large
variations are possible in the treatment of this concept in the case of not analytical
but just differentiable Hamiltonian systems, for example systems of class C™ which
we shall treat in what follows. Without risking a fall into strong contradictions with
traditional presentations we shall call a Hamiltonian system with n degrees of free-
dom integrable if in the phase space M?™ of this system there is an open everywhere
dense set M which is a locally trivial fibration of class C*, with fiber a k-dimen-
sional torus T* (& < m), and some (2m - k)-dimensional manifold N as base, where
each fiber of this fibration is invariant with respect to the dynamical system, which
induces on it a conditionally periodic motion. If one fixes a basis in the integral ho-
mology group Hl(Tto’ Z) of the fiber Tfo over the point x, € N sufficiently close
to x,, then the conditionally periodic motion on T: will be characterized by the vec-
tor of frequencies w(x) = (wl(x), cee, wk(x)), which is a smooth function of the point
X,

If k=m and x is a regular point of the mapping w: U » R%, x s w(x) (U is an
open subset of N), then we shall say that the considered integrable Hamiltonian dy -
namical system is nondegenerate on the fiber T;". If, moreover, the vector w(x) is
not too close to vectors which satisfy integral conditions, then any sufficiently close

Hamiltonian system contains an invariant torus, close to the torus T;", on which the
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conditionally periodic motion with the vector of frequencies w(x) takes place. More-
over, such tori fill a set of positive measure in M?™_ and, for any neighborhood V of
the point x in which the mapping w is regular, as the magnitude of perturbation de-
creases the measure of the complement of the set V' = U‘y GVT;"’ in the set consist-
ing of the invariant tori of the perturbed system, tends to zero. In the analytic case,
i.e. when the original integrable system is indeed an analytic system and the pertur-
bation is sufficiently small in some complex neighborhood of the set V', these state-
ments make up the content of the well-known theorem of A. N. Kolmogorov about the
preservation of conditionally periodic motions ([1]; for the proof see [2]), and in the
differentiable case when one requires the smallness of the perturbation with some
fixed number of derivatives, the basic results are due to Jurgen Moser (cf. [3}, [4],
[sD).

Degeneracy can appear, roughly speaking, for two reasons: either k& < m, or the
vector of frequencies w(x) depends on x in a degenerate way. In these cases, for
no perturbation can one guarantee the existence of invariant tori. In the first case,
V. L. Arnol'd [6] has shown sufficient conditions which should be satisfied by the
perturbation in order that the perturbed system contain invariant tori filled by condi-
tionally periodic motions where these tori turn out to be not k& but m-dimensional.
These conditions are satisfied in a series of important concrete problems, for exam-
ple, in the n-body problem.

2. The purpose of this article is to prove that in C™ Hamiltonian dynamical sys-
tems close in the C" topology to degenerate integrable systems for an arbitrary a
priori given r, there may occur effects for which invariant tori are completely destroyed.
We will treat two extreme cases of degeneracy: either k£ = 1, or the vector of frequen-
cies w(x) is constant on the manifolds of constant energy. The exact hypotheses
about the original degenerate Hamiltonian system are formulated in § 1. Under these
assumptions, we shall prove that for any r arbitrarily close, in the C7 topology, to
such a degenerate integrable system, there are Hamiltonian systems which on each
manifold of constant energy induce an ergodic flow. Results which apply to partial
degeneracy will be given in another paper.

If the original Hamiltonian system has some additional structure, in many cases
it is interesting to construct perturbations which also have this structure. Thus, for
example, giving the manifold M a Riemannian or Finsler metric defines on the cotan-
gent bundle T*M a Hamiltonian dynamical system for which the Legendre transfor-
mation establishes an isomorphism between this dynamical system and the geodesic
flow on the tangent bundle TM (cf. § 6). If the original degenerate integrable Hamil-
tonian system is generated by a Riemannian metric (such a system is generated, for
example, by the standard Riemannian metric on the n-dimensional sphere §”), then it
would be interesting to construct a perturbation of the above described kind in the
class of Hamiltonian systems generated by Riemannian metrics, since it unknown,

for example, whether there exists on S” (n > 2) a Riemannian metric for which the
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geodesic flow is ergodic on the manifold of unit tangent vectors or whether at least
this manifold has an ergodic component of positive measure. The difficulty here con-
sists of the fact that of the known mechanisms which produce ergodicity in geodesic
flows, only those which are related to ‘‘hyperbolic’’ behavior of trajectories (we have
in mind the condition U of D. V. Anosov [7], or some modification) have been studied,
and such phenomena appear on manifolds of negative curvature, or at least in the ab-
sence of conjugate points (cf. [7], [8], [9]). In the case of negative curvature one has
not only ergodicity but a significantly stronger instability of trajectories, namely, the
K-property [10].

Unfortunately the class of Riemannian metrics turns out to be too small to carry
out our construction. However, the class of Finsler metrics serves our purpose, and
some details of our construction are there precisely in order to adapt it to this case.
Our results imply, for example, the existence on §" (n > 2) of a Finsler metric of
class C* which is close in the natural sense, with an arbitrary given number of deriv-
atives, to the standard Riemannian metric and such that the corresponding geodesic
flow has two open ergodic components which fill the manifold of unit tangent vectors
except for a set of arbitrarily small measure. Since such Finsler metrics are close to
the Riemananian metric of constant positive curvature, the curvature in this metric in
the natural sense is positive, even though for Finsler metrics the curvature is not de-
fined by a tensor on the manifold. This is in agreement with the fact that the mecha-
nism of ergodicity, in our case, is quite different from that for metrics of negative cur-
vature. Thus in our examples the geodesic flow in ergodic components has no mixing,
even though weak mixing is not excluded. We consider the metric properties of our ex-
amples in more detail at the end of $1.

3. All objects such as manifolds, functions, vector fields, differential forms, etc.
are assumed in this article to be smooth of class C”, and we shall usually not repeat
this. All necessary standard propositions related to the differentiable manifolds, dif-
ferentiable geometry and symplectic structures can be found in Sternberg’s Lectures
on differential geometry |11}, Our notation, basically, coincides with Sternberg’s.
The greatest essential difference is that we denote the differential of the map / by
the symbol Df and not f,, saving the symbol /, for the induced maps of vector fields
and measures. All necessary definitions from ergodic theory and explanations can be
found in §§ 1~3 of the article of V. A. Rohlin [12].

The author considers it a pleasant duty to express his gratitude to D, V. Anosov,
who read the manuscript with exceptional attention. His criticism has allowed us to

simplify some proofs, and various notes on the style were very useful.

§1. Homogeneous Hamiltonian systems

1. Let M®™ be a connected manifold, or a manifold with boundary (not necessarily
compact) with a given symplectic structure, i.e. a fixed closed nondegenerate 2 form
Q; let H be a smooth function on M2™, The equality
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dH=—vy _|Q

defines a vector field vy, which is called the Hamiltonian vector field with the Hamil-
ton function (or Hamiltonian) H. In this paper we shall treat only that case when for
each positive number ¢ the set H™!(c) is compact and at all points of the boundary
OM®™ the vector field vy is tangent to OM?™, In that case the vector field vy is
full, i.e. its trajectories can be infinitely continued in both directions with respect to
time; the flow generated on M?™ will be denoted by iS:‘}.

We shall assume that M?™ has an additional structure, namely a vector field «
which “‘continuously expands’’ the symplectic structure. More precisely, this means
that

gug =}\.Q,

where gu is the Lie derivative along the vector field # and A is some positive num-
ber. Moreover, we shall make the following assumptions:

(1.3) The vector field # is full and generates a flow {¢ 1.

(1.4) The vector field u is nowhere zero.

Remark. If conditions (1.2) and (1.3) are satisfied and (1.4) is not satisfied,
then all the constructions can be carried out on the manifold M*™\A where A is the
set of zeros of the vector field « on MZ'", if, of course, the manifold M3m\A is con-
nected.

2. The following two examples illustrate the situation and will play an essential

role in what follows.

Example 1.Let p;,---,p 4,4, be the cartesian coordinates in the Eu-
clidian space R?™, and set
m
Q = Z dpl /\ dqh
=) m a 6
Y A = j— -+ gi—. 1.5
up, .-y Pm G qm) ,-% P i (1.5)

In accordance with the remark we shall set M2™ = R2”\{0}, Here A= 2.

Example 2. Let M™ be a compact connected m-dimensional manifold, let  be
the cannonical 2-form on the cotangent bundle T*M™ (cf. {11], Chapter I, Theorem 7.1), let
r; be the zero-section of T M™ and let u be a vector field on T M™ such that
for g €M™ and p € Tq'M’" the vector u(p) is tangent to T 'M™ and under the na.tural
identification of TPT;M”' with T_M™ we have u(p) = p. Here M?™ = T'M™\I'; and
A=1,

3. Definition 1.1. A smooth function H: M*™ L R is said to be homogeneous if

L.H =AH. (1.6)
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In Example ! the functions homogeneous in the sense of Definition 1.1 are the ho-
mogeneous functxons of degree 2 in the usual sense. In Example 2 they are the smooth
functions on T M™ \F which on each linear space T "M™ are homogeneous functions

of degree 1 in the usual sense.

Lemma 1.1. If H is a homogeneous function, then the Lie bracket (u, UH] =0

Proof. It suffices to prove that [u, UH]J Q=0. We shall use the known formula
for the Lie derivative of a differential form along a vector field X (cf. [11], Chapter
ITI, formula (1.9))

Zxo=X_ldo +d(X _]o). a.n
We transform the expression [«, vyl jQ:
[ va] _[Q=—Zy,(w_|Q)
= —vn_Jd@u_Q—dy_J@_JQ)= —vy_Jdu _1Q) +du_|@vs_|Q).

(1.8)

From (1.2) and (1.7) we obtain
M=2LQ=u_|dR+du_|Q=du_]Q).

The homogeneity of H, (1.7) and (1.1) imply

MdH = Z,dH = d(u_|dH)= —d(@u_|(vx _| Q).
We substitute both expression; into (1.8):

[, 0] _|Q= —uvy _AQ —AdH = MH —MH = 0.
The lemma follows.

Corollary. Let H be a positive homogeneous function on the manifold M*™ with-
out critical points. The restriction of the diffeomorphism @, to the manifold H™ Ye)
is a diffeomorphism ¢C between H™'(c) and H™=UeMio), and its differential D¢C
takes the vector field vy into itself, i.e. Delvy =vy © ¢t

4, The main proposition which we prove in this paper (Theorem A) applies to the
case when the manifold M>™ is acted upon by the group T2 = S! x S! of canonical
(i.e. preserving the form (1) diffeomorphisms and the following conditions (1.9)—(1.11)
are satisfied:

(1.9) The action of each one-parameter subgroup of TZ is generated by a Hamil-
tonian vector field with a homogeneous Hamilton function.

To the vector (a, ) € R? there corresponds a one-parameter subgroup

{(ta, tB) mod 1} of the torus T2, We denote the corresponding homogeneous Hamil-
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ton function of this subgroup by H, Vs Clearly

Hﬂvﬁx -+ HG»B: = Har*ﬂs-ﬂr*ﬂs'

(1.10) The group T? acts effectively, i.e. every element, save for the identity,
acts distinctly from the identity transformation.

(1.11) There exists a vector (ay. B;) € R? such that H, g is a positive function
with no critical points with compact level manifolds.

Remark. Any vector (a, B) sufficiently close to (a,. B,) also satisfies condi-
tion (1.11),

In Example 1 for m > 2 an action of T? satisfying the conditions (1.9)—(1.11)
exists; moreover there exists an action of T™ satisfying analogous conditions. Name-

ly, let (@, +++, a ) €eR™. We set
How'ooom @iy oo Pma Gy - s Gm) = 270 D1 0i (B + g5)-

The vector field vy ay,-.. o, BENErates an action of the one-parameter subgroup
) r'm

{tay, -« tam)mod 1} of the torus T™.

In Example 2 this situation occurs, for example, if the manifold M™ has a Rie-
mannian metric p with the following properties:

(1,12) All geodesics of this metric are closed, and the lengths of all geodesics
are divisors of some positive number.

(1.13) On M™ there is an effective action of the group S! which consists of dif-
feomorphisms ll/ll f, 2 € R (4, is the identity transformation) which preserve the Rie-
mannian metric p.

The action of T? in this case can be obtained as follows. Let 7, be the maxi-
mal length of the geodesxc line, and set H o(x) =1, ”x“ , where x € T.M”‘\r. and
HxH is the norm on T M™ dual to the norm on TM™ genn"rated by the Riemannian
metric. In §6 we shall show thar the vector field UH) o generates an action of S'.
Furthermore, let H0 ; be the Hamilton function of a vector field on T "M™ which
generates an action of S' on T"M™ by transformations dual to the differentials Dy .
By (1.13) the vector fields vy, o and vp, ; commute, and hence they induce an ac-
tion of T2 since each of them generates an action of S!: it is easy to see that con-
ditions (1.10) and (1.11) are satisfied (the last with (a,, B,) = (1, 0)). We shall
consider this example in more detail in $ 6. Now we shall only remark that compact
Riemannian symmetric spaces of rank one, in particular spheres §” (n > 2) and com-
plex projective spaces P"(C), fit into this situation (cf. [15], Chapter IX).

S. We shall show that in the situation just described one can find an arbitrarily
small perturbation of the function Haj g, in the class of infinitely differentiable ho-
mogeneous functions, where (ao BO) is a vector as in (1.11), and obtain a function
H such that the flow lSz } is ergodic on each manifold of constant energy H-Ye),

c > 0. We pass to an exact formulation of this statement.



DEGENERATE INTEGRABLE HAMILTONIAN SYSTEMS 541

In the space C™(M?™) of real C™ functions we introduce a system of norms
i ”3( (r is a nonnegative integer and Kcm?m s compact) such that the norm || Hz(
measures the closeness of r-strings of functions on the compact set X and all the
norms || Ill'( are coherent in the natural sense.

In view of (1.11) any orbit of the action of T? is either a torus or a circle. We
denote by M, the subset of M>™ which consists of the points of all periodic orbits of

the action of T2, It is easy to see that
Mp={x=M":d (a, p) =R? dHq 5 (x) = 0).

Theorem A. Let the symplectic manifold (M*™, Q) have a vector field u which
satisfies the conditions (1.2)—(1.4) and an action of the group T2 so that the condi-
tions (1.9)=(1.11) are satisfied. Let a positive number 8, a natural number r, a com-
pact set K CM?*™ and a vector (ag: By) € R? satisfying (1.11) be given. There is
a vector (a, B) and a positive function H of class C** on M?™ such that the follow-
ing conditions are satisfied:

AL 19 — Has, I < 8.

A. 2. At the points of the boundary OM3™ and the set My, the function X coin-
cides with Ha.,,B together with differentials of all orders.

A. 3. The function His homogeneous in the sense of Definition 1.1,

A, 4, The flow {S:(! on each manifold H-Ye), c>0,is ergodic with respect to
the invariant metric . induced by the form Q. X

A. 5. For some sequence t - oe the diffeomorphisms St, and their differentials
of arbitrary order converge to the identity transformation uniformly on arbitrary com-
pact sets.

A. 6, The flow {Sf(f has no periodic trajectories outside of the set Mp.

Remark. The function Hqy, g, is bounded and nonzero on the compact set K. we
chose an N such that K C KN = }(-aé./jo([N—I, N 1). If the assertion of Theorem A is
satisfied for KN, then it clearly is satisfied for the original compact set K. There-
fore in what follows we shall assume that X = KN for some N,

Theorem A is proved in §§ 2-4. The basis of this proof is the inductive con-
struction described in § 4. In each step of the induction the constructions are made
using lemmas which are proved in §$ 2 and 3. Our construction has much in common
with the construction which was used in [14] to construct ergodic diffeomorphisms
on a manifold with a periodic flow. We remark, however, one essential difference:
we do not guarantee that the flow {53(} or the separate diffeomorphisms Sf( admit a
sufficiently fast cyclic approximation by periodic transformations (a. p. t.), and there-
fore we cannot draw conclusions about the metric type of the flow and the diffeomor-
phisms which make it up. We believe that this distinction is due to the nature of

this problem; namely, to the requirement that the function K be homogeneous, which



542 A. B. KATOK

allows Example 2 to be included in the scheme under consideration when conditions
(1.12) and (1.13) are satisfied, where the homogeneity condition is natural (see $§ 6).

There exists another variant of the construction applicable to some class of Hamil-
tonian systems. For the situation which arises in Example 1 this variant is described
in [13]. The description of this construction in a more general (even though possibly
not very natural) situation, together with detailed proofs, will be given in another pa-
per. In this construction we are able to construct an a. p. t. for the flow {S | on each
manifold =~ 1(c) and even follow the metric type of this flow, but only on almost ev-
ery manifold H=1(c), while other difficulties arise because of the necessity of making
the constructions of various surfaces of constant energy coherent, which in the homo-
geneous case is automatic.(!)

In §5 it is shown how to modify the inductive construction so that in the situa-
tion of Example 1 one can get rid of the lack of differentiability at the point zero if
one is willing to give up the homogeneity of the function H. The formulation of the
corresponding result for more general situations would be too complicated; moreover,

I know of no other nontrivial examples for which this result would be of interest. In

§ 6 Theorem A is applied in the situvation of Example 2. A direct application gives
examples of nonsymmetric Finsler metrics (i.e. metrics for which the norm x|}, x €
TM™, is, generally speaking, distinct from {|-x||), close to Riemannian metrics satis-
fying (1.12) and (1.13) and generating ergodic geodesic flows. For genuine (symmet-
ric) Finsler metrics we are able to obtain not ergodicity but two ergodic components
which generate a set whose complement has arbitrarily small measure which is, how-

ever, distinct from zero (Theorem C).

§ 2. Lemmas on the canonical action of the group sl

Let the group S act on a manifold M. A point x € M will be called regular if
its stationary subgroup is trivial. A trajectory of the S! action will be called regu-
lar if it consists of regular points. If S! aces effectively, then the regular points
form an open connected set My whose complement has measure zero with respect to
any measure defined by a smooth density (cf., for example, [14], Proposition 2.1).

Assume now that S! acts effectively on a sympletic manifold (M>™, Q) via ca-
nonical diffeomorphisms. Such an action will be said to be canonical. Let a canonical
action be generated by a Hamiltonian vector field whose Hamilton function we shall
denote by H. We denore by Hf and N, respectively, the manifolds of regular points
and regular trajectories of the action of St on H™He); by #: Hp » N we denote the

natural projection and by _ the restriction of the 2-form { to Hf.

(1) In the formulation of the theorem in [13] there is an error. It is claimed there that the
Hamilton function H generates a flow which is ergodic and has a discrete spectrum with k
equal independent frequencies on each manifold H~ (o). In fact one may only claim that chis
flow is ergodic on each manifold H™ Y ) and for almost all ¢ has a discrete spectrum with k&

equal independent frequencies.
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Lemma 2.1. On the manifold N€ there is a nondegenerate closed 2-form ﬁc such

that .
Q= Q.. 2.1)

Proof. Let x,, x, € Hg, vil, vf € Ty, (T denotes the tangent space of H% at the

point x) and
Dl = Dol i=1,2).

We shall show that Qc(vi, vf) = Qc(v;, vg). Indeed, x, € S:gxl, t, €R and

(DSH)vi — v} = hvu(x), i=1,2, MLER
Thus

Qe (0}, 03) = (SE)" Qe (v}, v}) = Q. (DSiivl, DSuY)
= Qe (V3 + MUn (x,), U3 -+ AU (%)) = Qe (U], 3),

since Qc(f, vy(x)) = -dH(£) = 0 for any vector e T..

Hence one can define a 2-form ﬁc on N€, letting for y € N, uy, u, € T N©
%, ) = Q01 v, 2.2)

where v, and v, are two arbitrary vectors with common base for which Drv, = u,
i=1,2,

The form ﬁc is clearly closed, since n’dﬁc = dQC = 0 and the operator 7 act-
ing on the differential forms is injective. It remains to show that QC is nondegenerate.
To this end consider points y € N° and x € Hy such that 7x = y. By the definition
of (—lc (see (2.2)) its values at the point y are completely determined by the values
of @_ (or ) at x. Set vy(x) = e, and choose in the tangent space T M 2m 2 basis

€psrees em’/l""’/m such that

Qe e) =Qfi, [) =0, Qe f) =
where
1, i=]j,

i,'=l,...,m, 6,'=
! / {0, Pk ],

It is obvious that the subspace T C TXMZ"' is generated by the vectors e, - -+,
€, [y ++ [, . The subspace generated by the vectors e,, ---, e s fy e[, on
which the (2m - 2)-form Q™! is nonzero is mapped isomorphically by D7 to the
space TyN‘. The lemma follows,

Let H be the first integral of the flow {Sf{}, i.e. the Poisson bracket [H, H] is
equal to 0. Then the restriction of the function H and the vector field vy to HG
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can be projected to N, Indeed, for y € N, x ¢ Hg and 7x =y let

H () = H (%), vz () = Da(vg (¥).

The first definition clearly makes sense, since the function X is constant on the tra-
. . H .. '
jectories of the flow {5}, In order to prove that the second definition makes sense,
assume that 7x| = #x,. Then

Xo = Six, g (x5) = DST 04 (x),
and therefore
D (v (%) = Dnt(vgy (%,))-

Lemma 2.2, The Hamiltonian vector field v’_( on the symplectic manifold (N€, ﬁc)
coincides with the vector [ield 171( .
Proof. Let y ¢ N° and u € T N€. Choose x € Hy and v € T, so that ax =y

and Dmv = u. By the definition of vy we have

Q(U, Vs (x)) =dH (U)

By Lemma 2.1 it follows that

Q(v,vge (1) = Q. (u,?)ﬂ )]
On the other hand, dH(») = d.}-{(u)- Thus

Qe (4, vz ()= dFE ().

But by the definition of "%

Qeu,v5, 1) = dF ).

Since (_Ic is nondegenerate and u is arbitrary, we have v = 171( . The lemma is
proved.

We shall denote by p the measure on M?™ (generally o-finite) induced by the
volume element ™. If all manifolds H™(c) are compact, then p generates a family
of normalized conditional measures p_ on these manifolds. We denote by y_ the

measure on N¢ induced by the volume element (@ )"~ I
Lemma 2.3. n,p_= A g , where A_ is a positive constant.

Proof. If [H, H] = 0, then the vector field vy preserves the norm p_, and hence
;J( preserves m, p . Since, in view of Lemma 2.2, vy = ;ﬁ , we conclude that uR
preserves ma fl .

However, the symplectic manifold (N€, ﬁc) has a unique (up to a positive con-

stant) smooth measure which is invariant under any Hamiltonian vector field, namely
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the measure g _ induced by the volume element (ﬁc)m' L

This can be easily proven
using, for instance, the Darboux theorem ([11], Chapter I1I, Theorem 6.2), which al -
lows us to introduce in the neighborhood of any point y € N® local coordinates p,

~» P12 91> 14,1 such that (—16 =2Tdp. Ndg,.

§ 3. The basic lemma

1. Basic Lemma. Let A, and B,,i=1, ..., 1, be compact subsets of a symplec-
tic manifold (M?™, Q) with WA )= p(B) and AN A =B NB =@.itj.
Then for any € > 0 and any open connected set U « - U'I(Al. ) Bl.) there exists

a canoni cal diffeomorphism §S: M2m , mim of class C™ with the following properties:
0. 1. u(SA,AB,) <e, i=l,..,r.

1
0.2.5 = S’l(’c 0...0 S{( » where each Hamilton function HL i1, oo kais of
class C™ and zero outside of the set U. From 0.2 it obviously [ollows that S is the

identity outside U.

Remark. In order that a diffeamorphism satisfying 0.1 and 0.2 with € = 0 exist,
first of all some topological conditions on AI. and Bi, which our formulation lacks,
are necessary. But even when r =1 and the sets A| = A and B = B are diffeomor-
phic to a closed disc such a diffeomorphism, as a rule, does not exist. The reason is
that on the boundary dA a smooth one-dimensional distribution (a field of lines) fA
is defined which is invariant with respect to canonical transformations (if T: M?™ .
M?™ is a canonical transformation and TA - B, then DTffA = fB). Namely, the tan-
gent vector v € £, if vy (©/0A) = 0. For various A the foliations induced by the
distributions {"A are, as a rule, not even topologically equivalent. It is possible,
however, that for two arbitrary subsets A, B C m2m diffeomorphic to an open 2m-
disc which have compact closures and the same measure one can construct a canoni-
cal diffeomorphism taking A to B or, at least, to B’ such that u(BAB') = 0 and
which is, generally, not extendible to the boundary, and a fortiori to a neighborhood
of the set A,

2, The proof of the basic lemma consists of two parts. The first and essential
part is the proof of a ‘‘local’’ variant of that lemma, i.e. a special case when Mem
R2m, P1»++= byo9ys -+ 1 g, are the cartesian coordinates in R™ and Q :V’l"dpl./\dq’..

We denote by a the standard decomposition of R?” into cubes Afll'.'_'_‘,vfzznm

with side 27 °., Here ki € Z, li = O, 1, ey 2° -1 and [ = 1’ s, 2m: moreover,

k,,....kz},, Ia {41
At,,....l.e,,,= Pn oo PGy, o Gm) R 2—:'\<Pi<ki = —
2
i Livp +1
k[.,.m'*‘ ki <qi<ki+m l.‘l*—m—, i=l, ,m}.
2 28

In what follows the elements of the decomposition a® will be called s-cubes.
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The 6-kernel of an s-cube A is defined to be the closed cube A? with side 275 - 60

homothetic and concentric with the cube A. Let s be so large that, first of all, the

*

(4m + 27 %)-neighborhood of ( is contained in U, and, secondly, there exist sets A:.

and B: (i =1,...,7) consisting of s-cubes and having the following properties:

) AiNA =B NB =@, i+

. ! ’ .
2) For every i =1, ..., r the sets A, and B consist of the same number of s-

cubes.
3) BAAA) < 7, wBAB)<

Denote the set of all s-cubes which make up U'I(A;. v B:.) by J]. Let 0 be a
permutation of the elements of | which takes the s-cubes in A:. into the s-cubes in
B; yi=1,..., 7. We represent 0 as a composition of transpositions 0 = 0;...0, .(2)

The construction of the desired diffeomorphism § rests on the following lemma.

Lemma 3.1. Let A, A €]. Forany >0 there exists a C™-function }{9 on R*m,
zero outside of U and on the @-kernels of all s-cubes of the system | save A and
A, such that

Fy

_ Fo—
S y

Aoz on 1 A = Ao'

Before we prove this lemma we shall show how to prove the special case of the
basic lemma with its aid.

Let the transposition 0, interchange the cubes Al,l and Az,z‘ Applying Lemma
3.1 to the pair A1,1’ AI,Z' we construct a Hamilton function }(19 = K., 1f the number
0 is sufficiently small, then the diffeomorphism

k ‘%l
S=S;% °"'°Sl

has the properties 0,1 and 0,2. Indeed, 0.2 is an immediate consequence of Lemma
3,1, In order to check 0.1, note that SA? = (0A)? for A €].

We introduce the notation

Al= U A, Bi= U A"
AcA, ACB,;

i

Then SAf: B? C B;, and so

(2) We write the composition of transpositions from left to right, as it is usually done,

while the composition of transformations we always write from right to left.
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w(SA; & B) <p(SAin SAD
+pBiAB)=pAAA)+ B A B
<p (A A A + p(ANAD + 1 (B A B) + 1 (BI\BY)
ST +2@™—@7 =0 N

(N, is the number of s-cubes in A:.).

If 6 is sufficiently small, the second summand in the last expression is also
smaller than ¢/2.

3. Proof of Lemma 3.1. Let A and A be two s-cubes with a common (2m - 1)-
face. We shall prove Lemma 3.1 for this case, having changed U to Int(A U ).

We begin with the following standard diffeomorphism T, taking the rectangle

i}
1={(.9):|p| <5191 <8}
in R? into the semicircle

To(p, )= (" @) - P2 @)
(3.1)

. o3 5 2
o(—q)=—p(g), p>0 for g >0, p’+4~(-;);=(‘/f-6 +m),

where it is assumed that © is small compared to 8. The relations (3.1) uniquely
define a function plg) which for |g| <& is a monotone increasing real-analytic func-

tion. This implies that T, is a diffeomorphism. Clearly

T,.,II={(p.q)thlép(é).p“+q’<(l/§6+ m)z}.

From the definition of T, it follows that it preserves Lebesgue measure, since the

Jacobian J(T,) = 1. Moreover, T, commutes with the symmetry I with respect to the
origin, i.e.

To (/M TG = 1T 1. (3.2)

Fix a nonincreasing infinitely differentiable function ¢(t), t > 0, such that

_ 1 for 08 (p(8) —w)?,
° 0 {0 for ¢3>p(3).

Set

Hp,q) =59 (" + ¢ (o* +- ¢3)
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and
0’ if (p’ q) e H'
By (3. 2) the diffeomorphism S'l" coincides with the symmetry / on the set
T, pr( 5)-w, Where B, is the circle of radius ¢ with center at the origin. It is easy

to check that, for any 6 > 0, w can be so chosen that T 'B contains the rec-

A -w
tangle

e

is the

The idea is that lim, ,p(8) = \V2/7 &, the limit of the sets T Il and Bosymw

circle B gz and the limit of T Il, is contained in a circle of smaller radius.

4, Let us-return to the cubes A and A. Making a simple canonical transforma-
tion (interchange of coordinates and parallel translation) we take them into cubes
whose common (2m — 1)-face lies in the hyperplane g, = 0 and the origin is the cen-

ter of this face. Set 27° = 0. If the coordinates are changed as was indicated, then

& .
A={(p,, e PGy - s Gmy | pil \gaz—,t=l, ce. ,m,

p S .
—6\<\ql‘<\01 |qi|§—2-al=2v .. »m}’

_ 8
A::{(pl,...,p,,.,ql,...,qm) I <gi=1 ....m
0<q<d,lgl< iz_z“.m§.

We introduce another C™ function ¥ {t) with the property

0 for lll)—g—,

P () = 5—0
2

(l for \ti<
Set
H@y oo PGy e s Gm)=H (P, @)V (P2) - - - P (P) V(G2) - - - P (Gem)-

Clearly } = 0 outside of Int(AU A), Let

P={(plv"'vpm1qh"‘ qu): |p1|< s i=1, ym,
5——0 . )
MJ<6—~ hg:] < J=2““,m}

Note that on the set I
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gg(plr e vpqul’ R ,QM)=H’(P1,q1)-

Thus on I' the flow iS | preserves the coordinates p,, --+y p s 440 -+ 4, and the
coordinates p, and g, transform as under the flow {SH ! on R In particular, the
diffeomorphism S]( coincides on I' with the reflection in the (2m - 2)-dimensional hy-

perplane p, = ¢, = 0. Since AU Rl I, it follows that

SN =R SFR = A"

5. We now pass to the general situation described by Lemma 3.1. We construct
a sequence Ay =A, A, .0 A = A of mutually distinct s-cubes contained in the
set U so that any two consecutive cubes have a common (2m — 2)-face. This can be
done because of the choice of 3 (generally speaking, not all of these cubes belong to
the system J). Applying the construction of subsections 3 and 4 to each pair of
consecutive cubes, we obtain functions Ho’ N Hk— 1+ The function Hl is constant
outside Int(A, U A, (), and

.9’5 52
L Al =ALy, Sy 'Aln = AL (3.3)
Set
~ H -
§=8 "% ... 087  Sy= Hu,o8S. (3.4)

Ve shall prove that }(9 satisfies the conditions of Lemma 3.1. Indeed, since the
diffeomorphism s is the identity and the function }( _1 is zero outside of U, we have

H@ = 0 outside of U. Furthermore

gAg:Ak Ak-x-—- Ag,éA?=A?ﬂ,l=0,-o-.k—2§

and on the @-kernels of the remaining s-cubes of the system | the diffeomorphism S
is the identity. Since }{k-l = 0 outside _Ak-l WA,, we conclude that }(9 = 0 on the
O-kernels of all cubes in J save A and A.

Finally, since

Hy

s _ gragileag (3.5)

substituting into (3.5) the formula (3.4) for § and using (3.3) we find that SHGAB
A% and SK9A9~ A%, Lemma 3.1 follows.

6. Proof of the basic lemma in the general case. Let us fix some Riemannian met-
ric on the manifold M’™, Let K be a connected compact set U DX (. In view of
the theorem of Darboux, in the neighborhood of any point x € M?*™ one can introduce
coordinates py, -+« P, > gy, +++> g, so that the form I becomes Q= T dp, Ndg .
We fix a finite system U of connected neighborhoods which have the described prop-
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erty and which cover K. Let the number 4 > 0 be sufficiently small so that a 3d-
neighborhood (with respect to a given Riemannian metric) of any point in K is con-
tained in U and, moreover, is contained in some neighborhood of the system ¥.

Let € = {C), .-+, Cyl be a system of mutually disjoint closed subsets of the com-
pact set K. We shall call any set which is a union of elements of & a €-set. We con-
struct a system & with the following properties:

L u(C)) = ... = p(Cy) (recall thar the measure u is induced by the symplectic
structure and not by the Riemannian metric).

2, diam C;<d, i=]1, .., N.
3. There are mutually disjoint S-sets A}, ..., A’ and mutually disjoint S-sets
BY, .-+, B such that u(4’) = p(B) and

rALA) <2, pBAB)<T
@g=1...,n.

4. d/2-neighborhoods of the sets C,i=1,..., N, cover X.

We omit the simple, though laborious, proof of the existence of such a system €.

To complete the proof of the basic lemma it suffices to construct for an arbitrary
permutation ¢ of the set {1, ..., N} and any @ > 0 a diffeomorphism

k Fr
S=Stﬂ o ... °Sl

such that ;A(SCIACU(I.)) <@,i=1,...,N, and the functions H, ..., H*® are zero out-
side of U. Indeed, we get the statement of the basic lemma by taking for o any per-

mutation for which

Ai= U Ci Bi= UCop, i=1...,1,
jEN; JEN;

and for € the number ¢/4.

We shall call a permutation admissible if such a diffeomorphism can be construct-
ed for any 6 > 0, The composition of two admissible permutations is clearly an ad-
missible permutation. It is therefore sufficient to prove that all transpositions are
admissible.

If the sets C, and C]- are contained in some neighborhood a of the system ¥,
then the transposition (i, j) is admissible. Indeed, for any 6 > 0 a connected open
neighborhood U . D(C U C)) such that the closure of U, is contained in a and
plU; ;N C)<O for k#i,] canbe constructed, Applying to the sets C,, C; and the
neighborhood U, the local version of the basic lemma proved in subsections 2-35,
we find that (i, j) is an admissible transposition.

Now let C, and C be arbitrary sets of the system €. By condition 4 the d/2-
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neighborhoods of the sets C;, i =1, ..., N, form a covering of K. Since X is con-
nected, one can find pairwise distinct numbers iy =i, {5 -+, Z, = | such that for l =
0, ..., t - 1 the d/2-neighborhoods of the sets C,, and C;, , intersect. But then
the sets C;;, and C;,,1 are contained in a ball of radius 3d, and so in some neighbor-
hood a € U, i.e. the transposition (il, i1+1) is admissible.

Since (i, 1) = (i, i )iy, i) v Gy s PG, 54, 9) + -+ (i, i), the transposition
(i, ) is also admissible. This completes the proof of the basic lemma.

§ 4. Proof of Theorem A

1. The construction. The function N satisfying conditions A.1-A.6 will be con-
structed as the limit of a sequence of homogeneous C™ functions Him convergent in
the C*-topology.

Without loss of generality one can assume that a - B;l =7, is a rational num-
ber, since otherwise one can replace the vector (a,, B;) in the hypothesis of Theo-
rem A by a sufficiently close vector (ay, B;) for which ag(ﬁz,)'l is a racional num-
ber.

We set
H® = Ha,p, (4.1)

and define the function K by the recurrence relation
H" = A" + Hopppo0 K (4.2)

where Bn is a rational number and Kn: M2™ L M?™ is a canonical diffeomorphism
with

Kn= Ln°Kn-l- (43)

Thus if the function H7=1) s already given it suffices to construct L = and indi-
cate 8  to obtain H™). The choice of 8, is made after L_ is constructed. More-
over, the number 0 will satisfy some arithmetic condition (cf. (4.11) below) which
can be satisfied by arbitrarily small numbers. Choosing these numbers 5" suffi-
ciently small, one can achieve the convergence of H™ in the C** topology and the

validity of the condition A.l for each function X", and hence for the limit function

K.

The following property is essential for our constructions.
K. The diffeomorphism L commutes with the vector fields Vy(n=1 and u.

From the fact that L and vy (,-1) commute it follows that

H = Happ00 Kn (4.4)

where

f=y

an:ﬂo(ro‘i'zai):ﬂfn- (4.5)
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Since it is assumed that {7~ 1) js homogeneous and L commutes with z, it is
clear that H®) js homogeneous, and so condition A.3 is also satisfied.

The next condition B together with what was already said assures us thar condi-
tion A.2 will be satisfied with a=lim o and B=,.

B. The diffeomorphism L is the identity in some neighborhood of the set
MU M,

Indeed, at the points of dM2™ U Mp the function H™) together with its differen-
tials of all orders coincides with Hq . Since the sequence is convergent in the c”
topology, the function H with its differentials of all orders coincides with H, a,p 3t
the points of dM?™ U M.

We shall write for short {S;' a,B} = iSta'ﬁi. Since a_ '8 is rational, {Sla"'ﬁ} is a
periodic flow. Denote by 7 the largest period of the trajectories of this flow.(>) By
(4.4), VH is the identity map. If the convergence of H eo H is sufficiently fast
(which can be achieved by choosing each time the 5n to be sufficiently small), then
condition A.5 is satisfied.

Condition A.6 can also be satisfied by smallness of & . This is related to the
fact that the minimal period of the trajectories of the flow !S %2:B}, and so of 30((")}
which lie outside of the set M, tends to infinity as 7 - os, We shall see the details
in subsection 2,

Thus the formulated conditions, namely (4.1)~(4.3), K, B and smallness of &_,
assure the convergence of the sequence H™ so that the limit function H satisfies
the conditions A.1-A.3, A5 and A.5. After some preliminary observations we shall

D is al-

go on to construct the diffeomorphism L~ assuming that the function Hn=
ready constructed. We shall use only those properties of H"=1 which follow from
the inductive hypotheses. The proof will be completed by checking the condition A.4,
for which, in view of homogeneity of the function K, it will suffice to prove that the
flow iSf(} is ergodic on the manifold X~!(1) (see the corollary to Lemma 1.1).

2. Preliminary remarks and notatien. If the homogeneous functions R; and R,
are positive and have no critical points, then there is a standard diffeomorphism be-
tween Ry (1) and R7 (1) which rakes the point x € RT (1) to the unique point in
R3S (1) which lies on the trajectory of the vector field u passing through the point
x. In what follows we shall, without special comment, identify manifolds of the form
R™Y(1) using this diffeomorphism, and we shall consider any function, measure, vec-
tor field, diffeomorphism, flow, differential form, etc., given on one such manifold to
be automatically given on all others. Where no confusion can result we shall use the
same symbols to denote objects related by the standard diffeomorphism given on vari-
ous manifolds R™ (1),

We introduce some notation. Let H;’lﬁ(l) = H*A, If the number aB~! is rational

3 - N . . —
(%) Let T, = p"/qn, where P, and q, are relatively prime natural numbers. Then L,

1
9, B -
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we denote by H;"B the set of regular points of the periodic flow iSta'ﬁL by N%R the
manifold of regular trajectories of this flow and by Ta.8 the natural projection 7,6
H;”B + N%B, Furthermore, let }(g'— 1) be the set of regular points of the flow {St’(""'”f
on the manifold (H®=1)~1(1), let R~ 1) be the corresponding manifold of regular
trajectocies and let @ _;y: }((R"" D, %=1 pe the projection. We shall deal with
manifolds and transformations the relations between which can be conveniently given

by the following commutative diagram:

M H“n-x-ﬁ - H;n-x-ﬁ Tan_y.B N“n-rB

AKp—y {Kn-y fKny 4Kny
1) - ELTT IR -

Msz (%ln 1) 1)(1) 5 %I‘in 1) (n—1) m(n 1)

where the symbol > denotes natural inclusions and the diffeomorphism Rn-l is de-

fined so that the diagram will commute. This is well defined in view of (4.4).

Lemma 4.1. For the action of the torus T? on a compact manifold M there are

only a finite number of distinct stationary subgroups G_ for the distinct points x € M.

Proof. Stationary subgroups of points near a given point x must be contained in
a small neighborhood of the subgroup G_. However, for any subgroup G C T? there is
a neighborhood U, > G such that any subgroup G'C U, is contained in G. Thus
for any point x € M there is a neighborhood U  such that x' € U_ implies G_,C G .
Consider now the action of G_ in the neighborhood of a stationary point x. By a theo-
rem of Bochner ((16], § 5.2, Theorem 1), in some neighborhood U; of x there are co-
ordinates in which the group G _ acts via linear transformations. However, for linear
actions the stationary subgroup can take only a finite number of values. Choosing
from the covering of M bythesetsU N U; a finite one, the proposition follows,

Since the manifold HZOI_,BO(I) is compact, Lemma 4.1 can be applied to actions
of T? on it; and since the functions H, p are homogeneous, it can also be applied
to actions of T2 on M2™, By this lemma the number of elements of the stationary
subgroup G for any x € MZ"’\MD is bounded by a single constant which we denote
by P. Thus the minimal period 7 _, of the trajectories of the flow {S:"n-' LA oue-
side the set My is not smaller than L. /P ‘

Another consequence of Lemma 4.1 is that the periods of all periodic orbits of
the action of T? are bounded. Thus, choosing the number 8, sufficiently small, one
can achieve that the set H:l"a, and hence also the sets H;n'ﬁ for n=2,3, ..., will
be disjoint from M. We shall assume that 8, is chosen so that this condition is

satisfied.

Denote by V™~ 1! the operator of averaging functions along the trajectories of
. . )((72— 1) A
the periodic flow {S[ H

th—y

t j FSZ"™ (x)) dr.

V7 () = =

n-—-1
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The operator V=1 can be thought of as an operator from the space of functions on
}(g’_ D to the space of functions on R~ 1),

Fix some Riemannian metric invariant under the diffeomorphisms iqSl} on M?m,
This metgic induces a Riemannian metric on any submanifold of Mz"‘, in particular
on }((R”’ D, Averaging the Riemannian metric on ]‘(g" D along the trajectories of the
flow 353(("_ D}, we obtain a Riemannian metric on "~ 1), The distance on R(*~ D
defined by this metric will be denoted by p_ _ .

Ve fix a countable everywhere dense set i J,n=1,2, ..., in C>(H%:%0), Re-
call that this fixes a countable everywhere dense set in every space C™(R~ (1)),
where R is a positive homogeneous function on M?™ with no critical point. Let the
constant y, be such that p__ 1(71’ yz) <y, fory;, y, € Rin=1) implies the inequal-
ity

1

I(V'Hf ) () — (Vn_lf ) | < —

2ﬂ

for i=1, ..., m. ‘
3. Construction of the diffeomorphism L . When constructing L we must take
care that conditions K and B are satisfied as well as the condition A.4 which does
not follow from the inductive hypotheses formulated in subsection 1. The first half
of condition K (commuting of L = with vy(n~1) is-equivalent to the requirement that
the diffeomorphism L take each manifold (H==1)=Y(c) into itself. By Lemma 1.1
the second half of this condition (commuting of L = with u) will be satisfied if L
is a composition of a finite number of diffeomorphisms which belong to flows gener-
ated by Hamiltonian vector fields with homogeneous Hamilton functions. Thus we
will be constructing L as a composition of a finite number of diffeomorphisms each
of which belongs to a flow generated by a Hamiltonian vector field with 2 homogene-
ous Hamilton function and leaves the manifold (H"~1)~ (1) invariant.

Since by (4.5) the number a__ lﬁ'l is rational, the function Ha,_, g 8€0CI-
. . . 2
ates an effective canonical action of S! on M ™ and one can use Lemma 2.1 to con-

struct a closed nondegenerate 2-form of the manifold N®n=1:# which we denote by
ﬁr. The normalized measure on N%=1# induced by the volume element Q;”'l will

be denoted by V__ .
Next we choose in N % =1S\dN?7~18 some number (denote this number by k)

of compact mutually disjoint sets F, ...,F; having the following properties:

Var(F) = ... =Vna(Fr), (4.6)
- on+1 — 1
Vnr (F)) > = (4.7)

diam F; < ‘T;n‘ i=1, ..., k. (4.8)
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(The number y_ is defined at the end of subsection 2.) Here and in what follows we
leave out the index 7 in the symbols of objects which depend on 7 (in this case the
sets F ) but occur only in one induction step, so that objects introduced for distinct
n will not be used simultaneously.

Properties (4.6)—(4.8) can be satisfied only for sufficiently large k ; moreover,
one can find a number K so that any number greater than k| will serve as & .

Consider the Hamiltonian vector field U, O0 the symplectic manifold
(N%n=1.B, ﬁn). Since by Lemma 2.2 we have I;Hl o = UH1,g» this vector field in-
duces on N -1.8 3 periodic flow which for breviéy will be denoted by {f't'.' . The
largest period s _ | of the trajectories of this flow is clearly equal to (Bz, _ )™ L
We construct a system of fundamental domains Aq for the transformations

—

Sp—1?
q9

g=1,2, ...

(cf. Proposition 2.3 of [14]); we set
Aﬁ,,q = Sksn_lAq
: q

and we choose compact sets G, CIneA,_,, ,i=1,...,k , suchthat v _ (G)=
- v n
V- l(Fi)' _
Let U_ be an open connected subset of N%n~ 1A with
kp-

(4.9) Up D E F:UG).

(4.10) The closure of U is compact and disjoint from the boundary 9N %- LA,

We apply the basic lemma to the systems of sets F.and G,,i=1,..,k ,in
the symplectic manifold (N =18, Q ), taking U=U_ and €= 1/2"“1?,". Denote
the constructed Hamilton functions by »’, /=1, ..., k. We lift each function %! to
the manifold Hgn- 1A by letting hlx) = ;I(ﬂan_ 1.3%) »and extend the function A’
to H%= 18 by letting h' = 0 on Ha"fl"B\H;"‘l"B. Finally we excend 4’ to the
whole manifold M>™ so as to obtain a homogeneous function. Such an extension is
unique and is easily obtained by solving the equation guhl YL along the trajec-
tories of the vector field u.

Set

nk At
Ln=Sl O ... OS),.

It is clear that the diffeomorphism L commutes with the vector field u, since the
bt are homogeneous functions. From the construction of ! it is also clear that
H=1) s the first integral of the vector fields v, ;; hence each diffeomorphism S'I’I
leaves the manifold ({"~1)=1(1) invariant. Thus condition K is satisfied. Con-

dition B is also satisfied, since by (4.10) and the remark on the choice of 8, in
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subsection 2 each function A’ vamshes on some neighborhood of Mp U 6M2”' and
hence each diffeomorphism S is the identity there.
4. The choice of 5 . Let p be the distance on M?™ given by the fixed Riemann-

ian metric, and let W be a 1/2"-neighborhood of M, in this metric. Let

. . (n 1)
£, = Mmin min mm[l o (x, S'% x)].
M2 W
xe W, 1<t\ -1

The number 5" is chosen so that the followmg hold:

2
s?_ )
S, = L =L |, is a natural number, (4.11)

p* t-—l nln knls
6-¢

Y -
“ W _ gt n“rM < o S (4.12)

o

o+l (21""1 4 1)
- ]

where KN =Hag plIN~ 1, N1). The condition (4.12) does not contain 8 explicitly,
but it is satisfied when 5" is sufficiently small. Indeed, consider the expression
H™ in (4.2), where H{"=1) and K, are fixed and & varies. Since the functions
H, g are C* in a and f3, and K, isa c* dxffeomorphlsm, it follows that X" tends
to Hn=D together with the dxfferentxals of arbitrary high orders on any compact set
as 8 - 0. Thus to satisfy condition (4.12) the number / in (4.11) must be chosen
sufficiently large.

The condition (4.12) for » = 1, 2, ... assures uniform convergence of the se-
quence K together with its differentials of all orders to a C*™ function K on the
compact set KN as n » o, Since the functions K" are homogeneous, this conver-
gence takes place at all points of M?™ and is uniform on any compact set. The con-
dition A.l follows immediately from (4.12). Since for a fixed 7 the distance between
the restrictions of ?R and V“(") to a given compact set K in the metric of C-con-
vergence is esnmated by CQ , where C and Q depend on K but not on 7, (4.12) im-
plies A,5.

It also follows from (4.12) thar the distance between S:(x and Sf((”)x, for x €

'1(1)\W _1» 1 St <7 /2, for sufficiently large =, is smaller than ¢, /4, and hence
the flow {5“} can have no periodic trajectories outside of W whose penod does not
exceed Tﬂ/Z. Since 7 > oe as n - oe (cf. subsection 2), condlnon A.G is also satis-
fied.

5. Proof of ergodicity of the flow {Sl’(} on X=1(1). First recall that we do not
distinguish, and denote by the same symbols, functions, measures, flows, etc. on dis-
tinct manifolds of the form R~ (1), where R is a positive homogeneous function with-
out critical points, as long as these objects correspond under the standard diffeomor-
phisms described in subsection 2. Thus, for instance, we denote by {S‘:((")i not only

the flow on the manifold (H{"))=1(1) but also the corresponding flow on the manifold



DEGENERATE INTEGRABLE HAMILTONIAN SYSTEMS 557

H=!(1). Let v be a measure on some manifold R~ (1), For brevity the space

L (R'l(l) v) will be denoted by L,{v). We denote by p and p_ the corresponding
normalized measures induced by the Z-form Q on the manifolds H (1) and

()= 1(1) and invariant with respect to the flows iS{‘! and {S{((")i. Let g be a

function on R~ (1), Set

¢
1 ¢ yr(n)
Vig) (1) = — (a7 nar,
0

mmm=—jﬂ&nm

In particular, the operator V:’""_ll coincides with operator V7! defined in subsec-
tion 2. We shall consider the operators V7' and V| in various function spaces.

Let F be a bounded function on K~ 1(1) which is measurable with respect to f
and invariant with respect to the flow !Sf‘(. Fix 0> 0 and choose a number & so

that

" F - fk ”Lz(“) < 0' (4-13)

Recall that the functions /k were fixed at the end of subsection 2.

Since V F =F and the norm of V, in L,(u) is I, for any ¢ we have

Ve — Vil SV — el +1VeE — )l < 20, | (4.14)

Let g be a differentiable function on H~!(1). Then

VWi, g =Vl < max |V, _gx)—V"7'gw)]
PSX A

(n-1)
< max|(Dg),| - max [maxp(S; X, S}ﬂ’ x)1, (4.15)
X

SISy,

where the norm of the differential Dg is taken in the same Riemannian metric which

. -1 . ..

induces the metric p on ™ '(1). R is understood that, in the spirit of the remark at
(n- -

the beginning of subsection 2, the flow {S“ } and the operator V"~ ! are trans-

lated ro H~ (1),

Since the sequence ¢ of periods of the flows {S{((")f is increasing and

1]

H A A1
0(S: x, S; X) <. Z p(S,'/ S;/é )
j=n-1

it follows from (4.12) that the second factor in the right-hand side of (4.15) tends
to zero as n - os. Therefore one can choose N, so that for » > N,
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Wi ofe —~ V™7 b <0,

IV fe— V" i) (4.16)

L(M) ™~

Since the measures p and K,-1 are equivalent, the spaces Lz(#) and Lz(#"_l)

consist of the same functions and differ only in their norms. Set
- — -
Buma = (Tn-1)) Bn-1 = (K7m),Vonr.

The projection # _y: H;{" DL R®=1 jrduces an isometric embedding

Minon: Ly (R, Bnct) © Loy (HR™, fnma) = Lo (fan)-

The last equality follows since

[T ((Jf(" 1))-1 (l)\‘%ﬂn-l)) =0

Since the flow 353(("‘ D} preserves the measure M, _ 1, the operator vl on Lop ;)
is an orthogonal projection into the space n( -1 2(%("- bh F"_ 1), which we shall
identify with the space L (R~ 1), B,_ s

Consider the partition 7, of the mamfold R=1 inte sets K A k,,
0,.-urs; lIe [ -1, and denote by P the orthogonal projection in L (?l("" [ _1)
onto the subspace E of functions w}uch are constant on the elements of this parti-
tion. We also denote. by P the orthogonal projection in L (g _,) onto the subspace

7 - 1)E,+ Let us estimate the norm of the function ((Id - P )V"_ l)/,c in

L, & ) (1d is the identity operator). For brevity we shall denote the norm
in this space by || . | without any subscripts. Let

]Ii == n;::—l-BAi'kn’ i = 0, ey kn — 1,

and let P be the orthogonal pro,ecnon in L (y -1) onto the subspace of functions

constant on the sets K~ n. pi=0,.00k ~ 1, Itis clear that

J(d — Pa) | <[ (1d — Pr) I

Each set K; ! I]i contains the subset
z+1 = Kn—l (ﬂa,,_l.BFHl N Ln ),

and by choice of y, (see the end of subsection 2) and (4.8) for 7» > k the variation
of the function V"~ l/,c on each set F?H is smaller than 1/27, On the other hand,
by (4.7) and the choice of ¢ in the application of the basic lemma in the construction
of the diffeomorphism L =~ we have
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Mll-l.(Ai 4 ) 1

P'n—l(K; \Fm. 28 = o

Thus

~ kn
1dd —Po) V7 fe| <max [ fe| - (tnaa (RN U FTY)"
f=)

We choose N, so that for » > N, the right-hand side of this inequality will be small-
er than 6. Then for n> N,

[(0d —P) V" < 0.
Set A, =dp/dp,_,. Then

(inAe) < | Pl <Dl <naxra-) 1l

From (4.12) it follows that as 7 » os the distributions A__ tend uniformly to 1.
(Recall that the manifold K™ '(1) is compact.) Choose N, so that for n > N, we
have V2/2 < /\n-—l < V2, and so

12_‘2- I "L:(lln_l) <[f "L.(u) < ﬁu’““’m""y

Set (U’((")/)(x) /(SK(")x) The operator U’((") is a unitary operator in L,(u ),
since the flow 351((")[ preserves the measure g . Thus for # > N, the norm of UK(")
in L (;1) is smaller than 2,

Note that t,=s, 1 1k 0t _ . Furthermore,

nnn-
kplp~1
nl"
s AL
n n—1
Vi = 'Y, IE U"41°V’nx
n'n ==

From (4.16) and (4.19) it follows that for n > max(N , N,)
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s s kn by
ank . kﬂ;l 2 U Vn_lfk
" I=0 L)
-1
Sp—1¥ nln—1
Spem AL _
< 2 knll 2 Uun-—l (V’;n_l_vn 1) fk < 26. (4.20)
mr f=o La()
Consider now the function P V"~ / €L (W"' D, 47 ) constant on the elements

of the partition 7. This pamnon is invariant under the diffeomorphism SR ), and

—‘(fl)

S? KA o, =KiA_ .,

isp—1knln i+1,8p-3Faln
where

| = N —_ an ~ -1 = -1 .
i 0, 1, , Sn lk l l d A n-l-l el ‘n—lknln onsn—lknln

Therefore the function

~a
Sneyknln—1 7

sn-l F ) n—1
™ > U, PV

nn =0

is a constant which we denote by c_.
Now let 7 > max(N, N,, N3). From (4.1A), (4.17), (4.18) and (4.20) we obtain

L kol -1
Sp-1 Sn-1%nin PO
H ank - Cn "Ll(u) \<\ ank——' knln 2 U"ﬂ n lfk
I=0 La(n)

-1
Spu=1 knln‘l ._(’l)

+ Sn_‘ z U”" (Id _ n) Vn—l};k

I=o L s(n)
<20 +4[|(1d —Po) Vi |, << 86 (4.21)
Finally, using (4.13), (4.14), (4.16) and (4.21), we get

NF— el < IF =il + Mo = Virfilg
+ WVeafe — Vil + WV e —€n g, << 126.

Since the number € can be chosen arbitrarily small, the function F is a constant.

Thus the ergodicity of ist’(il on X~ 1(1) is proved, and with it Theorem A.

§ 5. Weakly coupled oscillators

1. We turn our actention to Example 1 described in § 1. 1If all the numbers ags

. m 2, 2 . .. .
., _ are positive, then 727 a (p; +¢;) = Ha, .. .,a,{p>q) is a positive function
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with no critical points on R2™\{0} and the manifolds H;ll', .+,a, (1) are compact.
Now let a, > 0,i=1,..,m,and a, = Bri, where the 7, are integers. In the torus
T" consider the 2-dimensional torus {ta, + s, ta,, ++-, ta_mod1}, ¢, s € R. The ac-
tion of this torus on R?7”\{0} satisfies conditions (1.9)—(1.11). Theorem A in this
situation assures the existence of a homogeneous function of second degree H, arbi-
trarily close, together with its partial derivatives of degrees up to 7, on the sphere
H;I (1) to Hay ... q, and generating a flow {5} which is ergodic on each mani-
fold H"1(c). The function K may be extended to be continuous at zero by H(0) = 0,
This extended function } is only once differentiable at zero, and so the vector field
vy is only continuous at zero. Replacing the homogeneity of H by a weaker condi-
tion (cf. condition B.3 below), we can remove this defect, and, moreover, we achieve
that H is uniformly close on the whole space R to some function Hay,.. a,. Ve
give a complete formulation of this proposition and indicate the changes necessary in

the proof of Theorem A to prove it.

Theorem B. Let %, -.., a® and & be positive numbers, and let r be a natural
1 m

number. There exists a vector (al, e, am) and a C* function H in R?*™ such
that conditions A.4—A.6 and also the following conditions are satisfied:
B.l. The function H - Hapoita, and its partial derivatives of order not ex-

ceeding r are bounded by & on the whole space R*™,
B.2. |a,~—a}’l<6, i=1, cesy M.

B.3. Forany c,, c, >0 there is a diffeomorphism BPe et - l(cl) - - l(CZ)
such that

Do 52 | gpsico = V2| s

0 . .
2. Let us assume that a; = rByi=1,..., m, where the r; are integers and the
greatest common divisor of 7, - -, . s 1. (Otherwise we replace (a?, cey a?n)

by a close vector.) Set
Hu.B = Hur,+{3,ar,.....a [

As in the proof of Theorem A, we shall inductively construct a sequence Hin) of
functions defined by the following relations:

H =Hyp = Heo. . as) (5.1}
%(’l) gf(n 1) vr_ anﬂ 00 Kn, (5.2)
Kp,= Ln°Kn—1, (5.3

(n) . . . -
so that to construct ') one needs to give, besides the function Hin 1), a canoni-

. . 2 L.
cal diffeomorphism L _: R“™ - R?*™ and a positive number . The condition K is
replaced by the following two conditions:
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K.1. The diffeomorphism Ln commutes with the vector field Yy (n=1)e
K.2, On the set

(;g(n—l))—l ([Q—n’ 2n] )

which is invariant with respect to L, the diffeomorphism L commutes with the vec-
tor field u. On the sets

(G- ( (0,2-"-11) and (H#-D)~1([27+], o) )

the diffeomorphism L coincides with the identity.
Condition K.l implies (4.4) and (4.5) with r; = 0,
Ve wish to construct homogeneous functions h'(p, ) as described in § 4.3. We
set
h* i
Ln=Sl o‘,_,oSl’
where
P 0 for (p, q) =0,
K (p, q) 02" (0, ),

I=1,..+, k and p(¢) is an infinitely differentiable function on the reals such that
p(t) = 0 for t € (—os, 277" 1JU[27%), ) and plt) = 1 for 1 €[277, 27],

The number &_ is chosen so that (4.11) and the following conditions will be
satisfied:

Ol —— . (5.4)
ﬁ2n+l

(5.5) The function H® _H"=D and jis partial derivatives of all orders not ex-
ceeding 7 + n are bounded on the set ({7=1)= ({2771, 27+1]) by the number

3

n-1
12
2n+2(2 n-1 +1)

Moreover, the remark about the choice of &, made in § 4.2 still holds. From
the conditions (4.11), (5.4), (5.5) for n=1,2, ... and this remark it follows that
the sequence Hm) converges to a C function } and the conditions A.5, A.6, B.1
and B.2 with

[#e]
w=al, i=2,...,m, a1=a':+ﬁ2 On (5.6)
n=1
are satisfied.
We check condition .3, Let, for instance, ¢, <c,, and let N be a natural num-
ber such that 2~ N*! < €, <¢, < 2N=1. From (5.4) and (5.5) it follows that for
n>N
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H ([ep ca) (™) (27, 2V)).

Therefore all diffeomorphisms L for n > N are homogeneous in the region
K- 1([6‘1, c ]) and so the funcnon Ko Ky ! is also homogeneous in this region. Ve
set 7= ln(cz/c ) and @cy,cy _K'l ° qS °o Ky

Note that the diffeomorphisms . o, depend smoothly on ¢, and c, and, just

as in the homogeneous case, they satisfy the "‘group.’ law
Pesies ° Pryes = Peveeye

The proof of ergodicity of the flow {S i on the manifold H~!(1) as given in § 4.5
need not be changed. The ergodicity of {S } on each manifold H~(c) follows from
B.3. This completes the proof of Theorem B

3. The function } constructed in the proof of Theorem B is of the form

H = Hay.a, + X, 5.7
and at the point O all the differentials dH*(0), £ =0, 1, 2, ..., are equal to zero.
Thus 0 is a purely elliptical fixed point of the Hamiltonian vector field Yy and the

linear part vy o, of this vector field at 0 has the numbers {27ia },j=1,...,

-
m, as spectrum. In view of (5.6) this spectrum is very special; namely, the linear
space generated by the numbers a,, .-+, a  over the rational numbers has dimension
2.

Our construction can be generalized so that the function X, as before, will sat-
isfy all the assertions of Theorem B and be of the form (5.7) but so that the dimen-
sion of the linear space over the rationals generated by a ), .-+, a  will be equal to
any a priori given number s, 2 <s <m. The basic idea is to begin with an action of
the s-dimensional torus T* and not with T2, In particular, setting s = m, one can
achieve that the aumbers a,, ..., a  will be rationally independent, as in our con-
struction for m = 2. However, even in this case the vector (a;, .-+, a_) will not be
exceptionally well approximated by vectors (af, ---, a?) such that a}, ..., a” are
dependent over the rationals. Thus the following quesdon remains unanswered.

Given a vector (al, e ) with a.>0,7=1, ..., m, does there exista C*
function H = Hopiiia, + H thh d*H(0) = 0 for k = 0, 1, 2 such thar the flow {S’(}
is ergodic on the mamfolds H=c) at least for sufficiencly small positive c?

4. Another possible modification of our construction is for the case when not all
numbers a;, -+, a_ in (5.7) are positive, i.e. the manifolds H=%c) are not com-
pact. In this case the stability of the fixed point 0 is of interest, It turns out that
one can construct a function H in this case so that 0 is an unstable point and the
flow {S } on each submanifold X~ (c), ¢ £ 0, is ergodic with respect to an infinite

invariant measure induced by the Lebesgue measure on R2™, The detailed formula-
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tions and proofs in the noncompact case will be given in another paper.

$ 6. Geodesic flows on Finsler manifolds

1. Before applying our results to the situation described in Example 2 we shall
recall some known facts about Finsler metrics, geodesic flows and the Legendre
transformation. In this connection it is sometimes convenient to use coordinate no-
tation rather than the intrinsic one. Let ¢: U » B™ be a coordinate chart, where U
is an open subset of the manifold M™ and B™ is an open m-ball; (ql, cen ,qm) will
be the coordinates of a point x € M™, The differential D¢p is a diffeomorphism be-
tween the tangent bundle TU and the product B™ x R™, and allows us to introduce
in TU a system of coordinates (g, -+, ¢, vs -++, v ). In other words, v, ++ o v
are the coefficients of a tangent vector v € TqU with respect to the basis d/dq in
the tangent space TqU. Dual local coordinates (g, - -, G2 Ppo s pm) are deter-
mined in the cotangent bundle T U. There py» -+ p,, are the coefficients of a lin-
ear form p € T U with respect to the basis dg_, i =1, ..., m. The canonical 2-form

*
 on the cotangent bundle T M™ can be written as

m
Q=% dp;: /\dg;
i=1
in the coordinates q s+ g > pys> -+ P, and is independent of the chart map o]
(cf. [11], Chapter III, formula (7.7)).

2. Let the manifold M™ be given a Finsler metric 0 of class C*, i.e. a norm
for the tangent vectors v € TM™, denoted by ||vll, is given. This norm is infinitely
differentiable on TMm\ro, and on each space TqM"', g € M™, it is homogeneous of
degree one, convex and symmetric.

Set L, (c) = %||v||2. The system of Lagrange equations with the Lagrangian
(kinetic energy) L, in the coordinates gys+++» 4, sV, -+ v has the form
dg, d (OL0> L,

Gi iy, L -2, (6.1)
dt 0 at \ oy 3q;

The Finsler metric 0 is said to be nondegenerate if

det

L
-7—‘=0 for U=#0. (6.2)
199
This condition, which in the calculus of variations is called the strengthened Le-
gendre condition, does not depend on the choice of local coordinates, since the coor-
dinates v,, -+, v_ in each space T _M™ transform linearly as one goes from one
1 m q
local system to another.
When condition (6.2) is satisfied the Lagrange equations (6.1) can be solved

for dv /dt, i.e. we can represent them in the form
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dg; dy; (6.3)

—-L= iy —l == F 'Y .
dt ¢ dt (9 %)

Indeed, in this case for a fixed g € M™ the vector (L, /v, -+, 0L, /9v ) de-
pends on v € TqM’"\{Oi in a nondegenerate way, and hence by the implicit function
theorem the vy, .-+, v, can be locally expressed in terms of aLo/aul, . 8La/avm.
The system (6.3) determines a vector field on TM”’\FO. The flow induced by this
vector field is the geodesic flow of the Finsler metric o.

3, We define the Legendre transformation £_: TM 5~ T'M by

a (g, v) = (g, duLo (g, V)

or

Qa(ql,....qm,vl,...,vm)—_- ql'__.’qm'_f’,n_‘

\ 1 m [

oL 0L )

We omit the proof of the following, almost obvious proposition.

Proposition 6.1, If the Finsler metric o is nondegenerate, then 530 isa C™ dif-
feomorphism between TM"'\FO and TtM”'\r(;.
The inverse Legendre transformation is of the form
£ (¢ p) = (4, dHa (g, P))
or
. oH, oH
85 @G, -5 Gm P1s vy Pm) = (ql’ ceer Gmo o
. m
where

Ho(g, p) = 3} pivi (g, p) - La = 25 (4, P)-

=1

Since on each space TqM'" the Lagrangian L is a second degree homogeneous func-
tion, we have

Hg = LgoQ3" (6.4)
It is easy to show that the function H  is half of the square of the norm || ||;
on T M™ dual to the norm || ||, on TM™. By regularity of the inverse Legendre

transformation it follows that for p # O che function H _ also satisfies the strengthened
Legendre condition, i.e.
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oH, 6.5)

ap; ap,

det

Now let H be an arbitrary function on T M™ satisfying the following condition.

F. H is infinitely differentiable on T'M"’\r;, and on each cotangent space
T;Mm, g € M™ ,the function H is homogeneous of second degree, symmetric and sat-
isfies (6.5).

Then the transformation

Ly (g, p) = (g, dH (g, P))

is a diffeomorphism by Proposition 6.1, and the function 2H © g;l determines the

square of the norm of some nondegenerate C™ Finsler metric 0, on M™, and £7! =
8 H ’ H

o,
The differential DEH takes the Hamiltonian vector field vy on T'M™ into the
vector field of the geodesic flow of the metric o,. Keeping this in mind we shall di-

rectly construct a Hamiltonian system whose Hamiltonian satisfies condition F,

The function L is, by (6.4), the first integral of the geodesic flow; the trajec-
tories of this flow project into geodesic lines of the metric 0 by the natural projec-
tion TM™ to M™, and the flow on the hypersurface L Y(c/2) can be described as
motion with velocity ¢” of the tangent vector along a geodesic line parametrized by
the Finsler length.

4. A well-known special case of the described situation occurs when o is a Rie-
mannian metric on M™ (cf., for example, [11], Chapter 1V, $1). In this case L_ is
a positive definite quadratic form on each space TqM’"; and condition (6.2), of course,
holds. The Legendre transformation go is linear on each TqM"', and the Hamiltonian
H_ as well as L are positive definite quadratic forms. Condition F is satisfied
for any infinitely differentiable on T'M"'\I"‘; second degree homogeneous function
H symmetric on each space T;M”’, as long as it is sufficiently close in the c?
topology to the quadratic form H_. Thus the flow {573 on T'M™ is isomorphic to a
geodesic flow of some nondegenerate Finsler metric on M™,

S. We now turn to Example 2 described in § 1. Recall that we assume that the
manifold M™ is given a Riemannian metric p which satisfies the following two con-
ditions:

(1.12) All geodesics of this metric are closed and the lengths of all geodesics
are divisors of some positive number.

(1,13) On M™ there is an effective action of the group S' which consists of dif-
feomorphisms ll/zl}, t eR, ¥, = 14, which preserve the Riemannian metric p.

We denote by 7, the maximal length of a (closed) geodesic in the metric p. It
is easy to see that the lengths of all geodesics are divisors of 7, i.e. the geodesic
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flow on the manifold L- 1(r:/Z) has period rjc =%, In view of what was said in sub-
section 3 the flow {S, P} on T M™, where H (x) = l/(Hx" "), x € T'M, has penod
o€ =% on the mamfold H; Y(c/2), and the flow {S 1,0}, where H, o(x) = TOHxH
period 1 on T M'”\ro; and this last flow can be thought of as a canonical action of

S! on T.M”‘\r;.
We denote by v, the vector field on M™ which induces the flow Wl Iis
knowan that the flow {D' x/zli on T.M’", where D’ ‘/’t is the transformation dual to the

differential Dg//l, is induced by a Hamiltonian vector field whose Hamilton function is

Hox () = x 0y (9)),

where ¢ € M™ and x ¢ T M™, The function H 8= al, o+ BHO 1 induces an ac-
tion of the torus T2 on T M"'\ro satisfying the conditions (1.9)—(1.11) with
(ag, By) = (1, 0)

Applying Theorem A, we obtain a function H on T.M'"\l"(‘) half of whose square
KH? satisfies all hypotheses of condition F, save symmetry, if the number & in the
hypothesis of Theorem A is chosen sufficiently small and r > 2. In this case the func-
tion 4HZ o 51),:“1(2 determines the square of the norm for some nonsymmetric Finsler
metric with an ergodic geodesic flow, and the closed geodesics in this metric coin-
cide with those closed geodesics of the metric p which are invariant under all isom-
etries { L(4)

In the space of real C* functions on M™ which are homogeneous of first degree
for every g € M™ we introduce a sequence of norms || Hr, r=0,1, ...,such that the
norm || || takes into account the closeness of the r-jets of the functions on the mani-
fold T,= L7 '(%) of unit tangent vectors in the Riemannian metric p. Let A CTM",
Set —A = {x:~x € A},

Theorem C. Let p be a Riemannian metric on the manifold M™ for which condi-
tions (1.12) and (1.13) hold. Then for any positive numbers ¢ and 8 and any natu -

ral number r there exists a Finsler metric 0 on M™ and a set F C L;l(%) such that
Clplel,—lell, < 3.
C2 (Kew L3 (—)) DF D (Keo ) Lq( 7))

where
Ke= (xS TM™: 1, 2], < Hou o 85* ().

C.3. The set F is invariant with respect to the geodesic flow of the metric o,

(%) If pis the standard metric on S", then the minimal number of geometrically distinct
closed geodesics in the resulting nonsymmetric Finsler metric is [(r - D/2). Recall that in
the nonsymmetric case it is natural to count each geodesic twice if it is a closed crajectory

of the geodesic flow for the motion in both directions.
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and this [low is ergodic on both F and _F,

C.4. The geodesic flows of the metrics p and 0 have the same closed trajectories
in F,

Remark. Choosing the number ¢ sufficiently small, one can make the measure of
the set L '(%4)\(F U ~F) arbitrarily small.

Proof. Consider the manifold with boundary

M. = {x & T"M™\T: H-¢, (x) > 0}.

This manifold is invariant under the action of T? on T‘M"’\I‘é, and is homogeneous.
Thus conditions (1.2)=(1.4) and (1.9)=(1.11) hold. Applying Theorem A to this situ-
ation, we construct a function H on M_ and a number ¢ so that at the points of the
boundary (?MC the function H together with its differentials of all orders coincides
with H, .

Let '/(t) be an infinitely differentiable odd function equal to1 for ¢ > c. We ex-

tend H to a function H defined on the whole cotangent bundle T M™ as follows:

( H (x), if xe& M.,
H (-—JC), if xe— Mty

_ [Hy, () :
H (%) = | Hyo +ef (HM (x)) Hoy (x), if

IHo.x (%) I <cH,,(x), x ¢ F;,
[0, if xeT.

If the number ¢ is sufficiently small, then the function YWH? satisfies condition F.
. . . U2, ©- .
As was shown in subsection 3, the function %H o L,/;ll(z determines the square

of the norm for some nondegenerate Finsler metric 0 on M™. Set
-1 -] 1
F=93(M.N L3 (3)

If in the construction of the function H the numbers & and 7 in the conditions
of Theorem A are chosen sufficiently small and sufficiently large, respectively, then
statements C.1 and C.2 will hold, since £;1MC =K_.

Statements C.3 and C.4 hold, as the Legendre transformation &’G establishes
an isomorphism between the geodesic flow of the metric ¢ and the flow iSi/’F 2}.

6. In conclusion we consider the conditions (1.12) and (1.13). Not much can be said about
manifolds on which such metrics may exist without further restrictions. Thus it is
easy to show that condition (1.12) implies that the number of conjugacy classes in
the group 7,{M™) must be finite, of, equivalently, the number of free homotopy clas-

ses of closed paths in M™ is finite. It is hard to obtain stronger conditions, since
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the geodesic lines on M™ may have self-intersections.

The known examples of simply connected Riemannian manifolds on which all geo-
desics are closed are, up to diffeomorphisms, the compact Riemannian symmetric spa-
ces of rank 1, These are spheres 57 (n > 2), complex projective spaces P*(C), n > 1,
quaternionic projective spaces P?(Q), n > 1, and the Cayley projective plane K,. In
each of chese examples all geodesics are of the same length and have no self-inter-
sections. If one assumes that this property holds for all geodesics passing through
some point x € M™ then, as was shown by Bote [17], either the cohomology ring
of M™ is isomorphic to the cohomology ring of one of the listed symmetric spaces and
M™ is simply connected, or 7,(M™) = Z, and M™ has a homology sphere for its uni+
versal covering. Since among all symmetric spaces of rank | only spheres can be odd-
dimensional, this result of Bott and the theorem of Smale [18] (the generalized
Poincaré conjecture) imply that a manifold of odd dimension m > 5 which admits a
metric in which all geodesics through some point are closed non-self-intersecting
curves of the same length is homeomorphic either to 3™ or to the quotient of S™ un-
der the action of some fixed-point-free involution.

All known non-simply-connected Riemannian manifolds with closed geodesics
are quotients of symmetric spaces of rank | under a free action of a finite group of
isometries. These actions are classified up to conjugacy in the group of isometries
of the simply connected manifold. Note that all symmetric spaces of rank 1, save for
spheres of odd dimension, have positive Euler characteristic, and therefore a fixed-
point-free isometry on such a space cannot be homotopic to the identity. From here
it is easy to see that the only finite group of isometries that can act without fixed
points on $27, P7(C), P"(Q) and K, is Z,, and to describe the isometric actions of
Z, on these manifolds (see [22]). The case of odd-dimensional spheres is nontrivi-
al. The problem in this case is equivalent to the classification, up to isometries, of
odd-dimensional full Riemaanian manifolds of constant positive curvature; this is
sometimes called ‘‘the Klein-Clifford problem of spherical space forms'’. For dimen-
sion 3 the classification was obtained by Seifert and Threlfall in 1930 [19]): in the
general case the basic results were obtained by Zassenhaus [20] and Vincent [21],
and the full classification was completed by Wolf [22].

Note that all known Riemannian manifolds with closed geodesics have a one-
parameter group of isometries, i.e. the condition (1.13) is satisfied. This fact is
nontrivial only in the case of quotients of odd-dimensional spheres, and then it fol-
lows from the fact that for all cases in the Zassenhaus-Vincent-Wolf classification
all transformations of the finite group of isometries G acting on S2™~! C C™ are
unitary complex transformations, and so commute with multiplication by unimodular
complex numbers. However, there is no proof of this fact independent of the classi-
fication. Whether or notcondition (1.13) is always a consequence of (1.12) is not
clear.

Conditions (1.12) and (1.13) can be generalized. Namely, one can assume that
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P is a nondegenerate Finsler metric and not necessarily a Riemannian metric on M™,
However, I have no examples of Finsler metrics satisfying these conditions save for
those obtained from Riemannian metrics by a homogeneous diffeomorphism f: TM™ -
TM™. Note that the results of Bott [17] hold for the case of nondegenerate Finsler

metrics, so it is unlikely that this generalization will yield something new, at least
from the topological viewpoint.
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