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A Conjecture about Entropy

A. B. KATOK

1. In the Introduction to [1], M. Shub cites a definition of the topological
entropy of a ¢ontinuous map T of a compact metric space in terms of the asymp-
totics of the number of elements in (n,¢)-separated sets. We supplement this
with some remarks which will be useful in what follows.

We set

dn(z,y) = max d(T 'z, T"y)

and let r,,(T, €) be the minimum number of elements in an e-net in the space X
with metric d,,. It is clear that

(T, €/2) > Sn(T,€) > rn(T,¢€), (1)

where S, (T, ¢) is the maximal number of elements in an (n, ¢)-separated subset
of X.

In fact, the right-hand inequality follows from the fact that a maximal (n, €)-
separated set in X is an e-net with respect to the metric d,, and the left holds
because any (n,)-separated set of balls with respect to the metric d, centered
at the points of this set are pairwise disjoint and any £/2-net must meet such a
ball. Inequality (1) implies the following equivalent definition of the topological
entropy:

h(T) = lim lim 1log (T, €). (2)

e—~0n—oon
We let B,(z,¢) denote the ball in X centered at z and having radius ¢ with
respect to the metric d,,.
In [1], Shub stated the following conjecture.
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THE ENTROPY CONJECTURE (see [1], §V). For any C* map f of a compact
manifold M to itself,

h(f) 2 log s(f.). (3)

Here f.: H,(M,R) — H,(M,R) denotes the linear map induced by f on the
total homology of M,
dim M
H.(M,R)= @ Hi(M,R), (4)
1=0
and s(f.) is the spectral radius of f,. That is, s(f.) = lim, o0 (]| f2]) /™, which
coincides with the maximum of the moduli of the eigenvalues of fe

We allow ourselves a little abuse of language and say that a map or class of
maps satisfies the entropy conjecture if we can establish that (3) holds for such
maps.

We will investigate par,ﬁal results, counterexamples, and some suggestive con-
siderations related to the entropy conjecture and its possible generalizations. We
feel that the conjecture has been a very fruitful problem and that attempts to
prove it have been very helpful for the development of that direction in the the-
ory of dynamical systems, connected in the first place with the work of Smale,
Shub, and Sullivan, which tends to unite the methods of investigation of smooth
maps used in differential topology and the theory of smooth dynamical systems
(differentiable dynamics).

The available partial results can be divided into three groups: assertions
weaker than the entropy conjecture which have been proved for arbitrary smooth
or even continuous maps, a proof of the entropy conjecture for special classes of
manifolds, and a proof of it for special classes of maps. We begin with some gen-
eral remarks, then examine the available results in the above order, and conclude
with a discussion of when the equality h(f) = log s(f.) is attained.

2. Since the expansion (4) is clearly invariant under f,, we have

s(f) = _max s(fu),

1<i<dim M

where f,; denotes the restriction of f, to the space H;(M,R).
Thus, (3) is equivalent to the system of inequalities

h(f) > log s(f.:), t=1,...,dim M. (5)

Throughout what follows, we will suppose that the manifold M has a fixed
Riemannian metric, and we let d(z,y), z,y € M, denote the distance function
on M induced by this metric. Bounding from above the action of f on homology
(and this is necessary for the entropy conjecture) can be carried out by the
following considerations.

We shall consider k-dimensional chains generated by smooth singular sim-
plexes. If g% is such a chain, let Ak(c*) denote its k-dimensional Riemannian
volume. Define the volume of the k-dimensional chain c* = S a,0F, 0, €R,tobe
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Ak(c*) = ¥, la;|Ak(0F). Define the norm ||a|| of a homology class a € Hi(M,R)
to be the infimum of the volumes of all cycles representing the class a. It is clear
that ||a+ || < |||l + /8|l and that |laa| = |a|- ||| for @ € R. In order to verify
that || || actually defines a norm on Hj(M,R), we need only check that |la| =0
implies o = 0.

To do this, observe that for any k-dimensional differential form ~, the in-
equality [ .~ < c¢(v)Ak(c*) holds for some constant c(v). Choose a basis of
H*(M,R) and represent the elements of the basis by differential forms 1, ..., s
If ||a]| = 0, then for any € > 0 there exist cycles c. € a such that |fc£ Y| < e
fori=1,...,s. But, since these integrals do not depend on the choice of cycles
representing o, the de Rham theorem implies that a = 0.

Thus, to establish the inequality log s(f«x) < h(f) it suffices to show that
for any sufficiently small, smooth, singular k-dimensional simplex o* there is a
chain ¢,, homologous to f™¢* such that

lim lig—)‘—k—(—c—'—‘l < h(f).

n—oo n B
In particular, this inequality holds if we have
— 1 n .k
— log hu(/"0")
n-—+00 n

< h(f) (6)

for a generic simplex o*.

Of course, when f is not one-to-one the quantity Ax(f"¢*) must be computed
counting multiplicity. The stipulation following (6) that the simplex be generic
is crucial. As G. A. Margulis has remarked, without this stipulation, inequality
(8) can fail even for Morse-Smale diffeomorphisms. It is true that in his examples
either the diffeomorphisms or the simplexes are only finitely differentiable. We
note that inequality (6) pertains exclusively to differentiable dynamics, and were
one to successfully prove it, then the entropy conjecture would be established
without recourse to the methods of differential topology.

3. THEOREM 1 (A. MANNING (2]). If f is any continuous map of a smooth
compact manifold M, then

h(f) = log s(fu1)-

PROOF. The smooth one-dimensional simplexes are just the paths on M. We
let * denote the usual composition of paths. A homotopy of a path which is not
closed shall be understood to be a homotopy which fixes the endpoints. By the
discussion above, it suffices to show that for any sufficiently small path ¢ and
for some € > 0, the image f™o is homotopic to a path whose length is bounded
by a constant multiple of r,(f, ).

Choose 6 > 0 such that any ball of radius § on M is contractible. Choose
€ > 0 so that any two points z and y whose distance from one another does
not exceed 4¢ can be joined by a path of length less than §/K lying in a ball of
radius /K, where K = maxg e || D Szl
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Now suppose that = and y are the endpoints of a path o which lies entirely
in a ball of radius €. Let @, be an e-net with respect to the metric d,, on M
which consists of 7, (f, €) elements. Choose points zg, z1, . .., zs € Qn and points
20 = Z,21,...,2s = y on o such that 2; € B,(z;,€) and the segment {z;, 2,11} of
the path o between the points z; and Z;+1 lies in the union of the balls B, (z;,¢€)
and By(x;_1,€),1=0,1,...,s. Connect the points z; to z; by means of a path
{2, 2.} lying entirely in a ball of radius §/K. Consider the path

0/ = {ZO’ IE()} * {10,20} * {ZO, 21} * vk {zs—-lyzs} * {23,1‘3} * {IIJS,ZS},

where {z;,2} denotes the path running in the opposite direction to {z,z;}.
It is clear that o’ is homotopic to . If two of the points zg,...,z, coincide
then o’ contains a loop beginning and ending at these points; this loop is clearly
null-homotopic. Eliminating such loops from o’ gives a new path ¢” which is
homotopic to ¢ and o and consists of elements of the form {zi,2zi—1}, {zir 2},
and {z;,z;}. Moreover, the total number of such elements does not exceed
3rn(f,€). We show by induction that, for each member « = {y, 3’} of the path
0" and for each 7 = 0,1,. .., n, the image f*« is homotopic to a path &; of length
less than /K which lies in a ball of radius §/K. In fact, if fix is homotopic to
Ki, then f+1k is homotopic to fk;; this path lies in a contractible ball of radius
6 and, consequently, is homotopic to a path «;,; of length less than & /K which
lies in a ball of radius /K. The latter exists because the distance between the
points f**!y and f**1y’ is less than 4e. Thus, the path f"¢”, and consequently
the path f"g, is homotopic to a path of length no greater than 367,(f,¢). This
proves the theorem.

We remark that we have, in fact, proved a stronger assertion than Theorem
1.

With the same hypotheses as Theorem 1, suppose that =1, ..., v, is a system
of generators of the group m{(M), and let v € m;(M). Consider all possible
representations of f.~ in the form

R e AR LN PRCY
(where f. is the endomorphism of 7;(M) induced by f) and let o, (v) be the
minimum of Y% [i;| over all such representations. Then

T 280n(0) ).

n—oo n

Another way to generalize Theorem 1 is to relax the restrictions on the space
on which f acts.

It is shown in [2] that it is not necessary to suppose that M is a manifold. It
suffices that the following conditions be met:

1. For any € > 0, there exists a § > 0 such that any two points z and y for
which d(z,y) < é can be joined by a path of diameter less than .

2. There exists an €y > 0 such that any loop of diameter less than e is
contractible in M.
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4. The following useful remark pertains to the fact that we may, without
loss of generality, assume that the manifold M is orientable when dealing with
considerations relating to the entropy conjecture.

PROPOSITION 1. Let M be a nonorientable manifold and f: M — M a
continuous map. Let M be the two-sheeted orientable cover of M and f: M - M

the map covering f. Then h(f) = h(f) and 3(f.;) < 8(fui) fori=1,...,dim M.

PROOF. We let 7: M — M denote the projection and assume that the
Riemannian metric on M is induced from that on M. Clearly, h(f) < h(f). On
the other hand, if ¢ is sufficiently small and if Q,, is an e-net for the map f with
respect to the metric d,,, then 7~1(Q,,) is obviously an ¢-net for the map f with
respect to the metric d,,. Thus rn(f, €) < 2r,(f,€), and hence r(f) = h(f).

The map n}: H*(M,R) — H*(M,R) on cohomology induced by f is injec-
tive, and 7y f = f,:, where fy: H*(M,R) — H*(M,R) is the map induced by
f. Since s(f.x) = s(fy), the proposition follows.

When M is a cz)mpact orientable m-dimensional manifold, Poincaré duality
gives maps D;: H;(M,R) — H™ *(M,R) which are defined as follows. If a €
H,(M,R) and 8 € H,,,_;(M,R), then

(Dia)(B) = (o, B),

where (o, 8} denotes the intersection index of the cycles. Since

(feitt, fam—iB) = deg f(a, B),
we obtain the relation
m—i = deg fD;f'D;Y,
when f: M — M is a homeomorphism. Consequently,

$(fem—i) = 8(f2%) = s(f.1)- (7)
Theorem 1, Proposition 1, formula (7), and the equality h(f) = h(f~!) now
imply the following assertion (see [2]).

COROLLARY 1. 1. If f: M — M 14s a homeomorphism and dimM = m,
then log 3(fam—1) < h(f).

2. The entropy congecture holds for any homeomorphism of manifolds with
dimension less than or equal to three.

We mention the following assertion related to homeomorphisms which was
formulated in (3] as “Theorem 2” (the quotation marks are those of the authors)
and for which a heuristic proof was sketched.

Ifdim M > 5, the entropy conjecture holds for all homeomorphisms belonging
to an open dense set of the space of all homeomorphisms of M with the C°-
topology.

In [3], the authors propose to imitate for homeomorphisms the “Markov ap-
proximation” procedure for diffeomorphisms described by Shub and Sullivan in
(4], §1, and thereby construct a dense set of homeomorphisms for which the
entropy conjecture holds. They then assume that one can establish that such
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homeomorphisms are semistable.(!) Nitecki in [5] established this for diffeomor-
phisms with a hyperbolic structure. This would imply that any sufficiently small
perturbation in the C°%-topology of such a homeomorphism could not decrease
the topological entropy.

For arbitrary homeomorphisms, the entropy conjecture does not hold (see
Theorem 3, below).

5. The next case after the one-dimensional case in which inequality (5) has
been successfully proved is for the top-dimensional homology groups; that is, the
case when the dimension is equal to that of the manifold. .

If dim M = m, then s(f.,n) = |deg f|, and thus the inequality log s(fum) <
h(f) is trivially satisfied for homeomorphisms. Almost as trivial is the case when
f: M — M is a continuous covering map. For, in this case, |deg f| is equal to
the number of preimages of an arbitrary point £ € M and the total preimage
{f~"z} of z is an (n, ¢)-separated set for any sufficiently small ¢.

However, the inequality h(f) > log|deg f| may fail to hold for an arbitrary
continuous map. The simplest example of this sort was constructed by Shub in
[6] and is based on the same idea as the suspension of the homeomorphism of
cell complexes (not manifolds) described in §V of [1]. We consider the sphere S™
(n > 2) as the suspension of $”~! and we choose a map g: S*~1 — 8§71 such
that |degg] > 1. Compose the suspension -of g with a map which moves each
point along a “meridian” from the “north pole” N of the sphere S™ towards the
“south pole” 8. As a result we obtain a map f: §* — S» satisfying deg f = deg g,
whose nonwandering set (}(f) consists of the poles N and S. Thus,

h(f) = h(f | 92) =0 < log|deg f|.

We shall consider this example in a little more detail. If the map g is chosen
to be smooth and if the map which pushes down along the meridians is smooth
along the meridians, then f is trivially smooth everywhere except at the unstable
pole N and the stable pole S. Moreover, in a neighborhood of the stable pole,
we can make the map f a strict contraction. By the same token, it is possible
to make f infinitely differentiable (and, in some cases, even analytic) at S. The
index of f and all its iterates at this point is equal to 1.

It turns out that the map f fails to be smooth in an essential way at N. In
fact, f is not even a local homeomorphism at this point. Thus, if we were able
to “smooth” f at N, the Jacobian of f would have to be equal to zero in spite
of the fact that N is a repelling point.

Another interpretation, due to Shub, of the essential nonsmoothness of f at
N is (somewhat freely translated) as follows. A direct computation shows that
the index of f™ at N is equal to (degg)™. On the other hand, Shub and Sullivan
proved in [7] that the index at a fixed point of any iterate of a smooth map is

MHA map f is called semistable if, for any map ¢ sufficiently close to f in the C%-topology,
there exists a continuous map h for which foh=hog.
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bounded. Thus, were f to be a limit in the C°-topology of smooth maps, the
point N would have to “absorb” an infinite set of periodic points in the limit.
This would guarantee smooth maps with sufficiently large topological entropy.

It turns out that two of the properties of smooth maps, boundedness of the
Jacobian (the expansion coefficient of the Riemannian volume) and being local
homeomorphisms at points where the Jacobian is different from zero, are already
sufficient to prove the inequality h(f) > log|deg f| by imitating the elementary
arguments for covers cited in the beginning of this section. This result is due to
Misiurewicz and Przytycki, who proved it first for two-dimensional manifolds in
(8] and later for the general case, in a considerably simpler fashion, in (9]. We
reproduce the latter proof here.

THEOREM 2 (MISIUREWICZ AND PRZYTYCKI). If f: M — M 15 any Cl-
map of a smooth compact manifold M, then h(f) > log|deg f|.

PROOF. Suppose that 0 < o < 1 and let L be the lowest upper bound of the
absolute value of the Jacobian of f. Set ¢ = L=1/(1=%) and let B be the compact
set for which the absolute value of the Jacobian is no less than ¢. Cover B by
open sets on which f is a local diffeomorphism. Let § be the Lebesgue number
of this cover. Thus, if z,y € B and d(z,y) < 6, then f(z) # f(y).

Fix a natural number n and consider the set A = A,, consisting of those points
z, y for which no more than an of the images z, f(z),..., f*~*(z) belong to B.
If z € A,, then the absolute value |J f™(z)| satisfies the estimate

n-1
@) = [T 1 F ()] < etmomLem < (oL =1
=0

and, consequently, the Riemannian volutne of the set f™ A is less than the volume
of the whole manifold M.

Using this fact and Sard’s theorem, we choose a regular value z € M\ f"(A)
of f*. Now choose a sufficiently large (n,6)-separated set from among the n
preimages of z. We argue as follows. Each regular value y of the map f has
no more than N = |deg f| preimages. If among these preimages there are N
preimages from the set B, we choose them. Otherwise, choose a preimage which
does not belong to B. Beginning at the point z and inductively applying this
procedure, we obtain in turn some subset of the set f~1({z}), then some subset
of f~2({z}), and so forth, until we obtain a subset Q. of f~"({z}). By the
choice of § and the description of the procedure, it is clear that Qy, is an (n, 6)-
separated set. We bound from below the number of elements of this set. Suppose
y € Q. Since z & f*(A) and y € f~"({z}), we have y € A. In the construction
of Q,, we considered two sorts of transitions to preimages: taking N “good”
preimages or a single “bad” preimage. Since y € A, there are no more than
an numbers k between 0 and n — 1 for which f¥(y) € B. This means that in
passing from z to y there are at least m = [oen]+1 “good” transitions. Since this
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holds for any y € Q,,, there are at least N™ > Non elements, and consequently
Sp(f,6) > N2 from which it follows that h(f) > alog N. Since a can be

chosen arbitrarily close to 1, we have h(f) > log N.

COROLLARY 2. The entropy conjecture holds for any smooth map of
1) spheres S™, or
2) any manifold of dimension no more than two.(?)

6. We now turn to the case of invertible maps. Recall that here the case of
m-dimensional homology is trivial (m = dim M) and inequality (5) has already
been proved for arbitrary homeomorphisms in the 1- and (m — 1)-dimensional
cases (Theorem 1 and Corollary 1). The situation turns out to be much more
complicated in the intermediate dimensions. We cite a negative result obtained
as a result of discussions at the Warwick symposium on dynamical systems in
1974. An account is given in a report by Pugh [10] (the title of which lists the
participants in the discussions).

THEOREM 3 [10]. There ezists a homeomorphism f of a compact, smooth,
8-dimensional manifold M for which Q(f) is a finite set and 8(fe2) > 1.

Thus, 0 = h(f) < log s(f.2) and the entropy conjecture does not hold for the
homeomorphism f. The construction of f is based on a further development
of the idea of suspension using some results and methods of piecewise linear
topology.

We first construct a suspension K of the two-dimensiona] torus. By composing
the suspension of an Anosov diffeomorphism of the torus with a translation
map on K which moves points from the north pole to the south, we obtain a
homeomorphism B: K — K for which the set )(B) consists of two points and
for which s(f.2) > 1.

We then construct a piecewise linear inclusion 5: K — R8. It turns out that
the homeomorphism induced by B on the image K can be extended to a home-
omorphism B of the Euclidean space R®. Let N be the star neighborhood of i K
in the second barycentric subdivision of a triangulation of R® which contains the
polyhedron ¢K. By composing the homeomorphism B | N with a homeomor-
phism h: BN — N which is the identity on 5K (and which exists by a result of
Hirsch [11]), we obtain an extension C of the homeomorphism B to the manifold
with boundary N. Now consider the double M of the manifold N with the map
C. This map has two invariant sets K, and K_. The manifold M possesses
a smooth structure. Furthermore, it is possible to perturb the map C, without
changing it on K, or K_, so that the points are moved from one pole of M to

(?)Assertion 2) actually only uses Theorem 2 in the case of spheres. In fact, by Proposition
1, it suffices to restrict attention to orientable surfaces. Theorem 1 then gives the result for the
one-dimensional homology. For manifolds of genus greater than 1, the modulus of an iterate
of any map does not exceed 1. Finally, for the torus, other considerations yield a more general
result pertaining to arbitrary continuous maps (see Theorem 4).
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the other, repelled from the set K_, and attracted to K,. Thus, the homeo-
morphism f of M constructed in this way has a finite number of nonwandering
points. Consequently its topological entropy is zero.

It remains only to verify that, under the inclusion of the polyhedron K into
M, the two-dimensional cycles on K, do not become trivial. But this follows
because dim M > 2dim K, + 1 and K is a retract of the set M\K_.

Shub’s explanation in terms of indexes (see §5) is also applicable to this ex-
ample.

7. On some manifolds, the entropy conjecture turns out to hold for arbitrary
continuous maps. ’

THEOREM 4 (MISIUREWICZ AND PRZYTYCKI (12]). The entropy conjec-
ture holds for any continuous map f of the m-dimensional torus T™.

PROOF. For definiteness, we will assume that the torus T™ = R™/Z™ is
endowed with the fixed standard Euclidean metric.
We first establish the inequality,

h(f) > log | deg f|, (8)
for any map of the torus. For the torus, we have
deg f = det fi.. (9)

We let m,,: R™ — T™ denote the standard projection and consider the map
f: R™ — R™ covering f. Suppose that A,, C R™ is the standard fundamental
domain in R™ (the Euclidean cube). From (9) and the fact that f is homotopic
to an algebraic endomorphism of the torus induced by the linear operator fi.
on R™, it follows that the volume of the set f*A,, is no smaller than |deg f|".
Thus, by a theorem of Minkowski, there exists a point z € T™ such that the set
f*A, N7w1(z) = Qu(z) contains no less than |deg f|™ points. For each point
y € Qn(z), choose a point 2(y) € f~"(y) and set K,, = UyeQ,,(x){sz(y)}- We
shall prove that, for sufficiently small € > 0, K, is (n, ¢)-separated. Suppose that
21,22 € K, and the distance between z; and z, is sufficiently small. Consider
points z; € 7;}(z1) and 2, € 7;;}(z2) such that d(z1,22) = d(z1,72). Since
frzy, fre e n.1(x) are distinct, we have d(f™2y, f"22) > 1. Thus, there exists
a constant §y which depends only on f, and not on n, for which the inequality
bo < d(szl, szg) < 1/2 is satisfied for some k, 1 < k < n — 1. But, then

d(f*zq, ffzy) = d(wmszl,wmfkn) = d(szl,szz) > &

and, consequently, K, is an (n, 8p)-separated set.

In order to establish the inequality h(f) > log s(f.x) for any k, we proceed
in a similar fashion. We fix a standard basis ~ for the group Hx(T™,R) and
realize each element a of this basis by the standard inclusion i : T* — T™ of
the k-dimensional “coordinate” torus into T™. Suppose that hy: T™ — T* is
the standard projection, so that hg 0 %4 = idpx. The matrix of fJ3 with respect
to the basis v has elements of the form ¢35 = deg(hgf™ia) where o, 3 € .
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Using Minkowski’s theorem again, we find a point z € T* for which the set
Qn(z) = ;Lg frialAr N u 1(z) contains no fewer than cap elements. Then, for
each y € Qn(z), we choose a point 2(y) € (hgf"fa)‘ly. An argument similar to
the one above shows that the set K,, = UyeQn(I) taTik(2(y)) is (n, €)-separated
for sufficiently small .

Since

log s(f.) < lim

log3 a,pe+ G 4l
n 3

the inequality h(f) > log(f.x) follows from (8).
We remark that for any algebraic endomorphism f4 of the torus generated
by the matrix A € GL(n, Z), we have

h(fa) =logs(fa) = > log|Al.
AE€spA
|AI>1
Since any Anosov automorphism of the torus is topologically conjugate to an
algebraic automorphism (see [13] and [14]), we obtain the following assertion.

COROLLARY 3. If f is an Anosov diffeomorphism of the torus T™, then
h(f) = log s(f.).

We also mention the following property. If the map fus is invertible and has no
eigenvalues on the unit circle, then, by Proposition 2.1 of Franks [13], there exists
a continuous map h: T™ — T™ such that hf = gh, where g is the algebraic
automorphism of the torus generated by f.;. Thus, h(f) > h(g) = log s(fu1).

We remark that the entropy conjecture is established in [12] for homeomor-
phisms of orientable manifolds of the form T™ x X , where dimX = n and
H{(X,R)=0for 0 <i < (m+n)/2.

The arguments used in constructing (n, €)-separated sets in the preimages of
points which were successfully applied in the proofs of Theorems 2 and 4, or
modifications of these arguments, might also turn out to be useful in some other
cases. For example, they might be useful in proving the following.

CONJECTURE. IfM isa manifold whose universal covering space is homeo-
morphic to Euclidean space, then any continuous map f: M — M satisfies the
entropy conjecture.

8. Shub formulated the entropy conjecture in connection with the problem of
defining the simplest diffeomorphisms in each isotopy class of diffeomorphisms
(see [1] and [4]). From this standpoint, it is important to prove the entropy
conjecture for “good” (for example, structurally stable) diffeomorphisms. In [4],
Shub and Sullivan described an open and dense (in the C%-topology) subset of
the set of structurally stable diffeomorphisms for which the entropy conjecture
holds. This subset consisted of the diffeomorphisms which were “Markov-fitted
with respect to some handle decomposition of the manifold M.” The structure
of such a diffeomorphism accords well with the structure of the cell complex
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generated by the handle decomposition. As a result, 3(f.) can be computed in
terms of the algebraic intersection matrices and h(f) can be bounded from below
in terms of matrices consisting of the moduli of the elements of the intersection
matrices. It does not follow from this situation that the entropy conjecture holds
for the diffeomorphisms constructed by Shub and Sullivan. However, these dif-
feomorphisms satisfy the conditions of a theorem of Bowen [15] establishing the
entropy conjecture for Axiom A, no-cy¢les diffeomorphisms which have nonwan-
dering sets of dimension zero.

Later, Shub and Williams {16] obtained a more general result by eliminating
the restriction dimQ(f) = 0 and thus proved the entropy conjecture for all
well-known (and possibly all) (2-stable diffeomorphisms.

THEOREM 5 (SHUB AND WILLIAMS [16], announced in [6]). The entropy
conjecture holds for any Aziom A, no-cycles diffeomorphism.

PROOF. We follow the outline of the proof in [16] with one essential difference.
Let k be the dimension of the unstable subfoliation on a basic set {1;. Shub and
Williams used Markov decompositions (to compute the topological entropy) and
an extension of the system of stable manifolds to a neighborhood of the basic
set to compute the volume of the part of the image of a k-dimensional simplex
iying in ;. Instead of computing the topological entropy from the intersection
matrix associated to the Markov decomposition, we compute it directly from the
asymptotics of the number of elements in (n, €)-separating sets; and instead of
extending the stable manifolds (which is always a delicate matter), we extend
semi-invariant systems of cones around the stable and unstable subspaces (a
procedure that presents no difficulties).

Recall that if f: M — M is an axiom A, no-cycles diffeomorphism, there
exists a filtration My C My C --- C M,,, = M such that f(M;) C Int(M;) and
Npez H(M\M;_;) =, is a basic set of f for ¢ =0,...,m. Let

fn(:l) : H*(M'ia Mi—l,R) - H*(Mi’Mi—l,R)’
ff;)i Hj(M;, M;—1,R) — H;(M;, M;_1,R)
denote the maps induced by f. It is known that
h(f) = suph(f | (1)

On the other hand, from the exact homology sequences of the pairs (M;, M;_1),
1=0,...,m, it is not difficult to show that

s(f.) < sups(f{).

Thus, to prove Theorem 5, it suffices to establish that
h(f | ) 2 log s(f)

(10)

for each 1.
Furthermore, instead of using the relative homology of the pair (M;, M;_1) to
compute g( f’)), we can use the homology of the pair (X, A) where X = fN¥M,,
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A=XNf"NM,_,, and N is an arbitrary positive integer. We will choose N
such that the set X\ A4 is contained in a sufficiently small neighborhood U of Q;
which will be specified below. Observe that the set X \4 is convex with respect
to trajectories. This means that if z € X\ A and f"z € X\A for some n > 0,
then fkz € X\A for k = 0,1,...,n — 1, n. This property follows at once from
the properties of the filtration.

Suppose that we are given a cone K, in the tangent space T, M for each z in
a neighborhood U of (1,;. We say that a submanifold N c U is compatible with
the system of cones K, if T,N c K, for every r € N.

At each point z € {); we construct cones K; D E; and K* D E¥ which are
“narrow” enough so that

Df‘lKjCIntK;_II and DfK} CIntKY,. (11)

We do this in such a way that K2 and K3 depend continuously on z.
For example, we can choose a sufficiently small number v > 0 and set

K,={veT,M:v=v+uv,, v; € E;, va € EZ, |lv2]l < AllvLll},
K: = {1) eT,M:v= V1 + U2, V1 € E;, vy € E;"', ”’01” < ’7”’1)2”}.

If U is chosen sufficiently small, then we can extend the system of cones to a
neighborhood U so that the formulas (11) are satisfied for x € U (provided
[~z or fz, as the case may be, lies in U) and so that there exist constants c;
and € > § > 0 such that any k-dimensional submanifold N consistent with the
system of cones K2 possesses the following properties.
1. The volume of the sphere of radius € in N does not exceed 1.
2.Ifz,y € N and the distance dy(z,y) between z and y in the intrinsic metric
on N does not exceed 6, then dy(z,y) < cad(z,y).
We now prove that h(f|(2;) > log s( ff?). Using a relative variant of the
arguments in §2, we easily see that it suffices to show that
m o8 Ae(fe* N (X\A4))
n—oo n

< h(f | ), (12)

for any sufficiently small k-dimensional simplex o* C X\ A.

In addition, we can restrict ourselves to those simplexes for which the tangent
space at each point z intersects the cone K3 only at the origin. Because X\ A
1s convex with respect to trajectories in this case, there exists an s > 0 such
that the manifold f°o* N (X\A) is compatible with the cones K%, Set c; =
maxzep ||Df.|| and cover f°c* N (X\A) by a finite number of balls of radius
6/2c; in the intrinsic metric. Let N be any such ball. We estimate the volume
of the manifold f*N N (X\A). Choose a system of points on fPN N (X\A) with
the property that the distance between any two such points in the metric on
SN is larger than €. Let S denote the nth preimage of this set.

We show that S is an (n, 6 /c1c2)-separating set. Suppose that z,y € S and
set a; = dppn(f'z, fly). Since z,y € N, we have ag < 8/cz. On the other hand,
@n 2 € > 6 and, clearly, a1y < coa;. Therefore, there exists an I, 0 > | > n,
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such that §/c; < a; < 6. We may assume that § and the neighborhood of X\ A
have been chosen so small that the §-neighborhood of X\A is contained in a
neighborhood U for which properties 1 and 2 hold for the system of cones K.
In particular, we can use the compatibility of f'N NU with the system K and
property 2 to conclude that

d(f'z, fly) > 6/cica.

Now suppose that the set S contains a maximal number of points. Then f*S
is an e-net on the set f®N N (X\A) in the metric on f™N. Since the system of
cones K¥ possesses property 1, the number of elements in such an e-net is no
less than the k-dimensional volume of the set f®N N (X\A). Thus,

M (fPN N (X\A)) < rp(f,6/c1c2).

Inequality (12) follows.

We will not deal in as much detail with the proof of the inequality A(f | {2;) >
log s(ffj-)) for j # k.

In this case, it is shown in [16] that the inequality is always strict. When
j < k, it is possible to show that the volume of a j-dimensional simplex cannot
grow faster than the volume of a k-dimensional simplex since there are more
“free” directions in which to expand. For 7 > k, it is also necessary to use the
result just established when 5 < n — k for the dual filtration

M\M,, 1 C M\M,, ,C ---CM\MyCM

of the diffeomorphism f~1.

The required result follows from duality between the (n — j)-dimensional co-
homology of the pair (M\M;_;, M\M;) and the j-dimensional homology of the
pair (M;, M;_1) (see [15]).

9. In this section we consider the question of which diffeomorphisms satisfy
the equation h(f) = log s(f.) or its local variants. In the case of diffeomorphisms
with a hyperbolic structure, it is possible to find natural sufficient conditions.
Although these conditions are not necessary, they cannot “essentially” be dis-
pensed with.

We begin with Anosov diffeomorphisms.

PROPOSITION 2. If f: M — M is an Anosov diffeomorphism and if the
unstable subfoliation E* of the tangent bundle TM 1s orientable, then h(f) =

log s(f.).

PROOF. By Theorem 5, it suffices to prove that h(f) < logs(f.). For hy-
perbolic sets (and, in particular, for Anosov diffeomorphisms), one can compute
the topological entropy from the asymptotics of the number N,(f) of periodic
points of f of period n. More explicitly,

h(f) :i—n—IIOg]ZLn(f).
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Let P, = {z € M, f"z = z} and let is=(z) be the index of  as a fixed point of
.

By the Lefschetz formula, we have

) dim M )
L(fY) =3 i) = > (-1 te(f7).
:EEP,, ’i=0

Since all periodic points of J™ are hyperbolic, the index equals +1 or —1
and depends only on the dimension. Thus, the map DfT either preserves or
reverses the orientation on the invariant expanding subspace E¥. Since M is
connected and the subfoliation E* is orientable, the spaces EY can be oriented
in a consistent manner such that the differential D fZ|E: E3 — EY., is either
orientation-preserving at all points or orientation-reversing at all points. In
particular, this applies to the fixed points of f* and, thus, the indexes isn(2)
are equal for every z € P,.. That is, |[L(f™)| = N,(f). Furthermore,

dim M ' v dim M
L™= Y 0| < Y0 Ite(m)] < dim Ho (M, R)(s(£.))"
=0 =0
Therefore,
mbg_N"(_f) < s(f.).

n
This proves the proposition.

The question of whether the unstable foliation E* of an Anosov diffeomor-
phism is always orientable has been studied for more than ten years and has
not yet been solved. In [19)], Smale referred to this question in connection with
the problem of the rationality of the zeta function of an Anosov diffeomorphism.
This latter problem was subsequently solved using Markov decompositions [22]
in the more general setting of hyperbolic sets where orientability may fail to hold
(see below).

CONJECTURE. If f: M — M s an Anosov diffeomorphism, then h(f) =
log s(f.).

We now suppose that both the invariant subfoliations E* and E® of a given
Anosov diffeomorphism are orientable (this is equivalent to the orientability of
E™ and the manifold M itself). In this case, it is possible to amplify Proposition
2. In fact, let k be the dimension of E*. Then, we can find a functional & on the
k-dimensional differential forms on M which geometrically realizes a nonzero el-
ement o € Hi(M,R) for which f.xe = Ao and log || = h(f). The construction
is a particular case of a construction due to Ruelle and Sullivan [17].

On the global stable submanifolds W* of M , there exists a family of o-finite
Borel measures uw. (in general, singular) possessing the following properties
(see [23] and [18)).

1. The measure of any compact subset of W* is finite.

2. The measures pass into one another under translation along the local un-
stable submanifolds.
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3. fuwe = A" 1ugwe., where log |A| = h(f).

Now let w* be a k-dimensional differential form on M. We let & denote the
functional whose value on w* is calculated as follows. Cover M by small open
sets which have a local product structure (see [13]) and use a partition of unity
to represent w* as a sum of forms with support in these sets. In each such open
set, integrate the form along each local unstable manifold (taking into account
the orientation, which is assumed to be chosen consistently), and then integrate
the resulting integrals with respect to the measure uw. along any transverse
local stable manifold. Add the resulting contributions from each local form to
obtain the value &(w*). We shall show that & is a cycle; that is, @(dw*~1) =0
for any (k — 1)-form w*=1. Let w*~! = . w¥F~!, where the support of each
wf ~1 lies in the interior of some open set U; with a local product structure. It
is clear that

a(Ow*1) = Z&(Bwf'l).
1
A ! on the
boundaries of the local unstable manifolds in U;. Since these boundaries lie
outside the support of wf‘l, we have d(&uf—l) =0.

Let o denote the homology class of & We need to show that f..a = Aa,
log |A| = h(f), and a # 0.

Suppose, for definiteness, that the diffeomorphism f preserves the orientations
of E* and E* (the other case can be handled by making the obvious modifications
to the argument following).

We compute the intersection index of & with (n — k)-dimensional chains. To
do this, it suffices to find the intersection index of & with any sufficiently small
singular simplex ¢™~* transverse to the subfoliation E*. Suppose U is an open
set which has a local product structure and which contains 6”~*. The simplex
o™ ¥ intersects each local unstable manifold at no more than one point. Thus, it
follows from the definition of @ that the absolute value of the intersection index
(o, 6™ %) is equal to the measure pw- of the projection (along the local unstable
manifolds) of 0™~ onto any local stable manifold in U. The intersection index
takes a plus or minus sign according to whether the orientation of the projection
does or does not coincide with the orientation of the local stable manifolds.

From property 3 of the measures uw s it follows that

(@, fo™ %) = A" Ha, ™).
Linearity of the intersection index implies that a similar equation holds for any

smooth singular (n — k)-dimensional chain. Thus, for any v € H,_x(M,R), we
have

But d(é‘)wf'l) is equal to the integral of the values of the form wf~

<a’ *n—k"ﬁ = >‘_1<a1’7>'
Since (a,7) is equal to the value on ~ of Dya € H™ *¥(M,R), we have
oDk = ADgo. Since fo = D,:l w_k D, it follows that f.zo = Aa, where

log |A| = h{f). Interchanging the roles of the stable and unstable manifolds, we
can construct an (n — k)-dimensional cycle 3. From the definitions it is easy to



106 A. B. KATOK

see that (e, 8) # 0, where 3 denotes the cohomology class of 8. Thus, a # 0
and 3 # 0.

We now pass to the more general class of Axiom A, no-cycles diffeomorphisms.
In this case, there are local variants of the propositions cited above. The ori-
entation condition for the foliation E* on a basic set (; is as follows: There
exists an orientation of the subfoliation E* on {1; such that for every z € (; the
differential

Df. | Ey: E} — E},

is either simultaneously orientation-preserving or simultaneously orientation-
reversing. In this case,
h(f | Q) = log s(f{*)).

Shub and Williams proved this in [16] by an index argument which carries over
word for word to this case by using a relative variant of the Lefschetz formula.
In the case when the stable subfoliation E® on (); also satisfies the analogue of
the orientability condition, Ruelle and Sullivan [17] constructed an eigenvector
in Hp(X, A, R) with eigenvalue A, where log|\| = h(f | €%;). Their construction
is similar to the one above for Anosov diffeomorphisms. The measures gy on
the stable manifolds are constructed using conditional measures induced by the
invariant measure with maximal entropy on ();.

We give an example to show that the orientability conditions are essential.
Smale, in the now classical horseshoe example (see [19], §1.5, especially Figures
7 and 13), constructed a diffeomorphism of the two-dimensional sphere §? with
completely disconnected basic set. In this case, the unstable foliation on the
basic set naturally possesses infinitely many orientations, but no orientation
compatible with the action of the diffeomorphism exists. The topological entropy
in Smale’s example is equal to log 2, while the spectral radius of the induced
operator on the homology (in both the absolute and relative cases) is equal to 1.

Plikin [20] subsequently constructed an Axiom A diffeomorphism of S? with
a one-dimensional attracting basic set on which the unstable subfoliation is not
orientable. In this example the topological entropy is also positive, while a
neighborhood of the basic set is contractible and, therefore, the spectral radius
of the operator on homology is also equal to 1.

Finally, we remark that even if the orientability condition is satisfied on all
the basic sets, it can happen that h(f) > log s(f.), because

s(f.) < max s(F8).

Gibbons [24] gives an example of this type on the three-dimensional sphere in
which there are two basic sets, an attracting and a repelling solenoid, and the
topological entropy is positive. The nontrivial relative one-dimensional cycles
vanish under passage to absolute homology.

10. We conclude by mentioning some other unsolved problems connected
with the topological entropy. In [4] it was shown that some isotopy classes of
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diffeomorphisms may fail to contain an Axiom A diffeomorphism f satisfying
the strong transversality condition and the equality h(f) = log s(f.).

PROBLEM. Does every isotopy class of diffeomorphisms contain a diffeomor-
phism f for which h(f) = log s(f.)? In particular, does each isotopy class of
diffeomorphisms for which s(f.) = 1 contain a diffeomorphism with topological
entropy equal to zero?

It is known [25] that the topological entropy is neither continuous nor even
upper or lower semicontinuous on Diff" (M).

PROBLEM (see [21], Problem 41). Is the topological entropy continuous on a
second category set in Diff" (M)?

We have already mentioned that the topological entropy of “good” diffeomor-
phisms can be computed in terms of the asymptotics of the number of periodic
points. This is not true for arbitrary diffeomorphisms (see [1]).

PROBLEM. Does the inequality

' h(f) < T 8N

n—oo n
hold for diffeomorphisms in a second category set in Diff’ (M)?

Many interesting unsolved problems pertaining to smooth dynamical systems
are contained in the list of 50 problems compiled by Palis and Pugh [21]. These
problems reflect the main directions in the theory of dynamical systems and the
various questions discussed at the symposium at the University of Warwick in
1974.
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