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Abstract. A recent result of J. Mather [1] about the existence of quasi-periodic
orbits for twist maps is derived from an appropriately modified version of G. D.
Birkhoff's classical theorem concerning periodic orbits. A proof of Birkhoff's
theorem is given using a simplified geometric version of Mather's arguments.
Additional properties of Mather's invariant sets are discussed.

1. Notation
Let

be the standard annulus,

its universal covering, and T :S -*S the unit translation

T(x,y) = (x + l,y).

For any homeomorphism f:A-*A its lift to S is denned up to a power of T;
conversely, if F: S -* S and F commutes with T then F is a lift of a homeomorphism
of A. Let us write such an F in the coordinate form:

F(x,y) = (F1(x,y),F2(x,y)).

We shall call a homeomorphism / : A -* A a twist homeomorphism (or a twist
map) if it preserves orientation, preserves boundary components of A and if for
a lift F of f and for any x e IR the function Fi(x, y) is a strictly monotone function
of y.

Obviously, all functions Fi(x, y) for different x must be either increasing or
decreasing. According to that we may speak of right or left twist maps. If / is a
right twist map, then f1 is a left twist map and vice versa. For definiteness we
shall always assume that / is a right twist map.

We shall associate with a twist map / the following objects.
Twist interval [ao(f), «i(/)] where ao(f) and ai(/) are rotation numbers of F

restricted to R x {0} and R x {1} correspondingly. Twist interval is denned up to an
integral translation.
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Twist modulus &>/(r) which is denned for 0 s r < 1 by

(of(r) = min minmin (Fi(x, y+r)-Fx(x, y),Fx(x, y)-Fi(x, y +r))
Osxsl 0<ysl-r

where F\ is the first coordinate for a lift off'1.
If / is a twist map and in addition / and f~l are Lipschitz maps and oj(r)s:Kr

for some K we shall call / a Lipschitz twist map. For example, any C 1 diff eomorphism
/ such that dFi/dy > 0 is a Lipschitz twist map.

2. Birkhoff periodic orbits
If fz = z then F"w = T"w for any lift w of z where the number p is determined
up to a multiple of q. Thus, the fraction p/q is determined up to an integer. We
shall call this fraction the rotation number of the periodic point z.

We shall call a point z a Birkhoff point of type (p,q) if for a lift w of z there
exists a map

such that

6(0) = w,

ip is a strictly monotone function,

0{n+q)=T8(n),

6(n+p)=Fd(n).

We shall call the orbit of a Birkhoff point of type (p, q) a Birkhoff periodic orbit
of type (p,q).

Obviously, any Birkhoff point of type (p, q) is a periodic point with rotation
number p/q. Moreover, if we denote for such a point z,

f"z = (</>„, /•„) /i = 0 , . . . , q - 1

then all <£n's are different and lie on the circle in the same order as successive
images of a point under rotations by Itrplq. However, these two properties do not
guarantee that z is a Birkhoff point of type (p,q). In particular, the assertion of
proposition 1 below does not follow from those properties.

Let (3(r) be a common modulus of continuity for / and f~l. We can assume that
/? is a concave function.

PROPOSITION 1. Let f be a twist map. There exists a concave monotone function y(r)
positive for positive r and depending only on ojf and /3 such that for every Birkhoff
periodic orbit

\<t>n-<t>m\<r

implies that

\rn-rm\<y(r).
If f is a Lipschitz twist map then y(r) can be chosen as Lr for some constant L.

Proof. We shall work on the universal covering. Let us assume for definiteness that
i/» is an increasing function and let m, n (m < n) be two integers, so that t//(m)<((/(n).
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Let us assume that p(n)<p{m) and denote

Since

F(<M«),p(n)) = (<Mn+p),p(«+p)) (1)

and p(n) <p(m) we have by the twist condition

ji>il>(n+p)+(Of(p(m)-p(n)). (2)

On the other hand

lA(n+p)>l£(m+p)>0:-|3(<A(rt)-<Mm)). (3)

From (1), (2) and (3) we have

<of(p(m)-p(n))<(3(i(,(n)-il,(m)). (4)
Thus, we can put y = w"1 ° /3 where <w is a strictly monotone convex function such
that for r>0 ,

If pn >pm the argument goes the same way with f~l instead of/.
In the Lipschitz case we can take /3 (r) = Mr for some constant M and w (r) = Kr

so that y(r) = MK~1r.

3. Mather sets
We shall call a closed /-invariant set E <=-A a Mather set if (i) E intersects every
interval {<f>}x [0,1] at most at one point, i.e., E = graph $ where <& is a continuous
function defined on a closed subset A" of S1 with the values at [0,1]; (ii) F preserves
the order on the covering of E.

It is easy to see that/|E preserves the natural cyclic order on E and is topologically
conjugate by an order-preserving homeomorphism to a restriction of a homeo-
morphism of the circle to the set K. In particular, the rotation number p(E) is
denned up to an integer.

Every closed subset of a Mather set is also a Mather set. In particular, every
such set contains a minimal subset. It follows from standard Poincare-Denjoy
theory of circle homeomorphisms that there are exactly three sorts of minimal
Mather sets. Namely

if p(E) is rational and is equal to, say, p/q, then E is a Birkhoff periodic orbit
of type (p, q);

if p(E) is irrational, then E is either a circle and f\E is conjugate to the rotation
by p (E) or E is a Cantor set and f\E is conjugate to the minimal set for one of the
so-called Denjoy counterexamples.

PROPOSITION 2. For any Mather set E the function <& has modulus of continuity y
described in proposition 1.
The proof of this proposition is a mere repetition of the proof of proposition 1.
For, in that proof the periodicity of the orbit is not important; only the preservation
of order on the universal covering matters.



188 A. Katok

Remark. We do not need proposition 2 in order to derive Mather's theorem from
Birkhoff's theorem.

Let us recall the definition of Hausdorff topology on the space of all closed
subsets of a compact metric space X. Let Ue{E) denote the open e-neighbourhood
of the set E in X. The basis of neighbourhoods of E in Hausdorff topology is
formed by the sets

Ve{E) = {F c X :F c= U.(E), E c £

PROPOSITION 3. (a) The set of all Mather sets for a twist homeomorphism is closed
in Hausdorff topology.

{b) The rotation number p(E) for a Mather setE is continuous in Hausdorff topology.

Proof. Let En = graph <!>„ where $„ : Kn -* [0,1] be a sequence of Mather sets for /
converging to a set E in Hausdorff topology.

Let
z=(<f>°,r°)eE, zn = (4n,rn)

and let us fix a small e >0. Since by proposition 2

rn-y(\r-rn\)^r^rn+y(\r-r"\)},
the convergence in Hausdorff topology guarantees that

This implies condition (i) for the set E. Condition (ii) then follows immediately
from this condition for En and from the convergence. This proves (a).

Let now p be any limit point of the sequence p (En); say p (Enk) -> p. Let us denote

fm{znk) = (</>k
m, rk

m), fm(z) = (<£m, r m ) .

In order to prove that p (E) = p it is enough to show that the order of <f>m 's on the
circle is the same as the order of successive rotations of a point by 2TTP. For any
fixed N we can find it {N) such that for k > k (N) the order of the first N successive
rotations by 2irp{Enk) is the same as for successive 2-Trp-rotations. By property (ii)
for the sets Enk the order of <£m's is the same as the order of successive 2trp{Enk)
rotations. But since all angles 4>m, m = 0 , . . . ,N — \, are pairwise different, for
sufficiently large k the order of #£,'s and <£m's for m = 0 , . . . , N -1 coincide. Since
N can be chosen arbitrary large p(E) = p and this proves (b). •

From this proposition and the compactness of the Hausdorff topology we obtain
immediately

COROLLARY 1. The union of all Mather sets is a dosed j'-invariant set.

Let us denote this set M(f). We shall discuss some of its properties later.

COROLLARY 2. If f has a Birkhoff orbit of type (p, q) for any rational number p/q
from the twist interval then f also possesses a minimal Mather set with any irrational
rotation number from the twist interval.
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The assertion of this corollary for area-preserving twist homeomorphism con-
stitutes the statement of Mather's theorem [1]. Thus, we have reduced this theorem
to the question about the existence of Birkhoff periodic orbits.

Problem. Are periodic orbits dense in M(/)?

4. Birkhoff theorem

THEOREM. Let f be a twist homeomorphism preserving a measure positive on open
sets and p/q belong to the twist interval. Then f has a Birkhoff periodic orbit of type

If in addition f is a C1 diffeomorphism and preserves a measure given by a positive
smooth density then under the same assumptions f has two different Birkhoff periodic
orbits of type (p,q) which form together a Mather set.

Proof. For the notational convenience we shall work with the universal covering
instead of the annulus. Let us denote Fi(x, 0) = go{x) and Fi(x, 1) = gi(x). Let us
consider the space of all non-decreasing maps 4>: Z -»IR such that

and
(5)

and identify every such map <f> (n) with <t> {n) + k for every integer k. We denote
the factor space 4>p,q.

The natural compact topology on <£>M comes from the embedding

which assigns to a map <f> the vector (<£(0),..., <£(q -1)). The factorization in
is defined by the diagonal integer shifts

(*i, ...,xq)-*(xi + n,.. .,xq + n), n e Z .

It is easy to see that the identification in <&„,, corresponds to this factorization.
Compactness follows from (5).

It is easy to see that 3>p,<, is non-empty; moreover for every x e R there is 4> e <J>p,q
such that 4> (0) = x. For, let g, (x), 0 < t < 1, be a monotone family of homeomorphisms
of R connecting g0 and gi. Since ao(f)<p/q and a\{f)>p/q we have

go{x)-x<p,gi(x)-x>p

so that for some /e[0,1] , g?(jt) = jt +p. Then the map <f> defined by <£(«) = g"(x)
belongs to $Pj<J.

Let x, x' e R and go(x) < x' ̂  g i (x). By the twist property the image of the interval
/ = {x}x[0,1] intersects the interval / ' = {x'}x[0,1] at exactly one point, say
(x',h(x,x')). Let us denote by T{x, x') the 'triangle' bounded by the bottom
boundary component So of 5, the interval / ' and the curve F(I).
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FIGURE 1

Let us define for c/> e 4>M

where fi is the lift to S of the given measure invariant under / and positive on
open sets.

We shall need more notation, namely

def

= (<f>(n), h2{n)).

If

then

hl{n) = h2(n)

Filn(.n)=>ilri(n+p)

(6)

so that if (6) is satisfied for every n then the map 1A1: Z -> U defines a periodic orbit
with rotation number p/q. In fact, it is a Birkhoff orbit of type {p, q). For, otherwise
<f> is not strictly monotone and there exists such n that (f>(n) = <f>(n +1) but hiin)^
hi(n + 1). Since </>(n -p)<<£(w —p + 1) then by the twist property hi(n)>hi(n + 1)
but then by the twist property again <f>{n +p)><f>(n +p + l), i.e. <f> is not non-
decreasing. Thus, the first statement of the theorem follows from the compactness
of ®p,q and from the following lemma.

LEMMA. If the functional Lp,q reaches its local minimum at <f> then for that 4>

for all integer n.

Proof. Let us begin with the case when for some n

<t>(n-l)<<f>(n)<<t>(n + l) and

Then either

or

(7)

(8)
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Let us consider the first case. Since

F((f>(n), h2(n)) = i

it follows from (7) that

hi(n+p)<l.
Let us define f or e > 0

_[<t>(m) i fm^n(modq),
\<f>(m)-e i fm=n(modq).

If e is chosen sufficiently small then (7) and (9) guarantee that <j>e e <t>p-q.

(9)

FIGURE 2

Let

Ai be the region bounded by I\, FI0, I\ and 50, A2 be the region bounded by FI\,
I2, F/i and 50.

If e is small enough then F~1A2^Ai so that from F-invariance of /u.

We have

n ) - e , cf>{n n -p), <f>(n)-

This shows that 4> is not a local minimum. The case when inequality (8) is satisfied
is treated similarly but <f>s(n) is defined as 4>(n) + e (cf. figure 3).

It remains to consider a more general case when, say

Then by the twist condition

and
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FIGURE 3

Thus, we have either

or

or

(10)

(11)

Cases (10) and (11) are considered similarly to (7) and (8) accordingly. It is possible
because in the first case <t>{n) is shifted to the left and in the second case <j>{n +k)
is shifted to the right so that the monotonicity of $ is preserved after the perturba-
tion. This completes the proof of the lemma. •

Since our proof of Mather's theorem (see § 3) does not depend on the second
statement of the theorem we shall give only a brief sketch of the proof for that part.

In the smooth case LM is differentiable with respect to the smooth structure
induced by the embedding into T". An infinitesimal (and simpler) version of the
arguments from the lemma shows that every critical point of Lp,q lying inside 3>p,q
must generate a Birkhoff periodic orbit.

Then we take the map <p which minimizes the functional LPM on the space <t>M

and consider the space <&*<, of all maps i(/:Z-*U satisfying (5) and in addition

for all n. The maps <f> and <$>, <j>(n) = 4>(n + 1) are critical points (minima) of L M

on <!>*„.
By showing that the gradient flow of the function -LPyQ maps **„ into itself we

ensure the existence of a critical point iff which is not a minimum and consequently
is different from <f> and <f>. This map iff determines the second Birkhoff periodic orbit.

Smoothness assumptions can be weakened; however, it is absolutely crucial for
the argument that the invariant measure is given by a continuous density. I do not
see how an argument of that sort can be carried out in full generality.

Birkhoff in [2] obtains the second periodic orbit with rotation number p/q by a
sort of index argument but it is not clear why those orbits preserve cyclic order.
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5. Parabolic and hyperbolic orbits
Every Mather set E with irrational rotation number carries unique /-invariant
probability measure JU.E. If / is a C1 diffeomorphism we can define two Lyapanov
characteristic exponents [3] which are constant nE- almost everywhere. Let *f < x f
be essential values of those exponents. If / preserves a smooth measure then
#f +*f = 0 so that there is one non-negative exponent \E and one non-positive
exponent -* E .

We shall call a Mather set E hyperbolic if # E > 0 and parabolic if \E = 0.

Problem. Does there exist a C1 (C2, C°°, real-analytic) area-preserving twist
diffeomorphism with a hyperbolic Mather set El

Examples of piecewise analytic twist diffeomorphisms for which all Mather's sets
are hyperbolic can be obtained from Bunimovich's billiards including his famous
stadium-shape example [4]. However, in those examples, apparently Mather's sets
intersect the singular set.

PROPOSITION 4. Let f be a Cl+e twist diffeomorphism preserving a measure /u,
equivalent to Lebesgue measure. Then total Lebesgue measure of hyperbolic Mather
sets for f is 0.

Proof. Every point which belongs to a Mather set, but does not belong to a minimal
Mather set is not recurrent, i.e. it does not belong to its own w- limit set. By the
Poincare recurrence theorem the total fj.- measure of such points is 0. Thus, it is
enough to consider minimal Mather sets. Those sets are closed and pairwise disjoint.
Thus, the partition of M(/) into individual Mather sets is measurable. Every such
set has Lebesgue measure 0 as part of a graph of a continuous function. Thus,
every ergodic component of /u. on the set M{f) has zero measure. Let us denote
the union of hyperbolic Mather sets by Mh(f);f has non-zero Lyapanov exponents
on that set. By Pesin theory [3] almost every ergodic component on the set with
non-zero exponents has positive measure. Thus /J. (Mh(/)) = 0. •

6. Concluding remarks
Mather's theorem about quasi-periodic orbits is a major result in a classical area
which up to a certain extent can be put in the same category as celebrated results
of Poincare and Birkhoff on periodic orbits, of Birkhoff and Smale on the orbit
structure near homoclinic orbits and of Kolmogorov, Arnold and Moser on the
persistence of invariant curves. In particular, Mather's theorem gives an elegant
explanation about the 'missing' invariant curves and shows how those curves
disappear.

The main purpose of this note is to popularize Mather's result by presenting a
more elementary and more geometric proof which works under slightly more
general assumptions. More specifically, our method avoids any use of infinite-
dimensional spaces and involves geometric language (measures, curves, etc.) instead
of analytic language used in Mather's original paper (forms, generating functions).
Geometric language was first introduced by D. Rudolph when he presented Mather's
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theorem at the 'Twist map' seminar at the University of Maryland in September
1981. In particular, it already followed from Rudolph's presentation that the
preservation of area could be replaced by the preservation of some measure positive
on open sets.

Another remark: that Mather's set can be obtained as limits of Birkhoff periodic
orbits, is mine. It is hard to understand why Birkhoff did not make this remark
some 50 years ago. However, there is at least one vague, but characteristic remark
in Birkhoff's paper [5] on p. 254 where he mentions quasi-periodic orbits which
must appear as limits of periodic orbits; unfortunately, he does not elaborate.

My secondary goal was to formulate several interesting open problems connected
with Mather sets. Beside the problems mentioned in the text I would like to refer
to the problem list of the Amherst conference [6] which contains a discussion on
the subject.

This paper was written during my visit to Rice University in February 1982. I use
this opportunity to thank the Rice Mathematics Department and the Schlumberger
foundation for that invitation, and the members of the department for their warm
hospitality.

Added in proof. After this paper was written I learnt from M. Herman that a
theorem equivalent to Mather's result was proved about two years earlier by G.
Aubry. Aubry's results can be found in various preprints. His method is different
from both Mather's and mine and looks considerably more complicated than both.
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