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INVARIANT MEASURES OF FLOWS ON ORIENTED SURFACES
UDC 519.21
A. B. KATOK i

1. Let M be an orientable surface of genus p > 1, v a vector field on M of class
C!. We denote by {Sf} the flow generated by the vector field v, by I(v) the set of
zeros of v, that is, the stationary points of the flow {S¥}, and by Q(v) the set of non-
wandering points of {S;’}. Everywhere in this note, unless otherwise stipulated, it will
be assumed that the following two conditions are satisfied.

1.1. The set I(v) contains only nondegenerate saddle points and consequently
consists of precisely 2p - 2 points.

1.2. Q@) = M. :

From results of A. G. Maler ([1], for the correction of an error in the proof see [2])
it follows that the surface M can be represented as a union of domains Moo, My
with pairwise disjoint interiors, such that the boundaries of these domains consist of
separatrices of fixed points and either the interior of a domain M, is filled out with
closed trajectories or any semitrajectory different from a separatrix, lying interior to
the domain, is everywhere dense in the domain.

The assertions listed below are most interesting when {S’t’} is topologically transi-
tive.

A Borel measure p on M will be called a nontrivial invariant measure for {S't’} if
it is invariant relative to {S:’}, the measure of any trajectory of {S't’} is equal to zero
and ;L(M\U) < e for any neighborhood U of I(v).

Proposition 1. The flow {S;’} has a nontrivial invariant measure which is positive

on any open sef.

2. Let y:[0; 11> M be a path of class C! on M. We construct a mapping y' of
the oriented square into M by putting y’(s, 1) = S;’y(s), s, t € [0, 1]. ¥ u is a non-
trivial invariant measure for {$¥1, then the limit

M (y) = lim 3 S sgnJ (y1)d () p
e [0,11x[o0,1]
exists finitely (J(y') is the Jacobian of y"), which, by analogy with the case of smooth
measures, we will call the flux of p on translation of v' through y.
We extend the function )\:’L linearly to the space S(M) of smooth (class CI) l-chains
on M with real coefficients.
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Propesition 2. )\Z is a cocycle, that is, )\/’i(y) = 0 for any cycle y bhomologous to
zero.

We denote the cohomology class of the cocycle /\” by A” The Poincaré duality
operator 7: H1(M; R) » H ,(M; R) takes /\” to an element of the homology group H, (M; R)
which is called the rotamon class of {S”} relative to p (see [3], [4]).(1) We w111 allow

a certain freedom in terminology and also call /\" the rotation class.

14

Let fq» 1, be nontrivial invariant measures of {S”}

Proposition 3. If {S’t’} has no closed trajectories and X;’Ll = X;)Lz’ then p, = Py

ep e ——y N _
Proposition 4. )\#l(ﬂ)\#z) =0

Proposition 3 is easily deduced from Proposition 2 and the topological transitivity
of {Sv} in the domains My,oo5 M, (see S1).

Let a € H'(M; R) and [3 €H (M R). The value a{B) is equal to the index of the
intersection 7 - B. Therefore Propos1t1on 4 may be formulated as follows:

The index of the intersection of the rotation classes of any two nontrivial invari-
ant measures of SV} is equal to zero.

Choose a neighborhood U of I(v) such that y(M\U) > 0 for any nontrivial invari-
ant measure p. We call p pormalized if [L(M\U) =1.

Propositions 3 and 4 imply

Theorem 1. If {S¥} bas no closed trajectories, then it has no more than p different

normalized ergodic nontrivial invariant measures.

3. We denote by K(v) the cone in HI(M; R) which is generated by the rotation
classes of all ergodic nontrivial invariant measures of {SU} This cone is equivariant
under homeomorphisms: if the homeomorphism ¢: M > M takes trajectories of {S”l} to
trajectories of {$¥2}, then ¢*K(v,)) = Kl)). If M is a torus (p = 1), then it is well
known that K(v) consists of a unique pencil and completely characterizes the topolog-
ical type of {S:’}. For p > 2 it is necessary to add to the values of the flux of the mea-
sure translatable by the vector field through closed curves the values of the flux of the
measure through paths connecting fixed points.

The linear functional )\z, on the relative homology group H (M I(v); R), generated
by the cocycle A7 is called the fundamental class of {s¥} relauve to the nontrivial
invarjant measure p- The fundamental classes of ergod1c nontrivial invariant measures
of {S } generate a cone K(v) in the (4p - 3)-dimensional space (H (M, 1(v); R)*,
Wh.lCh is also equivariant under homeomorphisms. The uses of the notion of fundamental
class are shown in Theorems 2 and 3.

We denote by T''(Tm) the space of C! vector fields on M.

Theorem 2. Let p be a nontrivial invariant measure for {S }, positive on any open
set. There exists a neighborbood V of the vector field v in tbe space THTM) with

(1) If 4 is infinite, then the definition of rotation class by asymptotic cycles [3] is not
equivalent to that mentioned here.
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the [ollowmg propertzes zf vev, 10" = 1) ana’ {S” } bas a nontrivial invariant
measure p' such that )\", = )\", then the flow {Sv } is topologically conjugate to the
flow {S”}

It is likely that a similar assertion is true not for nearby flows alone.

Conjecture 1. Let I{(v) = I(v") and K" = K(y) Then the flows {S”} and {S” } are
topologically conjugate. If the flows {S¥} and {S” } are topologically transitive, then
for their topological conjugacy instead o/' R@") = R@) it is sufficient to require the

A ~ !
existence of nontrivial invariant measures p and y' such that )\Z = )\}il .

4. Let @ be a nonsingular 2-form of class C* on M. We denote by p,, the mea-
sure generated by w, by FN(TM, o) the space of C* vector fields on M preserving o,
)\v /\v Vector fields v, v' of class C™ are called Cm-equivalent if there exists a

-d1ffeomorph1sm ¢: M > M taking trajectories of {S” } to trajectories of {SU}

Theorem 3. Let v € I'™(TM, w) and let {S;’} satisfy condition 1.1. There is a
neighborhood V of v in T°(TM, w) such that any vector field v' € V for which I(v') =
~ 1 ~
W) and AV =AY is C™-equivalent to v.

Let I be a finite subset of M consisting of 2p — 2 points. Let I™(TM, I, @) =
v €T°(TM, w): v(x) =0V x €1}, and let I',(I, ) the subset of T™(TM, I, ®) (clearly
open) consisting of vector fields satisfying condition 1.1 and consequently different
from zero outside I.

Proposition 5. If a vector field v satisfies conditions 1.1 and 1.2, then there is a
vector field v' € FI(I, ®) such that the flows {S’t’} and {S:”} are topologically equivalent.

Denote by Fll (I, ®) the subset of 1_'1(1, ®) consisting of vector fields having closed
trajectories homologous to zero, and by Fz(l’ ®) the complement of 1—‘1(1, o) in the
closure of Fll (I, w).

Proposition 6. Let v € l_'l(l, ) N aI‘Z(I, ). The intersection of the boundary
dl', (I, ®) with a sufficiently small neighborbood of the vector field v -belongs to the
union of a finite number of byperplanes in T°(TM, I, w).

Proposition 7. Let v, v’ € F (I, w)s and let f: M > M be a diffeomorphism of class
Cl, equal to the identity on I, takzng trajectories of {S” } to trajectories of SV} (f, is
the aulomorpbzsm of H (M I; R) induced by f).

Then )\” = C)U’ ° f*,wbere ¢ is some scalar.

In other words for vector fields from 1_'2(1, o) the ray {tXZ): t>0}C (HI(M, I; R)*
is equivariant under diffeomorphisms.

Conjecture 2. If v, v o€ Fz(l, ®), XZ): XZ; , then the vector fields v and v' are
C%-equivalent.

Remark. The structure of all the spaces of vector fields described does not depend
on the choice of w and I, since for any nonsingular 2-forms ®y, @, of class C* with
integral 1 and any sets [, I, CM each consisting of 2p - 2 points we may construct
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a C*diffeomorphism f: M > M such that /(1 )=I and /*w = w,; see (5].

5. The mapping I, (I, o) » (H (M, I; R)*: v H)\” is the restriction to I" (I, w)
of a linear mapping l_'°°(TM I, )~ (H,(M, I; R)*. I follows from (1) that a vector
field v € Fz(l, ®) is either topologlcally transitive or has closed trajectories not coho-
mologous to zero or has separatrices proceeding from one fixed point to another. In
the second and third cases there exists an integral relation between the values of X”

on the elements of any basis of the integral cohomology group H M, LZ)CH M, L R).
So we have proved

Proposition 8. It is possible to find a countable set of hyperplanes in T'°(TM, I, w)
such that, for any vector field v € F (I, ®) not belonging to the intersection of T’ (I w)
with one of these byperplanes, the flow {$¥} is topologically transitive.

If M is a torus, then topological transitivity is equivalent to the uniqueness of the
invariant measure. For P > 2 this is not so (see §6 1 below). However, uniqueness of
the nontrivial invariant measure is nevertheless a typical property in I, (I, @). We de-
note by T" (1, ®) the subset of T (I,, o) consisting of those vector helds v for which
K, is umque, up to mult1p11cat10n by a constant, nontrivial invariant measure of
sV} For v e I',{, o) it is obvious that 1$¥} is ergodic with respect to the measure y,

Theorem 4. The set T s\, ®) is a subset of second Baire category in T’ s o).

Conjecture 3. There exists a set A C (H,(M, I; R))* of Lebesgue measure zero
such that v €T (I, o) if )\” d A.

Let 0 be the Riemannian metric on M, @, the 2-form associated with 0. A vector
field v of class C™ is called harmonic with respect to the metric o if v _J @, is a har-
monic 1form. We denote by Jo+ TM > TM the operator acting in each tangent space
T M, x €M, as a rotation through 7/2 in a positive direction. It is not difficult to show

that v is a vector field harmonic with respect to ¢ if and only if v € I'"™(TM, © ,) and
‘UOJU.EFDO(TM,(/) ).

Proposition 9. Let v € I, ©) and let the flow 1Y} be topologically transitive.
There exists a C*° -Rzemannzan metric on M with respect to which the vector field v

is harmonic.

Proposition 9 is used in the proof of Theorem 4 and in addition may turn out to be
of use in the proof or disproof of Conjectures 2 and 3.

6. Examples.

6.1. The number of invariant measures. The estimate given by Theorem 1 is at-
tained. In fact it is no more difficult to construct a flow for which M decomposes in-
to p invariant domains such that a unique normalized nontrivial invariant measure is
concentrated in each domain. Examples of such kind are in A. G. Majer [1], although
there it is not a question of invariant measures. More interesting from the point of
view of the circle of problems considered by us is the following assertion proved by a
student of Moscow State University, E. A. Sataev.
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For any k < p there exists a topologically transitive [low satisfying condition 1.1
and baving exactly k normalized ergodic nontrivial invariant measures.

6.2. Finite and infinite measures. Let p = 2. The possibilities are already appar-
ent in this case.

For topologically transitive flows of class C™ all five possible situations are
realized. Namely, the flow may have a unique normalized ergodic nontrivial invariant
measure, finite or infinite, or two finite or two infinite or one finite and one infinite
normalized ergodic nontrivial invariant measures. Here one of these finite measures
may be chosen to be p

The stimulus prompting the author to study the circle of problems considered in
this paper was a discussion with S. H. Aranson and V. Z. Grines of the invariant pro-
posed by them for flows on surfaces—the homotopic rotation class (see [2]). In particu-
lar the construction at the basis of the examples of §6, for p = 2, appeared for the first
time in answer to a question put by Aranson and Grines of whether it is possible for
a trajectory of a topologically transitive flow to exist without defining a limit direction
in HI(M; R). One of the possible ways of proving Conjectures 1 and 2 consists of a
detailed investigation of the connection between the fundamental class and the homotop-
ic rotation class, which completely characterizes the topological type of a flow but is

defined nonconstructively.
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