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Abstract

We study the left action α of a Cartan subgroup on the space X = G/�, where

� is a lattice in a simple split connected Lie group G of rank n > 1. Let µ

be an α-invariant measure on X . We give several conditions using entropy and

conditional measures, each of which characterizes the Haar measure on X . Fur-

thermore, we show that the conditional measure on the foliation of unstable man-

ifolds has the structure of a product measure. The main new element compared

to the previous work on this subject is the use of noncommutativity of root foli-

ations to establish rigidity of invariant measures.

c© 2003 Wiley Periodicals, Inc.

1 Introduction

1.1 Overview
This paper is a part of an ongoing effort to understand the structure of invariant

measures for algebraic (homogeneous and affine) actions of higher-rank abelian

groups (Zn and Rn for n ≥ 2) with hyperbolic behavior. It started from attempts to

answer the question raised in Furstenberg’s paper [4] concerning common invari-

ant measures for multiplication by p and q on the circle, where pn �= qm unless

n = m = 0. (See [2, 3, 5, 6, 7, 8, 12, 14, 15, 18] and the references thereof; in par-

ticular, for an account of results on Furstenberg’s question, see the introduction to

[12].) This study of invariant measures can in turn be viewed as a part of a broader

program of understanding rigidity properties of such actions, including local and

global differentiable rigidity, cocycle rigidity, and such [9, 10, 11, 13].

The principal conjecture concerning invariant measures (see “main conjecture”

in the introduction of [12]) asserts that unlike the “rank-1 case” (actions of Z and

R), the collection of invariant measures is rather restricted; in a somewhat impre-

cise way, one might say that those measures are of algebraic nature unless a certain

degeneracy appears that essentially reduces the picture to a rank-1 situation. No-

tice, however, that the picture is intrinsically considerably more complicated than
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in the case of unipotent actions, which has been fully understood in the landmark

work by Ratner [22, 23]. In the latter case the leading paradigm is unique ergod-

icity, although other measures of algebraic nature may be present. Such measures

appear only in finitely many continuous parametrized families such as closed horo-

cycles on SL(2, R)/ SL(2, Z). In the case of higher-rank hyperbolic actions, there

are always infinitely many isolated compact orbits of increasing complexity that

are dense in the phase space so that in the ideal situation (which corresponds to

unique ergodicity in the unipotent case) one expects the δ-measures on those orbits

to be the only ergodic measures other than Haar.

All the progress made, both for Furstenberg’s question and for the general case,

concerns invariant measures that have positive entropy with respect to at least some

elements of the action. The reason for this is that the available techniques in-

troduced explicitly in [12] (and implicitly present already in earlier work on the

Furstenberg question) are based on the consideration of families of conditional

measures for various invariant foliations, which are contracted by some elements

of the action. For a zero-entropy measure every such conditional measure is atomic,

so no further information can be obtained from these methods. In the positive en-

tropy case the algebraic nature of conditional measures is established first, and this

serves as a basis of showing rigidity of the global measure.

There are several methods for showing that conditional measures are algebraic,

which all involve various additional assumptions. The starting point of all consid-

erations is showing that conditional measures are invariant under certain isometries

that appear as restrictions of certain singular elements of the action (see Proposi-

tion 5.1 below). In order to produce a sufficiently rich collection of such isometries,

typical leaves of the foliation in question should be contained in ergodic compo-

nents of the corresponding singular elements. This, of course, follows from ergod-

icity of the element. However, ergodicity of the whole action with respect to an

invariant measure in general does not imply ergodicity of individual elements, and

singular elements are particularly prone to be exceptional in this case. Many of the

basic results in the works mentioned above include explicit ergodicity assumptions

for singular elements.

There are several ways to verify these conditions. For special measures in some

applications such as isomorphism rigidity, these assumptions are satisfied automat-

ically [7, 8] due to the properties of Haar measure. For actions by automorphisms

of the torus, which have been studied most extensively so far, there are specific

tools from linear algebra and algebraic number theory. One possible assumption,

which is used in [12, 14] (see also [5]) to prove rigidity of ergodic measures with

nonvanishing entropy for some actions by toral automorphisms, is that no two Lya-

punov exponents are negatively proportional. Such actions are called “totally non-

symplectic” (TNS).

First results for other cases including the Weyl chamber flows were obtained

in [12, sect. 7] and [14], where certain errors in the original presentation were cor-

rected. For Weyl chamber flows and similar examples, Lyapunov exponents always
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appear in pairs of opposite sign (this is a corollary of the structure of root systems

for semisimple Lie groups), so the TNS condition never holds. Accordingly, in the

work of Katok and Spatzier quoted above, as well as in the recent, more advanced

work in that direction [7], some form of ergodicity for certain singular directions

is assumed.

In this paper we take a different course. We study a more restricted class of the

Weyl chamber flows than in those papers, but we manage to find sufficient con-

ditions for algebraicity that avoid any ergodicity-type assumptions for individual

elements.

Our main technical innovation is the observation that noncommutativity of the

foliations corresponding to roots allows us to produce the desired translations in

some directions; assuming the conditional measures for two directions are non-

atomic, translation invariance is obtained for the commutator direction. This key

observation is carried out in Lemma 6.1 for the SL(n, R) case and in Proposi-

tion 7.1 for the general split case.

1.2 The Setting
We consider a simple, (R-)split connected Lie group G of rank n > 1, a lattice

� in G, and the action α of a maximal Cartan subgroup of G on the quotient G/�.

1.2.1 The SL(n, R) Case
To illustrate, let us first consider the special case given by the subgroup α of

SL(n + 1, R) consisting of all diagonal matrices with positive entries. The left

action of α on X = SL(n + 1, R)/� is often called the “Weyl chamber flow” and

is defined by

αtx =



et1

. . .

etn+1


 x

where x ∈ X and

t ∈ R =
{

t ∈ Rn+1 :
n+1∑
i=1

ti = 0

}
∼= Rn .

Let m be the Haar measure on X , which is invariant under the left action of SL(n +
1, R) and, in particular, α-invariant. We study ergodic α-invariant measures µ on

X . Aside from Haar measure, there are also δ-measures on compact orbits of α;

such orbits are dense (see [20, 21] or [1] for a quantitative statement). We say the

measure is standard if it is the Haar measure or a measure supported on a compact

orbit. Among the standard measures, only Haar has positive entropy with respect

to individual elements.

We will give several conditions, each of which characterizes the Haar measure

on X .
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In the unpublished manuscript by M. Rees [24] (see Section 9) a lattice � in

SL(3, R) is constructed for which there exist nonstandard invariant measures on

X . With respect to some of these measures, the entropies hµ(αt) of some individ-

ual elements of the Weyl chamber flow are positive. Furthermore, the conditional

measure for the foliation into unstable manifolds for αt is supported on a single

line. Thus unlike the TNS case for toral automorphisms, positive entropy for some

elements of the Weyl chamber flow alone is in general not sufficient to deduce that

µ = m.

We show that for SL(3, R), in terms of conditional measure structure, the pic-

ture that appears in Rees’s example is the only one possible for measures other than

Haar. A part of this result has been outlined without proof at the end of [12].

There are other assumptions (see Theorem 4.1) about entropy or the conditional

measures that are sufficient in order to show that µ = m. For instance, if all

elements of the flow have positive entropy

hµ(αt) > 0 for all t ∈ R \ {0}
for the action on SL(n +1, R)/� or some elements have sufficiently large entropy,

then µ = m.

1.2.2 The General Split Case
Let now G be a simple, split connected Lie group of rank greater than 1, let �

be a lattice in G, and let α be a maximal Cartan subgroup that acts from the left

on X = G/�. We write again αt for the action of an individual element of the

Cartan subgroup, where t ∈ Rn and n > 1 is the (real) rank of the Lie group. We

denote the (nonzero) roots of G with respect to α by the letter λ and the set of all

roots by �. Furthermore, we let g be the Lie algebra of G, and gλ be the root space

corresponding to the root λ. Then gλ is one-dimensional since G is simple and

split. For any t the root space gλ is an eigenspace for the adjoint action of αt on the

Lie algebra g; the corresponding eigenvalue is eλ(t).

In this case the Haar measure is characterized as the only Borel probability

measure invariant and ergodic with respect to the left action of α for which the

conditional measures on the one-dimensional foliations corresponding to all root

spaces are nonatomic, or as the measure with a sufficiently large entropy (see The-

orem 4.1).

Before presenting the result and its proof in Sections 4 through 8, we will give

in the next two sections a short description of the foliations of X and the conditional

measures for µ.

1.3 Extensions
1.3.1 Implications for Diophantine Approximation

There are interesting connections between number theory and dynamics of

higher-rank actions. For example, the famous Littlewood conjecture on Diophan-

tine approximation would follow if one could show that any bounded orbit of the



1188 M. EINSIEDLER AND A. KATOK

Weyl chamber flow on SL(n, R)/ SL(n, Z) for n ≥ 3 is closed. See [16, sect. 5.3].

This statement is a topological version of the rigidity of invariant measures. Our

results may be applied to obtain certain partial results along the line of showing

that possible counterexamples to the Littlewood conjecture form a “thin” set.

1.3.2 Infinite Volume Factors
While we present our results in the setting of a finite volume factor G/�, finite-

ness of the volume (i.e., the fact that � is a lattice) does not play any role in our

considerations. One can consider left actions of a maximal Cartan subgroup on

factor spaces of more general kind G/� where � is a discrete subgroup of G. It is

the finiteness of the measure µ that is important. Thus if the factor space has infi-

nite volume, our conditions properly modified will imply that an invariant measure

with one of the additional properties (see Theorem 4.1) simply does not exist.

1.3.3 Nonsplit Groups
The assumption that G is split is technically important for our argument, since

it guarantees that the root spaces are one-dimensional and hence the only non-

atomic algebraic measures are Lebesgue. In the case of more general (nonsplit)

semisimple groups of higher rank, considerations of conditionals within the root

spaces are more involved. Still, one can find conditions guaranteeing algebraicity

without invoking ergodicity directly. These results will appear in a separate paper

subsequently.

2 Foliations of X

2.1 SL(n, R) case
We begin by briefly describing some foliations for the special case X = SL(n+

1, R)/�, their expanding and contracting behavior, and the Weyl chamber picture

in R. Let d( · , · ) denote a right-invariant metric on SL(n + 1, R) and the induced

metric on X .

Recall that a foliation F is contracted under αt for a fixed t ∈ R if for any

x ∈ X and any y ∈ F(x), d(αntx, αnt y) → 0 for n → ∞. In other words, the leaf

through x is a part of the stable manifold at x . A foliation is expanded under α t if it

is contracted under α−t, or each leaf is a part of an unstable manifold. A foliation

F is isometric under αt if d(αtx, αt y) = d(x, y) when y ∈ F(x) is close to x (in

the metric of the submanifold F(x)).

Let 1 ≤ a, b ≤ n + 1 always denote two different fixed indices, and let exp be

the exponentiation map for matrices. Define the matrix

va,b = (δ(a,b)(i, j))(i, j) ,

where δ(a,b)(i, j) is 1 if (a, b) = (i, j) and 0 otherwise. So va,b has only one nonzero

entry, namely, that in row a and column b. With this we define the foliation Fa,b,
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for which the leaf

(2.1) Fa,b(x) = {exp(sva,b)x : s ∈ R}
through x consists of all left multiples of x by matrices of the form exp(sva,b) =
Id +sva,b.

The foliation Fa,b is invariant under α; in fact, a direct calculation shows

(2.2) αt(Id +sva,b)x = (
Id +seta−tbva,b

)
αtx ,

the leaf Fa,b(x) is mapped onto Fa,b(α
tx) for any t ∈ R. Consequently, the fo-

liation Fa,b is contracted (respectively, expanded or neutral) under α t if ta < tb
(respectively, ta > tb or ta = tb). If the foliation Fa,b is neutral under αt, it is in

fact isometric under αt.

The leaves of the orbit foliation O(x) = {αtx : t ∈ R} can be described

similarly using the matrices

ua,b = (δ(a,a)(k,l) − δ(b,b)(k,l))k,l .

In fact, exp(ua,b) = αt for some t ∈ R.

Clearly the tangent vectors to the leaves in (2.1) for various pairs (a, b) together

with the orbit directions form a basis of the tangent space at every x ∈ X .

For every a �= b the equation ta = tb defines a hyperplane Ha,b ⊂ R. The

connected components of

A = R \
⋃
a �=b

Ha,b

are the Weyl chambers C of the flow α. For every t ∈ A only the orbit directions

are neutral; such a t is called a regular element.

Let I = {(a, b) : a < b}, and let M I be the span of va,b for (a, b) ∈ I (in the

Lie algebra of SL(n + 1, R)). For the invariant foliation FI the leaf through x is

defined by

(2.3) FI (x) = {exp(w)x : w ∈ MI } .

Furthermore, there exists a Weyl chamber C such that for every t ∈ C , the leaf

FI (x) is the unstable manifold for αt. In fact, C = {t ∈ R : ta > tb for all a < b};
this Weyl chamber is called the “positive Weyl chamber.”

2.2 General Split Case
Let exp : g → G be the exponential map from the Lie algebra to the Lie group.

For any root λ and w ∈ gλ, it follows that αt exp(w) = exp(eλ(t)w)αt. We define

the foliation Fλ on G/� by its leaf through x

Fλ(x) = {exp(w)x : w ∈ gλ} .

By construction Fλ is an invariant foliation that is contracted by αt if λ(t) < 0,

expanded if λ(t) > 0, and isometric if λ(t) = 0. For every root λ, fix a nontrivial

element vλ ∈ gλ. The tangent space of G/� at any fixed point is isomorphic to g
and splits into the sum of gα and the various root spaces gλ for λ ∈ �. Here gα



1190 M. EINSIEDLER AND A. KATOK

is the Lie algebra of the Cartan subgroup—and corresponds to the orbit directions

in G/�. Any Lie subalgebra h that is a sum of root spaces defines similarly an

invariant foliation Fh. For a fixed t and the subalgebra generated by the root spaces

{gλ : λ(t) > 0}, this foliation is the foliation into unstable manifolds for α t. The

notions of Weyl chambers and regular elements apply similarly. In the context

of SL(n + 1, R) the set � and the root spaces are naturally described by pairs

λ = (a, b) of different indices and the corresponding matrix spaces as above.

In what follows the foliation F will always be the orbit foliations of a unipotent

subgroup normalized by the Cartan subgroup such that the foliation F is expanded

by a single element of the action. More precisely, there is a Lie subalgebra h that

is a sum of root spaces such that H = exp h is a unipotent subgroup, the leaf

F(x) = H x is the orbit of x ∈ X under H , and there is a t ∈ Rn such that F
is expanded under αt. Notice that, under those assumptions, the parametrization

map ϕ
h
x (w) = exp(w)x for w ∈ h and most fixed x ∈ X is injective. In fact, if

the map is not injective at x , then discreteness of � implies that α−ntx eventually

stays outside every compact set of X when n → ∞. This is impossible if X is

compact. Furthermore, for a general X we see that the map is injective for a.e. x ∈
X with respect to any αt-invariant probability measure. We say A ⊂ F(x) is open

(bounded, etc.) if A is open (bounded, etc.) in the topology of the submanifold

F(x), i.e., if and only if there is an open (bounded, etc.) subset B ⊂ h with

A = ϕ
h
x (B).

As in the case of SL(n + 1, R), we let d( · , · ) be a fixed, right-invariant metric

on G and use the induced metric on X = G/�.

3 The Conditional Measures

Throughout this paper the standing assumption on µ is that µ is a Borel prob-

ability measure, which is ergodic with respect to the action α. We will study µ by

means of its conditional measures µF
x for various foliations F of the kind described

in Section 2. We recall some of the basic facts; see also section 4 of [12]. We write

Fλ (respectively, F) for a foliation whose leaves are one-dimensional correspond-

ing to a root space (respectively, to a Lie subalgebra h that is a sum of root spaces).

As noted before, we assume that there is a map αt that expands the foliation F .

3.1 Construction of Conditional Measures for Foliations
First we recall the basic notion of conditional measures with respect to a σ -

algebra A or a measurable partition. All statements (or characterizations) below

should be understood a.e. with respect to µ. The conditional measures µA
x are a

family of probability measures satisfying the following characterizing properties:

(i) The assignment x → µA
x is A-measurable, where we use the weak∗ topol-

ogy in the space of probability measures.
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(ii) For any integrable function f and A ∈ A∫
A

f (x) dµ(x) =
∫
A

[ ∫
X

f (y) dµA
x (y)

]
dµ(x) .

Using the conditional expectation, the above properties together are equivalent to

E( f | A)(x) =
∫
X

f (y) dµA
x (y)

for all integrable functions f . If A is countably generated by A1, . . . , Ai , . . . , the

atom of x is defined by

[x] = [x]A =
⋂

i :x∈Ai

Ai ∩
⋂

i :x /∈Ai

X \ Ai .

Then µA
x is a probability measure on the atom [x] for a.e. x ∈ X .

The foliations of the kind we are considering are usually not measurable with

respect to a measure µ; hence the above construction cannot be applied directly.

Typically those foliations have dense leaves. Conditional measures in such a setting

are defined by approximation; there are measurable partitions whose elements are

large pieces of the leaves of the foliations. While this construction can be carried

out in greater generality, we will restrict our description to the particular case of

homogeneous foliations on factor spaces of Lie groups.

Let F be the foliation defined by the Lie algebra h (as always a sum of root

spaces), and let

T =
∑

λ:vλ /∈h

gλ + gα

be the subspace transversal to h. Let z ∈ X , O ⊂ h × T , be a bounded open set

such that

ϕO,z(w,w′) = exp(w) exp(w′)z for (w,w′) ∈ O is injective.

Define the σ -algebra for the “foliated set” U = ϕO,z(O) to be

A(O, F) = {X \ U, ϕO,z(O ∩ B) : B = h × C and C ⊂ T is measurable} .

Notice that the atoms [x] of x with respect to the σ -algebra A(O, F) are X \U for

x /∈ U , and ϕO,z(O ∩(h×{w′})) for x = ϕO,z(w,w′) ∈ U and (w,w′) ∈ O . In the

second case, the atom is an open subset of the leaf F(x). The conditional measure

µF
x for a foliation is a family of σ -finite measures with the following characterizing

properties:

(i) For a.e. pair of points x, y ∈ X , the conditional measures agree up to a

multiplicative constant C > 0

(3.1) µx = Cµy whenever F(x) = F(y) is their common leaf.

(ii) The complement of the leaf F(x) is a null set with respect to µF
x for

a.e. x ∈ X .
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(iii) The conditional measure µF
x satisfies for a.e. x ∈ U that the conditional

measures for A(O, F) and µF
x are up to a multiplicative constant equal

when restricted to [x]. More precisely, the function g(x) = µF
x ([x]) is

finite and measurable, and

µA(O,F)
x (C) = µF

x (C ∩ [x])
µF

x ([x])
for any measurable C ⊂ X and a.e. x ∈ X .

The existence of the conditional measures for a foliation F can be shown by

using the conditional measure for various σ -algebras A(O, F). There is a sequence

of open sets as in property (iii) above whose images cover X . Furthermore, by

applying the powers of the automorphism αt that expands F , one can make the

atoms [x] for A(O, F) become larger and larger pieces of the leaf F(x). This

produces a (doubly infinite) sequence of σ -algebras A(O, F) with the property

that for a.e. point x ∈ X and any bounded set C ⊂ F(x) there is a σ -algebra

A(O, F) of that sequence such that C ⊂ [x] ⊂ F(x). The conditional measure

µF
x is a limit of scalar multiples of the conditional measures for such σ -algebras

A(O, F). It is necessary to use multiples since otherwise the conditional measure

on a larger atom might not extend the conditional measure on the smaller one—

one fixes for every point x a bounded set Dx ⊂ F(x) and uses Dx as a normalizing

set so that µF
x (Dx) = 1. This can be carried out so that the measurability part of

property (iii) is satisfied.

We summarize the most important properties. The conditional measure µF
x is a

σ -finite measure on the leaf F(x), and locally finite when considered as a measure

on the manifold F(x). Although this measure is not canonically defined, the ratios

µF
x (A)

µF
x (O)

for a measurable A ⊂ F(x) and an open bounded set O ⊂ F(x) that contains x
are canonical. The invariance of the measure under the flow implies that

(3.2) µF
αtx(α

t A) = CµF
x (A)

for any t ∈ R, a.e. x ∈ X , some constant C > 0 (depending on x and t), and any

measurable A ⊂ F(x).

For a foliation Fλ into one-dimensional leaves defined by a root λ (or a pair of

different indices λ = (a, b)), we write µλ
x for the family of conditional measures

and impose the following normalization:

(3.3) µλ
x

({exp(svλ)x : s ∈ [−1, 1]}) = 1 ,

where vλ ∈ gλ is a fixed nontrivial vector in the root space (or the matrix vλ = va,b).

This and equation (3.2) imply

(3.4) µλ
αtx(α

t A) = µλ
x(A) if Fλ is isometric under αt.
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A close relation of µ and its conditional measures is how null sets of the first

behave under the second. We note the following lemma for later use:

LEMMA 3.1 Let F1, . . . , Fj be several foliations as in Section 2. Let N be a null
set; then there exists a null set N ′ ⊃ N with µFi

x (N ′) = 0 for all x /∈ N ′ and
i = 1, . . . , j .

PROOF: For a conditional measure with respect to a σ -algebra A, it follows

from property (ii) of the characterizing properties that µA
x (N ) = 0 for a.e. x ∈ X .

Using the characterizing properties for µF
x , we get similarly µFi

x (N ) = 0 for a.e.

x ∈ X and all i , say Ci (N ) ⊃ N is a null set for which µx(N ) = 0 for x /∈ Ci (N ).

Let N0 = N and Nk+1 = C1(C2(· · · C j (Nk) · · · )) for k = 0, . . . . Clearly

N ′ = ⋃
Nk is a null set. If x /∈ N ′ and k ≥ 0, we have µFi

x (Nk) = 0 because

x /∈ Ci (Nk) ⊂ Nk+1. Since µF
x is a measure, we conclude µF

x (N ′) = 0. �

3.2 Some Dynamical Properties
We say µλ

x is Lebesgue a.e. if it is invariant under left multiplication with

exp(svλ) for a.e. x ∈ X and all s ∈ R. We say µF
x is atomic a.e. (respectively,

trivial a.e.) if µF
x is an atomic measure (respectively, µF

x = δx ) for a.e. x ∈ X .

LEMMA 3.2 Let µ be an α-invariant ergodic measure on X. Either µλ
x is Lebesgue

a.e. or the conditional measure is almost never Lebesgue. Similarly, either µF
x is

atomic a.e. (respectively, trivial a.e.) or µF
x has no atoms (respectively, is not

trivial) a.e. Furthermore, if µF
x is atomic a.e., it is in fact trivial a.e.

SKETCH OF PROOF: The first statement follows from equation (3.2), which

implies that the set of points x ∈ X where µλ
x is Lebesgue (atomic or trivial) is

α-invariant. For the second statement, let ε > 0 and let x be an atom of µF
x . Then

there is a small neighborhood U ⊂ h of the origin such that µF
x (exp(U )x \ {x}) ≤

εµF
x ({x}). Let A be the set of points where this inequality for a fixed ε and U

holds. We claim that A is measurable. First, we can divide X into countably many

pieces Xk such that for x ∈ Xk ⊂ ϕOk ,zk (Ok) we have exp(U )x ⊂ [x]A(Ok ,F).

Then A ∩ Xk is measurable because of property (iii) of µF
x and property (i) of

µA(Ok ,F)
x . Let αt be such that F is expanded. By Poincaré recurrence a.e. x ∈ A

returns infinitely often to A; i.e., there are infinitely many positive integers n with

αntx ∈ A. We see from equation (3.2) that

µF
x (F(x) \ {x}) ≤ εµF

x ({x})
for a.e. x ∈ A. The set B of points x with the above property is α-invariant, and so

B = X . However, by varying U and ε we see that µF
x is trivial a.e. �

The conditional measure µF
x for various foliations F cannot be used to describe

µ uniquely (locally one would need a transversal factor measure as well). However,

the measure µ and the measures µF
x for x ∈ X are closely related, and some

properties of µ can be characterized by the conditionals.
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PROPOSITION 3.3 Let µ be an ergodic α-invariant measure on X. If µλ
x is Le-

besgue a.e. for all roots λ ∈ � (respectively, pairs of different indices λ = (a, b)),

then µ = m is the Haar measure. For a fixed map αt the entropy hµ(αt) is trivial
if and only if the conditional measure µF

x is trivial for the foliation F into unstable
manifolds.

SKETCH OF PROOF: For the first statement consider an element g = exp(svλ)

for a small s and some B ⊂ X with small diameter. There exists an open set O as in

property (iii) for conditional measures on leaves that contains B and gB. By prop-

erty (iii) the conditional measure for the σ -algebra A(O, Fλ) and x ∈ ϕO,z(O)

is the restriction of µλ
x to the atom [x] almost surely. From this we conclude

µ(B) = µ(gB). Clearly, every set B can be partitioned into at most countably

many sets of small diameter, so the same holds for any measurable B. Further-

more, the tangent space of X is spanned by the tangent vectors to the various Fλ

and the orbit directions, so that the measure is left-invariant under any small g ∈ G.

It follows that µ = m. The second statement is taken from [12, prop. 4.1]. �
Notice that, if the conditional measures with respect to a foliation are δ-mea-

sures, then the foliation is in fact measurable, the corresponding σ -algebra is the

σ -algebra of all measurable sets, and hence the measurable partition corresponding

to the σ -algebra is the partition ε whose elements are single points: Almost every

leaf has only one “significant” point, the support of the conditional measure.

It follows from the second statement of Proposition 3.3 that, if F is the foliation

into unstable manifolds and Fλ is a one-dimensional subfoliation with nonatomic

conditional measure, then µF
x is nonatomic a.e. and the entropy of αt is positive.

We will study in Section 8 how the conditional measures µλ
x for λ ∈ � determine

the conditional measure µF
x for the foliation F into unstable manifolds. Corol-

lary 7.2 will give a closer connection between the conditional measures on the

one-dimensional foliations and entropy, in particular, a converse to the above.

4 Formulation of Results

As we noted in the introduction (see also Section 9) positive entropy for cer-

tain maps of the Weyl chamber flow is not sufficient to deduce that µ is the Haar

measure.

THEOREM 4.1 Let G be a simple, split connected Lie group of rank n > 1 and
let � ⊂ G be a lattice. Let α be the left action of a maximal Cartan subgroup on
X = G/�. For a fixed regular element αt there exists a number q < 1 such that
for any ergodic α-invariant probability measure µ on X the following conditions
are equivalent:

(i) µ = m is the Haar measure on X.
(ii) For every root λ ∈ R the conditional measure µλ

x is nonatomic a.e.
(iii) The entropies of αt with respect to µ and m satisfy the inequality hµ(αt) >

qhm(αt).
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If G = SL(n + 1, R) we also have the condition
(iv) The entropy hµ(αs) > 0 is positive for all nontrivial αs.

We will see in Example 9.5 that in general condition (iv) does not characterize

the Haar measure (or a Haar measure on an invariant homogeneous submanifold).

As a model for the proof, and since stronger statements are available in the case

of SL(3, R), we have the following theorem.

THEOREM 4.2 Let G = SL(3, R) and let α be the R2 Weyl chamber flow on
X = G/�, where � is a lattice in G. Let µ be an ergodic α-invariant probability
measure on X. The following are equivalent:

(i) µ = m is the Haar measure on X.
(ii) For every a �= b the conditional measure µ(a,b)

x is nonatomic a.e.
(iii) For at least three different pairs of indices (a, b) with a �= b, the condi-

tional measure µ(a,b)
x is nonatomic a.e.

(iv) The entropy hµ(αt) > 0 is positive for all t ∈ R \ {0}.
(v) For some t ∈ R \ {0} the entropies with respect to µ and m satisfy

hµ(αt) >
1

2
hm(αt) .

(vi) The entropy function t �→ hµ(αt) does not agree with a linear map on a
half-space.

Furthermore, if µ is not Haar and the entropy with respect to an element α t of the
action is positive, there exists a pair of indices (a, b) such that the following holds:

(*) For any element of the action αs the conditional measure on its stable man-
ifold is supported by a single leaf of Fa,b or Fb,a .

Notice that for every regular element of the action and every pair of indices (a, b)

either Fa,b or Fb,a is expanded and the other one is contracted.

In Rees’s example (see [24] and Section 9), a nonstandard ergodic invariant

measure is supported on a compact homogeneous subspace M that fibers over a

compact manifold, and the action on M splits into an R-action and a rotation on

the fibers. In this case the product of any R-invariant measure in the base and

Lebesgue measure in the fibers is α-invariant. Here the statements of Theorem 4.2

can be checked easily.

The main conjecture in [12] implies in this case that this is the only possible

picture for an invariant measure as in (*) in Theorem 4.2.

We indicate some possible strengthenings of Theorem 4.1: First, as we noticed

in the introduction, it is not necessary for our proofs to assume that � is a lattice.

However, if µ satisfies either condition (ii) or (iii), then � is a lattice and µ =
m. The particular value of q in condition (iii) in Theorem 4.1 does not depend

on the lattice �, only on the roots and root spaces of the Cartan action α. An

optimal choice of q requires an analogue of condition (iii) in Theorem 4.2 for

general groups. One not optimal such analogue is the following: It is enough to
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� �

�

�

� Fλ(y)

Fλ(x)
x y′ z′

y z

FIGURE 5.1. The two leaves Fλ(x) and Fλ(y) approach each other

when αnt is applied to them and n → ∞.

assume that µλ
x is nonatomic a.e. for a set of roots λ whose root spaces together

generate g.

5 Beginning of the Proof:
Translation Invariance of Conditional Measures

For the proofs of the theorems we need more information about the conditional

measures. The next proposition will be used, similarly to lemma 5.4 in [12], to

show that the conditional measures are invariant under translations. The letter λ

will in the following always denote a root of the Lie algebra g of G. In the case

of SL(n + 1, R) we can identify the roots with the pairs λ = (a, b) of different

indices. Recall that µ is assumed to be an α-ergodic probability measure on X .

PROPOSITION 5.1 Let αt be such that Fλ is an isometric foliation of X. There
exists a null set N ⊂ X such that the following holds: For any two x, y /∈ N for
which there exists

y′ = exp(svλ)x ∈ Fλ(x)

with

(5.1) d(αnt y, αnt y′) → 0 for n → ∞ ,

we define the map

φ : Fλ(y) → Fλ(x)

exp(rvλ)y �→ exp((r + s)vλ)x ,

which maps z ∈ Fλ(y) to the unique z ′ ∈ Fλ(x) satisfying equation (5.1) with z
and z′. The conditional measure µλ

x coincides with the image of µλ
y under φ up to

a multiplicative constant. (See Figure 5.1.)

Sometimes it is more convenient to use the following locally finite measure νλ
x

on R, which is just an isomorphic copy of µλ
x . For a measurable set A ⊂ R we

define

νλ
x (A) = µλ

x({exp(rvλ)x : r ∈ A}) .

With this notation the conclusion of Proposition 5.1 can be expressed as

νλ
y (A) = Cνλ

x (A + s)
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for a multiplicative constant C > 0 and any measurable A ⊂ R. Also note that

in the case of y ′ = x , the number s vanishes and by the normalization in equation

(3.3) the multiplicative constant equals 1. This leads to the following corollary:

COROLLARY 5.2 Let λ and ξ be two roots (or pairs of indices). Assume λ �= ±ξ

(or that the pair λ is neither the pair ξ nor the reversed pair); then for a.e. x ∈ X
and µξ

x -a.e. y ∈ Fξ (x),
νλ

x = νλ
y .

PROOF: From the discussion above, the corollary follows at once if we find a

map αt contracting Fξ and stabilizing Fλ. In the case of SL(n + 1, R) and the pairs

λ = (a, b) and ξ = (c, d) �= (a, b), (b, a), it is easy to find t satisfying ta = tb and

tc < td .

For the general case, note that λ and ξ cannot be multiples of each other, since

this can only be if λ = ±ξ . However, this means that λ and ξ are linearly in-

dependent linear functionals on the Lie algebra gα corresponding to the Cartan

subgroup. There exists an element αt of the Cartan subgroup that contracts Fξ and

acts isometrically on Fλ. �
PROOF OF PROPOSITION 5.1: The proof is a variation of Hopf’s argument.

Let g′ ⊂ g be the Lie subalgebra whose elements are contracted by the adjoint ac-

tion of αt. Then the points x , y, and y ′ as in the proposition satisfy y ′ = exp(w)y
for some w ∈ g′ and y′ = exp(svλ)x for some s ∈ R. If z = exp(rvλ)y ∈ Fλ(y),

then

z′ = exp((r + s)vλ)x = exp(rvλ) exp(w) exp(−rvλ)z ∈ Fλ(x)

satisfies equation (5.1) with z and z ′. Here we use that the metric d is the induced

metric of a right-invariant metric on G. Since Fλ is an isometric foliation, there

can only be one such z ′.
The map x �→ νλ

x is measurable, where we use the weak∗ topology on the set

of locally finite measures. More precisely, we claim x �→ ∫
f dνλ

x is measurable

for any continuous function with compact support f : R → R. Let O ⊂ h × T
be as in property (iii) of the characterizing properties for µF

x (p. 1191), write A =
A(O, Fλ) for the corresponding σ -algebra, and fix the function f with support

in [−N , N ]. Let O ′ ⊂ O be an open set such that [−N , N ] × {0} + O ′ ⊂ O .

There is a sequence of such open sets O ′
i ⊂ Oi for which ϕOi ,zi (O ′

i ) covers X . For

this reason it is enough to show measurability for x ∈ ϕO,z(O ′) for a fixed such

O ′ ⊂ O .

Using a local inverse of ϕ = ϕO,z , one can define a uniformly continuous func-

tion k : ϕ(O ′) × ϕ(O) satisfying k(exp(svλ)x, x) = f (s) for all |s| ≤ N and

x ∈ ϕ(O ′). For this function∫
f dνλ

x = 1

C(x)

∫
k(y, x) dµA

x (y) for any x ∈ π(U ) ,

where C(x) is the normalizing constant. We consider first the measurability of the

integral.
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Note that u �→ µA
u is measurable by one of the properties of the conditional

measures. This shows that

K (u, x) =
∫

k(y, x) dµA
u (y)

is measurable in u ∈ π(O ′) for any fixed x ∈ π(O). If x ′ is close to x , then

K (u, x ′) is uniformly close to K (u, x). We cover π(O) by a sequence of ε-balls

Bε(xi ) and produce a measurable partition {P1, P2, . . . } with Pi ⊂ Bε(xi ). Then

Kε(u, x) = K (u, xi ) for x ∈ Pi defines a measurable function Kε on ϕ(O ′) ×
ϕ(O). Letting ε tend to zero, Kε tends to K . This shows that K is measurable as a

function in two variables. Therefore K (x, x) is a measurable function in x , which

is exactly the integral term above. The multiplicative constant C(x) is equal to

K (x, x) if f is the characteristic function of the interval [−1, 1]—approximating

the characteristic function by continuous functions from above shows in the limit

that C(x) is measurable.

Let N0 be a null set such that for any two points not in N0 properties (3.1) and

(3.4) hold for all powers of αt.

By Luzin’s theorem there exists a compact subset K j ⊂ X \ N0 with measure

(5.2) µ(K j ) > 1 − 1

j

such that the restriction of νλ
x to K j is continuous. We can assume the sequence K j

is increasing. Let

f j (x) = lim
n→∞

1

n

n−1∑
k=0

1K j (α
ktx)

be the limit of the Birkhoff averages of the characteristic function 1K j . Define

L j =
{

x ∈ X : f j (x) ≤ 1

2

}
;

clearly L j is decreasing. We claim limj→∞ µ(L j ) = 0. From equation (5.2) and

the ergodic theorem we get

1 = lim
j→∞

∫
X

f j dµ ≤ lim
j→∞

(
µ(X \ L j ) + 1

2
µ(L j )

)
≤ 1 − 1

2
lim

j→∞ µ(L j ) .

This proves the claim. We obtain from this the null set N = N0 ∪ ⋂
j L j .

Now suppose x, y /∈ N are such that there exists a y ′ as in the assumptions of

the proposition. By the definition of N we can find j such that x, y /∈ L j . Therefore

both points return to K j infinitely often and with a frequency higher than 1
2 . So one

can find a single sequence of integers n i → ∞ such that

αni tx, αni t y ∈ K j for all i.
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z z′

x

y′
y

Fa,b(z)

Fa,b(y)

Fa,c(x)

Fb,c(z) Fb,c(z′)

FIGURE 6.1. The rectangle with sides parallel to Fa,b and Fc,d only

closes up with another side parallel to Fa,c.

Since K j is compact, we can find a subsequence (again denoted by n i ) and two

points x̄, ȳ ∈ K j such that

αni tx → x̄
and the same for y and ȳ (along the same sequence).

From equation (3.4) we get

νλ
x = νλ

αni tx and by the continuity on K j νλ
x = νλ

x̄ .

The same argument for y shows

νλ
y = νλ

ȳ .

Since y and y ′ satisfy equation (5.1), the limit points satisfy ȳ ∈ Fλ(x̄) and µλ
ȳ =

Cµλ
x̄ by Property (3.1). This shows the required equality of measures. �

6 Proof in the SL(n, R) Case

One main ingredient of the proof of Theorem 4.1 is the non-abelian structure of

the foliations. The next lemma makes use of this. We will first turn to the case of

G = SL(n + 1, R) and consider the general case later.

LEMMA 6.1 Let G = SL(n + 1, R) and let α be the Weyl chamber flow on X =
G/�. Suppose µ is an invariant ergodic measure and 1 ≤ a, b, c ≤ n+1 are three
different indices. If µ(a,b)

x and µ(b,c)
x are nonatomic a.e., the conditional measure

µ(a,c)
x is Lebesgue a.e.

The idea of the proof is to translate the measure ν (a,c)
x along a rectangle with

sides parallel to the foliations Fa,b and Fb,c, and use the fact that due to the com-

mutation relations such a rectangle does not close up. The two endpoints are in

the same Fa,c-leaf; see Figure 6.1. We will show that the measure νa,c
x on R does

not change under such a translation. However, for this it is necessary to avoid

non-typical points. Here we will use Proposition 5.1.
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PROOF: Find a null set N0 such that Proposition 5.1, Corollary 5.2, and prop-

erty (3.1) hold for all pairs of indices and all x /∈ N0. Enlarge N0 to N such that

µ
(i, j)
x (N ) = 0 for all x /∈ N and i �= j as in Lemma 3.1. Let z /∈ N ; we are going

to define all points in Figure 6.1. Since µ(a,b)
z is nonatomic, there exists a point

z′ = (Id +rva,b)z ∈ Fa,b(z) \ N with r ∈ R \ {0}. Since every neighborhood of z
has positive measure with respect to µ(a,b)

z the number r can be chosen arbitrarily

small. Since z, z′ /∈ N , we have

µ(b,c)
z (N ) = µ

(b,c)
z′ (N ) = 0.

By Corollary 5.2, νb,c
z = ν

b,c
z′ . Since this measure is nonatomic but the preimages of

N under the parametrization maps at z and z ′ are null sets, there exists an arbitrarily

small s ∈ R \ {0} with x = (Id +svb,c)z /∈ N and y = (Id +svb,c)z′ /∈ N . For x
and y we see that

y = (Id +svb,c)(Id +rva,b)z = (Id +svb,c)(Id +rva,b)(Id +svb,c)
−1x .

By the commutation relation for va,b and vb,c we get

y = (Id +rva,b)(Id −rsva,c)x = (Id +rva,b)y′

where y′ = (Id −rsva,c)x ∈ Fa,c(x). Choosing αt such that Fa,b is contracted and

Fa,c is isometric we get from Proposition 5.1

νa,c
z = ν

a,c
z′ and νa,c

x (A) = Dνa,c
y (A − rs)

for some D > 0 and any measurable A ⊂ R. Furthermore, νa,c
x = νa,c

z and

νa,c
y = ν

a,c
z′ by Corollary 5.2.

We have shown that for z ∈ X \ N there are arbitrarily small non-vanishing

t ∈ R and a constant D > 0 such that

(6.1) νa,c
z (A + t) = Dνa,c

z (A) for any measurable A ⊂ R,

in other words νa,c
z is invariant under t in the affine sense. This situation also

appeared in the proof of measure rigidity in case of automorphisms of the torus

Tn; the arguments in [12, 14] or [5] could be used to complete the proof. We

present here a slightly different proof for completeness.

We claim that D = 1 a.e., so that νa,c
z is invariant under t in the strict sense. We

assume by contradiction that D �= 1 on a set of positive measure. We define the

measurable function

f (z) = lim sup
r→∞

log νa,c
x ([−r, r ])

2r
which measures the exponential growth of the measure νa,c

x . (Measurability of

the fraction follows easily by using a decreasing sequence of continuous functions

approximating the characteristic function of [−r, r ] from above.) Replacing t with

−t if necessary, we can assume D > 1. Iterating equation (6.1) starting with

A = [−1, 1] we get

νa,c
x ([−1 + nt, 1 + nt]) = Dn.
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If t > 0, let rn = 1 + nt . Then

log νa,c
x ([−rn, rn]) ≥ n log D shows that f (x) > 0.

The other case and the proof that f (x) < ∞ are similar; together we have shown

that f (x) ∈ (0,∞) whenever D �= 1.

Suppose αt expands Fa,c, then eta−tc > 1. The function f satisfies

f (αtx) = lim sup
r→∞

log ν
a,c
αtx([−r, r ])

2r
= lim sup

r→∞
log Cνa,c

x (etc−ta [−r, r ])
2r

= eta−tc lim sup
r→∞

log νa,c
x (etc−ta [−r, r ])

2etc−ta r

= eta−tc f (x) .

In the second line we used the analog to formula (3.2) for the measures νa,c
x . How-

ever, this contradicts Poincaré recurrence since f (αntx) ↗ ∞. This shows that

D = 1 and νa,c
z is invariant under t .

For every z define

Gz = {t ∈ R : νa,c
z is invariant under t} .

Obviously G z is a subgroup of R. Therefore there are three cases, either G z = R

and νa,c
z is the Lebesgue measure. Or G z is a discrete subgroup, or G z is a dense

subgroup. We show that the first case happens a.e.

Since t can be made arbitrarily small, G z cannot be a discrete subgroup. Sup-

pose Gz is dense and νa,c
z has atoms, then by invariance under G z there is a dense

set of atoms which all have the same mass. However, this contradicts that νa,c
z is

locally finite. Suppose now G z is dense and νa,c
z does not have any atoms, let I be

any interval in R. The function g(t) = νa,c
z (I + t) is continuous in t and constant

on Gz . Therefore g is constant. Since this holds for any interval the measure is

invariant under any t ∈ R and G z = R.

Since νa,c
z is the isomorphic copy of µ(a,c)

z using the parametrization of Fa,c,

this completes the proof that µ(a,c)
z is Lebesgue a.e. �

We proceed to the proof of Theorem 4.2 and part of Theorem 4.1 in the case

of G = SL(n + 1, R). It is clear that the Haar measure always satisfies the other

conditions in the theorem, so we only have to prove one direction.

PROOF THAT (ii) IMPLIES (i) FOR G = SL(n + 1, R): Suppose condition (ii)

holds, let a, c be two different indices. There exists b different from a and c, by

assumption µ(a,b)
x and µ(b,c)

x are nonatomic a.e. By Lemma 6.1 µ(a,c)
x is Lebesgue

a.e. This holds for all a �= c and Proposition 3.3 concludes the proof. �

We will use the following lemma (a version of the Ledrappier-Young entropy

formula, see [17]) to conclude the proof of the case SL(n + 1, R) and postpone the

proof of the lemma to Section 8.



1202 M. EINSIEDLER AND A. KATOK

LEMMA 6.2 There are constants sa,b with

sa,b = 0 if µ(a,b)
x is atomic a.e. and sa,b ∈ (0, 1] otherwise

such that for any t ∈ R

(6.2) hµ(αt) =
∑
a,b

sa,b(ta − tb)+.

Here (r)+ = max(0, r) denotes the positive part of r ∈ R. In particular the entropy
hµ(αt) is positive if and only if there is a pair (a, b) whose foliation is expanded
and has nonatomic conditional measure. In the case of the Haar measure sa,b = 1

for all (a, b).

Clearly the last statement of the lemma holds for foliations which are contracted

as well. Below we say the pair (a, b) of different indices is nonatomic, if the

conditional measure µ(a,b)
x is nonatomic a.e.

PROOF THAT (iv) IMPLIES (ii) IN THEOREMS 4.1 AND 4.2: Consider an ele-

ment t ∈ R with t1 > t2 = t3 = · · · = tn+1. Clearly (ta − tb) > 0 only for the

pairs (1, 2), . . . , (1, n + 1). Since the entropy hµ(α) > 0 is positive by assump-

tion, Lemma 6.2 shows that one of the pairs (1, 2), . . . , (1, n + 1) is nonatomic.

By rearranging the indices from 2 to n + 1 we can assume (1, 2) is nonatomic; this

does not change the set of pairs {(1, 2), . . . , (1, n + 1)}.
We proceed by induction and show the pairs (1, 2), . . . , (1, n + 1) are non-

atomic. Assume (1, 2), . . . , (1, k) are nonatomic. Let t satisfy t1 = · · · = tk >

tk+1 = · · · = tn+1. As above we see that there is a nonatomic pair (a, b) whose

foliation is expanded by αt – so a ≤ k < b. If a > 1 we know (1, a) and (a, b)

are nonatomic, and Lemma 6.1 shows that (1, b) is nonatomic. Without loss of

generality b = k +1, and we have shown that (1, 2), . . . , (1, k +1) are nonatomic.

Repeating the argument for contracting foliations we get (2, 1), . . . , (n + 1, 1)

are nonatomic pairs. Let a �= b; we want to show that (a, b) is nonatomic. If a = 1

or b = 1 we already know that. Otherwise (a, 1) and (1, b) are two nonatomic

pairs, and Lemma 6.1 shows that (a, b) is nonatomic. �

PROOF THAT (iii) IMPLIES (ii) IN THEOREM 4.2: Assume that

(a1, b1), (a2, b2), (a3, b3)

are three different nonatomic pairs. For one of the three — say (a1, b1) — the

reversed pair (b1, a1) is not among the three. Let c be the index different from a1

and b1. If (b1, c) is among the list, Lemma 6.1 shows that (a1, c) is nonatomic. If

(c, a1) appears in the list, similarly (c, b1) is nonatomic. If none of the above cases

takes place, the other indices must be

{(a2, b2), (a3, b3)} = {(a1, c), (c, b1)}
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because (b1, a1) is not in the list. In all three cases we found indices d, e, f such

that

(6.3) (d, e), (d, f ), (e, f )

are nonatomic.

Assume for simplicity d = 1, e = 2, f = 3. Then the pairs in list (6.3) are all

pairs from the upper triangle. We claim that the remaining pairs

(2, 1), (3, 1), (3, 2)

are also nonatomic. Let t ∈ R be such that

t1 = t2 > t3 .

Then αt expands exactly the two one-dimensional foliations for the pairs (1, 3)

and (2, 3). Since those pairs are nonatomic, Lemma 6.2 implies that the entropy

hµ(αt) > 0 is positive. The inverse map expands only the foliations corresponding

to the pairs (3, 1) and (3, 2). By Lemma 6.2 we see that at least one of the two

pairs is nonatomic. Using a different map it follows similarly that at least one of

the pairs (3, 1) and (2, 1) is nonatomic.

If (3, 1) is nonatomic, Lemma 6.1 implies (3, 2) is nonatomic since (1, 2) is

nonatomic. Similarly (2, 1) must be nonatomic as well, showing that all pairs are

nonatomic.

The only other case to consider would be that (3, 2) and (2, 1) are nonatomic.

However, Lemma 6.1 implies immediately that (3, 1) is nonatomic as well. There-

fore we have shown condition (ii). �

PROOF THAT (v) IMPLIES (iii) AND (vi) IMPLIES (iii) IN THEOREM 4.2: We

prove that if Condition (iii) fails, Conditions (v) and (vi) fail as well.

If there is no nonatomic pair, entropy vanishes and the other conditions fail

trivially. Furthermore, it is not possible to have exactly one nonatomic pair. For if

(a, b) is nonatomic and αt expands the corresponding foliation, the entropy hµ(αt)

must be positive by Lemma 6.2, and using the contracting foliations there must be

another nonatomic pair.

LEMMA 6.3 Suppose now there are exactly two different nonatomic pairs and as-
sume they are

(1, 2), (a, b) .

Then (a, b) = (2, 1).

PROOF: If (a, b) is equal to (2, 3) or (3, 1) Lemma 6.1 implies immediately

that there are three nonatomic pairs. If (a, b) is equal to (1, 3) (resp. (3, 2)) the

element αt for t1 > t2 = t3 (resp. t1 = t3 > t2) expands both nonatomic pairs and

therefore the entropy hµ(αt) must be positive by Lemma 6.2. However, this shows

that there must be another nonatomic pair for which the foliation is contracted

which is again a contradiction. So the only possible case is (a, b) = (2, 1), as

claimed. �
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Lemma 6.2 shows that for t satisfying t1 > t2 the right-hand side of equation

(6.2) is linear in t. Therefore the entropy coincides with a linear map on a half-

space showing that (vi) cannot hold.

For Condition (v) let t ∈ R be arbitrary. Lemma 6.2 shows hµ(αt) ≤ |t1 − t2|.
By the triangle inequality

2hµ(αt) ≤ 2|t1 − t2| ≤ |t1 − t2| + |t3 − t1| + |t2 − t3| = hm(αt) .

Therefore Condition (v) cannot hold. �

PROOF OF (*): From Lemma 6.3 we know that the only nonatomic pairs are

(a, b) and (b, a) for some a, b. Note that if Fa,b is contracted by some αt, then Fb,a

is expanded. Let F be the foliation into unstable manifolds for α t. By Proposition

8.3 the conditional measure µF
x is the product measure of the conditionals on three

pairs, of which only one is not a δ-measure. Hence the measure µF
x is supported

by a single one-dimensional leaf of either Fa,b or Fb,a . �

We have completed the proof of Theorem 4.2 (up to Lemma 6.2 and Proposi-

tion 8.3).

7 Proof in the General Case

We turn our attention to the general case in Theorem 4.1. The main argument

above was the repeated use of Lemma 6.1 which we replace by the next proposition.

Recall that the roots λ ∈ R of the simple split Lie algebra g are elements of the

dual space of the Lie algebra of the Cartan subgroup. Since G is simple and split,

the root spaces gλ ⊂ g are one-dimensional eigenspaces for the adjoint action

of αt with eigenvalue eλ(t). For a fixed basis of the Cartan subgroup the dual is

isomorphic to Rn where n is the rank of G. For a root λ the only multiple of λ

which is also a root is −λ. If λ1 �= −λ2 are two roots, the sum λ1 + λ2 is a root if

and only if v = [vλ1, vλ2] is nontrivial, in which case v = svλ (s ∈ R) is in the root

space of λ = λ1 + λ2 (see [25, pg. 268 and 282]).

PROPOSITION 7.1 Let λ1, λ2 ∈ � be roots such that λ = λ1 + λ2 is a root and µλi
x

is nonatomic a.e. for i = 1, 2. Then µλ
x is Lebesgue a.e. Furthermore, the same is

true for every root ξ different from λ1 and λ2 with vξ belonging to the Lie algebra
generated by vλ1 and vλ2 .

PROOF: The proof is similar to the proof of Lemma 6.1. The difference in

the general situation here is that [vλ, vλi ] might not be zero for some i . Let �′ ⊃
{λ, λ1, λ2} be the set of roots ξ with vξ belonging to the Lie algebra generated by

vλ1 and vλ2 . By the discussion above, every root ξ ∈ �′ can be expressed as ξ =
n1λ1 + n2λ2 with integers n1, n2 ≥ 0 (see Figure 7.1). The space g′ = ∑

λ∈�′ gλ is

a nilpotent Lie algebra. For r, s �= 0 the commutator

(7.1) exp(svλ2) exp(rvλ1) exp(−svλ2) exp(−rvλ1) = exp(s1vξ1) · · · exp(s�vξ�
)
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λ1

λ2 λ ξ

FIGURE 7.1. A possible configuration for �′.

can be expressed as a product over various exponentials of elements of root spaces.

We use a fixed ordering of the elements in �′ = {λ1, λ2, ξ1, . . . , ξ�}, which will

be further specified later. Note that λ1 and λ2 do not appear on the right side of

equation (7.1). If r, s are small and nonzero, the elements si are small, and sk for

ξk = λ is small and nonzero. This follows for instance from the Campbell-Baker-

Hausdorff formula.

Let N be a null set satisfying Proposition 5.1 for all root spaces (and finitely

many elements of the action which are used in the proof). Enlarge N so that

µξ
x(N ) = 0 for every root ξ and x /∈ N by using Lemma 3.1. Let z /∈ N ; as before

we will define the points as in Figure 6.1. Since µλ1
z is nontrivial and µλ1

z (N ) = 0,

there exists a point z ′ = exp(rvλ1)z ∈ Fλ1(z)\N . From Corollary 5.1 we have νξ
z =

ν
ξ

z′ for any ξ ∈ �′ \ {λ1}. The assumption that µλ2
x is nonatomic a.e. implies now

that there exists s �= 0 such that x = exp(svλ2)z and y = exp(svλ2)z
′ do not belong

to N . The point x /∈ N satisfies that y = exp(svλ2) exp(rvλ1) exp(−svλ2)x /∈ N .

This is similar to Figure 6.1, but the fifth line might not be part of a single leaf.

To overcome this problem we proceed by induction, and show for �′ step by

step that µξ
x is Lebesgue for more and more roots in �′ \ {λ1, λ2} until we reach

ξ = λ. This will prove the first statement, and the second follows from the first.

We order the elements ξ = n1λ1 + n2λ2 ∈ �′ with n1, n2 > 0 (or equivalently

ξ �= λ1, λ2) by the quotient n2/n1 starting with the biggest. The chosen order of

the roots implies for every i ≤ � that

(7.2) vλ, vξi do not appear as commutators in
∑
j≥i

gξj + gλ1 ,

which we will use below in the following form: changing the order of multiplica-

tion for terms involving only roots with j ≥ i can be compensated for by changing

some coefficients without effecting those for λ and ξi .

For the induction it is convenient to prove first the following fact. Suppose

x ′, y′ /∈ N , ν
ξ

x ′ = ν
ξ

y′ for all ξ ∈ φ′ \ {λ1, λ2}, and

y′ = exp(s ′
ivξi ) · · · exp(s ′

�vξ�
) exp(rvλ1)x ′.

Then ν
ξi
x ′ is invariant under translation by s ′

i in the affine sense.
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Notice first that ξi �= λ1. Therefore there exists an element αt of the action such

that Fξi is isometric and Fλ1 is contracted. By the choice of the order on �′ the

foliations Fξj for j > i are contracted as well. Proposition 5.1 implies the claim.

Assume we already showed that µξ
x is Lebesgue a.e. for all roots ξ in a subset

�′′ ⊂ �′. From the commutator relation in (7.1) we see

y = exp(svλ2) exp(rvλ1) exp(−svλ2)x
= exp(s1vξ1) · · · exp(s�vξ�

) exp(rvλ1)x .
(7.3)

Let

ξi = n1λ1 + n2λ2 ∈ �′ \ (�′′ ∪ {λ1, λ2})
be such that q = n2/n1 is biggest.

We claim there are points x ′, y′ /∈ N with the same conditionals ν
ξ

x ′ = νξ
x and

ν
ξ

y′ = νξ
y for ξ ∈ �′ such that

(7.4) y′ = exp(s ′
ivξi ) · · · exp(s ′

�vξ�
) exp(rvλ1)x ′,

where sk = s ′
k for ξk = λ. If the first element ξ1 ∈ �′ in (7.3) does not belong

to �′′, there is no difference between (7.3) and (7.4), we set x ′ = x and y′ = y.

So suppose ξ1 ∈ �′′ then µξ1
x and µξ1

y are Lebesgue. Furthermore, µξ1
x (N ) =

µξ1
y (N ) = 0, there exists t ∈ R with x ′ = exp(tvξ1)x, y′ = exp((t − sξ )vξ1)y /∈ N .

Since x ′ ∈ Fξ1(x), Corollary 5.2 implies that νξ
x = ν

ξ

x ′ other than for ξ = ξ1.

However, µξ1
x , µ

ξ1
x ′ are both Lebesgue, so these conditionals agree as well. The

same applies to y and y ′. Changing to the new points equation (7.3) becomes

y′ = exp(tvξ1)
(
exp(s2vξ2) · · · exp(s�vξ�

) exp(rvλ1)
)

exp(−tvξ1)x ′

= exp(s ′
2vξ2) · · · exp(s ′

�vξ�
) exp(rvλ1)x ′,

where we used the statement after (7.2) to rewrite the product, which also implies

that s ′
k = sk does not change. Repeating the argument if necessary we finally find

x ′, y′ as claimed.

Clearly s and r can be chosen arbitrarily small; we fix a sequence s(n), r(n) →
0. If the term s ′

i in equation (7.4) does not vanish for infinitely many n in the

sequence a.e., we conclude that νξi
x is invariant in the affine sense under translation

by elements of a dense subgroup. As in the proof of Lemma 6.1 this implies that

νξi
x is Lebesgue. If s ′

i vanishes for almost all n, we remove this term in the product

equation (7.4) and proceed to i + 1. Since s ′
k = sk remains unchanged — and

so nonzero — in this procedure, we have shown that µξ
x is Lebesgue for some

ξ ∈ �′ \ �′′. This concludes the inductive argument; after finitely many steps we

see that µλ
x is Lebesgue a.e. �

For the proof of Theorem 4.1 we will use the following generalization of Lem-

ma 6.2 — a corollary to Proposition 8.3.



INVARIANT MEASURES ON G/� 1207

COROLLARY 7.2 Let α be the left action of a maximal Cartan subgroup on G/�,
where � is a lattice in the simple split connected Lie group G. Assume µ is an
ergodic α-invariant measure on X. Let � be the set of roots and let µλ

x be the
conditional measure for the one-dimensional invariant foliation Fλ corresponding
to λ ∈ �. There exists a set of numbers sλ ∈ [0, 1] for λ ∈ � with the following
properties. If µλ

x is nonatomic a.e. then sλ is positive and zero otherwise. For any
element αt of the action the entropy with respect to µ equals

hµ(αt) =
∑
λ∈�

sλ(λ(t))+.

Here (a)+ = max(a, 0) denotes the positive part of the number a and eλ(t) is the
eigenvalue of the adjoint of αt on the root space gλ.

In the case µ = m we have sλ = 1 for every λ ∈ �.

PROOF OF THEOREM 4.1: Clearly the Haar measure µ = m satisfies all the

other conditions. For the converse note that we only have to consider the Condi-

tions (ii) and (iii). In the case of G = SL(n + 1, R) Condition (iv) has been shown

to be sufficient earlier.

Suppose every conditional measure µλ
x is nonatomic a.e. as in Condition (ii).

Let λ ∈ � be a root. Since G is simple and the rank is n > 1, there exists an

element ξ ∈ � such that λ + ξ ∈ �. Otherwise we have [v±λ, v±ξ ] = 0 for all

ξ �= ±λ, vλ and v−λ generate an ideal g1, � \ {λ,−λ} generate an ideal g2, and

this contradicts g = g1 ⊕g2 being simple. By assumption the conditional measures

µλ+ξ
x and µ−ξ

x are nonatomic a.e., so Proposition 7.1 shows that the conditional

measure µλ
x is Lebesgue a.e. Since this holds for all roots, Proposition 3.3 implies

that µ = m.

Fix a regular element αt of the action as in Condition (iii). Let �′ be the set of

roots with λ(αt) > 0. From Corollary 7.2 we know that

hµ(αt) =
∑
λ∈�′

sλλ(t) ≤
∑
λ∈�′

λ(t) = hm(αt) .

From this it is easy to find a number q such that hµ(αt) > qhm(αt) forces all sλ

to be positive for λ ∈ �′. Applying the same to the inverse map α−t shows that

sλ > 0 for all λ ∈ � \ �′. However, this shows that every conditional measure is

nonatomic a.e. and we already know this implies µ = m. �
This completes the proof of Theorem 4.1 assuming Corollary 7.2. The corollary

(which includes Lemma 6.2) will be proved at the end of the next section.

8 Product Structure of the Conditional Measure
on the Expanding Manifolds

In this section we show that the conditional measure for foliations into higher-

dimensional leaves is a product measure of the measures on the one-dimensional

leaves. For this we need some preliminaries.



1208 M. EINSIEDLER AND A. KATOK

Let ν be a locally finite measure on Rk . Let V = R × {0}k−1 be the sub-

space generated by the first basis vector. Define B(1) to be the σ -algebra whose

atoms are the cosets a + V for a ∈ Rk . There exists a collection of locally finite

conditional measures ν
(1)
a on the subspaces a + V that are defined uniquely a.e.

up to a multiplicative constant such that the following holds: For every rectangle

Q = [−M, M]k let νQ be the probability measure coming from ν by normalizing

the restriction of ν to Q. Let B(1)
Q be the restriction of B(1) to Q. For a.e. a ∈ Q

the measures ν
(1)
a restricted to the intersection (a + V ) ∩ Q and normalized to be

a probability measure is the conditional measure of νQ with respect to B(1)
Q . The

conditional measures are easily constructed from the latter probability measures

for the σ -algebra B(1)
Q for M → ∞.

The above construction of the conditional measures ν
(1)
a is similar to the con-

struction of µF
x for a foliation F of X and in fact is also related to it by the next

lemma. If the foliation F = Fh is defined by the Lie subalgebra h, we write

µ
h
x = µF

x for the conditional measure.

Note that, in general, a measure can only be pushed forward under a measurable

map. However, the functions we are using are injective for a.e. base point x ∈ X ,

and so we can use the pullback.

LEMMA 8.1 Let �′ be a set of roots such that g′ = ∑
λ∈�′ gλ is a Lie subalgebra

that is contracted by the adjoint of some element of the Cartan subgroup. Fix an
order on �′ = {λ1, . . . , λk}. If ν is the pullback of the conditional measure µ

g′
x

under the map ϕx defined by

(8.1) s ∈ Rk �→ exp(s1vλ1) · · · exp(skvλk )x ∈ Fg′(x) ,

then the conditional measure ν
(1)
a is (up to a multiplicative constant) a.e. the pull-

back of the conditional measure µ
λ1
ϕx (a).

a + V Fg′′(y)

Q ⊂ Rk Q ⊂ X

FIGURE 8.1. Both conditional measures µ
λ1
x and ν

(1)
a are characterized

by how they restrict to large rectangle-like sets Q.

PROOF: Clearly the parametrization map ψy corresponding to Fλ1 for y ∈
Fg′(x) with y = ϕx(a) for a ∈ Rk agrees with the restriction of ϕx to the coset

a + V . In other words, the leaves for the foliation Fλ1 are the images of the cosets

a + V for a ∈ Rk .
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We consider the restriction of µ to a set ϕO,z(O) ⊂ X as in the characterizing

properties of the conditional measures in Section 3. Let M > 0 and choose an

open subset O ′ ⊂ O with the following properties: The preimage Q under ϕO,z

of the atom [x] for the σ -algebra A(O, Fg′) and x ∈ π(O ′) contains the rectangle

[−M, M]k . Because X can be covered by a sequence of images of such sets O ′,
it is enough to consider the points x ∈ ϕO,z(O ′) of one such set. Using the same

open set for the foliation Fλ1 gives a σ -algebra A(O, Fλ1) ⊃ A(O, Fg′). The

conditional expectation with respect to two such σ -algebras satisfies

E( f | A(O, Fg′)) = E
(
E( f | A(O, Fλ1)) | A(O, Fg′)

)
for any integrable function f . For a characteristic function f of a measurable set

B and typical points x , this implies

µ
A(O,Fg′ )
x (B) =

∫
µ
A(O,Fλ1 )

y (B) dµ
A(O,Fg′ )
x (y) .

Up to a scalar multiple, µ
A(O,Fg′ )
x and µ

g′
x agree on [x], and the same holds, re-

spectively, for λ1 on the atoms for the σ -algebra A(O, Fλ1). Taking preimages

under ϕx shows that the normalized restriction νQ of ν to Q, and the pullbacks ν ′′
a

of µ
A(O,Fλ1 )

ϕx (a) satisfy

νQ(B) =
∫

ν ′′
a (B) dνQ(a) for any measurable B ⊂ Q .

Since the same holds for the properly normalized ν
(1)
a instead of ν ′′

a , those two

measures agree νQ a.e. This is the same as saying that the lemma holds for the

restrictions of the measures to the set Q. We let M go to infinity, and the lemma

follows. �

We can use the conditional measures ν
(1)
a to characterize product measures. Let

W = {0} × Rk−1. Clearly if ν = νV × νW is a product measure on R × Rk−1, the

conditional measure on a.e. fiber a + V is up to a multiplicative constant a copy

of νV .

LEMMA 8.2 Let ν be a locally finite measure on Rk . Assume the conditional mea-
sures ν

(1)
a are equal up to a multiplicative constant in the following sense: On al-

most every coset a+ V we have ν
(1)
a (a+ A) = CνV (A) where a ∈ W = {0}p ×Rq ,

νV is a fixed measure on V , and C = Ca may depend on a. Then the same holds
for the conditional measures on the cosets b + W and for a fixed measure νW on
W , and ν is up to a multiplicative constant the product measure of νV and νW .

PROOF: Let M > 0 and νQ be a probability measure on Q = [−M, M]k . First

we show the lemma in this case.

Let A = {[−M, M], ∅}×B be the product of the trivial σ -algebra and the Borel

σ -algebra in [−M, M]k−1. The atoms for A are planes of the form [−M, M] ×
(a2, . . . , ak) with (a2, . . . , ak) ∈ [−M, M]k−1. Assume the conditional measure
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ν
(1)
a on the atoms [−M, M]×(a2, . . . , ak) for A are equal to νV,Q in the mentioned

sense. We claim νQ is the product measure of νV,Q and some measure νW,Q on

[−M, M]k−1.

Let B and C be measurable sets in [−M, M] and [−M, M]k−1. The properties

of conditional measures in Section 3 state that

νQ(B × C) =
∫
Q

νV,M(B)1[−M,M]×C(a) dνQ(a)

= νV,M(B)νQ([−M, M] × C) .

Define νW,Q(C) = νQ([−M, M] × C). Varying B and C , it follows that νW,Q is

a probability measure, and that νQ is the product measure of νV,Q and νW,Q . The

conditional measures for the atoms a1 ×[−M, M]k−1 agree in the mentioned sense

with νW,Q .

For ν the above shows that for every M the restriction to [−M, M]k equals a

product measure up to a multiplicative constant. However, if ν([M, M]k) > 0, this

constant has to remain the same for every M ′ > M and the lemma follows. �

PROPOSITION 8.3 Let �′ ⊂ � be a set of roots such that g′ = ∑
λ∈�′ gλ is a

Lie subalgebra satisfying that the foliation Fg′ is expanded by some element of
the flow. For any order λ1, . . . , λk of the elements of �′ we let ϕx be the map
defined in (8.1) parametrizing the leaf Fg′(x) through x. The pullback ν

g′
x of the

conditional measure µ
g′
x under the map ϕx is up to a multiplicative constant the

product measure
k∏

i=1

νλi
x .

PROOF: First we prove by induction that there is an order for the elements

of �′ for the which the statement is true. After the inductive argument we will

show, using Proposition 7.1, that changing the order does not affect the statement.

The case |�′| = 1 holds by definition of νλ
x . For the induction we need to find

λ1 ∈ �′ so that �′′ = �′ \ {λ1} satisfies the assumptions of the proposition, so that

additionally Fλ1 is isometric and Fλi for i > 1 are contracted for some fixed αs.

Let �′ be a set of roots satisfying the assumptions of the proposition and |�′| =
k. There is an element αt with λ(αt) > 0 for all λ ∈ �′. We identify the dual of the

Lie algebra of the Cartan subgroup α with Rn , so that λ(αt) = λ · t can be written

as an inner product. Let C be the set of all vectors in Rn that can be expressed as

a linear combination
∑

λ∈�′ cλλ with nonnegative coefficients cλ ≥ 0. Then C is a

cone and the intersection C ∩ P with the hyperplane P = {a : a · t = 1} is a convex

set in P .

Let a be an extremal element of C ∩ P; then a must be a multiple of some

element λ = λ1 ∈ �′. By the construction λ cannot be expressed as a sum of

elements of �′′ = �′ \ {λ}. Furthermore, since a is extremal, there exists a linear
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map on Rn whose maximal value on C ∩ P is 0 and is achieved only at a. In other

words, there exists αs such that Fλ is isometric and Fξ for ξ ∈ �′′ are contracted.

The comment before Proposition 7.1 implies that g′′ = ∑k
i=2 gλi is a Lie ideal

in g′. In particular, �′′ satisfies the assumptions of the proposition and has fewer

elements. By the inductive assumption, there exists an order on �′′ so that the

following holds: If ψx is the map from Rk−1 to Fg′′(x) defined analogously to (8.1),

the preimage ν ′′ of µ
g′′
x under ψx is the product measure of νλi

x for i = 2, . . . , k
for a.e. x ∈ X . Let N be a null set such that this property, Proposition 5.1 for λ

and αs, and property (3.1) hold for all x, y /∈ N . By Lemma 3.1 we can enlarge N
so that µξ

x(N ) = 0 for all x /∈ N and ξ ∈ �. Notice that the restriction of ϕx to

W = {0} × Rk−1 agrees with ψx . For that reason we will not distinguish between

this restriction and ψx , and identify ν ′′ with a measure on W .

Let ν be the pullback of the conditional measure µ
g′
x under the map ϕx . The

lines a + V for V = R × {0}k−1 are mapped onto the leaves Fλ(ϕx(a)). By

Lemma 8.1 the conditional measure ν
(1)
a is the pullback of µλ

ϕx (a) under the map

ϕx . Since Fg′′ is contracted under αs, we can apply Proposition 5.1 for any point

y ∈ Fg′(x). Let y = ϕx(a) /∈ N ; then µλ
x is the image of µλ

y under φ as in Propo-

sition 5.1. It is easy to check that φ corresponds to the translation mapping from

a+ V to V along the orthogonal subspace W . However, this shows the assumption

of Lemma 8.2 for ν and νV = νλ
x . We will show that the measure νW equals the

pullback ν ′′ of µg′′
under ϕx .

In case µλ
x is atomic a.e., then νV = δ0 and for a.e. x, y /∈ N with y ∈ Fg′(x),

we have in fact y ∈ Fg′′(x). Therefore the two σ -algebras in the characterizing

properties of µ
g′
x and µ

g′′
x are on the complement of N equal; the same holds for

the conditional measures with respect to these σ -algebras, and µ
g′
x = µ

g′′
x a.e.

follows. Therefore ν = ν ′′, and the inductive assumption shows that ν is the

product measure as stated.

Assume now µλ
x is nonatomic a.e. Let y = ϕx(b) /∈ N . Let ν ′

b be the condi-

tional measure for the coset b + W (defined analogously to ν (1)
x as in the beginning

of the section). We claim that ν ′
b transported back to W is equal to ν ′′ for a.e. b. By

Lemma 8.2 the same holds for νW , so that νW agrees with ν ′′. Therefore the claim

and the inductive assumption imply ν = νλ
x × νW is again the product measure.

In case b ∈ W the claim is trivial. In case b ∈ V \ϕ−1
x (N ) Corollary 5.2 implies

that νλi
x = νλi

y for 1 < i ≤ k. By assumption ν ′′ is the product measure of νλi
x , and

the same holds for the preimage of µ
g′′
y under ψy . However, the restriction of ϕx to

the plane b + W might not be equal to ψy′ . In fact,

ϕx(b + w) = exp(b1vλ)

k∏
i=2

exp(wivλi )x ,

and in ψy(w) the first term would be right in front of x since y = exp(b1vλ)x .

If exp(b1vλ) commutes with the other terms, moving the first term to x does not
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W

V
0

bb′

a′

FIGURE 8.2. We can reach b from 0 in two steps.

change the terms in between, and ψy is the restriction of ϕx . If µλi
x is trivial a.e.,

then wi = 0 and the terms commute whenever w ∈ W with b + w /∈ ϕ−1
x N .

Otherwise, whenever exp(w1λ) does not commute with exp(bivλi ), moving the

first behind the latter produces a shearing along some directions exp(vλj ). For j

like that, Proposition 7.1 shows that ν
λj
x is Lebesgue and the mentioned shearing

does not change the product measure. We see that the conditional measure on the

hyperplane b + W is a translate of ν ′′. Similarly, one shows that the conditional

measure for the planes b+W and b′+W are translates of each other if b, b′ /∈ ϕ−1
x N

and b′ − b ∈ V .

Let now b ∈ Rk be arbitrary. The measures ν
(1)

0 and ν
(1)
b are translates of each

other along (0, b2, . . . , bk) ∈ W . This point might belong to the null set ϕ−1
x N

and we cannot argue using it. By the assumption on N we have ν
(1)

0 (ϕ−1 N ) =
ν

(1)
b (ϕ−1 N ) = 0. Therefore there exist two points b′ ∈ b + V and a′ ∈ V that

do not belong to ϕ−1
x N such that b′ ∈ a + W ; see Figure 8.2. From the two cases

before, we know that the conditional measures for the planes W , a′ +W = b′ +W ,

and b + W are all translates of ν ′′
x along V . This proves the claim and concludes

the inductive argument.

To conclude the proof of the proposition, we need to show that the statement

holds for any order of the roots. Without loss of generality, we consider a new

order where only two neighboring indices are swapped. Let ϕx be the parametriza-

tion of Fg′(x) defined by (8.1) and define ϕ̃x by swapping the two terms exp(sivλi )

and exp(si+1)vλi+1 in the product (leaving their order in the parameter space un-

changed). In case λi + λi+1 is not a root, those two elements commute and the two

maps agree. Otherwise the two maps differ but have the same image Fg′(x). We

show that in all cases the pullbacks of the measure µ
g′
x under ϕx and ϕ̃x agree.

In case µ
λj
x is atomic a.e. for some j ∈ {i, i + 1}, the product measure ν

g′
x is

supported on a hyperplane {m ∈ Rk : sj = 0}, and the maps ϕx and ϕ̃x are equal

a.e. with respect to ν
g′
x . Since ν

g′
x is the pullback of µ

g′
x under ϕx , the same is true

for ϕ̃x . Assume now the two conditional measures are nonatomic a.e. The com-

mutator of exp(sivλi ) and exp(si+1vλi+1) can be expressed as a product of various

exp(sjvλj ). From Proposition 7.1 for every such j the conditional measure µ
λj
x is
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Lebesgue a.e. Therefore the maps ϕx and ϕ̃x differ by an application of a measure-

preserving action on Rk—a shearing along some directions where ν
λj
x is Lebesgue.

The product measure again equals the pullback of µ
g′
x . �

Let F be the foliation into unstable manifolds for αt. Since µF
x is a product

measure, we can proceed to the proof of Corollary 7.2, which gives a uniform

description of the entropy hµ(αt).

PROOF OF COROLLARY 7.2: We will use the Ledrappier-Young entropy for-

mula [17]. Note that our space X might not be compact, but due to the algebraic

nature of α this is not a necessary assumption (see also [19, sect. 9] for part of the

Ledrappier-Young theory in this setting).

For a root λ ∈ � we define for a.e. x

δλ(x) = lim
ε→0

log νλ
x ([−ε, ε])
log ε

and sλ =
∫

δλ(x) dµ .

The existence of the limit follows from the arguments in [17, sects. 9–10], where

one uses a partition subordinate to the foliation Fλ instead of the foliation men-

tioned there and an element of the action that expands Fλ. Furthermore, sλ ∈ [0, 1],
and sλ = 0 if and only if µλ

x is atomic a.e. In case µλ
x is Lebesgue a.e., we see im-

mediately sλ = 1. The number sλ can be interpreted as the dimension of µ along

the leaves of Fλ.

Let αt be a fixed element of the action, and let �′ = {λ ∈ � : λ(αt) > 0} be

the set of roots whose foliations are expanded. We order �′ = {λ1, . . . , λk} such

that

λ′
1 = λ1(α

t) = · · · = λk1(α
t) > λ′

2 = λk1+1(α
t) = · · · = λk2(α

t) >

· · · > λ′
r = λkr−1+1(α

t) = · · · = λk(α
t) > 0 .

The set of roots �1 = {λ1, . . . , λk1} defines a Lie subalgebra h1; in fact, the ele-

ments of the root spaces commute with each other (this follows from the statement

before Proposition 7.1). The foliation F1 defined by h1 is the foliation for the

biggest Lyapunov exponent λ′
1 of αt. In the notation of [17], the dimension of µ

along F1 is

δ1(x) = lim
ε→0

log µF1
x (Bε(x, F1))

log ε

for a.e. x . Here the set Bε(x, F1) is the ε-ball around x in the leaf F1(x). It is easy

to see that the exact shape of the ε-ball is not important. If we use a product of

ε-balls in the one-dimensional leaves instead, Proposition 8.3 implies

δ1(x) = δλ1(x) + · · · + δλk1
(x) .

Proceeding similarly, it follows for any j that �j = {λ1, . . . , λkj } defines a Lie

subalgebra, and that the dimension of µ along the corresponding foliation Fj is
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given by

δj (x) =
kj∑

i=1

δλi (x) .

Now [17, theorem C] reads

hµ(αt) =
∫ ∑

λ∈�′
λ(αt)δλ(x) dµ =

∑
λ∈�′

λ(αt)sλ =
∑
λ∈�

(λ(αt))+sλ ,

which concludes the proof of the corollary and the theorems. �

9 Nonstandard and Nonalgebraic Measures

In the unpublished manuscript [24], M. Rees gives an example of a uniform

lattice � ⊂ SL(3, R) that allows compact invariant submanifolds and nonstandard

invariant measures. We will reproduce the construction and give further examples

along those lines. Some of the measures below are homogenous measures, i.e.,

Haar measures on homogenous submanifolds. More important for our discussion

is the fact that there are huge varieties of nonalgebraic measures that are supported

by some of those invariant homogeneous submanifolds.

Let Z[ 4
√

2] be the ring generated by
4
√

2, and write the elements of Z[ 4
√

2] as

s = s1 + s2
4
√

2 with s1, s2 ∈ Z[√2]; then s = s1 − s2
4
√

2 is the Galois conjugate of

s. For w1, w2 ∈ Matn(Z[√2]) we define similarly

w1 + w2
4
√

2 = w1 − w2
4
√

2

and

� = {
w = w1 + w2

4
√

2 ∈ SL(n, R) : w1, w2 ∈ Matn(Z[√2]) and wTw = Id
}
.

We will show later that � is a uniform lattice in SL(n, R). Another feature of this

lattice is that it contains many diagonal matrices. A diagonal matrix with entries

λ1, . . . , λn belongs to � if λi are units of Z[ 4
√

2] with λiλi = 1 and λ1 · · · λn = 1.

A direct calculation shows that τ = 3+2
4
√

2+2
√

2+2
4
√

8 is such a unit. Therefore

the diagonal matrix with entries τ ki belongs to � if
∑

i ki = 0.

Let P = {P1, . . . , Pk} denote a partition of {1, . . . , n} into sets of consecutive

indices; in particular,

P1 = {{1, 2}, {3}} and P2 = {{1, 2, 3}, {4, 5}} .

For a partition element Pi ∈ P , we define SL(Pi , R) to be the subgroup of SL(n, R)

whose elements are block matrices
Id

w

Id


 with w ∈ SL(|Pi |, R) .

Here the matrix w is placed on the diagonal corresponding to the partition ele-

ment Pi . For every partition P , we define GP as the subgroup generated by
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SL(Pi , R) for i = 1, . . . , k and the diagonal matrices αt for t ∈ R. Since the vari-

ous SL(Pi , R) commute with each other, the group GP is isomorphic to a product

of subgroups isomorphic to SL(|Pi |, R) and a diagonal subgroup D. In particular,

GP1 =
{w1,1 w1,2 0

w2,1 w2,2 0

0 0 w3,3


 ∈ SL(3, R) : w3,3 > 0

}
� SL(2, R) × D1

where

D1 =
{(

et Id2
e−2t

)
∈ SL(3, R) : t ∈ R

}
and similarly

GP2 � SL(3, R) × SL(2, R) × D2

where

D2 =
{(

e2t Id3
e−3t Id2

)
∈ SL(5, R) : t ∈ R

}
.

Here Idj ∈ Matj (R) denotes the identity matrix. In general, D will be the subgroup

of all diagonal matrices αt with equal entries ta = tb for different elements a, b ∈
P ∈ P in the same partition element. Notice that D is a finite index subgroup of

the center of GP .

PROPOSITION 9.1 [24, M. Rees] The subgroup �, as above, is a uniform lattice in
SL(n, R). More generally, for a fixed partition P and any P ∈ P , the subgroups
� ∩ SL(P, R), � ∩ D, and � ∩ GP are uniform lattices in SL(P, R), D, and GP ,
respectively.

The proof will rely on the Borel-Harish-Chandra theorem.

PROOF: For any two w1, w2 ∈ Matn(C) and a fixed number r �= 0, we define

the conjugation map

φ(w1, w2) = 1

2

(
Id r Id

1
r Id − Id

)(
w1

w2

) (
Id r Id

1
r Id − Id

)
.

A direct calculation shows that

(9.1) φ(w1, w2) =
(

A r2 B
B A

)

where

A = w1 + w2

2
and B = w1 − w2

2r
are two matrices in Matn(C). Exchanging w1 and w2 clearly leaves A unchanged

and replaces B by −B. If we transpose w1 and w2, this transposes A and B.

We set r = 4
√

2 and define ϕ(w) = φ(w, (wT)−1) for any w ∈ SL(n, R).

Let GR be the image of ϕ in SL(2n, R). From the properties of φ, it follows
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that a matrix in GR can be decomposed into matrices A and B as in (9.1), which

additionally have the property

(9.2)

(
A

√
2B

B A

)(
AT −√

2BT

−BT AT

)
=

(
Id

Id

)
.

The inverse of ϕ is given by

(9.3)

(
A

√
2B

B A

)
�→ A + 4

√
2B .

Define the two polynomials p and q whose variables are the matrix coefficients

of A and B and whose coefficients are in Z[√2] by

p(A, B) + 4
√

2q(A, B) = det(A + 4
√

2B) ;
they can be found by expanding the right-hand side and collecting the terms with

(respectively, without) the factor
4
√

2 to
4
√

2q (respectively, p). For any element of

GR

p(A, B) + 4
√

2q(A, B) = det(w) = 1

p(A, B) − 4
√

2q(A, B) = det((wT)−1) = 1
(9.4)

and therefore p(A, B) = 1 and q(A, B) = 0. The second equation in (9.4) follows

by taking the conjugate of the first. This shows that GR is the set of matrices that

satisfy a certain set of polynomial equations. The equations ensure that the matrix

decomposes into A and B and satisfies equation (9.2) and that the determinant of

the preimage is 1; the latter corresponds to p = 1 and q = 0. All coefficients of

the polynomials needed belong to Q[√2]. Let GZ[√2] = GR ∩ SL(2n, Z[√2]) and

GQ[√2] = GR ∩ SL(2n, Q[√2]). The isomorphism ϕ maps � exactly to GZ[√2].
Similarly to the above, we can define an isomorphism ϕ ′ from SU(n) to the

group G ′
R using r = i 4

√
2. The group G ′

R consists of all matrices

(9.5)

(
C −√

2D
D C

)
with C, D ∈ Matn(R) satisfying the equations p(C, D) = 1, q(C, D) = 0 and(

C −√
2D

D C

)(
CT

√
2DT

−DT CT

)
=

(
Id

Id

)
.

Since SU(n) and G ′
R are isomorphic, both are compact. Note that the equations

defining G ′
R are exactly the images of the equations for GR under the Galois au-

tomorphism of Q[√2] defined by
√

2 �→ −√
2. The subgroup G ′

Q[√2] of matrices

in G ′
R with entries in Q[√2] is isomorphic to GQ[√2] using the same automor-

phism. And since every unitary matrix is diagonalizable, every matrix in GQ[√2] is

diagonalizable as well.

We claim GR × G ′
R � SL(n, R) × SU(n) is isomorphic to a group H that is

algebraic over Q; i.e., H is the set of all elements of Mat4n(R) satisfying a certain
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set of polynomial equations with rational coefficients. Let w ∈ SL(n, R) and

v ∈ SU(n), and define A, B, C , and D by the maps ϕ and ϕ ′ as above. Using φ for

r = √
2, we define

ψ(w, v) = φ

(
ϕ(w)

ϕ′(v)

)
=

(
a 2b
b a

)
∈ Mat4n(R)

where we used equation (9.1). From the shape of the matrices in (9.3) and (9.5),

we see furthermore

a = 1

2

(
A + C

√
2(B − D)

B + D A + C

)
and b = 1

2
√

2

(
A − C

√
2(B + D)

B − D A − C

)
.

With the abbreviations

e1 = 1

2
(A+C) , f1 = 1

2
√

2
(B − D) , e2 = 1

2
√

2
(A−C) , f2 = 1

2
(B + D) ,

the above becomes

a =
(

e1 2 f1
f2 e1

)
and b =

(
e2 f2
f1 e2

)
.

We know in GR (and similarly in G ′
R) that the inverse is given by the pair AT

and −BT. This is the same as saying that for ψ(w−1, v−1) = ψ(w, v)−1 the four

matrices are eT
1 , eT

2 ,− f T
1 ,− f T

2 ; this statement corresponds to a set of polynomial

equations with rational coefficients. The only other equations defining GR are

p(A, B) = 1 and q(A, B) = 0, and similarly p(C, D) = 1 and q(C, D) = 0 for

G ′
R. Therefore we get the four equations for e1, e2, f1, and f2

p(e1 + √
2e2, f2 + √

2 f1) = 1 , p(e1 − √
2e2, f2 − √

2 f1) = 1 ,

q(e1 + √
2e2, f2 + √

2 f1) = 0 , q(e1 − √
2e2, f2 − √

2 f1) = 0 ;
the two on the left (respectively, right) correspond to the equations for GR (respec-

tively, G ′
R). Since the right equations are the conjugates of the left ones, we can

rewrite them—similarly to (9.4)—as four equations with rational coefficients. This

shows that the image H = Im(ψ) is the subgroup of SL(4n, R) whose elements

satisfy a certain set of polynomial equations—H is algebraic over Q.

Every element g of HQ = H ∩ SL(4n, Q) is diagonalizable because ψ−1(g)

decomposes into two blocks φ(w) ∈ GQ[√2] and φ′(v) ∈ GQ[√2]. To see this, note

that by definitions of ei and fi the element ψ(φ(w), φ ′(v)) belongs to HQ if and

only if

A = e1 + √
2e2 , B = f1 + √

2 f2 , C = e1 − √
2e2 , D = f1 − √

2 f2 ,

and e1, e2, f1, and f2 belong to Mat(n, Q); this holds similarly for Z instead of

Q. By the construction H is isomorphic to the product SL(n, R) × SU(n) and is

semisimple. From the Borel-Harish-Chandra theorem it follows that HZ = H ∩
SL(4n, Z) is a uniform lattice in H . This shows that ψ−1 HZ is a uniform lattice in

GR × G ′
R. However, the factor G ′

R is compact and therefore π1(ψ
−1 HZ) = GZ[√2]
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is a uniform lattice in GR. The isomorphism ϕ concludes the proof that � is a

uniform lattice in SL(n, R).

Let P be a partition of {1, . . . , n}. The set � ∩ D forms a uniform lattice in D
since one can use τ = 3 + 2

4
√

2 + 2
√

2 + 2
4
√

8 to define diagonal elements of �

that generate a lattice in D. In the case of the one-dimensional subgroup D1, it is

enough to note that

(9.6)

(
τ Id2

τ−2

)
∈ � ∩ D1

and similarly for D2. Let SL(P, R) be the subgroup of SL(n, R) corresponding to

a partition element P ∈ P , and denote the lattice in SL(n, R) by �n . The subgroup

SL(Pi , R) is isomorphic to SL(|Pi |, R); this isomorphism carries the intersection

�n ∩ SL(Pi , R) to �|Pi |. Therefore �n ∩ H forms a uniform lattice in H for every

direct factor H of GP , and �n ∩ GP is a uniform lattice in GP , which concludes

the proof. �

Let XP = GP/(� ∩ GP). Since � ∩ GP is a lattice, there exists a left invariant

probability measure µP . Let MP denote the image of XP inside X ; then MP is a

compact submanifold. Write µP again for the image of the measure.

LEMMA 9.2 Let P be a partition, and let µP be as above. The entropy of αt

with respect to µP vanishes if and only if αt belongs to D. The conditional mea-
sure (µP)(a,b)

x for a pair of different indices a �= b is nonatomic (and in this case
Lebesgue) if and only if a and b belong to the same partition element.

PROOF: Since (X, µP) and (XP , µP) are isomorphic as measure spaces, we

can calculate the entropy of αt in (XP , µP). If αt ∈ D, then αt only acts as

translation in the direction of D and entropy vanishes. If α t /∈ D, then ta �= tb for

a pair of different indices a and b in the same partition element Pi . Here αt acts on

SL(Pi , R)/�|Pi | with positive entropy.

If a and b belong to the same partition element, then Id +sva,b belongs to GP ,

and left invariance of µP shows that (µP)(a,b)
x is Lebesgue a.e.

Assume a and b belong to different partition elements Pi and Pj . Let αt ∈ D
be such that ta > tb. As Fa,b is expanded by αt and the entropy vanishes, the

conditional measure (µP)(a,b)
x has to be trivial a.e. �

EXAMPLE 9.3 For the partition P1 = {{1, 2}, {3}} and the corresponding measure

µ1 = µP1 , we consider the Weyl chamber flow on SL(3, R)/�: The flow along

the direction t = (1, 1,−2) is periodic since the matrix in (9.6) is in the center of

GP1 and in the lattice and therefore acts trivially on (SL(3, R)/�,µ1). The flow

along the direction of t = (1,−1, 0) has positive entropy—there is one expand-

ing (and one contracting) one-dimensional foliation whose conditional measure is

nonatomic (Lebesgue). Locally the system is a direct product of an Anosov flow

and a periodic flow on the circle.
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There are many more invariant measures on SL(3, R)/�3. In fact, let ν be any

invariant measure on Y = SL(2, R)/�2 (with positive entropy or zero entropy for

the flow); then ν×m defines an invariant measure on Y ×(D/(�∩ D)). The system

GP1 is a finite-to-one factor of Y × (D/(� ∩ D)); let µ be the induced measure

on SL(3, R)/�3. Again the flow along t = (1, 1,−2) is periodic and the condi-

tional measure on the one expanding (respectively, contracting) one-dimensional

foliation is equal to the conditional measure for ν.

EXAMPLE 9.4 A similar analysis for the partition P2 = {{1, 2, 3}, {4, 5}} shows

that with respect to the measure µP2 , the space SL(5, R)/�5 is locally a direct

product of SL(3, R)/�3, SL(2, R)/�2, and a periodic flow on the circle. The

entropy vanishes only for the periodic direction.

To construct invariant measures other than Haar measures coming from sub-

groups, one can again use an ergodic invariant measure ν on SL(2, R)/�2 to de-

fine a measure µ on SL(5, R)/�5. If the measure ν is not a Haar measure on

SL(2, R)/�2, then the measure µ is invariant under the SL(3, R) action, α-ergodic

but not a Haar measure on SL(5, R/�5).

We conclude the paper with two simple examples showing that several of the

conditions of Theorem 4.1 fail in the nonsplit case or if G �= SL(n, R).

EXAMPLE 9.5 Let G = Sp(n, R) ⊆ SL(2n, R) be the symplectic group, i.e., the

Lie group of matrices that leave the exterior form

x1 ∧ xn+1 + x2 ∧ xn+2 + · · · + xn ∧ x2n

in R2n invariant. The subgroup consisting of diagonal matrices of the form

αt =
(

Dt1,...,tn
D−1

t1,...,tn

)
where Dt1,...,tn =




et1

. . .

etn




make up a maximal Cartan subgroup in G; the rank of G is n. It is well-known that

G is a simple split Lie group. By the Borel-Harish-Chandra theorem the subgroup

� = SL(2n, Z)∩G of integer matrices is a lattice in G. Let X = G/�. For a fixed

index 1 ≤ j ≤ n the subgroup G j of matrices g ∈ Sp(n, R) that leave the basis

elements ei for i �= j, n + j and the subspace 〈ej , en+ j 〉 invariant is isomorphic to

SL(2, R). Clearly the elements of G i and G j for i �= j commute with each other;

we write G ′ = ∏
i G i for the generated subgroup of G. Then

�′ = � ∩ G ′ =
∏

i

(� ∩ G i ) is a lattice in G ′.

Let ν be any ergodic measure on SL(2, R)/ SL(2, Z) for the geodesic flow so that

the flow has positive entropy. The product measure µ = ν × · · · × ν on

n∏
i=1

G i/(� ∩ G i ) ∼= G ′/�′ ⊂ G/�
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is ergodic under the left action α of the Cartan subgroup. Suppose t �= 0; then it is

easy to see from the construction that hµ(αt) > 0.

This gives an example of a simple, split Lie group G = Sp(n, R), a lattice

� ⊂ G, and an ergodic measure that is not the Haar measure m on G/� such that

every nontrivial element of the flow has positive entropy. Therefore condition (iv)

in Theorem 4.1 does not characterize the Haar measure in general.

EXAMPLE 9.6 Let Y = SL(n, R)/ SL(n, Z) and X = SL(n, C)/ SL(n, Z[i]). We

can consider Y as a subset Y ⊂ X and the Haar measure mY as a measure on X .

For any αt the entropy with respect to mY is half the entropy with respect to m X .

In particular, the entropy function is fully positive. For every (two-dimensional)

foliation Fa,b the conditional measure is nonatomic a.e.; in fact, it is Lebesgue

supported on a one-dimensional line.
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