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ERGODIC PERTURBATIONS OF DEGENERATE INTEGRABLE

HAMILTONIAN SYSTEMS

UDC 517.9-513.78

Α. Β. ΚΑΤΟΚ

Abstract. Hamiltonian systems arbitrarily close in the C topology ( r = 1, 2,
. . . ) to a given integrable degenerate Hamiltonian system of class C which generate
an ergodic flow on each manifold of constant energy are constructed. Applications:
Small perturbations of a system generated by independent oscillators and Finsler met-
rics close to standard Riemannian metrics on symmetric spaces of rank 1.

Introduction

1. The concept of an integrable Hamiltonian dynamical system, notwithstanding

its respectable age, has no generally accepted formal definition. Exceptionally large

variations are p o s s i b l e in the treatment of this concept in the c a s e of not analyt ical

but just differentiable Hamiltonian systems, for example systems of c l a s s C°° which

we shal l treat in what follows. Without risking a fall into strong contradict ions with

traditional presentat ions we shall cal l a Hamiltonian system with η degrees of free-

dom integrable if in the phase space Λ1 m of this system there is an open everywhere

dense set M^ which is a locally trivial fibration of c l a s s C , with fiber a A-dimen-

sional torus Τ (k < m), and some (2m - &)-dimensional manifold Ν a s b a s e , where

each fiber of th is fibration is invariant with respect to the dynamical system, which

induces on it a conditionally periodic motion. If one fixes a bas i s in the integral ho-

mology group Wj(T* 0 , Z) of the fiber T * Q over the point xQ e Ν sufficiently c lose

to * 0 , then the conditionally periodic motion on Τ will be characterized by the vec-

tor of frequencies ω{χ) = (o)j(x), · · · , ω^(χ)), which is a smooth function of the point

x.

If k - m and χ is a regular point of the mapping ω- U -> R , χ ι-» ω(χ) (U i s an

open subset of N), then we shall say that the considered integrable Hamiltonian dy-

namical system is nondegenerate on the fiber T m . If, moreover, the vector ω(χ) is

not too c lose to vectors which satisfy integral condit ions, then any sufficiently c lose

Hamiltonian system contains an invariant torus, c lose to the torus T m , on which the

AMS(MOS) subject classifications (1970). Primary 58FO5, 28A65; Secondary 53C60.
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conditionally periodic motion with the vector of frequencies ω(χ) takes place. More-

over, such tori fill a set of positive measure in M2m, and, for any neighborhood V of

the point χ in which the mapping ω is regular, as the magnitude of perturbation de-

creases the measure of the complement of the set V' = U yTm, in the set consist-

ing of the invariant tori of the perturbed system, tends to zero. In the analytic case,

i.e. when the original integrable system is indeed an analytic system and the pertur-

bation is sufficiently small in some complex neighborhood of the set V\ these state-

ments make up the content of the well-known theorem of A. N. Kolmogorov about the

preservation of conditionally periodic motions ( [ l ] ; for the proof s e e [2]), and in the

differentiable case when one requires the smallness of the perturbation with some

fixed number of derivatives, the basic results are due to Jurgen Moser (cf. [3], [4] ,

[5]).

Degeneracy can appear, roughly speaking, for two reasons: either k < m, or the

vector of frequencies ω(χ) depends on χ in a degenerate way. In these c a s e s , for

no perturbation can one guarantee the existence of invariant tori. In the first case,

V. I. Arnol'd [6] has shown sufficient conditions which should be satisfied by the

perturbation in order that the perturbed system contain invariant tori filled by condi-

tionally periodic motions where these tori turn out to be not k but ro-dimensional.

These conditions are satisfied in a series of important concrete problems, for exam-

ple, in the η-body problem.

2. The purpose of this article is to prove that in C°* Hamiltonian dynamical sys-

tems c lose in the C topology to degenerate integrable systems for an arbitrary a

priori given r, there may occur effects for which invariant tori are completely destroyed.

We will treat two extreme c a s e s of degeneracy: either k - 1, or the vector of frequen-

cies ω(χ) i s constant on the manifolds of constant energy. The exact hypotheses

about the original degenerate Hamiltonian system are formulated in § 1. Under these

assumptions, we shall prove that for any r arbitrarily c lose, in the C topology, to

such a degenerate integrable system, there are Hamiltonian systems which on each

manifold of constant energy induce an ergodic flow. Results which apply to partial

degeneracy will be given in another paper.

If the original Hamiltonian system has some additional structure, in many c a s e s

it is interesting to construct perturbations which also have this structure. Thus, for

example, giving the manifold Μ a Riemannian or Finsler metric defines on the cotan-

gen t bundle T*M a Hamiltonian dynamical system for which the Legendre transfor-

mation establ ishes an isomorphism between this dynamical system and the geodesic

flow on the tangent bundle TM (cf. § 6). If the original degenerate integrable Hamil-

tonian system is generated by a Riemannian metric (such a system is generated, for

example, by the standard Riemannian metric on the w-dimensional sphere S"), then it

would be interesting to construct a perturbation of the above described kind in the

c lass of Hamiltonian systems generated by Riemannian metrics, s ince it unknown,

for example, whether there exists on S" (« > 2) a Riemannian metric for which the
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geodesic flow is ergodic on the manifold of unit tangent vectors or whether at least

this manifold has an ergodic component of posi t ive measure. The difficulty here con-

s i s t s of the fact that of the known mechanisms which produce ergodiciiy in geodesic

flows, only those which are related to " h y p e r b o l i c " behavior of tra jectories (we have

in mind the condition U of D. V. Anosov [7], or some modification) have been studied,

and such phenomena appear on manifolds of negative curvature, or at leas t in the ab-

sence of conjugate points (cf. [7], [8], [9]). In the c a s e of negative curvature one has

not only ergodicity but a significantly stronger instabil ity of t ra jectories, namely, the

Κ -property [10],

Unfortunately the c l a s s of Riemannian metrics turns out to be too small to carry

out our construct ion· However, the c l a s s of Fins ler metrics serves our purpose, and

some deta i l s of our construction are there precisely in order to adapt it to this c a s e .

Our resu l t s imply, for example, the exis tence on S" (n > 2) of a Fins ler metric of

c l a s s C°" which is c lose in the natural s e n s e , with an arbitrary given number of deriv-

a t i v e s , to the standard Riemannian metric and such that the corresponding geodes ic

flow has two open ergodic components which fill the manifold of unit tangent vectors

except for a set of arbitrarily small measure. Since such Fins ler metrics are close to

the Riemannian metric of constant posit ive curvature, the curvature in this metric in

the natural sense is posi t ive, even though for Fins ler metrics the curvature i s not de-

fined by a tensor on the manifold. This is in agreement with the fact that the mecha-

nism of ergodicity, in our c a s e , is quite different from that for metrics of negative cur-

vature. Thus in our examples the geodesic flow in ergodic components has no mixing,

even though weak mixing is not excluded. We consider the metric properties of our ex-

amples in more deta i l at the end of § 1.

3. All objects such as manifolds, functions, vector fields, differential forms, e t c .

are assumed in this art icle to be smooth of c l a s s C M , and we shal l usually not repeat

th i s . All necessary standard propositions related to the differentiable manifolds, dif-

ferentiable geometry and symplectic structures can be found in Sternberg's Lectures

on differential geometry 111], Our notation, bas ical ly, coincides with Sternberg 's .

The greatest e s s e n t i a l difference is that we denote the differential of the map / by

the symbol Df and not / , , saving the symbol /, for the induced maps of vector fields

and measures . All necessary definitions from ergodic theory and explanat ions can be

found in § § 1-3 of the art icle of V. A. Rohlin [12].

The author cons iders it a p leasant duty to express his gratitude to D. V. Anosov,

who read the manuscript with exceptional at tent ion. His criticism has allowed us to

simplify some proofs, and various notes on the style were very useful.

§ 1. Homogeneous liamiltonian sys tems

1. Let ΛΊ m be a connected manifold, or a manifold with boundary (not necessar i ly

compact) with a given symplectic structure, i .e . a fixed closed nondegenerate 2-form

Ω; let Η be a smooth function on Μ m. The equality
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dH=—νΗ_\Ω

defines a vector field vH which is called the Hamiltonian vector field with the Hamil-
ton function (or Hamiltonian) H. In this paper we shall treat only that case when for
each positive number c the set H~ (c) is compact and at all points of the boundary
dM m the vector field vH i s tangent to dM m . In that case the vector field ν„ is

full, i .e . i t s t ra jector ies can be infinitely continued in both directions with respect to

time; the flow generated on Μ m will be denoted by \S \.

We shall a s sume that Μ m h a s an additional structure, namely a vector field u

which "cont inuous ly e x p a n d s " the symplectic structure. More prec i se ly , this means

that

where i ^ is the Lie derivative along the vector field u and λ is some posit ive num-

ber. Moreover, we sha l l make the following assumptions :

(1.3) The vector field u i s full and generates a flow \φ(\.

(1.4) The vector field u i s nowhere zero.

Remark. If condit ions (1.2) and (1.3) are satisfied and (1.4) i s not satisf ied,

then all the construct ions can be carried out on the manifold Μ m\A where Λ is the

set of zeros of the vector field u on Μ m , if, of course, the manifold Λ1 m \ A is con-

nected.

2. The following two examples i l lustrate the situation and will play an es sent ia l

role in what follows.

Example 1. Let ρ^,···,ρ < 9 j , •••,? be the cartes ian coordinates in the Eu-

clidian space R m, and set

Λ ft

u(p, . . . . pm, ft qn) = 2 P ' T ~ + qi~d~' ( 1 ' 5 )

In accordance with the remark we shal l set M2m = R 2 m \ | 0 | . Here λ = 2.

Example 2. Let Mm be a compact connected m-dimensional manifold, let Ω be

the cannonical 2-form on the cotangent bundle T*Mm (cf. [ l l ] , Chapter III, Theorem 7.1), let

Γ* be the z e r o - s e c t i o n of Τ Mm and let u be a vector field on Τ Mm such that

for q e Mm and p e Τ 'Mm the vector u(p) i s tangent to Τ Mm and under the natural

identification of TpT'gM
m with TqM

m we have u(p) = p. Here M2m = T*Mm\r'o and

λ = 1.

3 . Definition 1.1. A smooth function Η: Μ m -» R i s said to be homogeneous if

%uH=kH. (1.6)
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In Example 1 the functions homogeneous in the sense of Definition 1.1 are the ho-

mogeneous functions of degree 2 in the usual sense. In Example 2 they are the smooth

functions on T*M m \rO which on each linear space Τ JA™ are homogeneous functions

of degree 1 in the usual sense.

Lemma 1.1. // H is a homogeneous junction, then the Lie bracket [u, vH] = 0.

Proof. It suffices to prove that [u, vH] J Ω=0. We shall use the known formula

for the Lie derivative of a differential form along a vector field X (cf. [11], Chapter

III, formula (1.9))

u) .

We transform the expression [u, vH\ |Q:

(1.8)

From (1.2) and (1.7) we obtain

The homogeneity of Ht (1.7) and (1.1) imply

λ dH = %u dH = d (u J dH) = — d (u J (vH J Ω)).

We substitute both expressions into (1.8):

I", f/i l j Ω = — vH J λΩ — λάΗ = ΜΗ — ΜΗ = 0.

The lemma follows.

Corollary. Let Η be a positive homogeneous function on the manifold Μ m with-

out critical points. The restriction of the diffeomorphism φ to the manifold H~ (c)

is a diffeomorphism φ^ between H~l{c) and H~1(eXtc), and its differential ϋφ^

takes the vector field v^ into itself, i.e. Όφεν^ = v^ ° φ€'.

4. The main proposition which we prove in this paper (Theorem A) applies to the

case when the manifold M2m is acted upon by the group T 2 = S1 χ S 1 of canonical

(i.e. preserving the form Ω) diffeomorphisms and the following conditions (1.9)—(1.11)

are satisfied:

(1.9) The action of each one-parameter subgroup of Τ is generated by a Hamil-

tonian vector field with a homogeneous Hamilton function.

To the vector (α, β) e R there corresponds a one-parameter subgroup

\\t<x, tfS) mod l i of the torus Τ . We denote the corresponding homogeneous Hamil-
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ton function of this subgroup by Ha ~ Clearly

η α,,β, + # α , , β , = ^

(1.10) The group Τ a c t s effectively, i .e . every element, save for the identity,

a c t s d i s t inct ly from the identity transformation.

(1.11) There e x i s t s a vector ( a 0 , /3Q) e R such that Ηα „ is a posi t ive function

with no cr i t ical points with compact level manifolds.

Remark. Any vector ( α , β) sufficiently c lose to ( a Q , β0) a l so sat i s f ies condi-

tion ( 1 . Π ) .

In Example 1 for m > 2 an action of Τ satisfying the conditions ( 1 . 9 ) - ( 1 . H )

ex i s t s ; moreover there e x i s t s an action of Tm satisfying analogous condit ions. Name-

ly, let (OLV · · · , a j e R m . We set

(Pi , · · · , Pm, <7i , · · · , <7m) = 2 π

The vector field v\\ _ _ a generates an action of the one-parameter subgroup

| ( / a , , · · · , ta ) m o d i | of the torus T m .

In Example 2 th i s s i tuation occurs, for example, if the manifold Mm h a s a Rie-

mannian metric ρ with the following propert ies :

(1.12) All g e o d e s i e s of this metric are c losed, and the lengths of all g e o d e s i e s

are divisors of some posi t ive number.

(1.13) On Mm there is an effective action of the group S which c o n s i s t s of dif-

feomorphisms \φ \, t e R {xjj γ is the identity transformation) which preserve the Rie-

mannian metric p.

The action of Τ in this c a s e can be obtained as follows. Let TQ be the maxi-

mal length of the g e o d e s i c l ine, and set Η χ Q(x) = TQ\\x\\p, where χ e Τ M m \ r o and

||x| | i s the norm on Τ Mm dual to the norm on TM.7" generated by the Riemannian

metric. In § 6 we sha l l show that the vector field VH^ O generates an action of S .

Furthermore, let ΗQ l be the H a m i l t o n funct ion of a v e c t o r f ield on Τ Mm which

generates an action of S on Τ Mm by transformations dual to the differentials ϋψ(.

By (1.13) the vector fields VH J O and VH0 γ commute, and hence they induce an ac-

tion of Τ s ince each of them generates an action of S : it i s easy to s e e that con-

dit ions (1.10) and (1.11) are satisfied (the last with ( a Q , β0) = ( 1 , 0)). We sha l l

consider this example in more detai l in § 6. Now we shal l only remark that compact

Riemannian symmetric s p a c e s of rank one, in part icular spheres S" (n > 2) and com-

plex projective s p a c e s P"(C), fit into this s i tuat ion (cf. [15], Chapter IX).

5. We shal l show that in the situation just described one can find an arbitrarily

small perturbation of the function Wao>/3o in the c l a s s of infinitely differentiable ho-

mogeneous functions, where ( a Q , β0) i s a vector a s in (1.11), and obtain a function

Η such that the flow | S p is ergodic on each manifold of constant energy K~ (c),

c > 0. We p a s s to an exact formulation of this s tatement.



DEGENERATE INTEGRABLE HA1ILTONIAN SYSTEMS 541

In the space C°*{fA2m) of real C°* functions we introduce a system of norms

|| || (r is a nonnegative integer and Κ C Μ m is compact) such that the norm || | | r

measures the c l o s e n e s s of r-strings of functions on the compact set A and all the

norms || || are coherent in the natural sense.

In view of (1.11) any orbit of the action of Τ i s either a torus or a circle. We

denote by ΛΙ_ the subset of ΙΛ which consists of the points of all periodic orbits of

the action of Τ . It is easy to see that

MD = {x <= Mm: 3 (α, β) €Ξ Ra, dHaS (x) = 0).

Theorem A. Let the symplectic manifold (M2m, Ω) have a vector field u which

satisfies the conditions (1.2)—(1.4) and an action of the group Τ so that the condi·

tions ( 1 . 9 ) — ( l . H ) are satisfied. Let a positive number 8, a natural number r, a com·

pact set Κ C Μ m and a vector ( a Q ) /3Q) e R satisfying (1.11) be given. There is

a vector ( a , /8) and a positive function Κ of class C°° on Μ m such that the follow·

ing conditions are satisfied:

A . I . \%-H<w.

A. 2. At the points of the boundary dM m and the set Μ ρ the function Κ coin·

cides with Η α „ together with differentials of all orders.

A. 3. The function Κ is homogeneous in the sense of Definition 1.1.

A. 4. The flow \S } on each manifold K~ (c), c > 0, is ergodic with respect to

the invariant metric μ^ induced by the form Ω.

A. 5. For some sequence t -» «· the diffeomorphisms St and their differentials

of arbitrary order converge to the identity transformation uniformly on arbitrary com-

pact sets.

A. 6. The flow \S \ has no periodic trajectories outside of the set Μβ.

Remark. The function ^αο,βο is bounded and nonzero on the compact set K. We

chose an Ν such that Κ C %N = W ^ j ^ d N " , Ν ]). If the assertion of Theorem A is

satisfied for K N , then it clearly i s satisfied for the original compact set K. There-

fore in what follows we shall assume that Κ = X^ for some N.

Theorem A i s proved in § § 2 - 4 . The bas is of this proof is the inductive con-

struction described in § 4. In each step of the induction the constructions are made

using lemmas which are proved in § § 2 and 3. Our construction has much in common

with the construction which was used in [14] to construct ergodic diffeomorphisms

on a manifold with a periodic flow. We remark, however, one essent ia l difference:
If V

we do not guarantee that the flow \S*\ or the separate diffeomorphisms 5 " admit a

sufficiently fast cyclic approximation by periodic transformations (a. p. t.), and there-

fore we cannot draw conclusions about the metric type of the flow and the diffeomor-

phisms which make it up. We believe that this distinction is due to the nature of

this problem; namely, to the requirement that the function Μ be homogeneous, which
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allows Example 2 to be included in the scheme under consideration when conditions

(1.12) and (1.13) are sat i s f ied, where the homogeneity condition i s natural ( see § 6).

There e x i s t s another variant of the construction appl icable to some c l a s s of Hamil-

tonian sys tems . For the situation which a r i s e s in Example 1 this variant is descr ibed

in [13]. The descr ipt ion of th is construction in a more general (even though poss ib ly

not very natural) s i tuat ion, together with detai led proofs, will be given in another pa-

per. In this construct ion we are able to construct an a. p. t . for the flow \S \ on each

manifold n~ (c) and even follow the metric type of th is flow, but only on almost ev-

ery manifold H~ (c) , while other difficulties ar i se because of the n e c e s s i t y of making

the construct ions of various surfaces of constant energy coherent, which in the homo-

geneous c a s e is a u t o m a t i c . i 1 )

In V 5 it is shown how to modify the inductive construction so that in the situa-

tion of Example 1 one can get rid of the lack of differentiability at the point zero if

one i s willing to give up the homogeneity of the function H. The formulation of the

corresponding resu l t for more general s i tuat ions would be too complicated; moreover,

I know of no other nontrivial examples for which this result would be of interest . In

§ 6 Theorem A i s applied in the situation of Example 2. A direct application g ives

examples of nonsymmetric Fins ler metrics ( i .e . metrics for which the norm | |x | | , χ €

TMm, i s , generally speaking, dist inct from | |—*||), c lose to Riemannian metrics s a t i s -

fying (1.12) and (1.13) and generating ergodic geodes ic flows. For genuine (symmet-

ric) Finsler metr ics we are able to obtain not ergodicity but two ergodic components

which generate a se t whose complement has arbitrarily small measure which i s , how-

ever, dis t inct from zero (Theorem C).

§ 2 . Lemmas on the canonical action of the group S

Let the group S act on a manifold M. A point χ β Μ will be cal led regular if

i t s s tat ionary subgroup is tr ivial . A trajectory of the S action will be called regu-

lar if it c o n s i s t s of regular p o i n t s . If S a c t s effectively, then the regular points

form an open connected set MR whose complement has measure zero with respect to

any measure defined by a smooth density (cf., for example, [14], Proposit ion 2.1).

Assume now that S a c t s effectively on a sympletic manifold (Λ) m , Ω) via ca-

nonical diffeomorphisms. Such an action will be said to be canonica l . Let a canonical

action be generated by a Hamiltonian vector field whose Hamilton function we shall

denote by H. We denote by W^ and Nc, respect ive ly, the manifolds of regular points

and regular t ra jector ies of the action of S on H~ (c); by π: HR -> Nc we denote the

natural projection and by Ω the restr ict ion of the 2-form Ω to HR.

( ' ) In the formulation of the theorem in [l3] there is an error. It is claimed there that the

Hamilton function H generates a flow which is ergodic and has a discrete spectrum with k

equal independent frequencies on each manifold H~ (c). In fact one may only claim that this

flow is ergodic on each manifold H~ ( c) and for almost all c has a discrete spectrum with k

equal independent frequencies.



DEGENERATE INTEGRABLE HAMILTONIAN SYSTEMS 543

Lemma 2 . 1 . On the manifold Nc there is a nondegenerate closed 2-form Ω(_ such

that

n*Qc = Qc. (2.1)

Proof. Let x r J 2 e HC

R , vj, v2. e Tx. (Τχ denotes the tangent space of HC

R at the

point x) and

Dnv[=

We shal l show that &c(v\, v\) = SlJ,v\, v\). Indeed, χ2 eSl

t

t

oxl,tQ e R and

(DS?,) v[ — υ\ = XiVH (x2), * = 1. 2, λ, e R.
Thus

ft (oi, v\) = (S?yQc(v\, v?) - Qc (DSfa, DSfa)

= Q c (oj + λ,ο,, (ΛΓ2), σί -h λ 2 ϋ Η (ΑΓ2)) = Ωο (ν), υΐ),

s ince flc(f, f f / (x)) = -dH(£) = 0 for any vector ξ e Τχ.

Hence one can define a 2-form Ω__ on Nc, letting for y e N c , ul, u2 e Τ Nc

Qc(u1,u%)=Q{vl,v.1), (2.2)

where ν j and L>2 are two arbitrary vectors with common base for which Dnvj = M^,

« = 1, 2.

The form Ω is clearly closed, s ince n'dil^ = dQ,c = 0 and the operator ff* act-

ing on the differential forms is injective. It remains to show that Ω^ is nondegenerate .

To this end consider points y e Nc and χ € HC
R such that nx = y. By the definition

of Ω^ ( see (2.2)) i ts va lues at the point y are completely determined by the values

of Ω^ (or Ω) at x. Set vH(x) = e j and choose in the tangent space ΤχΜ
 m a bas i s

eV '' *' e

m' I \.' " * ' 'An s u c l 1 that

Ω (ft, β/) - Ω (/;, fj) - 0, Ω (ft, //) - β,/,

where

, , / = ! , . . . , m , _„ R . ^ .

It is obvious that the subspace Τχ C Τ JA m is generated by the vectors e y, · • ·,
em' ^V ''"' An* ^ e s u b s p a c e generated by the vectors e 2 , · · . , em, f2, . . · , (m on

which the (2m - 2)-form Ω " 1 " is nonzero is mapped isomorphically by Dn to the

space Τ Nc. The lemma follows.

Let Κ be the first integral of the flow \S{ j , i .e . the Poi s son bracket [Η, Κ]

equal to 0. Then the restr ict ion of the function Κ and the vector field Vj, to HC

R

is

R
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can be projected to Nc. Indeed, for y e Nc, χ e HR and nx = y let

It (y) = Μ (χ), v ^ (y) = Dn (v& (JC)).

The first definition clear ly makes s e n s e , s ince the function Κ i s constant on the tra-
II

jectories of the flow j S | j . In

assume that nx^ = πχ2· Then

II
jectories of the flow j S | j . In order to prove that the second definition makes s e n s e ,

and therefore

Lemma 2.2. The Hamiltonian vector field v- on the symplectic manifold (Nc, Ω )

coincides with the vector field v^ .
η

Proof. Let y 6 Nc and u e Τ Nc. Choose χ e HC

R and ν e Τχ so that 77x = y

and Dnv = u. By the definition of î w we have

By Lemma 2.1 it follows that

Ω {υ, vjf (χ)) = α (u.0^ ο/)).

On the other hand, dK(v) = dK(u). Thus

But by the definition of ι _
Η

Since Ω^ is nondegenerate and κ is arbitrary, we have υ _ = ^u · The lemma is

proved.

We shal l denote by μ the measure on Μ m (generally cr-finite) induced by the

volume element Ω"1. If al l manifolds H~ (c) are compact, then μ generates a family

of normalized condit ional measures μα on these manifolds. We denote by μσ the

measure on /Vc induced by the volume element (Ω ) m ~ .

Lemma 2.3. π, μ<_ = λ£ μ c , where λ^ is a positive constant.

Proof. If [Η, Κ] = 0, then the vector field fj, preserves the norm μ(_, and hence

i7jj preserves ΤΓ» μ<_. Since, in view of Lemma 2.2, ν.. = ν , we conclude that f_

preserves π, μ^.

However, the symplectic manifold (Nc, Ω .̂) has a unique (up to a pos i t ive con-

stant) smooth measure which i s invariant under any Hamiltonian vector field, namely
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the measure μ induced by the volume element ( i l | _)" ! " . This can be eas i ly proven

using, for ins tance, the Darboux theorem ([11], Chapter III, Theorem 6.2), which a l -

lows us to introduce in the neighborhood of any point y e Nc local coordinates py

• • • - P m - l ' ? l ' ••••9m-l such that Qc = lypiAdq..

§ 3. The basic lemma

1. Bas ic Lemma. Let A . and Β., i = 1, · · ·, r, be compact subsets of a symplec-

tic manifold (M2m, Ω) with μ(Α .) = μ(Β.) and Α.ΠΑ. = Β. Π Β. = 0 , / * /.

Then for any € > 0 and any open connected set U '• tl - (Jr
1(Ai U Β .) there exists

a canoni cal diffeomorphism S: Μ m -» Μ m of class C°* with the following properties:

0. l^(SAiABi)^e, t = l , . . . , r.

0. 2. S = 5^ ο . . . ° S^ , where each Hamilton function Kl, / = 1, . . ., k, is of

class C°° and zero outside of the set U. From 0.2 it obviously follows that S is the

identity outside U.

Remark. In order that a diffeamorphism satisfying 0.1 and 0.2 with ( = 0 exist,

first of al l some topological conditions on A and R ., which our formulation lacks,

are necessary . But even when r = 1 and the sets A t = A and Β, = Β are diffeomor-

phic to a closed d i sc such a diffeomorphism, as a rule, does not ex i s t . The reason is

that on the boundary dA a smooth one-dimensional distribution (a field of l ines) ζΑ

is defined which is invariant with respect to canonical transformations (if Τ: Μ m ·

ΛΊ""1 is a canonical transformation and ΤΑ = β, then ΡΤξΑ = ξΒ). Namely, the tan-

gent vector υ € ξA if νΛ (Ω/<Μ) = 0. For various A the foliations induced by the

distr ibutions ζΑ are, as a rule, not even topologically equivalent. It is p o s s i b l e ,

however, that for two arbitrary subse t s A, B C Μ m diffeomorphic to an open 2m-

disc which have compact c losures and the same measure one can construct a canoni-

cal diffeomorphism taking A to Β or, at leas t , to B' such that μ ( Β Δ β ' ) = 0 and

which is, general ly, not extendible to the boundary, and a fortiori to a neighborhood

of the set A.

2. The proof of the bas ic lemma cons i s t s of two par t s . The first and es sent ia l

part is the proof of a " l o c a l " variant of that lemma, i .e . a spec ia l c a s e when Μ m =

R m ι p ,,·•·, p , q ,,·•·, a are the cartes ian coordinates in R m and Ω = IL"? dp. Λ do..

We denote by a s the standard decomposition of R m into cubes Δ/ , 1 ' " " "Ά 2 ' "

with side 2~s. Here k. e Z, /;. = 0, 1, . . . , 2s - 1 and / = 1, · · ·, 2w: moreover,

Ί * i m r / / 4 1
Δ / i t m = (Pi. · · · ,Pm,q» ·•• ,qm): kt +• -i- < p , < A,· + - ί ^ — ,

I 2 s 2 s

*i+m 4- - ^ ^ < 7i < ki+m f- - ^ , t = 1 . . . / n | .
2 s 2 s J

In what follows the e lements of the decomposition as will be called s-cubes·
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The ^-kernel of an s-cube Δ is defined to be the closed cube Δ with side 2~s - Θ,

homothetic and concentr ic with the cube Δ. Let s be so large that, first of a l l , the

{4m · 2~ s )-neighborhood of U. i s contained in U, and, secondly, there exis t s e t s A'.

and Bi (ι' - 1, . . . , r) cons i s t ing of s-cubes and having the following propert ies :

1) A\ Π A) = B'i Π Β) = 0, ίφ\,

2) For every i = I, · · ·, r the sets iV and B{ consist of the same number of s-
cubes.

Denote the set of all s-cubes which make up U ' I ^ ' ^ ^ ' ) by / . Let σ be a

permutation of the e lements of ] which takes the s-cubes in A', into the s-cubes in

Bi , ι' = 1, · · ·, r. We represent σ a s a composition of t ranspos i t ions σ = σ ι · . ·σ^ . ( 2 )

The construction of the desired diffeomorphism S resr s on the following lemma.

Lemma 3 .1 . Let Δ, Δ € }. For any θ > 0 there exists a C^-funclion Kg on R m ,

zero outside of U and on the θ-kernels of all s-cubes of the system J save Δ and

Δ, such that

Λ Α ι -re c ^ ' X * Λ*Si Δ = Δ , δ ι Δ = Δ .

Before we prove this lemma we shall show how to prove the specia l c a s e of the

bas ic lemma with its a id .

Let the t ranspos i t ion o^ interchange the cubes Δ^ ι and Δ ; 2 · Applying Lemma

3.1 to the pair Δ ; j , Δ^ 2 , we construct a Hamilton function K^ = Η . If the number

θ is sufficiently small, then the diffeomorphism

has the properties 0.1 and 0,2. Indeed, 0.2 is an immediate consequence of Lemma
3.1. In order to check 0 . 1 , note that ϊΔθ = (σΔ)θ for Δ e].

We introduce the notation

Αι= υ,Δβ,

Then $ΑΘ = B ^ C B ' , and so
I

( 2 ) We write the composition of transpositions from left to right, as it is usually done,

while the composition of transformations we always write from light to left·
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μ (SAt Δ S i X μ (SAt Δ SAt)

+ μ{ΒιΑ Βΐ) = μ (Αι Δ At) + μ (Β, Δ Β*)

< μ (Α, Δ At) + μ ( Α : \ 4 ) + μ (Β( Δ Β',) + μ (β4

:\5?)

^ .1 + 2 (2-*™5 — (2"s — θ)2"1) · JV,

(Ν. i s the number of s-cubes in A j.).

If θ is sufficiently small, the second summand in the last expression i s a l so

smaller than f/2.

3. Proof of Lemma 3.1. Let Δ and Δ be two s-cubes with a common Kim - 1)-

face. We shall prove Lemma 3.1 for this c a s e , having changed U to Int(A U Δ).

We begin with the following standard diffeomorphism Τω taking the rectangle

in R into the semicircle

Ttt>(p,q)^((?'(q)r1-P,?(q)),

( 3 . 1 )

P > 0 for

where it is assumed that ω i s small compared to δ . The relat ions (3.1) uniquely

define a function p(q) which for \q\ < δ is a monotone increasing real-analytic func-

tion. This implies that Τω is a diffeomorphism. Clearly

TJl =

From the definition of Τ ω it follows that it preserves Lebesgue measure, s ince the

Jacobian ](Τω) = 1. Moreover, Τω commutes with the symmetry / with respect to the

origin, i .e .

Γ? = //7\JI. ( 3. 2)

Fix a nonincreasing infinitely differentiate function 4>(t), t > 0, such that

φ(/)= Ζ1 f°r °<ί<(Ρ(*)-ω)2,
10 for />ρ(δ) 2.

Set

Η (Ρ, q) = γ φ (ρ8 + <72) (^2 + σ2)
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and

mi \ ί // (Τ'ω (ρ, σ)), if (ρ, Ι
Η (η π) = I v v"i>» ν · ·-

I 0, if (ρ, q) & Π.

By ( 3. 2) the diffeomorphism S ̂  coincides with the symmetry / on the set
T~ β ρ / δ ) _ ω where B ( i s the circle of radius t with center at the origin. It is easy

to check that, for any θ > 0, ω can be so chosen that T~ Β ^ §>_ ω contains the rec-

tangle

The idea is that Γιιηω^ορ(δ) = \'2/π δ , the limit of the s e t s TJR and β ρ ( 8 ) _ ω is the

circle β)/5τ^- g and the limit of Τ Π^ is contained in a circle of smaller radius .

4. Let us return to the cubes Λ and Δ. Making a simple canonical transforma-

tion (interchange of coordinates and parallel t ranslat ion) we take them into cubes

whose common (2m — l)-face l ies in the hyperplane q^ = 0 and the origin is the cen-

ter of this face. Set 2~s = δ . If the coordinates are changed as was indicated, then

ι pm,qi qm):\Pi\ < y , » = 1 m,

i

We introduce another C.™ function φ(ύ with the property

0 for | / | > | ,

Set

3!f (ft, · · · . Pm, ?i, • · · , 9m) = W (Λ, ft) Ψ (P«) · · ·

Clearly Κ = 0 outside of Int(A U Δ). Let

Γ = | ( P i , · · · ,Pm,qi Qm): \Pi\<-~, * = = 1 ,

Note that on the set Γ
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3CiPi, ••• . Pm,ft 7m) = H'(ft,ft).

Thus on Γ the flow \S( ! preserves the coordinates p2, ..., pm, q v • • ·, ^ m , and the

coordinates pl and q j transform as under the flow {5^ | on R . In particular, the

diffeomorphism S. co inc ides on Γ with the reflection in the (2m - 2)-dimensional hy-
1 β Q

perplane ργ = ql = 0. Since Δ U Δ C Γ, it follows that

5. We now p a s s to the general situation described by Lemma 3.1. We construct

a sequence Δ ο = Δ, Δ ι , · · ·, Δ, = Δ of mutually d is t inct s-cubes contained in the

set U so that any two consecut ive cubes have a common (2m — 2)-face. This can be

done because of the choice of 8 (generally speaking, not al l of these cubes belong to

the system / ) . Applying the construction of subsect ions 3 and 4 to each pair of

consecut ive cubes , we obtain functions M n , . . ., H, , . The function K. is constant

outside ΙηίΧΔ^ υ Δ^ j), and

ι Δ/ = Δί + 1 , θ ! Δ/+ι==Δΐ· Ki-i)

Set

5 = sfk~% ο ... ο sf", ^ = Mk-y °S. (3.4)

We shall prove that ϋρ sat i s f ies the conditions of Lemma 3.1. Indeed, s ince the

diffeomorphism S is the identity and the function K ^ _ j is zero outside of U, we have

Kg = 0 outs ide of U. Furthermore

«Jilft = Δ*, Ο Δ Α - Ι = ΔΟ, ύΔ/ = Δί+ι, ' = 0, • · · . * — ^ΐ

and on the ^-kernels of the remaining s-cubes of the system / the diffeomorphism S

i s the identity. Since K^_ j = 0 outside A^_ t U Δ^, we conclude that Kg = 0 on the

β-kernels of a l l cubes in / save Δ and Δ.

Final ly, s ince

sf6 = S^sf^S, (3.5)

substituting into (3.5) the formula (3.4) for 5 and using (3.3) we find that ^

Αθ and 5 * ( 9 Δ ( 9 = Δ 5 . Lemma 3.1 follows.

o. Proof of the bas ic lemma in the general c a s e . Let us fix some Riemannian met-

ric on the manifold Μ m . Let Κ be a connected compact se t U 3K -<2. In view of

the theorem of Darboux, in the neighborhood of any point χ e Μ m one can introduce

coordinates p v · • ·, pm, qx, .. · , qm so that the form Ω becomes Ω = "Σ™ dp t\dq..

We fix a finite system ?I of connected neighborhoods which have the described prop-
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erty and which cover K. Let the number d > 0 be sufficiently small so that a 3d-

neighborhood (with respect to a given Riemannian metric) of any point in Κ is con-

tained in U and, moreover, i s contained in some neighborhood of the system 21.

Let S = j C j , . . . , C^\ be a system of mutually disjoint closed s u b s e t s of the com-

pact se t K. We shal l ca l l any set which i s a union of e lements of 5 a S-se/. We con-

struct a system & with the following propert ies :

1. /i(Cj) = . . . = μ(^Ν) (recall that the measure μ i s induced by the symplectic

structure and not by the Riemannian metric).

2. d i a m d<d, t = l N.

3. There are mutually disjoint S-sets A'y, ·•·, A' and mutually disjoint S-sets

β ' 1 ? . . . , β' such that μ(Α') = μ(Β') and

4. fi?/2-neighborhoods of the sets C., i = 1, . -., N, cover K.
We omit the simple, though laborious, proof of the existence of such a system S.
To complete the proof of the basic lemma it suffices to construct for an arbitrary

permutation σ of the set j l , · · ·, N\ and any θ > 0 a diffeomorphism

such that ^(SC /AC ( T ..) < θ, ι = 1, · · · , Λ/, and the functions K', . . . , Κ* are zero out-

side of V. Indeed, we get the statement of the basic lemma by taking for σ any per-

mutation for which

Ί= U Ch Bi= U CaUh i= 1, . . . ,r,

and for θ the number f/4.

We shall ca l l a permutation admissible if such a diffeomorphism can be construct-

ed for any θ > 0. The composition of two admissible permutations is clearly an ad-

missible permutation. It is therefore sufficient to prove that all t ranspos i t ions are

admiss ib le .

If the s e t s C ( and C. are contained in some neighborhood a of the system 21,

then the t ranspos i t ion (z, ;) is admiss ib le . Indeed, for any θ > 0 a connected open

neighborhood U^ 3 ( C ; u C . ) such that the closure of ΙΛ. i s contained in a and

μίί/^. Π C.) < θ for k Φ i, j can be constructed. Applying to the s e t s C {, C . and the

neighborhood U.. the local version of the basic lemma proved in subsect ions 2—5,

we find that (;', /) i s an admissible t ransposi t ion.

Now let C and C be arbitrary s e t s of the system E . By condition 4 the d/2-
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neighborhoods of the s e t s C., ι' = 1, . · ., N, form a covering of X. Since A is con-

nected, one can find pairwise d i s t inct numbers iQ = i, ζ 1 ? · · ·, it = / such that for / =

0, . . . , < - 1 the ii/2-neighborhoods of the se t s Cf[ and C, / + 1 in ter sect . But then

the se t s C, and C,·. t are contained in a ball of radius 3d, and so in some neighbor-

hood a e ?I, i .e . the transposit ion (i^ !

/ + [) is admiss ible.

Since (/, /) = (ι', 1\) U {, i2) · • · (*,_ j> fi(\- 1» ' ,_ 2̂  ' *" ^z I' ^ ' c ^ e t ransposit ion

(/', /) is a l so admiss ib le . This completes the proof of the basic lemma.

§ 4. Proof of Theorem A

1. The construction. The function Κ satisfying conditions A.I—A.6 will be con-

structed a s the limit of a sequence of homogeneous C°* functions H ( n convergent in

the C°*-topology.

Without loss of generality one can assume that aQ · β^ = rQ is a rational num-

ber, s ince otherwise one can replace the vector ( a Q , β0) in the hypothesis of Theo-

rem A by a sufficiently c lose vector (α'ο, β'ο) for which α'0(β'0)~ i s a rational num-

ber.

We set

and define the function Jv"' by the recurrence relation
&η) = 3({η-ι) + Η6ηβ..0οΚη, (4.2)

where δ ^ is a rat ional number and K^: Μ "" -» Μ m is a canonical diffeomorphism

with

Kn=LnoKn-X. <4-3>

Thus if the function H n~ is already given it suffices to construct L and indi-

cate δ to obtain Κ ' . The choice of δ is made after L is constructed. More-

over, the number δ ^ will satisfy some arithmetic condition (cf. (4.11) below) which

can be satisf ied by arbitrarily small numbers. Choosing these numbers δ suffi-

ciently small, one can achieve the convergence of K ' " ' in the C°* topology and the

validity of the condition A.I for each function K ( n ) , and hence for the limit function

K.

The following property i s e s s e n t i a l for our constructions.

K. The diffeomorphism L ^ commutes with the vector fields νH(n-l) and u.

From the fact that L^ and f j . ( n _ i ) commute it follows that

where

+ Σ
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Since it is assumed that Κ is homogeneous and L commutes with u, it is

clear that Κ is homogeneous, and so condition A.3 is a l s o sa t i s f ied.

The next condition Β together with what was already said a s s u r e s us that condi-

tion A.2 will be sat is f ied with a- lim α and β = βη.

Β. The dijjeomorphism L is the identity in some neighborhood of the set

dM2mUMD.

Indeed, at the points of dM m U M p the function K ( n ) together with i ts differen-

t ia l s of a l l orders coincides with Ha >(g. Since the sequence is convergent in the C

topology, the function Κ with i t s differentials of all orders coincides with Ηα a at

the points of dM2m U Μβ.

We shall write for short i ^ ' * · / 3 ! = \Ξ*·β\. Since οΓιβ i s rat ional , \Sf-P\ is a

periodic flow. Denote by <n the largest period of the trajectories of this flow.(3 ) By

(4.4), 5 , n is the identity map. If the convergence of ii to Η i s sufficiently fast

(which can be achieved by choosing each time the δ to be sufficiently small), then

condition A.5 is sat is f ied.

Condition A.6 can a l s o be satisfied by smal lness of δ . Thi s is related to the

fact that the minimal period of the trajectories of the flow \S^"'^\, and so of | 5M ( n ' j ,

which lie outside of the set M p tends to infinity as «-»«·. We shal l see the deta i l s

in subsection 2.

Thus the formulated condit ions, namely (4.1)—(4.3), K, F and smal lness of δ η ,

a s sure the convergence of the sequence Η so that the limit function Κ sat i s f ies

the conditions A.I—A.3, A.5 and A.6. After some preliminary observat ions we shall

go on to construct the diffeomorphism L^ assuming that the function η i s al-

ready constructed. We shal l use only those properties of 3v"~ which follow from

the inductive hypotheses . The proof will be completed by checking the condition A.4,

for which, in view of homogeneity of the function K, it will suffice to prove that the

flow ISjM is ergodic on the manifold K~ (1) ( see the corollary to Lemma 1.1).

2. Preliminary remarks and notation. If the homogeneous functions R j and R2

are posi t ive and have no cr i t ical points , then there is a standard diffeomorphism be-

tween R"^ (1) and Rj (1) which t a k e s the point χ € R~ (1) to the unique point in

R J (1) which l ies on the trajectory of the vector field u pass ing through the point

x. In what follows we shal l , without special comment, identify manifolds of the form

R~ (1) using this diffeomorphism, and we shall consider any function, measure, vec-

tor field, diffeomorphism, flow, differential form, e tc . , given on one such manifold to

be automatically given on a l l o thers . Where no confusion can result we shall use the

same symbols to denote objects related by the standard diffeomorphism given on vari-

ous manifolds R (1).

We introduce some notation. Let W~ d(l) = Ha>P. If the number αβ~ i s rational

(^) Let r = ρ la , where ρ and q are relatively prime natural numbers. Then I =
, η r n Ί π r n n n ' r η

β~\
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we denote by H^'@ the set of regular points of the periodic flow 15^'Π, by Na' the

manifold of regular t ra jector ies of this flow and by ηα β the natural projection tra^:

tf£'^-» Na'P. Furthermore, let K ^ " " 1 ' be the set of regular points of the flow {5"ΚνΠ~ Ί

on the manifold ( K ( " ~ l))~ l(l), let ft*"""11 be the corresponding manifold of regular

trajectories and let π · , _ J J : K(

R"~ ' -» 3l ( "~ ) be the projection. We shal l deal with

manifolds and transformations the relat ions between which can be conveniently given

by the following commutative diagram:

\κη-ι jKn-ι \κη-ι

where the symbol .3 denotes natural inclusions and the diffeomorphism K^_ j i s de-

fined so that the diagram will commute. Thi s i s well defined in view of (4.4).

Lemma 4 . 1 . For the action of the torus Τ on a compact manifold Μ there are

only a finite number of distinct stationary subgroups G for the distinct points χ € Μ.

Proof. Stationary subgroups of points near a given point χ must be contained in

a small neighborhood of the subgroup G . However, for any subgroup G C Τ there is

a neighborhood Uc D G such that any subgroup G' C UG is contained in G. Thus

for any point χ e Μ there i s a neighborhood Uχ such that x ' e Uχ implies Gχ, C Gχ.

Consider now the action of G in the neighborhood of a stationary point x. By a theo-

rem of Bochner ([16], § 5.2, Theorem 1), in some neighborhood W of χ there are co-

ordinates in which the group Gχ a c t s via linear transformations. However, for linear

act ions the stationary subgroup can take only a finite number of va lues . Choosing

from the covering of Μ by thesets U Π υ' a finite one, the proposition follows.
1 x x

Since the manifold ^ ^ ^ ( 1 ) is compact, Lemma 4.1 can be applied to act ions

of Τ on it; and s ince the functions Ηα β are homogeneous, it can also be applied

to actions of Τ on Λ1 m . By this lemma the number of e lements of the stationary

subgroup Gχ for any χ € Μ m\MD is bounded by a single constant which we denote

by P. Thus the minimal period r^_ t of the trajectories of the flow ί 5 α « - ι'β\ out-

side the set MD is not smaller than / -\/p-

Another consequence of Lemma 4.1 is that the periods of all periodic orbits of

the action of Τ are bounded. Thus, choosing the number δ ι sufficiently small, one

can achieve that the se t W^1 , and hence also the se t s W£η·β for n = 2, 3, · · · , will

be disjoint from Μβ, We shal l assume that Sj is chosen so that this condition is

satisf ied.

Denote by Vn~ the operator of averaging functions along the trajectories of

the periodic flow J5^ j :

ι r
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The operator Vn~ can be thought of as an operator from the space of functions on

K{^-1) to the space of functions on Ϊ Ι ^ " 1 ' .

Fix some Riemannian metric invariant under the diffeomorphisms \φ j on M2m.

This metric induces a Riemannian metric on any submanifold of Μ m, in particular

on " R " ~ · Averaging the Riemannian metric on W "̂~ ' along the trajectories of the

flow jSK(n~ 1 \ w e obtain a Riemannian metric on 9i ("~ Π . The distance on 9Ί ( π~ υ

defined by this metric will be denoted by ρ _ ρ

We fix a countable everywhere dense set I/J ,« = 1, 2, . . . , in C"(H "<>'&>). Re-

call that this fixes a countable everywhere dense set in every space C°*(R~ 1(l)),

where R is a positive homogeneous function on Al m with no critical point. Let the

constant yn be such that p n _ ] ( ) r

1 , y2) < Jn for y l t y 2 e%t ' implies the inequal-

ity

f o r Ϊ = 1 , — , n .

3 . C o n s t r u c t i o n o f t h e d i f f e o m o r p h i s m L ^ . W h e n c o n s t r u c t i n g L R w e m u s t t a k e

care that conditions Κ and R are satisfied as well as the condition A.4 which does

not follow from the inductive hypotheses formulated in subsection 1. The first half

of condition Κ (commuting of Ln with νj{(n-l) is equivalent to the requirement that

the diffeomorphism L take each manifold ( Κ ' " " 1 * ) " (c) into itself. By Lemma 1.1

the second half of this condition (commuting of L^ with u) will be satisfied if L^

is a composition of a finite number of diffeomorphisms which belong to flows gener-

ated by Hamiltonian vector fields with homogeneous Hamilton functions. Thus we

will be constructing L as a composition of a finite number of diffeomorphisms each

of which belongs to a flow generated by a Hamiltonian vector field with a homogene-

ous Hamilton function and leaves the manifold (K ("~ ')~ (1) invariant.

Since by (4.5) the number α i/S" 1 is rational, the function Wa . , , β gener-

ates an effective canonical action of S on Μ m, and one can use Lemma 2.1 to con-

struct a closed nondegenerate 2-form of the manifold Ναη~ι·Ρ which we denote by

Ω . The normalized measure on Ναη-1·" induced by the volume element Ω™~ will

be denoted by 1/

η^χ·

Next we choose in Nan~ l >P\dN » - ! · * some number (denote this number by kn)

of compact mutually disjoint se t s F j , · · ·, F kn having the following properties:

-^-, i = 1 Κ. (4.8)
4
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(The number γ i s defined at the end of subsection 2.) Here and in what follows we

leave out the index » in the symbols of objects which depend on η (in this case the

sets F.) but occur only in one induction step, so that objects introduced for distinct

η will not be used simultaneously.

Properties (4.6)—(4.8) can be satisfied only for sufficiently large kn; moreover,

one can find a number * n so that any number greater than <n will serve as kn>

Consider the Hamiltonian vector field fn on the symplectic manifold

(Λ/απ-ΐ>^, Ω ). Since by Lemma 2.2 we have νη = ν Η χ 0 , this vector field in-

duces on i V 0 " - 1 · ^ a periodic flow which for brevity will be denoted by \S"~ j . The

largest period s _ l of the trajectories of this flow is clearly equal to (/8' n_ j)~ .

We construct a system of fundamental domains Δ for the transformations

S g , 4 = 1 , 2 , . . .

ι

(cf. Proposition 2.3 of [14]); we set

and we choose compact se t s G . C Int Δ. , , , ζ = 1, •. . , k , such that ϊ' ,(G.) =

Let Un be an open connected subset of Na"~1·^ with

(4.9) UnZD U (

(4.10) The closure of Vn i s compact and disjoint from the boundary

We apply the basic lemma to the systems of sets F. and G., ι' = 1, . · . , k , in

the symplectic manifold (Nan- l >&, Ωη), taking U = Un and f = l / 2 " + 1An. Denote

the constructed Hamilton functions by h , / = 1, — , k. We lift each function h l to

the manifold Η£"- X'P by letting hl(x) = /> ' ( ^ a n _ lt/(3*) > and extend the function hl

to / / ^ - l " 3 by letting * ' = 0 on Ηαη-ι>β\Η *»-ι·β. Finally we extend * ' to the

whole manifold Μ m so a s to obtain a homogeneous function. Such an extension is

unique and i s eas i ly obtained by solving the equation ί h1 - Xhl along the trajec-

tories of the vector field a.

Set

τ _ oft* o * '
*-·η — u i ο . . . ο O j «

I t i s c l e a r t h a t t h e d i f f e o m o r p h i s m L^ c o m m u t e s w i t h t h e v e c t o r f i e l d u, s i n c e t h e

h are h o m o g e n e o u s f u n c t i o n s . F r o m t h e c o n s t r u c t i o n o f h l i t i s a l s o c l e a r t h a t

Κ " " ' i s the first integral of the vector fields vhi; hence each diffeomorphism S*'

leaves the manifold (K ("~ l ) ) ~ l(l) invariant. Thus condition Κ i s satisfied. Con-

dition Β is a lso satisfied, since by (4.10) and the remark on the choice of Sl in
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subsection 2 each function hl vanishes on some neighborhood of MD U dM2m, and

hence each diffeomorphism S* is the identity there.

4. The choice of δ ^ . Let ρ be the dis tance on M2m given by the fixed Riemann-

ian m e t r i c , and let W^ be a l/2"-neighborhood of MD in this metric. Let

ε«-ι= min min min[l, o(x, sf

The number δ^ is chosen so that the following hold:

1 sn
0,, = = "~x , /« is a natural number, (4.11)

β k 1

where X N = Ηαο,β([Ν~ , Ν]). The condition (4.12) does not contain δ explicit ly,

but it i s satisf ied when δ^ is sufficiently small. Indeed, consider the express ion

K ( n ) in (4.2), where J v " ~ and K^ are fixed and δ^ var ies . Since the functions

Ηα β are C°* in α and β, and K^ is a C°° diffeomorphism, it follows that J v " ' tends

to H ( " ~ together with the differentials of arbitrary high orders on any compact set

as δ -> 0. Thus to satisfy condition (4.12) the number / in (4.11) must be chosen

sufficiently large.

The condition (4.12) for η = 1, 2, . . . a s sures uniform convergence of the se-

quence K ( " ' together with i ts differentials of all orders to a C°° function Κ on the

compact set i\N a s η -» o«. Since the functions Κ are homogeneous, th is conver-

gence takes p lace at all points of Μ m and is uniform on any compact s e t . The con-

dition A.I follows immediately from (4.12). Since for a fixed r the d i s tance between

the restr ict ions of S and S" to a given compact set Λ in the metric of C r-con-

vergence is est imated by CO', where C and Q depend on Η but not on n, (4.12) im-

pl ies A.5.

It a lso follows from (4.12) that the dis tance between S*x and S^"'x, for χ €

H~ ( l ) \M /
n _ j , 1 < ' < r

n/--> f ° r sufficiently large n, is smaller than (
n/4, and hence

the flow Ji'JM can have no periodic trajectories outside of W^ whose period does not

exceed τ /2. Since τ -• <>· as η -> ο* (cf. subsection 2), condition A.6 is a l so sat i s-

fied.

5. Proof of ergodicity of the flow {Sp on K~ ' ( I ) . Fi rs t recal l that we do not

dist inguish, and denote by the same symbols, functions, measures, flows, e tc . on dis-

tinct manifolds of the form R~ (1), where R i s a posi t ive homogeneous function with-

out cri t ical points , a s long as t h e s e objects correspond under the standard diffeomor-

phisms described in subsect ion 2. Thus, for ins tance, we denote by \S*(n>! not only

the flow on the manifold ( Κ ( Μ ) ) ~ Χ ( 1 ) but a l so the corresponding flow on the manifold
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Κ (1). Let ν be a measure on some manifold R~ (1). For brevity the space

L 2 ( i ? ~ 1 ( l ) , v) will be denoted by L2(u). We denote by μ and μη the corresponding

normalized measures induced by the 2-form Ω on the manifolds Λ (1) and

( H ' " ' ) - 1 ^ ) and invariant with respect to the flows | S p and J5K("M· Let g be a

function on R~ (1). Set

t

(Vntg) (x) = — [ g (Sx x) dx,

u

t

In particular, the operator V"~ coincides with operator V"~ defined in subsec-
*n — 1

tion 2. We shall consider the operators V" and V in various function spaces.
Let F be a bounded function on M~ (1) which is measurable with respect to μ

and invariant with respect to the flow |SJ*|. Fix θ > 0 and choose a number k so

that

Recall that the functions fk were fixed at the end of subsection 2.

Since V ( F = F and the norm of Vt in ^ 2 ( μ ) is 1, for any t we have

\\h - Vthiw < » f - W U r \\Vt(F-h)\\UW< 20.

Let g be a differentiable function on H~ (1). Then

,^ g - V^g ||, ι(μ) < max I Vt^g (x) - V'^g (χ) |

< m a x | | ( D g ) x | • m a x [max. ρ (Sf x, sf x)\, (4.15)

where the norm of the differential Dg is taken in the same Riemannian metric which

induces the metric ρ on H~ (1); ft is understood that, in the spirit of the remark at

the beginning of subsect ion 2, the flow J5^ | and the operator V"~ are trans-

lated to K - ' i l ) .

Since the sequence tn of periods of the flows |Sj*' j is increasing and

χ, ύ/ Α)-< 2 J Ρ(

l=n-i

it follows from (4.12) that the second factor in the right-hand side of (4.15) tends

to zero as «-»<>·. Therefore one can choose Nj so that for η > Ν ι
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| ^ _ Λ - ^ " Χ Μ ί > ( μ ) < 0 . (4.16)

Since the measures μ and μη_χ are equivalent, the spaces ί 2 ( μ ) and ί-2(μ _ j)

consist of the same functions and differ only in their norms. Set

The projection ff(n_ 1 } : K^"" 1 J -» S l ( n ~ 5 induces an isometric embedding

J W ^(91 ( "- υ , μη_χ) C Μ ^ / Γ " , μΒ-ι) = ^2(μ,.-χ)·

The last equality follows since

Since the flow | 5 ^ " ~ J | preserves the measure /*n_p the operator V"~ on ί-2(μ _ j)

is an orthogonal projection into the space η\η_ i)^2^ "~ ' ^ n - 1 '̂ w r " c r i w e shall

identify with the space L2(Wn~ \ μη_]).

Consider the partition ηη of the manifold 31 into sets K~ Δ^ s - l t / » «' =

0, . . . , s~ ^n^n - 1, and denote by Ρn the orthogonal projection in L2(3l t"~ ^ « - 1 ^

onto the subspace Ε of functions which are constant on the elements of this parti-

tion. We also denote by Ρ the orthogonal projection in i^^ 1 - l ^ o n t o t ^ i e subspace

π*. ,.Ε . Let us estimate the norm of the function ((Id - Ρ.)Vn~ )/, in

L 2(?T"~ ', |T _j) (Td i s the identity operator). For brevity we shall denote the norm

in this space by || . || without any subscripts. Let

If; •= «ί'.,.ρΔ,·,*,,, i = 0, . . . . kn—\,

ana let Pn be the orthogonal projection in L 2 ^ n _ j ) onto the subspace of functions

constant on the se t s K~ ΓΓ, ί = 0, · . . , A - 1. It is clear that

Each set K~ Π. contains the subset
η ι

K+i = Kn-l (ηοΠ_ι,β^ί+1 Π Ln

and by choice of y ( see the end of subsection 2) and (4.8) for η > k the variation

of the function Vn~ /fc on each set ^ " + ι is smaller than 1/2". On the other hand,

by (4.7) and the choice of f in the application of the basic lemma in the construction

of the diffeomorphism L n we have
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μη-ι (Κη n , \ F , + 1 ) < = — — .

Thus

1=1

^ - < m a x | / f t | . 2 - n / 2

 + 2 - n .
^

We choose N2 so that for η > Ν2 the right-hand side of this inequality will be small-

er than Θ. Then for η > /V,

Set λ π _ j = άμ/άμη_ ( . Then

From (4.12) it follows that as η -» °· the distributions λπ_ j tend uniformly to 1.

(Recall that the manifold K~ (1) i s compact.) Choose Ν^ so that for η > Ν5 we

have \/2/2 < λ π _ j < -/2, and so

Set (t/K ("V)U) = / ( 5 « ( n ) x ) . The operator UK ( n ) i s a unitary operator in ^ 2 ( μ η )

since the flow 15|(('IM preserves the measure μη· Thus for η > Λ/̂  the norm of

in L 2(μ) is smaller than 2.

Note that t - s~ . k i t , . Furthermore,

sn-l VI

*n*n /—ο

From (4.16) and (4.19) it follows that for η > maxOVj,
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/=„

< 2

S
^f- Σ <2Θ. (4.20)

Consider now the function ρ

η

ν"~ fk € ί-2(Κ("~ ', ^ _ j ) constant on the elements

of the partition ηη. This partition is invariant under the diffeomorphism Sji , and

Sj . Kn1^. -1 . ,
" J '.Sn-l*n'n

-ι ,
'+»·*η-ι*η'π

where

i = 0, 1, . . . , β^-,ΛΛ -

Therefore the function

s n - i * n ' η " 1

"n-xP"V h
i=o

is a constant which we denote by c .

Now let η > raax(N,, N 2 , Λ/j). From (4.1^·), (4.17), (4.18) and (4.20) we obtain

-1
k~~tr Σ u«>/-=0

- ^ V Uu (Id — Ρ ) V""1/

ί,(μ)

( 4 . 2 1 )

12Θ.

F i n a l l y , u s i n g ( 4 . 1 3 ) , ( 4 . 1 4 ) , ( 4 . 1 6 ) and ( 4 . 2 1 ) , we ge t

II F - C " I U ) < II F ~ f" 1 U . ) + II /*

+ II Vijk - vnfk \\LtW + \\ Vfk - Cn \\

Since the number θ can be chosen arbitrarily small, the function F i s a constant .

Thus the ergodicity of \S{ | on H~ (1) is proved, and with it Theorem A.

§ 5. Weakly coupled osci l la tors

1. T e turn our at tent ion to Example 1 described in § 1. If al l the numbers a . j ,

. . . , a are pos i t i ve , then 77Σ™ a{p2

{ + q*) = Haii.. . , a m ( p ' q) i s a pos i t ive function
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with no crit ical points on R m \ | 0 j and the manifolds Η ά ^ . . .,amW are compact.

Now let a . > O , ! = l , . . . , B i , and α . = βτ., where the r. are integers . In the torus

T " consider the 2-dimensional torus \ta l + s, ta2, · · ·, tan mod 1!, t, s e R. The ac-

tion of th is torus on R 2 m \ j O | sa t i s f ies conditions ( 1 . 9 Μ 1 . Π ) . Theorem A in this

situation a s s u r e s the ex i s tence of a homogeneous function of second degree K, arbi-

trarily c lose , together with i t s partial derivatives of degrees up to r, on the sphere

# 7 ! . . l ^ ) t o W a l . · · ·,% a n ( * generating a flow {S( i which is ergodic on each mani-

fold M~ (c). The function Κ may be extended to be continuous at zero by K(0) = 0.

This extended function Μ is only once differentiable at zero, and so the vector field

I/JJ is only continuous at zero. Replacing the homogeneity of Κ by a weaker condi-

tion (cf. condition B.3 below), we can remove this defect, and, moreover, we achieve

that Κ is uniformly c l o s e on the whole space R m to some function Η<nt.. .,a · ^ e

give a complete formulation of this proposition and indicate the changes necessary in

the proof of Theorem A to prove it.

Theorem B. Let a . j , · · ·, a and 8 be positive numbers, and let τ be a natural

number. There exists a vector ( a , , •••,a ) and a C°* function Κ in R m such
ι τη

that conditions A . 4 — A . 6 and also the following conditions are satisfied:

B . I . The function Η - Ηαι,.. . ,a and its partial derivatives of order not ex-

ceeding r are bounded by 8 on the whole space R m.

Β·2. | α ί _ α » | < δ > i = = i t . . . t m .
B.3. For any C j , c 2 > 0 there is a diffeomorphism <f>c 1 > c 2 : K" \c j) -> K" l(c 2)

such that

2. Let us as sume that a0. = τ.β, ζ = 1, . . . , m, where the r. are integers and the

greates t common divisor of r v • · •, ̂  is 1. (Otherwise we replace ( a ° , · . . , a 0 )

by a c lose vector.) Set

" α . β = "ΟΓ,+Ρ,Ο/-, a r m ·

A s in the proof of Theorem A, we s h a l l induct ive ly construct a s e q u e n c e K ( n ) of

funct ions de f ined by the fo l lowing r e l a t i o n s :

αο αο,
1 ' " m

(5.2)

so that to construct K(n) one needs to give, bes ides the function K ( " ~ l \ a canoni-

cal diffeomorphism· L^. R2m _ R2"> and a posit ive number 8n. The condition Κ is

replaced by the following two condit ions:
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K . I . The difjeomorphism L commutes with the vector field i> ( n _ i ) .

K.2. On the set

' ) ) - ' ( [ 2 - " , 2"])

which is invariant with respect to L , the diffeomorphism L commutes with the vec

tor field u. On the sets

*™-1»)-1 ((0,2-"-»]) and (5tf»-'>)-i([2»+l, oo))

the diffeomorphism L coincides with the identity.

Condition K.I implies (4.4) and (4.5) with rQ = 0.

We wish to construct homogeneous functions h {p, q) as described in § 4 . 3 .

set

I QA* r.ft>
'-•n — >Ji a · . . ° ύ ι ,

^ l = i 0 for (p,q)=0,

\ti(p,q)'

where

/ = 1, . . ·, k and p(t) is an infinitely differentiable function on the r e a l s such that

pit) = 0 for t e ( - « , 2 " " - l] U [ 2 " + 1 , ~) and pit) = 1 for / e [ 2 " n , 2 " ] .

The number δ is chosen so that (4.11) and the following condit ions will be

satisf ied:

δ η < — L . (5.4)
β2 η + 1

(5.5) The function J v " ' - K ' "~ ' and its partial derivat ives of all orders not ex-

ceeding r + n are bounded on the set ( K ( n ~ 1])~ l ( [ 2 " " " ' , 2 n + 1 ]) by the number

Moreover, the remark about the c h o i c e of 5 j made in § 4 .2 s t i l l h o l d s . From

the condit ions (4.11), (5.4), (5.5) for η = 1, 2, . . . and this remark it follows that

the sequence H * " ' converges to a C°° function Κ and the conditions A.5, A.6, P . I

and P.2 with

oo
„? ; _ 9 m η = r t ? - 4 - f i V f t _ (5-6)

are sat is f ied.

We check condition P . 3 . L e t , for ins tance, c1 < c2, and let Ν be a natural num-

ber such that 2 ~ N + 1 < c1 <c2 < 2 N ~ 1 . From (5.4) and (5.5) it follows that for

n>N
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3Tl {[cv c2\)d φ€(η)Γι {[2~N, 2N\).

Therefore all diffeomorphisms Ln for η > Ν ate homogeneous in the region

H~l([cv c2]), and so the function Η. ο Κ'1 is also homogeneous in this region. We

set τ = In(c 2 /c j ) and 0 c i , c 2 = KN ° Φτ° ΚΝ'

Note that the diffeomorphisms 0 c i , c 2 d e P e n d smoothly on Cj and c2 and, just

as in the homogeneous case, they satisfy the "group." law

The proof of ergodicity of the flow | 5 ( 1 on the manifold K~ (1) as given in § 4.5

need not be changed. The ergodicity of \St | on each manifold K~ (c) follows from

B.3. This completes the proof of Theorem B.

3. The function Κ constructed in the proof of Theorem Β is of the form

and at the point 0 all the differentials dsi (0), k = 0, 1, 2, . . . , are equal to zero.

Thus 0 is a purely elliptical fixed point of the Hamiltonian vector field v~ , and the

linear part VH of this vector field at 0 has the numbers \2ma.\,j = 1, · · ·,

m, as spectrum. In view of (5.6) this spectrum is very special; namely, the linear

space generated by the numbers a 1 ? · · · , am over the rational numbers has dimension

2.

Our construction can be generalized so that the function K, as before, will sat-

isfy all the assertions of Theorem Β and be of the form (5.7) but so that the dimen-

sion of the linear space over the rationals generated by α j , · · ·, a-m will be equal to

any a priori given number s, 2 < s < m. The basic idea is to begin with an action of

the s-dimensional torus Τ and not with Τ . In particular, setting s = m, one can

achieve that the numbers a.j, · · · , <xm will be rationally independent, as in our con-

struction for m = 2. However, even in this case the vector ( a , , · · ·, a ) will not be
ί τη

e x c e p t i o n a l l y w e l l a p p r o x i m a t e d b y v e c t o r s ( a " , · · . , a ^ ) s u c h t h a t a " , . · . , a ^ a r e

d e p e n d e n t o v e r t h e r a t i o n a l s . T h u s t h e f o l l o w i n g q u e s t i o n r e m a i n s u n a n s w e r e d .

G i v e n a v e c t o r ( a 1 ? · - ^ , am) w i t h a . > 0 , / = 1, — , m, d o e s t h e r e e x i s t a C°*

function Κ = Hau.. .,am + Η with tikK(0) = 0 for k = 0, 1, 2 such that the flow \S*\

is ergodic on the manifolds H~ (c) at least for sufficiently small positive c?

4. Another possible modification of our construction is for the case when not all

numbers a 1 ? · · - , a ^ in (5.7) are positive, i.e. the manifolds K~ (c) are not com-

pact. In this case the stability of the fixed point 0 is of interest. It turns out that

one can construct a function Κ in this case so that 0 is an unstable point and the

flow \St i on each submanifold K~ (c), c ^ 0, is ergodic with respect to an infinite

invariant measure induced by the Lebesgue measure on R m . The detailed formula-
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tions and proofs in the noncompact case will be given in another paper.

§ 6. Geodesic flows on Fins ler manifolds

1. Before applying our resul t s to the situation described in Example 2 we shal l

recal l some known facts about Fins ler metrics, geodesic flows and the Legendre

transformation. In this connection it i s sometimes convenient to u s e coordinate no-

tation rather than the intrinsic one. Let φ: U -» B m be a coordinate chart, where U

is an open subset of the manifold Mm and B m i s an open m-ball; (.q v · • · ,q ) will

be the coordinates of a point χ e Mm. The differential ϋφ i s a diffeomorphism be-

tween the tangent bundle TV and the product B m χ R m , and al lows us to introduce

in TU a system of coordinates (q j , · · ·, qm, νl, — , i/^). In other words, νj, · · ·, ν

are the coefficients of a tangent vector ν € Τ U with respect to the b a s i s d/dq. in

the tangent space Τ LI. Dual local coordinates (q ^, · · ·, qm, p j , · · ·, p^) are deter-

mined in the cotangent bundle Τ U. There P\> · · ·•> Pm are the coefficients of a lin-

ear form p eT U with respect to the bas i s dqjy i = 1, · · · , m. The canonical 2-form

Ω on the cotangent bundle Τ Mm can be written as

in the coordinates q^, ·· ·, q , pl, · · ·, p , and i s independent of the chart map φ

(cf. [ Π ] , Chapter III, formula (7.7)).

2. Let the manifold Mm be given a F ins le r metric σ of c la s s C , i . e . a norm

for the tangent vectors ν € TfAm, denoted by | | Η | σ , * s given. This norm i s infinitely

differentiable on T M m \ r o , and on each space Τ M m , q e Mm, it i s homogeneous of

degree one, convex and symmetric.

Set Lo(c) = Vi | | ν | | σ . The system of Lagrange equations with the Lagrangian

(kinetic energy) La in the coordinates q j , · · · ' < ? „ , ' v\i · · ·» v

m h a s the form

(6.1)Vi,
at dt \ dvt j

The Fins le r metric σ i s said to be nondegenerate if

det for u=f=0. ( 6 . 2 )

This condition, which in the calculus of variations is called the strengthened Le-

gendre condition, does not depend on the choice of local coordinates, s ince the coor-

dinates ν,,···, ν in each space Τ Mm transform linearly as one goes from one

local system to another.

When condition (6.2) i s satisfied the Lagrange equations (6.1) can be solved

for dv./dt, i .e . we can represent them in the form
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Indeed, in this case for a fixed q e Mm the vector (dLa/dvl, · · ·, dL<y/dvr) de-

pends on ν £ Τ Mm\[Q\ in a nondegenerate way, and hence by the implicit function

theorem the ν v — , νm can be locally expressed in terms of dL(7/dv v · · ·, dL(7/dvn

The system (6.3) determines a vector field on T/Wm\ro. The flow induced by this

vector field is the geodesic flow of the Finsler metric o.

3. We define the Legendre transformation *-σ'· TM -> Τ Μ by

2a(q,v) = (q, dvLa(q, υ))

2 σ ( ^ qm, υ ι, . . . , o m ) = ( ( / ! , . . . , i/m, — .••••τ-

We omit the proof of the following, almost obvious proposition.

Proposition 6.1. // the Finsler metric σ is nondegenerate, then Χ σ is a C°* dif·

feomorphism between T M m \ r o and Τ ' Μ Ά Γ * .

The inverse Legendre transformation is of the form

or

dHa dHa/
25l (</i, . · •, qm, Pi Pm) = ίι. · · · »

\

where

m

Ho (q, p) = 2 Ρ / ϋ ' { q ' p) "~ L° °S"'(ί' Ρ ) ·
1 = 1

Since on each space Τ Λ1"1 the Lagrangian La is a second degree homogeneous func-

tion, we have
LJ 1 Q-l (6.4)

It is easy to show that the function Ησ is half of the square of the norm || | | σ

on Τ Mm dual to the norm || | | σ on TMm. By regularity of the inverse Legendre

transformation it follows that for p £0 the function Η σ also satisfies the strengthened

Legendre condition, i.e.
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(6.5)

Now let Η be an arbitrary function on Τ Mm satisfying the following condition.

F. Η is infinitely differentiable on Τ Μ " \ Γ 0 , and on each cotangent space

Τ M m , q e Mm , the function Η is homogeneous of second degree, symmetric and sat·

isfies (6.5).

Then the transformation

is a diffeomorphism by Proposition 6.1, and the function 2W ο £ ~ determines the

square of the norm of some nondegenerate C°* Finsler metric σ^ on M m , and S.J^ =
φ

Λ-σΗ·

The differential Dx.^ takes the Hamiltonian vector field νH on Τ Mm into the

vector field of the geodesic flow of the metric σΗ < Keeping this in mind we shall di-

rectly construct a Hamiltonian system whose Hamiltonian satisf ies condition F.

The function Lσ i s , by (6.4), the first integral of the geodesic flow; the trajec-

tories of this flow project into geodesic lines of the metric ο by the natural projec-

tion TMm to Mm, and the flow on the hypersurface L~ (c/2) can be described as

motion with velocity c of the tangent vector along a geodesic line parametrized by

the Finsler length.

4. A well-known special case of the described situation occurs when σ is a Kie-

mannian metric on Mm (cf., for example, [ l l ] , Chapter IV, § 1). In this case L(y i s

a positive definite quadratic form on each space Τ Mm; and condition (6.2), of course,

holds. The Legendre transformation 5- σ is linear on each Τ Mm, and the Hamiltonian

Ησ as well as L^ are positive definite quadratic forms. Condition F is satisfied

for any infinitely differentiable on Τ M m \ r o second degree homogeneous function

Η symmetric on each space Τ Mm, as long as it i s sufficiently c l o s e in the C

topology to the quadratic form Hσ. Thus the flow | S f ! on Τ Mm i s isomorphic to a

geodesic flow of some nondegenerate Finsler metric on Mm.

5. We now turn to Example 2 described in § 1. Recall that we assume that the

manifold Mm is given a Riemannian metric ρ which sat isf ies the following two con-

ditions:

(1.12) All geodes ies of this metric are c losed and the lengths of all geodes ies

are divisors of some positive number.

(1.13) On Mm there is an effective action of the group S which consists of dif-

feomorphisms [ψ \,t e R, ψ* = Id, which preserve the Piemannian metric p.

We denote by r0 the maximal length of a (closed) geodesic in the metric p. It

is easy to see that the lengths of all geodesies are divisors of rQ, i.e. the geodesic
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flow on the manifold L~ (c/2) has period TQC~^. In view of what was sa id in sub-

section 3 the flow \sfp\ on T'M™, where Hp(x) = M ( | | * | p 2 , χ e T'M, has period

TQC'^ on the manifold H~ Hc/2), and the flow \S(

 1·0}, where Ηχ Q(x) = r o | | x | | p , has

period 1 on Τ M m \ r o ; and this last flow can be thought of as a canonical action of

3 on I m \1 Q.

We denote by v. the vector field on Mm which induces the flow \φ(\. It i s

known that the flow \D' φ \ on Τ Mm

f where D' φt i s the transformation dual to the

differential D\Jj , i s induced by aHamiltonian vector field whose Hamilton function is

Η Ο Λ ( X ) = X ( » • ( ? ) ) ,

where q e Mm and χ e 7" Mm. The function Ηα β = a.H l Q + βΗ0 ^ induces an ac-

tion of the torus Τ on Τ M m \ r o satisfying the conditions (1.9)—(1.11) with

( a o , / 3 o ) = ( l , O ) .

Applying Theorem A, we obtain a function Κ on Τ M m \ r o half of whose square

/v\ sat i s f ies all hypotheses of condition F , save symmetry, if the number δ in the

hypothesis of Theorem A is chosen sufficiently small and r > 2. In th i s c a s e the func-

tion %H ο i_~ JJ2 determines the square of the nonn for some nonsymmetric F ins le r

metric with an ergodic geodesic flow, and the closed geodes ies in this metric coin-

cide with those closed geodes ies of the metric ρ which are invariant under a l l isom-

e t r i e s i<A,!.(4)

In the space of real C functions on Λ1"1 which are homogeneous of first degree

for every q € Mm we introduce a sequence of norms || || , r = 0, l t . . . , such that the

norm || | | r takes into account the c l o s e n e s s of the r-jets of the functions on the mani-

fold Τ' = L~ (H) of unit tangent vectors in the Riemannian metric p. Let A C Τ Μ .

Set -A = j x : - x eA\.

Theorem C. Let ρ be a Riemannian metric on the manifold Mm for which condi-

tions (1.12) and (1.13) hold. Then for any positive numbers c and S and any natu-

ral number r there exists a Finsler metric σ on Mm and a set F C L~ (%) such that

c.2 (κ** η ^ ( l ) ) ^ ^ ^ (Kc-6 η tf(|)).
where

Kc^Kx^TMm : xoc\\xl <// Ο ι 1 ο β; 1 (χ)}.

C.3. The set F is invariant with respect to the geodesic flow of the metric o,

( ) If ρ i s che standard metric on S n , then the minimal number of geometrically distinct

c losed geodes ies in the resulting nonsymmetric Finsler metric i s [(n — l)/2]. Recall that in

the nonsymmetric case it i s natural to count each geodesic twice if it i s a c losed trajectory

of the geodesic flow for the motion in both directions.
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and this flow is ergodic on both F and — F.

C.4. The geodesic flows of the metrics ρ and σ have the same closed trajectories

in F.

Remark. Choosing the number c sufficiently small, one can make the measure of

the set L-HlA)\(FU-F) arbitrarily small.

Proof. Consider the manifold with boundary

Mc = {x ΕΞ T'Mm\T'o: H.Cil (x) > 0}.

This manifold is invariant under the act ion of Τ on Τ Mm\T0, and is homogeneous.

Thus conditions (1.2)—(1.4) and (1.9)—(1.11) hold. Applying Theorem A to this situ-

ation, we construct a function Κ on M^ and a number ( so that at the points of the

boundary dM the function -H together with its differentials of all orders coincides

with Wj f .

Let /(/) be an infinitely d i f f e r e n t i a t e odd function equal to 1 for / > c . We ex-

tend Λ to a function Η defined on the whole cotangent bundle 7" Mm a s follows:

M(x\ if , Are Me,

%(—x), if *<= — Mc,

i f

\Ho.1(x)\<cH1,o(x),x

o, if χ e Κ

If the number f is sufficiently small, then the function /M- satisfies condition F.
As was shown in subsect ion 3, the function %K ο Λ-,~= 2 determines the square

of the norm for some nondegenerate Fins ler metric σ on Mm. Set

= 27 [Mc

If in the construction of the function Λ the numbers δ and r in the conditions

of Theorem A are chosen sufficiently small and sufficiently large, respect ive ly , then

sta tements C.I and C.2 will hold, s ince J~~ M^_ = K^.

Statements C.3 and C.4 hold, as the Legendre transformation ^-σ e s t a b l i s h e s

an isomorphism between the geodes ic flow of the metric ο and the flow |S j .

6. In conclusion we consider the conditions (1.12) and (1.13). Not much can be said about

manifolds on which such metrics may exis t without further res t r ic t ions . Thus it is

easy to show that condition (1.12) implies that the number of conjugacy c l a s s e s in

the group Wj(/Vlm) must be finite, or, equivalently, the number of free homotopy c las-

s e s of c losed paths in Mm is finite. It is hard to obtain stronger condit ions, s ince
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the geodesic lines on Mm may have self-intersections.

The known examples of simply connected Riemannian manifolds on which all geo-

desies are closed are, up to diffeomorphisms, the compact Riemannian symmetric spa-

ces of rank 1. These are spheres S" (n > 2), complex projective spaces P"(C), η > 1,

quaternionic projective spaces P"(Q), η > 1, and the Cayley projective plane K 2 . In

each of these examples all geodesies are of the same length and have no self-inter-

sections. If one assumes that this property holds for all geodesies passing through

some point χ e Mm

f then, as was shown by Bott [17], either the cohomology ring

of Mm is isomorphic to the cohomology ring of one of the listed symmetric spaces and

Mm is simply connected, or π^Μ"1) = Z 2 and Mm has a homology sphere for its uni-

versal covering. Since among all symmetric spaces of rank 1 only spheres can be odd-

dimensional, this result of Bott and the theorem of Smale [18] (the generalized

Poincare conjecture) imply that a manifold of odd dimension m > 5 which admits a

metric in which all geodesies through some point are closed non-self-intersecting

curves of the same length is homeomorphic either to S m or to the quotient of Sm un-

der the action of some fixed-point-free involution.

All known non-simply-connected Riemannian manifolds with closed geodesies

are quotients of symmetric spaces of rank 1 under a free action of a finite group of

isometries. These actions are classified up to conjugacy in the group of isometries

of the simply connected manifold. Note that all symmetric spaces of rank 1, save for

spheres of odd dimension, have positive Euler characteristic, and therefore a fixed-

point-free isometry on such a space cannot be homotopic to the identity. From here

it is easy to see that the only finite group of isometries that can act without fixed

points on S " , P"(C), P"(Q) and K2 is Z 2 > and to describe the isometric actions of

i'2 on these manifolds (see [22]). The case of odd-dimensional spheres is nontrivi-

al. The problem in this case is equivalent to the classification, up to isometries, of

odd-dimensional full Riemannian manifolds of constant positive curvature; this is

sometimes called " the Klein-Clifford problem of spherical space forms". For dimen-

sion 3 the classification was obtained by Seifert and Threlfall in 1930 [19]: in the

general case the basic results were obtained by Zassenhaus [20] and Vincent [21],

and the full classification was completed by Wolf [22],

Note that all known Riemannian manifolds with closed geodesies have a one-

parameter group of isometries, i.e. the condition (1.13) is satisfied. This fact is

nontrivial only in the case of quotients of odd-dimensional spheres, and then it fol-

lows from the fact that for all cases in the Zassenhaus-Vincent-Wolf classification

all transformations of the finite group of isometries G acting on S m " C C m are

unitary complex transformations, and so commute with multiplication by unimodular

complex numbers. However, there is no proof of this fact independent of the classi-

fication. Whether or not condition (1.13) is always a consequence of (1.12) is not

clear.

Conditions (1.12) and (1.13) can be generalized. Namely, one can assume that
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ρ i s a nondegenerate F ins le r metric and not necessar i ly a Riemannian metric on Mm.

However, I have no examples of F ins le r metrics satisfying t h e s e conditions save for

those obtained from Riemannian metrics by a homogeneous diffeomorphism /: TMm ->

TMm. Note that the resu l t s of Bott [17] hold for the c a s e of nondegenerate F ins le r

metr ics, so it is unlikely that th i s general izat ion will yield something new, at least

from the topological viewpoint.

Received 2/OCT/72
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