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1. Introduction

By far the most remarkable property of small perturbations of completely
integrable Hamiltonian systems is the preservation of invariant tori corre-
sponding to irrational frequency vectors which are not too well approximable
by rationals. This fact and its various ramifications was discovered by A.N.
Kolmogorov, V.I. Arnold and J. Moser and became commonly known as
KAM theory. This theory leaves open the basic question, namely, what hap-
pens to the rest of the invariant tori of the unperturbed completely integrable
system? It is relatively easy to show that generically most of those tori, both
rational and irrational, disappear. Thus, a more precise formulation of the
above question should be like this. Are there special sufficiently simple motions
in the perturbed system which are similar to the periodic and quasi-periodic
motions on the destroyed tori, and therefore can be viewed as “traces” or
“ghosts™ of those tori?

The study of small perturbations of non-degenerate completely integrable
systems with two degrees of freedom can be reduced to the consideration of
area-preserving twist maps of the annulus or the cylinder [15]. For such maps
S. Aubry [4, 5] and J. Mather [17] (cf. also [13]) established the existence of
special invariant sets which are projected injectively to the circle and carry
motions with any given admissible rotation number. Furthermore, the map
preserves the cyclic order of points on any of those invariant sets. For any
irrational rotation number such set is either an invariant circle, or, if the
invariant circle for the given rotation number does not exist, it is a Cantor set
with the motion described by A.Denjoy [11]. Moreover, the Cantor sets are
always accompanied by order-preserving orbits doubly asymptotic to them [6,
14, 18]. As might be expected, for any rational rotation number one has a
collection of at least two order-preserving (Birkhoff) periodic orbits together with
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homo- or heteroclinic orbits [14, 18]. All those objects possess certain con-
tinuity properties with respect to the rotation number [18].

Translating the above-mentioned results to the case of small perturbations
of non-degenerate completely integrable Hamiltonian systems one obtains a
more than satisfactory solution to the problem of vanishing tori for systems
with two degrees of freedom. Namely, there are always traces of those tori
present in the form of either Denjoy type minimal sets together with double
asymptotic orbits (for any admissible irrational rotation number), or of at least
two Birkhoff periodic orbits accompanied by homo- or heteroclinic orbits (for
any admissible rational rotation number). Furthermore, the Denjoy minimal
sets appear as limits of Birkhoff periodic orbits.

The Aubry-Mather approach is based on two key ingredients: the varia-
tional principle for finding desired motions and the regularity of the projection
of any order-preserving orbit to the circle. Let us point out that the variational
principle for finding order-preserving periodic orbits for twist maps can be
substituted by certain topological arguments [7, 12]. The regularity of the
projection allows us to take limits with respect to rotation number, thus,
producing invariant circles or Denjoy type Cantor sets without any use of
invariant measures or variational methods.

On the other hand, solutions representing global minima in various varia-
tional problems, associated to a twist map and posed without assuming pre-
servation of order, turn out to be order preserving [6].

The earliest result concerning the preservation of some periodic orbits for
Hamiltonian systems with more than two degrees of freedom is the Birkhoff-
Lewis theorem [8, 97, (cf. also [2]) whose accurate proof was given by Moser [19].
Applying the method from [9] and [19] to our situation, one can find periodic
orbits for a perturbation of a completely integrable system in a neighborhood
of an invariant torus of the unperturbed system filled by periodic orbits of
period, say, T, if the size of the perturbation is so small, that the orbits of the
perturbed system stay sufficiently close to the original orbits during time 7. We
do not see how that method can be made to work uniformly in T for
perturbations of fixed size.

Conley and Zehnder [10] discovered a remarkable global method for
finding periodic orbits for sympletic maps and Hamiltonian systems. In this
paper we use a version of their main trick. The result of the [10] most relevant
for our discussion is Theorem 3 which represents a global generalization of the
Birkhoff-Lewis theorem. This theorem depends only on a sort of a boundary
condition rather than on closeness of perturbed and unperturbed systems.
However, it can not be directly applied to the finding of very long orbits for a
perturbed system which stay near the original torus.

Any attempt to carry out the Aubry-Mather approach to the case of more
than two degrees of freedom faces the obvious problem that the arguments
based on the preservation of order are no longer available. On the other hand,
the variational arguments can be used, at least under some extra assumptions
on the unperturbed system. In the present paper we make the first modest, but
we believe non-trivial, step in that direction. Our main result for systems with
n degrees of freedom is the existence of at least n distinct periodic orbits with
any admissible rational frequency vector near the corresponding torus of the
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unperturbed system under the extra assumption that the Hamiltonian of the
unperturbed system has convex energy surfaces in the action-angle variables.

The reduction to the discrete-time case described in Sect. 7 allows obtaining
this result from the corresponding result for sympletic maps (Theorem A,
Sect. 1). This latter theorem follows immediately from Proposition 2 (Sect. 4)
which provides ce:tain estimates for specific critical points of the Lagrangian
introduced in Sect. 2, and from Proposition 4 (Sect.5) which establishes the
existence of required critical points.

In Sect. 6 we show that at least one of the orbits described in Theorem A
satisfies certain regularity conditions (Theorem B) which allows one to take
limits in frequency vectors (Theorem C). Unfortunately, the structure of the
limit objects corresponding to irrational frequencies is not completely clear at
that stage.

One of the crucial ingredients of our method is a global topological trick
which is very similar to the one used by C.C. Conley and E. Zehnder in [10].
This trick allows us to show the existence of solutions of the variational
problem with sufficiently low values of our Lagrangian. Then the estimates of
the Lagrangian show that these solutions correspond to periodic orbits with
desired properties.

We work with discrete time symplectic maps and in the last section show
how the results about continuous time Hamiltonian systems are derived from
those for symplectic maps.

2. Preliminaries and formulation of main result

Let us consider the space M=T"xR"={(¢,...0,,r, ...1,), ¢,eR/Z, r.eR}
with the natural sympletic 2-form

Q=Y do;ndr,

i=1

and let f,: T"x U >T"x U be an integrable symplectic diffeomorphism, i.e. an
Q-preserving diffeomorphism of the form

folo,r)=(@+a(r),r), @eT", rel.

Here Uc<IR" is a set diffeomorphic to an open n-disc.
Let, furthermore F,:IR"x U —>R" x U be a lift of f, to the universal cover,

so that for xeRR", reU
Fo(x,r)=(x+af(r), r). (1)

Throughout this paper we will assume the following non-degeneracy condition
(1) a: U->IR" is a regular injective map.

Then the map F, can be represented via a generating function H,(x, x') so that
if Fy(x,r)=(x,r") then . -
H pa)
r:( ()’ r/= _( 0 (2)

‘x éx'
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It follows immediately from (1) and (2) that the function H, actually depends
only on the difference x'—x, H,(x, x")=h(x'—x). Let b: a(U)— U be the map
inverse to a. Then from (2)

dh(0)=b(d)do.

Condition (i) is a discrete-time equivalent of the standard non-degeneracy
condition in KAM theory, cf. eg. [1] or [3], Apprendix 8. Next we will
introduce an additional non-trivial restriction which will also be assumed in all
subsequent considerations, usually without any separate mentioning.

(i) h is a strictly convex function on a(U), i.e. the Hessian of h at every
point d€a(U) is a positive definite quadratic form.

In Sect. 7 we will interpret conditions (i) and (ii) in terms of continuous
time Hamiltonian systems.

Suppose that a lift F of f can be represented by a generating function
H(x, x') so that F(x,r)=(x',r") if and only if

¢ , ¢ , ,
ﬁ(x,x)zr W(x,x)= —r.

Suppose in addition that the perturbation f preserves the r-component of the
center of masses on each torus T" x {r,} for r,eU, or, equivalently, that for any

meZ"
H(x+m, x'+m)=H(x, x'). (3)

So we can write H(x, x')=h(x"—x)+ P(x, x") where P satisfies (3). In order
for H(x, x') to exist, it suffices to assume that f is C'-close to f,. Then H is C*-
close to H,. Conversely, if H(x,x') is a small C2-perturbation of H, then it
defines a small C'-perturbation of the map f,. However, our results depend
only on the smallness of the C' size of the perturbation P(x,x’) of the
generating function. So it suffices to assume that f is C° close to f, provided
that /" can be represented by a generating function.

Let roeU and s,=a(r,). We will study orbits of the map f which stay
sufficiently close to the torus T, =T" x {r,}.

Our first main result establishes the existence of such orbits if the vector s,
has rational coordinates.

Let (¢, r)eT" xR" be a periodic orbit of the map f with the prime period ¢
and let (x,r)elR"xR" be a lift of the point (¢, r). Then there exists a vector

. w )
weZ" such that Fi(x, r)=(x+w, r). We will call the vector 5 the rotation vector

of the point (¢, r). The rotation vector depends on the choice of the lift F but it
is uniquely defined modulo Z".

Theorem A. Let [ be a perturbation of an integrable symplectic map f, satisfying
(i) and (ii). Let w=(w, ... w,)eZ", q be a positive integer such that w, ...w,, q are

w
relatively prime and the vector — belongs to a(U). Let furthermore r, ,
q
w
=a~* (—) There exists a constant A depending on f, but not on w and q such

q
that for any d<A if the map f is defined by the generating function H=h+P
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where the C' norm of the perturbation part P of H is equal to d, then the map f
w
has at least n+1 different periodic orbits with rotation vector — which lie

completely inside the Cd* neighborhood of the torus T" x {r..q} and at least one
of those orbits lies inside the C&* neighborhood of that torus. Here C depends
only on the unperturbed map f,,.

This theorem follows immediately from Proposition 2 which is proved in
Sect. 4 and Proposition 4 proved in Sect. 5.

We conclude this section with the description of a reduction of our prob-
lem to another one which is defined globally in T" x R” and which coincides
with our problem in a neighborhood of M. We use the word “problem”
instead of “map” because we are going to modify the generating function H
and we do not care whether the perturbed generating function defines a map.

Let V be a neighborhood of ¢, such that the function h in V is sufficiently
close to its second Taylor polynomial T,. By the convexity assumption (ii), T,
is a convex second degree polynomial which can be defined in R". Thus, it is
easy to see that one can construct a C? small function § on R" which coincides
with h—T, on V, and vanishes outside of a compact set. Therefore, e T,+q is
a strictly convex function which coincides with h in V and with T, outside of a
compact set. Similarly we modify the generating function H(x, x')=h(x"—x)
+ P(x, x') of the diffeomorphism f into a function H(x, x")=h(x'—x)+ P(x, x')
where the function P is uniformly C' small, coincides with P for x'—xeV and
vanishes when x'—x lies outside of a certain compact set. Naturally, we can
make H satisfy periodicity condition (3).

Obviously, if x'—xeV then setting

o0H . 0H

r=—— r=—
ox’ ox'

we have F(x,r)=(x',r') because locally H=H. Furthermore if x;€R" is a finite
or infinite sequence of vectors such that

aﬁ 6H def
ox (x5 X, )= ™ (x;_ 1, Xx)=r,
and
xi+1—xi€V for all i (4)

then the sequence (x;, r;) is an orbit or an orbit segment for F.

3. Periodic states with given rotation vector

Let us fix w=(w,...w,)eZ" and geZ, such that w,,...,w,, g are relatively
prime. Let us consider the space ¥, , of all double-infinite sequences x
=(..., X_q,Xg, Xy, ...) Of vectors from R" satisfying the following periodicity

condition
X =X;+w forall ieZ. ()
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Every sequence {x;} is uniquely determined by a g-tuple of vectors (x,, ..., X,),
so ¥, , can be naturally identified with (R")%. We introduce two kinds of
identifications in ¥, ,. First, for any meZ" we identify {x;} with {x;+m}.
Secondly we identify every sequence {x;} with its shift {y;}, where y;=x;, . In
other words, our identifications are generated by the translations T,,: {x;}+={x;
+m} and the shift S: {x;}+>{x; _,}. The quotient space of ¥, , corresponding
to the first identification will be denoted by @} ,, and the result of both
identifications will be denoted by @ .

A convenient coordinate system in ¥,
=0ty ... tqfl) where

, 1s given by the parameters (v, )

Xt seet X w
L’—:L’—‘F—l, t.=xX.—X;, ;——, i—':l,...,q—l.
q i i i—1 q

In terms of these coordinates we have

T, (v, t)=(v+m,t)

w (6)
S, ty,.sty_y)= (u—f—;,tz, seeay gy —iy —tz—...—tqfl).

Thus, the space @} , is diffeomorphic to T™ x R"“~ D and it represents a g-fold
covering of @, .. By (6) the latter space is an R"“~ " bundle over the torus T"
and thus it is homotopically equivalent to T".

We define the function L, , on ¥, , by

Lw.q(x): Z I-_I(xi’xiJrl)' (7)

Obviously, the function L, , is both T, and § invariant, so it defines a function
on @, which we denote by the same symbol L, , and will sometimes call the
Lagrangian.
A point xe®,, , is called an equilibrium state if x is a critical point of L, .
Such a state must satisfy the following conditions:
OzﬁLw.qzﬁl-_I(xi,x,.+l)+('.’1-7(xi_l,xi).

0x; 0x ox'

If an equilibrium {x,} satisfies additional conditions: x; ; —x;eV for all i then,
as we noted at the end of Sect. 2, it corresponds to an orbit of F which by the
periodicity condition (5) can be projected onto a periodic orbit of f with

2 w
rotation vector —.
q

4. Critical points of the Lagrangian L,, ,

Proposition 1. L,  is a proper function on ®,, , and is bounded from below.

Proof. Since H(x, x') is bounded from below and goes to + o0 as |x'—x|— o0,
the statement follows from (7). [
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Thus we have the following

Corollary 1. The function L,
rium state x°.

o reaches its absolute minimum |, at some equilib-

" 5 g W
In our next statement we will show that if the rotation vector — is

; q
sufficiently close to a(r,), (m particular, if a(r0)=w), then this equilibrium
q
state satisfies the condition (4) and determines a periodic orbit of f with
. woo
rotation vector — which lies near the torus T},. Moreover, under a somewhat

stronger assumption on the size of the perturbation we can prove (4) for every
critical point x of L, , with the critical value less than [+ C, where C does
not depend on w or gq.

We begin with some general estimates. We will use the letter C with
various indices to denote various unspecified constants which may depend on
the map f, but not on w or gq. Let x={x;} be an arbitrary state, set a,=x, —x;_,
and let §,(k=0,1) be the C*norm of the perturbation P of the generating
function. We will assume throughout the rest of the paper that §, <2, k=0, 1
where the constant & is chosen once and for all for a given map f,.

Lemma 1. If x is a critical point of L, , then |a; ,—a]|<Cé, for every i.
Besides, if x is a point of absolute minimum for L., , then |a;, , —a;| < Cd3.
Proof. Let a;=a+1, a;, y=a—rt, and let y=13(x,, ,+x;_;) so that x,=y+r.
Consider a family of states x(g), 6elR" defined by

x; for j#i(modq)
xj(a):{%(xj+l+le)+o for j=i(mod g).
We have
L, ,(x(e)—L, ,(x)
=H(x;_,y+0)+H(y+0, %, )-Hx_,,y+9)-Hy+7x,,,)
:p(xF1,y+o)+ﬁ(}7+o,xi+1)—13(xiﬁ1,y+1:)—13(y+'c,x,-+1)
+h(a+0)+h(a—a)—h(a+1)—h(a—1). (8)

The sum of the first four terms is bounded by 40,. If x is a point of absolute
minimum then for 6=0

L, ,(x(0)—L, ,(x)20
so we have
h(a+1)+h(a—1)—2h(a)£45,.

On the other hand, by the convexity of &
h(a+1)+h(a—1)—2h(a)2 C, ||

Therefore, C,|t|> <44, and |a
ment of the lemma.

11— <C,08. This proves the second state-
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0
If x is a critical point then (;3“ Lw,q(x(a))|,,:,)=0. The differential of the
ag

sum of the first four terms in (8) at =71 is bounded by 24J,. The last two terms
do not depend on ¢ and the differntial of h(a+0)+h(a—o) at 6=1 equals dh(a
+1)—dh(a—1). Let Q(s) be the matrix of second derivatives of h at 5. By our
construction of the function A (cf. Sect.2) <Q(s)t,t)>= C,|t|>. On the other
hand by the Mean Value theorem {(dh(a+1t)—dh(a—1),t)=<{Q(a+i1)27,1)>
for some Ae(—1, 1). Therefore, |[dh(a+ 1) —dh(a—1)| =2 Cs]t].

Combining all terms in (8) we have C,|t|<é, or |a;, , —a;|<C,d,. O

Lemma 2. Suppose x is a point of absolute minimum for L., ,. Then for any i, j
la,—a;| < C min (83, 63).

Proof. Let f,=max|a,—a; |, f be any number greater than f,, t=|a;—a/

and suppose that ;c is an integer such that kff<1/5. We can assume that i<j<i

+g—. Then the sets {i,...,i+k} and {j,...,j+k} are disjoint modq so i,=i

+k<j and j,=j+k<i+q. Next we perform a sort of surgery and construct
for every meZ" a state y(m) such that

I—
x,—+—TI [x;, —m—x;] i<I<iy
X, —m i, ZILj
yi(m) =1 : I—j :
xj-m+T [le—(xj—m)] JSls;
X, Ji1SI<i+g

and extend it for all I by periodicity.

We will try to choose m to make the vectors (y; —y;) and (y;, —y;) as close
to each other as possible. For that purpose choose as m any of the integer
lattice vectors nearest to 3(x; —x;—x; +x;). Let us estimate the difference
L, ,(x)—L, ,(y(m)) from below. This difference is equal to

k
> LHGG X0 DHH, X, 1)
=i

_H(yi—k”yiﬁ—lv 1)_1'_1(}’j+1a Vigi- V]

!

[P(Xpm Xisi- 1)+P(xj+l’ Xji1-1)

M=

=1

Il

—P(J’Hu Yigi- l)_F(yj-Hs Y= V]

k

+Y [ﬁ(ai+,)+E(am)—’?(y“;:yi)‘E(yj'k_yj)]'

=1

The absolute value for the first sum is obviously bounded by 4kd,. Let us
rewrite each term of the second sum. Let a; ,=b+p, where b is the average of

{a;,1,...,a;.,} and Y p,;=0. Similarly let a; ,=c+0,, ) 0,=0. Obviously
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lp)|<kpB, |o,|<kp. In particular, t=|a;—a;|=|b—c+p,—0,| and
lt—|b—c||S2k <2t so |b—c|>%. Also

Yu—Yi_b+c
k = 2

- —y. b
et 1 i—( where |C|<g

+{ and
(d depends only on the dimension n of T"). Furthermore

h(a;, )=kh(b)+<dh(b), . p,> + O (k(k p)*)=kh(b)+ O (k* ).

-

1
Similarly

Y h(a;, ) =kh(c)+O(k* B2),

=1

(b+c+g;+ (b+c ) 2h(b )+0(k )

By the convexity of i

_ _ _ (b b—c|?
h(b)+ h(c)— 2R ( )l C|| >Cyt.
Combining all these inequalities we have
L, ,(x)—L, ,(y)>Cskt*—4kdo—Cok*>p*—C k1. ©)
Since x is a point of absolute minimum
12<Cgdy+ Cok? B2+ C k™2 (10)

Now we are ready to complete the proof. By Lemmal we can choose f8
=C,0, or C,0%. Take k~p~* If kp>1/5 then 1< C,, p* and for f=C, 9,
(resp. C,83) 1< C,, 0% (resp. < C,;64). If however kf<1/5 then we can apply
the surgery described above and from (10) obtain the estimate t><C,,f and
1< C, s f* and we repeat the preceding argument. []

Lemma 3. For every E>O0 there is C>0 such that if x is a critical point of L, ,
with L,, (x)<E+inf(L,, ) then for any i, j |a;—a;|<C3d}.

Proof. By Lemma 1 we can choose f=C,6,. As before t=|a;—a;|. Take
k~p~% If kB>1/5 then 1< C,,0} and we are done. Otherwise we can apply
the surgery from the proof of Lemma 2 and from (9) obtain the estimate:

12<(C,E+ Cyg) B2
Since f=C, 3, we have 1< C,46}. O
Proposition 2. Suppose %eV and r, ,=a" ! (E) Let & be the C'-norm of the
q

perturbation P of the generating function. Then
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a) any point in @, . of absolute minimum for L., , determines a periodic orbit
w
with rotation vector — which lies completely inside the e-neighborhood of the

torus " x {r,, .}, where e= Cd*.
b) for any E>O0 there is A>0, independent on w and q, such that if <A
then any critical point xe®,, , of L, , with L, (x)<E+inf(L,, ,) determines a

periodic orbit with rotation vector " which lies completely inside the e-neigh-
q
borhood of the torus T" x {r,, .} where e=Cd*.

Proof. Let x be a critical point of L,, , satisfying conditions of a) or b). Let

0H - oP
riz—a; (x;, x;, ) =dh(a;, 1)"’& (xis X4 1)-

q w
By Lemmas 2 and 3 for any i, |a,—a;|<e. Since w=})" a; we have ai—~‘<s.
q

1

0P L . . 0P
L=0(6) by definition of . But d=0(¢) so L:O(a). On the other hand
0x 0x
w

dﬁ(q
=0(). O

):rw,q and dﬁ(a.H)—dﬁ(g):O(aiﬂ—g):O(a). Therefore [r;—r,, |

1

5. Existence of (n+ 1) critical points

Let us recall that we denoted the quotient space of ¥, , modulo the group of
integral translations by @ ,. The function L, , is naturally defined on &% .

Let as before [,=inf(L, ,) and let ’

M} ={xe®} L, (x)=t},
M,={xed, ,|L, (x)<t}.

Proposition 3. For a given h and &, there exists a constant E such that for any
perturbation P uniformly bounded by O, there exists a continuous map
r: M"—>Mp_ g, such that for any w and q the composition of I' with the inclusion

iy: M p—®%  is a homotopy equivalence between T" and @7, ,.

Proof. We begin with defining some preliminary tools. Let

’

()= 1, if t—kqe[0,1] for some keZ
o= 0, otherwise

a;(t)= j o(t)dt, iel.

i—t
It can be easily seen that
(@) at+q)=a;(t)+1
(b) ai+q(t)=ai(t)
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(c) a;(t)=a;, ,(t)eZ for all but at most three values of ie[1, g] and for these
exceptional i’s |a;(t)—a;, , ()| = 1.
Let furthermore A(t)={a,;(t), ieZ} be the sequence of numbers q,(t). For

def

any vector z=(t,, ..., t,)eIR" let V(z)={v,(z), ieZ} = Z A(t))e; where ey, ..., e,
j=1

is the standard basis of R". So V(z) is a family of double-infinite sequences of
vectors depending on z as a parameter. Conditions (a), (b), (c) immediately
imply that

(@) vi(z+gm)=v,(z)+m, meZ"

(b) v, 4(2)=0i(2)

(¢) vi(z)=v;, ,(z)eZ" for all but at most 3n values of ie{l, ..., q} and for
those exceptional i each coordinate of v;, ,(z)—v;(z) does not exceed one in
absolute value.

Now we are ready to define the map I' Let x be a point of absolute
minimum of L, , in ¥, .. Let x(z) be the following n-parameter family of
states: x(z)=x+V(z). By property (b') x(z)e¥, ,. Denote the map z+>x(z) by
X:R"—> Y, .. Furthermore by property (a’) the map X:R"—> ¥, , can be

projected to a map I': T"=R"/qZ" - &}, ,. First we show that I' is homotopic
to the standard embedding I:z+— {w;(z)} where wi(z)=2+iE and therefore
q

effects a homotopy equivalence between T" and @7 ,. This homotopy is given

&

by the explicit formula I: z—{w;(e,z)} where w;(e, z)=(1—¢)x;+¢ (1%) +
(1 —s)vi(2)+si. Next we show that I'(TT")< M}¥ , ;. To that end we estimate the
q

difference L,, ,(x(z))—L,, ,(x)=L,, ,(x(z))—I,. By property (c) H(x,(2), X, 1(2)
coincides with H(x;, x;, ,) for all but 3n values of ie{1, ..., q}. Let i be one of
the exceptional values. Then all coordinates of v;(z)—v;, ,(z) are less than or
equal to one in absolute value. Since by Lemma 2 for a given J, the differences
|x;, , —x;| are uniformly bounded, |x;, (2)—x;(2)|=1(x;, , —x)) + (v, ;(2)—v;(2))|
are also uniformly bounded and

|H (x;(z), Xiy 1(2))—H(x;, Xit OIS IH (x(2), Xii1 (@) +H (x;, Xit DISC

L

Therefore |L,, ,(x(2)—L, ,(x)|<3nC. O

Proposition 4. For given h and 4, there exists a constant E independent of w,q
such that for any perturbation P uniformly bounded by o, there are at least n+ 1
different critical points of L, ,in @,  with critical values less than l,+ E.

Proof. We will show that the Lusternik-Shnirelman category (for definition see,
e.g. [16], Sect.3 or [20], Chap. 5), of the set M, , is at least n+1. This
implies the existence of n+1 critical points ([16], Sect. 3). The category of M is
greater than k if there are w,...w,eH"'(M,Z) such that v, vw,U...uw,*0
(cf. [20], Theorem 5.14). We will derive the existence of such cohomology
classes from the following commutative diagram.
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r n
n
T Mlo+E Mlo+E
Y i1 i2
n
*
or, — 9,,

Here i;, i, are inclusions, © is the projection, and I' is the map constructed in
Proposition 3. Let w, ... w, be generators of H'(®,, ,; Z). Then w=w,U...Uw,
is a generator of H"(®, ,;Z) and n*w=qw, where w, is a generator of
H"(®}, ;; Z). Here U means cup-product in cohomology groups. Since y is a
homotopy equivalence we have Ofy*Qqow,)=y*1*0=I*n*i}(Vw)
=I'*n*(U(if ). So if we denote i¥w, by Y,eH' (M, ,;, Z) and their cup
product by ¥ we have I'*n* =0, thus y#0. And the category of M, . is
greater than n. [

6. Weak regularity of minimal orbits

Let w: [0,1)>R_,, @(0)=0, be a modulus of continuity i.e. a non-decreasing
continuous non-negative function which is strictly positive outside 0 and let
(@, )= (@, ro)eT" xR" be an orbit of f. We say that this orbit is w-regular
if for any i, jeZ

Iri _ rjl é w(dlst ((pi’ (0,))

In particular, w-regularity implies that two different points on the orbit do
not have the same ¢ coordinates. If w(t)=Lt for some constant L we call w-
regular orbits Lipschitz regular. For n=1 all orbits corresponding to the
absolute minimum of the Lagrangian are Lipschitz regular [13] with a fixed
constant L which depends only on the map. As we mentioned in the in-
troduction, regularity plays the key role in the whole theory of twist maps. We
are not able to prove any w-regularity for the minimal orbits for n>1.
However, a slightly weaker property does hold in that case.

Proposition 5. Under the assumptions of Theorem A let (¢, r)=f (g, o) (O
=(@y, o) be any periodic orbit of f corresponding to a state which minimizes the
functional L,, ,. Assume in addition that the second derivatives of H are bounded.
Then there exist ¢, and C depending only on f such that if i,j, k are different
mod g and max(dist(p;, @), dist(¢;, ¢,)) <&, then

Ir, —r| < C(dist(g;, @;) +dist(p;, ,)*.

Proof. As usual we pass to the universal cover and consider the state x
={X,}nez€ ¥,., generating the given periodic orbit. We will assume that i=0
and 0<j<k<gq. The case 0<k<j<gq is considered similarly. From the con-
ditions of the proposition we have for some m,, m,eZ"

[x;+m; —x,|<gg, X +my—x,|<e,.

The idea of the proof is to rearrange the pieces x, ..., X;_;; X, ..., X,_; and
Xy, .+-» X,y Of the state x into a new state y and then estimate both the value
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of the Lagrangian and its derivatives at y. Thus, we define

X, 0=<I<j
V=V X j—my,  JEI<jtq—k
X p qtmy, jHq—k=l<q

and then extend y, to other / according to (5) in order to obtain a state ye¥, .
Let us estimate L,, ,(y) from above. We have

L, ,0)-l,=L, (»)—L, ,(x)
=H(x; (,x,—m)—H(x;_;,x))
+H(x,_ 1, x,—my)—H(x, _,x,)
+H(x, . x;+m;+my)—H(x,_,x,)
<Cy(lx;+my —x, | +1x, +my —x | +1x, —my —m; —x |)
=C,(dist(p;, p,)+dist(p,, @,)+dist(e,, ¢;)
< C,(dist(@g, @) +dist(@g, @,))- (11)

On the other hand

oL, 0H cH
— 24 (y)= X, —M,—M,, Xo)+—=— (X,, X
x, ) ax'( k-1 2 1 X0) P (x0sX4)
and
0H 0H
—(x, ., x)=—r,, — (x5,%,)=r,.
(?X‘( k—1 k) k (’)x ( 0> l) 0

Since the second derivatives of H are bounded, we can assume that the second
derivatives of H are bounded too. Thus, we have

oL

ﬁ ) —(ro—r)| < Cylx,—xo—m; —m,|=C; dist (¢, ). (12)
0

Using the fact that x is a point of absolute minimum for L, , and boundness

of the second derivatives of H we obtain from (12) that for all positive t and
for some C,>0

L, ,0)—=(r,—rol=Cy dist(@,, @) t+ C,1* 2 L, ,(x)
and from (11)
Cot? —(Ir,—rol = Cy dist (@4, @))) t+ C,(dist (@4, ¢ )+ dist(@,, ¢,)) 20.
Consequently
(Ire—rol = C3 dist(gg, @))* < C5(dist(gg, @) +dist(@,, @)
which implies the statement of the proposition. []

Weak regularity does not imply regularity for two reasouns. First, it is
possible that the orbit in consideration contains two points whose ¢@-coor.
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dinates are very close or even equal, while all other points have ¢-coordinates
far away from the two. In this case the assertion of Proposition 5 is vacuous.
Second, in the situation of  Proposition 5 one may have
dist(¢;, ¢,) <dist(¢;, ¢;). In this case the estimate for |r,—r,| becomes very
weak, although the corresponding estimate for |r;—r;| which can be obtained
by re-naming indices is good. The last observation is refined in the following
statement.

Theorem B. Under the assumptions of Proposition S for every point (¢, r;) of the

orbit the inequality . 3
lri—r;l<c(dist(@;, ¢))*

holds for all except probably one je{0, ...,q—1}. The constant ¢ depends only on
f, but not on w and q.

Proof. Let k, i<k <i+q be such that

dist(¢;, @)= min dist(p;, ¢)).

i<j<i+q
Then for every j+k, i<j<i+q one has from Proposition 5
|ri—rj| <c(dist(e;, (pj)+diSt(‘1Div (Pk))% <c'(dist(g;, (Pj))%- O

Theorem B allows us to make the first modest step toward the extension of
results by Aubry and Mather to higher dimensions. Namely we will show that
limits of minimal periodic orbits are regular.

wn

Theorem C. Under the assumptions of Proposition 5 let n=1,2... be a

q(n) #
sequence of rotation vectors and (™, r'™) be a sequence of points whose f-orbits
correspond to absolute minima of the functionals Ly, gim- Suppose that the
sequence (o™, r'™) converges to a point (@, r) which is not an isolated point of its
orbit. Then the orbit of (¢, r) is w-regular where w(t)=ct*.

Proof. Let us note first that (¢, r) is not a periodic point and all points of its
orbit are not isolated. Consider any two points on the orbit of (¢, r), say (¢;, r;
=fi(¢p, r) and (@}, rj)zfj((p, r). Let us show first that ¢,# ¢;. For otherwise one
can find k such that dist(¢;, ¢,) is very small compared to |r,.—rj|2, then
approximate the piece of orbit containing all three points by a piece of orbit of
(@™, r™) with very high precision and use Proposition 5 for the approximation.

Similarly if @;# ¢, let us find k such that dist(¢;, ¢,) <dist(¢;, ¢;). Assume
i<j<k. Other cases can be treated similarly. Approximate the piece of orbit
from i to k by a piece of orbit of (o™, r) and again apply Proposition 5 for
the approximation. [J

At the current stage we are not able to make a comprehensive description
of orbits which appear as limits defined in the last theorem. We hope that if

(n)
— — then the limit orbits have rotation vector « and are fairly similar to
q

quasi-periodic orbits with that rotation vector.
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Let us note that in the situation described in Theorem C even if (¢, r)
happens to be a periodic orbit, it satisfies the same regularity condition if the
approximating orbits pass near that orbit several times.

7. Continuous time Hamiltonian systems

Let us consider a completely integrable Hamiltonian system with n degrees of
freedom. Let (I, )=, ...1,,¢,...¢,), IcU be an open set in R", peT" be
the action-angle coordinates for that system ([3], Sect. 50) so that the Hamil-
tonian which we will denote by H, depends only on I and the time evolution
leaves every torus {I'®} x " invariant. Let us fix I'’eU and assume that

JH,
19)=£0. 13
011 L (I (13)
Then in the neighborhood of the invariant torus {I'®} x T" one can define the
Poincaré map T on the hypersurface ¢, =0. This map has the following form

JH,
. 4
o1, > (1)

(,H0

JH 0H
T, 0. 00= (Lost 5% | 57° °
2

s e P
ol, cl,

The restriction of the map T to the 2n—2-dimensional invariant manifold N
={Hy(I)=H, 1‘0’) ¢, =0} is a symplectic map with respect to the induced

symplectic form Z dI; nde,.
i=2
By the implicit function theorem, on the hypersurface H,(I)=H,(I'”)) one

locall
can locally express 1,=5(,...1,). (15)

We will make the following assumption:
(iii) the hypersurface in I-space H,(I)=H,(I'”)) is strictly differentiably
convex at the point 1'%,

This condition is satisfied for example, if the function H, is strictly convex
N2

in I at I'®) ie. if the Hessian -3120 is a positive definite quadratic form.
¢ =1

Condition (iii) implies that § is a strictly convex function of (I,...1,) near
(B0, ..o I'OY),

Proposition 6. The generating function for the lift of the map T: N — N to the
universal cover has the form # (x, x')=h(x"—Xx) where h is the Legendre transfor-
mation of the function S.

Proof. One has from (15) for i=2,...,n

oS 0H, (aH(,)—l

3l. o
a1, 01, ol,

oS ch
if 6, =— —=I..
so that from (2) if J, o, then a5, 1 O
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By Proposition 6 if assumption (iii) is satisfied, s is a strictly convex
function because it is a Legendre transform of a strictly convex function. Thus
condition (iii) for H, implies that conditions (i) and (ii) from Sect. 2 are locally
satisfied for the Poincaré map T.

Consider now a C? small Hamiltonian perturbation H(I, ¢) of the Hamil-
tonian H,. The first-return map on the manifold Ny={p,=0, H(I, ¢)
=H,(I'”)} is still symplectic. Since manifolds N, and N are close and the
projection along I, direction is a symplectic map, the new map can be viewed
as a C' small symplectic perturbation of the map T. Thus, this map is
determined by a generating function which is C? (and hence C') close to h so
that all results from the previous sections can be applied to this case. The
properties of the Poincaré map can be in the obvious way extended to the
continuous time systems. We leave exact formulations of the results for Hamil-
tonian systems corresponding to Theorems A, B, C to the reader.

Remark. The C? closeness of the perturbed Hamiltonian to the one for the
integrable system is only sufficient but not necessary for application of our
results because we only need C' closeness for the generating function (compare
with discussion in Sect. 2). However since the relationship between the Hamil-
tonian and the generating function of a Poincaré map is rather complicated for
the non-integrable case, we do not try to interpret the weaker condition in
terms of the Hamiltonian.
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