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Abstract� We describe in detail a construction of weakly mixing C� di�eomor�
phisms preserving a smooth measure and a measurable Riemannian metric as well as
Z
k actions with similar properties� We construct those as a perturbation of elements

of a nontrivial non�transitive circle action� Our construction works on all compact
manifolds admitting a nontrivial circle action�

It is shown in the appendix that a Riemannian metric preserved by a weakly
mixing di�eomorphism can not be square integrable�

�� Relation between di�erentiable and measurable structure for smooth

dynamical systems� a brief overview� Smooth ergodic theory studies mea�
surable �or measure�theoretic� or ergodic� properties of di�erentiable dynamical
systems with respect to natural invariant measures� �The word smooth will mean
C� unless explicitly stated otherwise�� Such measures include smooth and� more
generally� absolutely continuous measures such as Liouville measure for Hamilton�
ian and Lagrangian systems or Haar measure for homogeneous systems� their limits
such as SRB measures� invariant measures for uniquely ergodic systems� measures
of maximal entropy on invariant locally maximal sets� and so on� There is a number
of situations where a remarkable correspondence appears between the di�erentiable
dynamical structure and properties of invariant measures� We will follow the gen�
eral scheme of classifying representative behavior of smooth dynamical systems as
elliptic� parabolic hyperbolic and partially hyperbolic elaborated in �HK��

One can divide positive results on interrelations between measurable and di�er�
entiable structures into two kinds which are not mutually exclusive	

�i� Measurable structure determines di�erentiable structure completely or to a
large extent �rigidity�


�ii� measurable structure �and sometimes also topological or even di�erentiable
structure� within certain classes of systems �such as perturbations of a given one�
and on certain parts of phase space conforms to a certain set of standard models
�stability��

���� Rigidity� Rigidity phenomena appear for systems with elliptic and parabolic
behavior and for hyperbolic smooth actions of higher rank abelian groups�

A very primitive but archetypal result of this kind asserts that any two metrically
conjugate �i�e� isomorphic as measure�preserving transformations� topologically
transitive translations or linear �ows on a torus are di�erentiably conjugate �in fact�
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conjugate via an algebraic isomorphism�� We will call this phenomenon rigidity of
measurable orbit structure within a particular class of systems�

More interesting instances of rigidity of measurable orbit structure appear in
systems with parabolic behavior� These include unipotent a�ne maps on tori�
homogeneous �ows on nilmanifolds� some other classes of group extensions of toral
translations� and� most remarkably� unipotent homogeneous maps and �ows on
semisimple Lie groups� A prototype result of the last kind is rigidity of measurable
orbit structure for horocycle �ows on surfaces of constant negative curvature �R��
and their time changes �R��

An example of both rigidity and stability appears for di�eomorphisms of the
circle with Diophantine rotation number	 Measurable structure with respect to its
unique invariant measure determines rotation number� and by �Y� any such di�eo�
morphism is di�erentiably conjugate to a rotation� A simpler manifestation of the
same phenomenon is rigidity of smooth time changes for Diophantine translations
on a torus�

When one moves from classical dynamical systems �i�e� actions of Z and R� to
actions of higher�rank abelian groups� rigidity of measurable orbit structure appears
for very natural algebraic actions such as Zk�actions by automorphisms of a torus
or Weyl chamber �ows �KS� KKS� KaK��

Rigidity is also prevalent among actions of semisimple Lie groups all of whose
simple factors have rank greater than one as well as lattices in such groups� �See
�FK� for a detailed discussion and references��

��� Stability� Stability in various forms appears for hyperbolic and stably er�
godic partially hyperbolic systems as well as for elliptic systems with Diophantine
behavior�

The prototype result of the �rst kind is that any Gibbs measure �equilibrium
state� with H�lder potential for a restriction of a di�eomorphism on a locally max�
imal hyperbolic set is Bernoulli �B�� This situation includes absolutely continuous
invariant measures for Anosov �ows� SRB measures for hyperbolic attractors and
measures of maximal entropy on locally maximal hyperbolic sets� The same is
true for absolutely continuous and SRB measures in the non�uniformly hyperbolic
case� i�e� when all Lyapunov characteristic exponents are di�erent from zero �P� L��
Bernoulli behavior extends to hyperbolic �ows� unless they are suspensions� and to
many partially hyperbolic systems� Notice that Bernoulliness implies extreme �ex�
ibility of measure�theoretic conjugacies� something completely opposite to rigidity
of measurable orbit structure�

Stability in elliptic systems with Diophantine behavior in dimension higher than
one for di�eomorphisms and higher than two for �ows appears in the local form	
For example� any perturbation of a translation T on a torus with a Diophantine
translation vector which is topologically conjugate to T �and hence is metrically
conjugate with respect to its unique invariant measure� is in fact di�erentiably
conjugate to T � The main theme of KAM theory can be interpreted as establishing
stability on a large part of the phase space of an integrable Hamiltonian system
which is �lled with Diophantine tori� Let us point out though that away from the
low�dimensional cases rigidity and�or stability of measurable Diophantine behavior
remains a widely open question�

� Liouvillian behavior and absence of rigidity or stability� The mecha�
nism leading to absence of both rigidity and stability which is best understood
is abnormally fast periodic approximation
 the prototype model for such behavior
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is given by a rotation of the circle by an irrational angle extremely well approx�
imable by rational multiples of �� or� more generally� by a Liouvillian translation
on a torus� i�e� a translation T� such that the coordinates of the translation vector
� � ���� � � � � �n� are simultaneously very well approximable by rational numbers
with the same denominator�

More generally� we say that a di�eomorphism f � M � M of a compact dif�
ferentiable manifold is Liouvellian if for a certain sequence of integers nk � �
the iterates fnk converge to identity together with their derivatives faster than
any polynomial in the Cr�topology for any r� Notice that the orbit closure of an
aperiodic Liouvillian di�eomorphism in the space of di�eomorphisms is a perfect
set and hence is uncountable� Baire category theorem implies that a dense G�

subset of the orbit closure of a Liouvillean di�eomorphism consists of Liouvillean
di�eomorphisms� Since orbit closure of a di�eomorphism in an appropriate space
of maps is contained in its centralizer� the C� centralizer of any Liouvellian dif�
feomorphism is uncountable and in particular contains an nontrivial copy of Zk for
any positive integer k� Since both ergodicity and weak mixing can be described
by observing behavior of a countable dense collection of sets or functions along a
subsequence of iterates �see Lemma �� for the weak mixing property� another
standard application of Baire category theorem produces the following observation�

Proposition ���� In the orbit closure of a volume�preserving ergodic �corr� weakly
mixing� Liouvillean di�eomorphism a dense G� subset consists of ergodic �corr�
weakly mixing� Liouvillean di�eomorphisms�

Corollary ���� Any volume�preserving ergodic �corr� weakly mixing� Liouvillean
di�eomorphism can be included into a Zk action for any k by ergodic �corr� weakly
mixing� di�eomorphisms which belongs to its orbit closure�

Two basic phenomena related with Liouvillian behavior are the following	
�i� Measurable structure of a Liouvellian di�eomorphism with respect to a smooth

invariant measure may be very diverse

�ii� measurable orbit structure of a Liouvellian di�eomorphism does not deter�

mine continuous or di�erentiable structure even if the former is simple� i�e� a
rotation by a certain Liouvillian number�

Given a volume preserving di�eomorphism f � we will call a volume�preserving
di�eomorphism g a nonstandard smooth realization of f if g is metrically conjugate
to f but not di�erentiably conjugate to it�

��� Isometric extensions and time changes� The easiest way to produce Li�
ovillian di�eomorphisms and to observe these phenomena is to look either at S��
extensions of a Liouvillian rotation� i�e� transformations of T � of the form

F �x� y� � �x� �� y � ��x�� �mod ��� ����

where � is a Liouvillian number and � a smooth function� or at a time change for
the linear �ow on the two�dimensional torus with Liouvillian slope�

For an S��extension of an appropriate Liouvillian rotation even with a real�
analytic function � the spectrum of the associated unitary operator in L� may be
mixed� or the map may be uniquely ergodic and metrically conjugate to a trans�
lation but not topologically conjugate �e�g� topologically weak mixing�� or topo�
logically but not smoothly conjugate to a translation� or minimal but not uniquely
ergodic�
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Similarly the time change may be weakly mixing or may be ergodic with mixed
spectrum� or may be metrically but not topologically conjugate to the linear �ow
or� again� may be topologically but not smoothly conjugate to a linear �ow�

�� Conjugation�approximation construction� A powerful and �exible ap�
proach which produces Liouvillian di�eomorphisms with diverse and often �exotic�
properties is based on the construction introduced in �AK�� This construction in�
volves consecutive perturbations of elements of a given smooth action of S� via
di�erentiable conjugations which diverge but are chosen in such a way that result�
ing di�eomorphisms converge�

More speci�cally� let M be a manifold� with the action � � f�tg� t � R�Z of the
circle� The maps are constructed as limits of conjugates of periodic maps from the
action � but conjugating map diverge in an often dramatic but controlled way� So
we have f � limn�� fn where

fn � Hn � ��n �H��
n � Hn�� � Hn � hn�

Here �n � pn
qn

and pn� qn are relatively prime integers� Furthermore�

hn � ���qn � ���qn � hn
and �n�� � �n � ��lnknq

�
n�

At �n� ���st inductive step the correction to conjugacy hn and the number kn
are constructed �rst in order to make the orbits of the periodic �ow Hn�����H��

n��

imitate the desired properties with a certain precision and kn is chosen to make the
discrete orbits of

Hn�� � ���knqn �H��
n��

approximate the continuous orbits of Hn�����H��
n��� The properties range from

ergodicity or minimality in more basic versions� to weak mixing or the complete
orbit structure of a map from a speci�c family in more sophisticated versions of the
construction� Then �nally� ln is chosen large enough to provide closeness of fn��
to fn in the C� topology�

Among original applications of that method are non�standard smooth realiza�
tions of some Liouvillian rotations and toral translations on manifolds other than
tori and whose dimension is di�erent from the number of frequencies in the spec�
trum� Furthermore� there are examples of volume�preserving di�eomorphisms met�
rically isomorphic to certain standard nonsmooth models such as certain trans�
lations on in�nite�dimensional tori� There are also examples of weakly mixing
transformations�

There are many other applications of this method and its potential is far from
having been exhausted� In this paper we restrict ourselves to a speci�c application
and carry it out in great detail�

�� Invariant Riemannian metric� discrete spectrum and isometry� The
property of being �essentially an isometry� is most closely associated with elliptic
behavior� Its versions illustrate the interplay of di�erent structures in smooth
ergodic theory quite well� Since these properties often appear in the context of
actions of more general groups than Z or R we will assume that � is a locally
compact second countable group acting by di�eomorphisms of a compact manifold
M � Thus we will consider the following properties	
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�D��Di�erentiable� � preserves a smooth Riemannian metric on M �and hence
a smooth volume form generated by the metric�


�C��Continuous of Topological� � preserves a metric on M 


�IM��In�nitesimal measurable� � preserves an absolutely continuous probability
measure and a measurable Riemannian metric on M 


�GM��Global measurable� � preserves an absolutely continuous probability mea�
sure � and the induced group of unitary operators in L��M��� has discrete spec�
trum� i�e� L��M��� splits into orthogonal sum of �nite�dimensional � invariant
subspaces�

Property �D� implies all others� In fact� in this case the closure of � in the
group of di�eomorphisms of M is a compact Lie group and every orbit closure is
di�eomorphic to a homogeneous space of G with � acting by translations�

Property �C� does not imply existence of an absolutely continuous invariant
measure but it implies that the action has discrete spectrum with respect to any
Borel probability invariant measure�

Already in the simplest case M � S�� the circle� and � � Z� for Liouvillian
rotation numbers various non�equivalences appear	 property �C� always holds by
Denjoy Theorem� while if the conjugacy with a rotation is singular none of the other
holds� Furthermore if the conjugacy is absolutely continuous but not smooth �IM�
and �GM� hold but not �D�� In this case however� preservation of an absolutely
continuous measure implies both �IM� and �GM��

In the rest of this paper we discuss relationships between the properties �IM�
and �GM� as well as existence of actions satisfying one of these properties but not
satisfying the stronger property �D��

���� The main result�

Theorem ���� On any compact C��manifold of dimension m � � admitting a
nontrivial C� circle action there exists a weakly mixing C� Liovillean di�eomor�
phism that preserves a C� measure and a measurable Riemannian metric�

Since any di�eomorphism in the orbit closure of a di�eomorphism preserving a
measurable Riemannian metric also preserves this metric we immediately deduce
from Theorem ��� and Corollary � the following stronger statement�

Corollary ���� On any compact C��manifold of dimension m � � admitting a
nontrivial C� circle action there exists a Zk action for any positive integer k by
weakly mixing C� Liouvillean di�eomorphisms preserving a C� measure and a
measurable Riemannian metric�

The idea of the construction is the following	 We create the di�eomorphism
f as the limit of C��di�eomorphisms fn by an appropriately speci�ed version of
the conjugation�approximation construction� To do so� we proceed as follows	 We
show how to exhaust the manifold up to a set of arbitrarily small measure by
similar �almost hypercubes� with positive distance� As n increases� the number
of hypercubes increases and the area not covered converges to zero as quickly as
we wish� In the general �conjugation�approximation� construction� each fn is a
measure�preserving di�eomorphism constructed from certain maps which are not
explicitly speci�ed but only required to satisfy certain conditions� In this paper�
we construct those maps explicitly� Doing so enables us to equip the maps in the
construction with the additional structure of being locally very close to an isometry�
We show how enough of this structure gets preserved when we pass to the limit
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n��� so that f � limn�� fn still preserves a Riemannian metric� Weak mixing
is guaranteed by a combinatorial arrnagement of the hypercubes involved so that
a certain iterates of the approximating �and hence limit� di�eomorphism mixes
elements of a certain partition �see Lemma �� and these partitions become �ner
and �ner as n increases�

The detailed proof of Theorem ��� is given in the next section�

��� Regularity of the invariant Riemannian metric� It is natural to ask how
regular an invariant Riemannian metric ought to be in order to guarantee discrete
spectrum�

A simple general observation is that essential boundedness of such a metric from
above and below is su�cient� For� given an invariant Riemannian metric which is
essentially bounded we may de�ne a bounded invariant Finsler metric by de�ning
the norm of a tangent vector v as the essential upper limit of norms of vectors
converging to v� Such a Finsler metric then de�nes an invariant distance via the
usual process of de�ning curve length and taking in�mum� Hence the map has
property �C� and consequently discrete spectrum with respect to any invariant
measure�

Moreover� a result of A� Furman shows that if a C�� action of a countable group
preserves a metric with L� distortion �i�e� both the norm and its inverse are L�

functions� then f has discrete spectrum with respect to a smooth invariant measure�
The proof of this fact is contained in the Appendix�

���� Related results� Existence of a measurable invariant metric for a di�eomor�
phism �or� more generally� a smooth group action� on an n�dimensional manifold
is equivalent to existence of measurable cohomology between the derivative cocycle
�with respect to any measurable trivialization of the tangent bundle� and a cocycle
with values in the orthogonal group SO�n�R�� Another equivalent formulation is
existence of an invariant measure for the projectivized derivative extension of the
action which is absolutely continuous in the �bers� One may naturally ask what
would be ergodic properties of the projectivized derivative extension with respect
to such a measure� There are two extreme possibilities	

�i� projectivized derivative extension is ergodic� and
�ii� the derivative cocycle is cohomologous to identity�
In case �ii� the projectivized derivative extension is as non�ergodic as possible	 it

is isomorphic to the direct product of the action in the base with the trivial action
in the �bers so that each ergodic component intersects almost every �ber in a single
point�

Construction presented in Section � in fact realizes case �ii�� As it turns out by
modifying our construction case �i� as well as intermediate situations may also be
achieved�

One can also go in the opposite direction and produce non�standard smooth
realizations of certain Liouvillean rotations of the circle and translations of the
torus which do not preserve any any measurable Riemannian metric thus showing
that �GM� does not imply �IM� either�

Detailed constructions and proofs will appear in a separate paper�

���� Actions of non�abelian groups� One of the motivations for considering
groups of di�eomorphisms preserving a measurable Riemannian metric came from
Margulis�Zimmer rigidity theory� Zimmer�s cocycle superrigidity theorem �Z�� The�
orem ����� applied to the case of the derivative cocycle implies that this possibility
is essentially the only alternative to the genuine �rigidity� of the derivative cocycle�
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namely cohomology with a �constant coe�cient� cocycle� A natural question arises
whether one can make conclusion about global di�erentiable or at least measurable
structure of the action� Zimmer provides partial answers in �Z� Z��� In the former
paper an extra condition �which is not immediately checkable� is given which is suf�
�cient for existence of a smooth invariant Riemannian metric� The latter contains
an elegant general result	 for groups satisfying Kazhdan property �T� our property
�IM� implies discrete spectrum� i�e� �GM��

���� Open problems� Beyond methods based on super�rigidity and property �T�
on one hand� and the conjugation�approximation construction on the other� very
little is known about group actions satisfying property �IM�� For brevity we will
call such actions simply �IM� actions�

Let us formulate several interesting open problems� We will not discuss here
questions related to �rigid � group actions except for pointing out that the central
question arising from superrigidity in this context is still open� Namely it is not
known whether any smooth �IM� action of a Kazhdan �property �T� � group �or�
more speci�cally� a lattice in simple Lie group of rank greater than one� actually
preserves a smooth Riemannian metric�

Problem ���� Does every compact manifold admit an �IM� di�eomorphism�

The conjugation approximation construction is the key ingredient in the original
proof that every compact manifold admits a volume�preserving ergodic di�eomor�
phism� The essential dynamical part of the proof is a construction of an ergodic
di�eomorphism of the closed ball which �xes every point of the boundary and is
very ��at� near it� At a certain stage of that construction a suspension �ow over
a Liouvillian di�eomorphism produces by a conjugation�approximation method is
subjected to a time change which vanishes at the boundary� At this step of the
construction a possibility of preservation of a measurable invariant metric is lost�

Problem ��	� Does there exist a faithful smooth �IM� action of the free group with
m � � generators on a compact manifold which does not satisfy �D� �or �C���

Since free groups can be embedded in many ways into orthogonal groups there
are many actions of free groups by isometries which may serve as starting point of
an inductive construction similar to conjugation�approximation� The di�culty lies
in approximation the free group in a way similar to approximation of Z by �nite
group in the conjugation�approximation method�

Problem ��
� Suppose � is a nilpotent countable group which does not have an
abelian subgroup of �nite index� Does there exist a faithful smooth �IM� action of
any such group on a compact manifold�

The di�culty here is that for any such group � the image of any homomorphism
to an orthogonal group has an abelian subgroup of �nite index� Hence � cannot
act faithfully by isometries of a Riemannian manifold and any construction would
have to be of a non�perturbative nature�

The following conjecture is one of a few plausible general results concerning �IM�
actions

Conjecture ���� Any smooth �IM� action of locally compact second countable
group �or just Z� preserving a rigid geometric structure �Gr� satis�es property �D��

Several natural questions are related to the regularity of a measurable invariant
Riemannian metric su�cient for discreteness of the spectrum� Here is a small
sample�
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Conjecture ���� Any smooth volume preserving action of a second countable lo�
cally compact topological group on a compact manifold which preserves a measurable
Riemannian metric with L� distortion has discrete spectrum� i�e satis�es �GM��

Problem ��� Suppose a volume preserving di�eomorphism of a compact manifold
preserves an L� �or L�� Riemannian metric which is almost everywhere positive �the
inverse to the norm may not be integrable�� Does it have discrete spectrum�

Finally there are questions concerning real�analytic actions� It is worth pointing
out that implementation of the conjugation�approximation construction in the real�
analytic category meets with great di�culties� So far the only successes are R�
Perez�Marco�s work in dimension one and very recent results of the second author
concerning perturbations of homogeneous actions� However there is hope that other
methods may work at least is special cases�

Problem ���� Does there exist a real�analytic volume�preserving weak mixing �IM�
di�eomorphism�

�� Proof of the main result�

���� Review of the conjugation�approximation construction� We construct
the weakly mixing C��di�eomorphism f � limn�� fn described in theorem ����
namely

fn �� H��
n Sbn��Hnfn�� � H��

n S�nHn� Hn �� hn � � � � � h��
where

�n ��
pn
qn
� �n�� �� �n � �n� �n ��

�

q�nknln
�

We will describe the choice of the parameters �namely qn and kn� and also
explicitly construct the maps hn and the invariant metric�

��� Action and factor space� Let M be an m�dimensional compact smooth
manifold admitting a smooth circle action S � �S����R�Z under which a smooth
probability measure � is invariant� Let 	�x� denote the smallest period of x� i�e��

	�x� �� infft 
 � � S� �x� � xg�
By compactness 	 is bounded� and we can assume without loss of generality that
maxx�M 	�x� � �� De�ne

M� �� fx �M � 	�x� � ��g� M� �� M nM��

Lemma 	��� 	 is lower semicontinuous� i�e� if limn�� xn � x and 	�xn� � a
then 	�x� � a�

Proof� Clearly 	�x� � f�g � f �i � i � Ng� If limn�� xn � x and 	�xn� � a then
either there is a in�nite subsequence along which 	 equals b � a� or limn�� 	�xn� �
�� In the �rst case� the conclusion 	�x� � b � a simply follows from continuity of the
action� In the second case� if b �� 	�x��� 
 � then d�x� Sbx� 
 � for some � 
 �� By
smoothness of the action and compactness� d

dtSt�y� is bounded by some constant
C� Thus d�xn� Sbxn� � 	�xn�C� So for n su�ciently large we have d�xn� Sbxn� � ��
Thus d�x� Sbx� � �� contradicting 	�x� 
 �� Therefore limn�� 	�xn� � � implies
	�x� � ��
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Lemma 	��� M� is open and of full measure�

Proof� If xi � x and xi �M� then 	�xi� � �
� � thus 	�x� � �

� by semicontinuity of 	�
Therefore M� is closed and M� open� See �AK� for a reference that ��M�� � ��

Lemma 	��� �AK� M� is connected�

From openness of M� follows that the measure of the ��neighborhood of M�

decreases to zero as �� � �because for p �M� there is � such that B�p �M�� thus
p �� B��M�� for � � ��� Therefore we can cover M up to arbitrarily small measure
by balls of uniform radius � so that all balls are uniformly bounded away from M��

Let N be the factor space M�S�

Remark ���� N carries a natural measure  given by  �� ���� i�e� �U� �
������U��� where � � M � N is the natural projection� Moreover� N� �� ��M�� is
an open subset of N � The closed set N� �� ��M�� obviously satis�es �N�� � ��

���� Smooth trivialization on full measure� There exists a S�invariant set
M� � M� such that the following is true	 Let M �

� �� M nM�� Then ��M �
�� � ��

the set M� is di�eomorphic to a disc Dm� the factor space M��S can be identi�ed
with a submanifold N� 	 Dm��� and for any � 
 � there is an S�invariant compact
subset M� � M� di�eomorphic to 	Dm�� 
 S� and of measure at least � � �� Of
course� � will always be small� so there is no danger of confusion between M� and
M� etc� The factor M��S can be identi�ed with a subset N� � M� di�eomorphic
to 	Dm��� N� can be approximated by compact sets N� di�eomorphic to 	Dm�� in
such a way that �N�� 
 �� ��

Lemma 	�
� Under the above assumptions� there exists a smooth Riemannian met�
ric on N� whose induced volume coincides with �

Proof� Let g be any smooth Riemannian metric on N� with volume form dvolg � Let
� be the density function of  with respect to g� i�e��

d

dvolg
� ��

Since multiplying the metric by a multiplies the volume form by adimN � the metric
g� �� ��� dimN � g satis�es

d

dvolg�
� ��

as desired�
A smooth Riemannian metric induces a natural volume form� Integration gives

a natural volume measure� More interestingly� any smooth measure arises this
way	

Proposition 	��� There exists a Riemannian metric g on M� such that	

 The volume measure of g coincides with ��
 N� is orthogonal to the �bers of the action� i�e�� g�v� d

dtSt�x�jt��� � � for all
v � TxN��

 For every � 
 �� the measure  � ��� is smooth with positive density on N��

Proof� Choose a smooth metric gN� on N�� By the previous lemma ����� we can
assume that its volume equals jN� � Denote the standard metric on S� by gS and
its volume �which is just length� by �� De�ne the metric g on M� to be the product
metric of gN� and gS � Since g is a product metric� its volume form is the product of
the volume form of gN�

�which is � and the volume form of gS �which is l�� Since
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all S��bers of M� have the same length� we see that volg � � � 
� on M�� Thus
the density of  is positive� Compactness of N� gives uniform boundedness�

Remark ���� Thus M� with the metric g is �smoothly� isometric to N� 
 S� with
the product metric of a smooth metric gN�

and the canonical �arclength�� metric
on the circle S�� The measure � coincides with the volume in the metric g�

���� Constructing hypersquares�

De�nition 	�� For a di�eomorphism f de�ned on a compact subset U of a smooth
Riemannian manifold we de�ne the deviation from being an isometry by

devU �f� �� max
v�TU�jjvjj��

jlog jjdf � vjj j �

This quantity has the following properties	

 devU �f� � ��
 devU �f� � � if and only if f is a smooth isometry of U �
 devU �f� � devf�U��f

����

 devU � 
f � f� � devf�U�� 
f� � devU �f��

The exponential map of a Riemannian manifold is not measure�preserving �although
it is �in�nitesimally measure�preserving��� We now de�ne a measure�preserving
di�eomorphism which is arbitrarily close to the exponential map and has arbitrarily
small deviation from being an isometry	

Lemma 	��� Let �M� g� be a Riemannian manifold� p � M� For all � 
 � there
exists � 
 � such that for any hypercube 	W � B���� � TpM there exists C �
��� �� � � �� and a di�eomorphism

e � C � 	W � exp� 	W �

which is measure�preserving �i�e� the pullback via e of the volume form induced by
g equals the Euclidean volume form� and which satis�es dev�e� � �� Here C � 	W
denotes homothetic scaling of 	W �about its center� with factor C�

Proof� Since the derivative of the exponential map expp at � � TpM is the identity�
the exponential map preserves the length element up to terms of second order in
the distance to p� Thus it preserves volume up to second order terms is d�p� ��� For
any bounded U � TpM we see that

volg�expp�aU��

volEucl�aU�
� �

as a� �� So for � small enough� the number

C ��

�
volg�expp� 	W ��

volEucl� 	W �

��� dimM

lies in the interval ��� �� � � ���
Since dexp is arbitrarily close to the identity for � small enough� we can �nd �

so that devB��expp� � ����
Denote the density function of the pullback of volg jexpp� �W � by �� i�e�

� ��
d�exp�pvolg�

dvolEucl
�

Since exp is volume�preserving up to second order terms� it follows that � � � �
���� �� for � small enough�
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Choosing a di�eomorphism A � C 	W � C 	W so that e�x� �� exp� �C � A�x�� is
measure�preserving and satis�es devC �W �A� � ���� we have proved the claim�

The existence of A can be seen as follows	 Choose a gradient vector �eld V
on C 	W so that ��

V �the time�� map of V � satis�es ���
V �
��� � volEucl� � volEucl�

Such a vector �eld can be constructed by planting positive divergence where � 
 ��
thus �repelling mass� there� and negative divergence where � � �� thus �attracting
mass� there� and solving the corresponding Laplace equation� Let A �� ����V ��
Since V � � as � � �� we see that dev�h� � ��� for � small enough� Thus
dev�e� � dev�h� � dev�exp� � ��

Another� more explicit� construction of A is to average the mass density � sub�
sequently in all directions	 Let �� �� �� and for i � f�� � � � �mg let �i be the density
obtained after applying Ai � � � � �A�� where we de�ne the smooth map

Ai � xi ��
Z xi

�i���x�� � � � � xi��� t� xi��� � � � � xm�dt� xk �� xk �k �� i�

Since �i does not depend on xi� the smooth map A �� Am � � � � � A� satis�es the
requirements�

Corollary 	���� Let �M� g� be a compact Riemannian manifold� For all � 
 �
there exists � 
 � such that for all p � M and any hypercube 	W � B���� � TpM
there exists C � �� � �� � � �� and a smooth di�eomorphism e � C � 	W � exp� 	W �
which is measure�preserving and which satis�es dev�e� � ��

De�nition 	���� We call a collection of subsets of �M��� a partition mod � �of
M� if the complement of their union has measure at most �� In similar spirit� we
say that a property is true mod � if the set where it is false has measure at most ��
For example� two sets are equal mod � if their symmetric di�erence is at most ��

Proposition 	���� �Cutting N� into hypersquares�� For all � 
 �� � 
 �� � 
 �
there exists a �nite partition Q of N� up to a set of measure less than �� a number
� 
 � and a family �fQQ��Q�Q��Q of C��di�eomorphisms fQQ� � Q� Q� so that for
all r all Q�Q� � Q	

 Q is a topological ball in N��
 diam�Q� � ��
 dist�Q�Q�� 
 ��
 ��Q� � ��Q���
 fQQ� is measure�preserving�
 devQ�fQQ�� � ��

 fQ�Q � f��QQ� �

Remark� We use the terminology �hypersquares� to denote objects of full dimension
on N and �hypercubes� for those onM� The dimension of the hypercubes is m� that
of the hypersquares is m� ��

Proof� We start by choosing a small enough number �� Precise conditions on its
size will be described later�

Pick �� so small that �N� n N��� � ������ Cover N�� by a �nite collection of
balls of radius �� denoted by �B��xi��i�J � J � N� De�ne

Ui �� B��xi� n
�
j�i

Uj �

At each point xi� i � J� choose a linear isomorphism Li � R
m�� � TxiN� Choose

a small �� 
 � �the requirements for smallness of �� will also be given later��
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Figure ���� We can cut N� into hypersquares �black� of the same
measure which are almost isometric to Euclidean ones� �The circles
correspond to the sets Ui��

Subdivide Rm�� into hypersquares of side length ��� Since the exponential map
is a local di�eomorphism� if � was chosen small enough� the hypersquares in the
��ball in Rm�� are mapped di�eomorphically into N� via expxi � Li� Discarding
those images that do not lie completely in Ui� we get a collection of images of
hypersquares for each i � J� Denote the collection of all these topological balls by
�Q�i�i�I with some �nite index set I� Since� by choosing �� small enough� each Ui
can be exhausted this way up to a set of arbitrarily small measure� we can assume
that �N� n

S
i�I Q

�
i� � ����� We separate the Q�i by shrinking the corresponding

hypersquare in Rm�� homothetically �around its center� by a factor � � �
���m��� �

This gives a modi�ed collection �Q��i �i�I � This modi�ed collection can be assumed
to satisfy �N� n

S
i�I Q

��
i � � �����

Without loss of generality �was chosen small enough that �Q��i ��maxi�I �Q
��
i � �

�� ����� �� � Thus we can �nd numbers �i � �� ����� �� for i � I such that if we
do another scaling of the hypersquare in Rm�� corresponding to Q��i by �i� we get
a topological ball Qi such that �Qi� � �Qj� for all i� j � I � and the Qi are still

a positively separated family� Since we can assume �� � ��
p
m� �� the diameter

of all Qi is less then �� Thus we have produced the collection Q satisfying the �rst
four properties in the statement�

Now we will construct the maps fQQ� � For Q � Q� we write LQ for the Li corre�
sponding to Q� Let eQ be the map derived from the exponential map corresponding
to Q� as explained in lemma ���� �More explicitly� if i�Q� is the index such that
Q � Ui�Q�� then eQ corresponds to expxi�Q�

and LQ corresponds to Li�Q��� Similarly
we de�ne LQ� and eQ� �

Obviously the hypersquare LQ � e��Q �Q� � R
m�� can be mapped to LQ� �

e��Q� �Q�� � R
m�� by some translation AQQ� � De�ne the map fQQ� � Q� Q� by

fQQ� �� eQ� �LQ� �AQQ� � L��Q � e��Q �

If � is small enough then dev�eQ�� dev�eQ�� � ���� Of course� dev�AQQ� � �
dev�LQ� � dev�LQ�� � � since those maps are smooth isometries� Thus

devQ�fQQ�� � ��



WEAKLY MIXING BUT PRESERVING RIEMANNIAN METRIC ��

���� Geometric partitions�

De�nition 	���� For i � Z� q � N let Di�q �M� be the rectangle

Di�q �� N� 

�
i

q
�
i� �

q

�
�

where we understand coordinates on S� to be taken modulo �� With this notation
we have Sl�qDi�q � Di�l�q � For i � �� � � � � q�� the Di�q are disjoint isometric �slices�
whose collection partitions M�� De�ne the partition

Yn �� fDi�qn � i � f�� � � � � qn � �gg�
It is clear that Yn�� 
 Yn� i�e�� every element of Yn is union of elements of Yn���
Now we de�ne the partition

Xn �� H��
n Yn�

Let � 
 � be given� LetQ be the partition mod ��� ofN��	 de�ned in Proposition

���� Denote the number of its elements by j� Let �� �� �
�m � For q� k � N� where

we can assume without loss of generality that k is a multiple of j� we de�ne the
following partitions	

I �� Ic nB	���Ic �M�� where Ic �� fDi�qg��i�q �

I � �� I �c nB	���I
�
c �M�� where I �c �� fDi�kqg��i�kq �

I� �� I�c nB	���I
�
c �M�� where I�c �� fDij�kq�jg��i�qk�j �

For �� small enough� I� I � and I� are partitions mod ��� of S�� consisting of q� kq
and kq�j elements� respectively� They satisfy I � 
 I� 
 I 
 S�� Now de�ne

P �� fN� 
 IgI�I�

P � �� fN� 
 I �gI��I� �
These two are partitions mod ��� of M with P � 
 P 
 M�� consisting of q and of
qk elements� respectively� Finally let

W �� fQ
 I�gQ�Q�I��I� �

W � �� fQ
 I �gQ�Q�I��I� �
These two are partitions of M� mod �� consisting of qk and jqk elements� respec�
tively� They satisfy W � 
W 
 M�� W 
 P �� W � 
 P ���
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Q

P’ W W’

Figure ���� Schematic illustration of the partition Q� the parti�
tions P � and W � and the common re�nement W ��

���� Permuting building blocks of a partition� We start by de�ning� for ar�
bitrary W�W � � W � a map F which exchanges W with W � and is the identity on
any other hypercube in W �

Choose an open neighborhood V of W �W �� di�eomorphic to a ball� not inter�
secting any hypercubes inW other than W andW �� We can make ��V n �W �W ���
arbitrarily small by a suitable choice of V �

Let Dr be the open disc of radius r around the origin in R
� � For numbers

r� � r� �whose di�erence is going to be very small� we let bi ��
p




 ri and de�ne

the cylinder Ci �� Dri 
 ��bi� bi�m�� � R
m for i � �� ��

�The geometric motivation is the following	 A slice of Ci in the �x�� x���plane
has area �r�i � and the length of Ci in any xk�direction equals �bi for all k 
 �� If
�r�i � � � ��bi�� then we can �t two hypercubes �bi� bi�m � R

m disjointly into Ci
by a map that preserves all xk�coordinates for k 
 ���

De�ne � � C� � C� by

� �� ��idDr�
�
 idRm���

If ��b��
m 
 ��W � � ��W �� then we can �nd a volume�preserving di�eomorphism

E � V � R
m � E�W �W �� � C� � C� � E�V �

satisfying

� �EjW � E � fWW � �

This can be done by �rst de�ning E on W such that EjW �W � � f�x�� � � � � xm� �
C� � x� � �g� then extending it to W � by de�ning EjW � �� � � EjW � f��WW � and
�nally extending it to V smoothly�

By construction� the diagram

W
fWW ��� W �

E � � E
R
m ��� R

m

commutes� where the map corresponding to the left vertical arrow is fWW � and the
map corresponding to the right arrow is ��

The map E is so far only de�ned on V� We extend it to a C��di�eomorphism
N� � N� as follows	

Choose C��functions f � ���� � �� ��� f j���r� � �� f j�r���� � � and g � R �
�� ��� gj��b��b� � �� gjRn��b��b�� � ��

De�ne a map � � Rm � R
m by

��r� �� x�� � � � � xm� �� �r� � � � � f�r� �
mY
i��

g�xi�� x�� � � � � xm��
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E

Figure ���� W and W � can be mapped almost isometrically into
a cylinder� Rotation of this cylinder exchanges them and leaves all
other pieces unchanged�

f(r)

1

0 r1 r2
r

0

g(x)

b1 b2
x

0

0

1

12-b -b

Figure ���� The cuto� functions f and g ensure that just the
inner cylinder gets rotated�

where �r� �� are the polar coordinates of points in R� � This is a C��di�eomorphism
which rotates C� by � and which is the identity outside C�� The rotation only
involves the �rst two coordinates and leaves the others constant�

Extend the map E in any bijective manner to all of M� De�ne the map G by
G �� E�� � � � E� Then G is a C��di�eomorphism exchanging W with W � which
is the identity outside C� and thus on any other element of W �

Remark ����� In dimension two� the map G can be realized as the time�� map of
a Hamiltonian �ow	 Let �t

H be the time�t map of the Hamiltonian �ow

dz

dt
�

�
� ��
� �

�
gradH jz�t�

on R� obtained from the Hamiltonian function H�r� �� �� ��
R r
�
f�R� � RdR which

is equal to �r� inside Br� and constant outside Br� � thus it generates rotation with

uniform speed on Br� and no motion outside Br� � It a simple veri�cation that if 
V

is any subset of N� and F is any area�preserving map U � R
� with F � 
V � � Br�

then the �ow �t �� E�� � ��t
H� �E on N� is a Hamiltonian �ow with Hamiltonian

H � �� H � F�
Analogously to proposition ��� we get the following statement	

Theorem 	��
� �Cutting M� into hypercubes�� For all � 
 �� � 
 �� � 
 � there
exists a �nite partition W of M� up to a set of measure less than �� a number � 
 �
and a family �fWW � �W�W ��W of C��di�eomorphisms fWW � � W � W � so that for
all W�W � � W	

 W is a topological ball in M��
 diam�W � � ��
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 dist�W�W �� 
 ��
 ��W � � ��W ���
 fWW � is measure�preserving�
 fWW � is the identity on any W �� � W n fW�W �g�
 devW �fWW �� � ��
 fW �W � f��WW � �

Proof� Since �M� � g� � �N� � g
��
 �S�� l�� we have

exp�x�s��A
 I� � expx�A�
 exps�I�

for all x � N�� s � S�� A � R
m�� � I � R� �Here exp is taken in M��N� and S��

respectively�� Moreover� for anyW we haveW � expxk�W �
	W for some 	W � R

m � for

all sets B � R
k � B� � R

m�k with B
B� � 	W �and thus expxk�W �
�B
B�� �W � we

have exp
xk�W �

�B 
 B�� � exp
xk�W �

�B�
 exp
xk�W �

�B��� Thus the statement follows

immediately from proposition ��� by choosing a partition Q of N��	 with elements
of diameter less than ��� and omitting a set of measure less than ���� and taking
the product with a partition of the circle omitting a set of measure less than ���
whose elements have length less than ��� and are positively separated�

���� Changing shape of partitions� De�ne the arrangement function

an � f�� � � � � kn � �g � f�� � � � � qng�

an�i� ��

� l
iqn
�kn

� �
�

m
for i odd�

� for i even�

In other words� an�i� is the integer closest to
iqn
�kn

�
De�ne

R�n� �

kn���
i��

Dknan�i��i�knqn �

kn���
i��

San�i��qnDi�knqn �

The meaning of this is that we cut the slice D��qn into kn slicelets Di�knqn �
P �� i � f�� � � � � kn� �g and move the i�th slicelet Di�knqn from D��qn �in which it is
contained� into Di�qn via rotation by an�i��qn� This makes

Xn ��
n
Si�qnR

�n�
oqn��
i��

a partition of M��

Theorem 	���� For all � 
 � and q� k � N we can �nd a C��di�eomorphism
h � M �M which maps W to P � mod � and which satis�es dev�h� � � mod ��

Proof� P � andW have a common subpartitionW �� By theorem ���� we see that we
can arbitrarily permute W � �mod �� via a smooth map with the desired properties�
Thus we can rearrange P � into W �mod ���

Since all partitions have positive distance � to M�� we can extend h to all of M
by de�ning it to be the identity on the ����neighborhood of M� and choosing a
smooth continuation in between�

Now we are able to arbitrarily rearrange the partitions� In particular� choosing P �
and W so that P � 
 Yn� W 
 Xn� we have proved	
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Corollary 	���� For all �n 
 �� �n 
 � we can map the partition Xn to the
partition Yn mod �n with a map hn satisfying devSW�W��hn� � �n �i�e� an almost
isometry on a set whose complement has measure at most �n�� Moreover� hn can
be chosen to satisfy

hnS�n�� � S�n��hn�

Proof� All that is left to show is the commutation relation	 Once we have speci�ed
hn on D��qn�W �� we can simply extend it by hnjDi�qn

� Si�qn �hnjD��qn
�S�i�qn �

R

DD D3,41,40,4 D2,4

(n)

Figure ���� The map hn maps the slice D��qn to R�n� and thus
the partition P � to the partition W � Here qn � �� kn � � �for
illustration purposes
 actual values will be much larger��

Remark ����� Recall that W re�nes Xn� By taking a suitable subpartition� we can
guarantee that hn not only maps Xn to Yn� but also that the pieces of W �which
obviously are arbitrarily small� remain arbitrarily small after applying hn� This
can be done by simply choosing W � �the common re�nement of W and P �� to be
�ne enough� Note also that since W is only a partition mod �n� we can talk about
smallness of images of these pieces without having to cut o� parts of small measure
again�

The map hn will be chosen to map Xn to Yn as described� This completes
the construction of the di�eomorphism� We proceed to show that it preserves a
measurable Riemannian metric and is weakly mixing�

���� The invariant Riemannian metric� Recall that we have de�ned f ��
limn�� fn where fn � H��

n S�nHn� Hn � hn � hn�� � � � � � h�� We let g� be the
product metric on M� �with respect to which any M� is isometric to N� 
 S�� and
de�ne

gn �� H�
ng� � h�� � � � h�ng��

�Here we use the notation f�� for the pullback of the multilinear map � via the
map f� i�e�� for p �M� v � TpM we have �f���jp�v� � �jf�p��df �v�� In our notation�
�jp�v� means the the form � at the point p evaluated on the vector v��

Each gn is the pullback of a smooth metric on M� via a C
��di�eomorphism and

thus a smooth metric� Moreover� gn is fn�invariant since

S��ng� � g�

and thus

f�ngn � H�
nS

�
�n�H

��
n �� � gn � H�

nS
�
�n�H

��
n �� �H�

n � g� � gn�
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Now we claim that

g� �� lim
n��

gn

exists ��a�e� and is a f �invariant Riemannian metric	

Lemma 	���� The sequence �gn�n�N converges ��a�e� to a limit g��

Proof� Our construction allows us to choose� for any value of � 
 � and � 
 �� the
map hn so that h�ng� is �n�close to g� up to a set of measure �n� Thus on a set of
measure at least ��Pn�N �n we have� for all n 
 N�

d�gn��� gn� � d�H�
nh

�
n��g�� H

�
ng�� � jjH�

njj � d�h�n��g�� g�� � �n��

if hn�� is chosen so that d�h�n��g�� g�� is small enough� Thus �gnjp�n�N is a Cauchy
sequence for a set whose measure approaches � as N � �� therefore it converges
to a limit g� on a set of full measure�

Lemma 	���� The limit g� is a measurable Riemannian metric�

Proof� Since g� is the limit of positive de�nite quadratic forms� it is obviously a
nonnegative de�nite quadratic form� On T�M � T�M minus a set of measure at
most

P
k�n �k� the form g� is

P
k�n �k�close to gn� which is positive de�nite� By

choosing �k� k 
 n� small enough �this depends on gn�� we can guarantee that g�
is positive de�nite up to a set of measure at most

P
k�n �k� Since this is true for

all n� it follows that g� is positive de�nite on a set of full measure�

Lemma 	���� The metric g� is f�invariant� i�e� f�g� � g� almost everywhere�

Proof� We know that the sequence �gn�n�N converges in the C��topology pointwise
almost everywhere� By Egoro��s theorem� for any � 
 � we can �nd a set C� �M
such that the convergence is uniform on C� and ��M n C�� � ��

We know that 
fn �� f��n � f converges in C� to the identity as n � �� thus
uniformly by compactness� Smoothness of f implies f�g� � f� limn�� gn �
limn�� f�gn� By uniform convergence� f�g� � limn��


f�nf
�
ngn � limn��


f�ngn �
g� on C� � This is true on all sets C� with � 
 �� thus on

S
��� C�� which is a set of

full measure� the equation f�g� � g� holds�

���� Proof of the weak mixing property� Almost all arguments in this section
are contained in various parts of �AK�
 for the convenience of the reader� we present
them here with explicit calculations and in one contiguous piece�

Recall that a sequence of �nite partitions �n of a metric space is called exhaustive
if for any measurable set A there exists a sequence of sets An composed of elements
of �n such that ��A�An�� � as n� ��

Lemma 	���� The map T � M � M is weakly mixing if and only if there exists
an exhaustive sequence of partitions �n of M and a sequence of integers �mn�n�N
with the property that mn �� andX

c�c��n

j��c � Tmnc��� ��c���c��j � � as n���

The proof of this lemma can be found in �AK�� pp� ����

Remark ���� Since we are able to choose the pieces of the partition W in the
n� ��th step to be so small that they remain su�ciently small when applying the
conjugating map Hn �see remark ������ we can ensure that the diameter of elements
of Xn�n�� converges to zero as n���
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Measuring overlap after rotation
De�ne the overlap number Qn�k to be the number of strips in P � that are in

the intersection of S��qnknR
�n� with Sk�qnR

�n� �the k�th element of the partition
Yn�n���� We can formalize this as follows	

De�nition 	��	�

Qn�k � knqn � �
�
S��qnknR

�n� � Sk�qnR�n�
�
� �����

Thus the intersection of the k�th copy of R�n� with an appropriate iterate of R�n�

under a map conjugate to fn consists of Qn�k elements in P ��
Let ln �� kn�qn� Since we choose kn after qn and our construction only mandates

lower bounds for kn� we can assume that �qnjkn�
Lemma 	��
� �Intersection counting�� The preceding construction guarantees that

Qn�k � ln for k �� �� qn���
Qn�k � �� �ln� for k � �� qn���

Proof� Recall that we have labeled the substrips of the strip D��qn in the canonical
way� i�e�� Di�knqn � S��knqnD��knqn � The substrips of D��knqn �namely Di�knqn � � �
i � kn� are mapped to the substrips of R�n� via the map hn��� Among these
substrips� all even�numbered sectors are left in D��qn � where they already were
before application of the map hn��� Since we rotate via S��knqn by exactly one
substrip and then map it to D��qn via Sk�qn � the measure of the intersection in
formula ��� is exactly the number of substrips mapped to Dk�qn plus the number of
substrips mapped to D�k�qn � For � � k � qn��� the �rst number equals ln �because
that is the total number of such substrips in Dk�qn� and the second number is zero
�because there are no such substrips in D�k�qn � Similarly� for qn�� � k � qn� the
�rst number is zero and the second number equals ln� For the two remaining values
of k� there remain �ln strips to be distributed� showing the second condition�

Approximating partitions
For a partition Y of M and a set S �M we write SjY if S is union of elements

in Y �in other words� if fS�M n Sg � Y ��
Recall that Yn � Yn�� for all n� De�ne the map Cn � fS � SjYng � fS � SjYn��g

by Cn�S� ��
Sfc � Yn�� � c�S �� �g for SjYn� Observe that the condition c�S �� �

is equivalent to c � S for SjYn� c � Yn���

We de�ne 
Pn
n�� � fS � SjYng � fS � SjYn�n��g by 
Pn

n���Di�qn� �� Cn�Di�qn��

This also serves to de�ne Yn�n�� �� f 
Pn
n��Di�qngqn��i�� �

Obviously Yn�n�� is increasing in n� since the map Cm for anym maps a partition
to another partition with the same number of elements� and increasing n means
starting with a �ner partition�

De�ne Xn�n�� �� H��
n��Yn�n���

Let Pn
n�� �� H��

n��

Pn
n��Hn�

Fact 	���� The partition Xn is e�n�approximated by the partition Xn�n��� that is�X
c�Xn

c�Pn
n��c � ��n�

Proof� Calculation�
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Lemma 	���� The maps fi and fi�� are �
liq�i

�close on Xi in the sense thatX
d�Xi

��fid�fi��d� �
�

liq�i
�

Proof�

�
�
fiH

��
i Dl�qi�fi��H

��
i Dl�qi

�
� ��HifiH

��
i Dl�qi�Hifi��H

��
i Dl�qi�

� ��S�iDl�qi�hi��S�i��h
��
i��Dl�qi�

� ��S�iDl�qi�Saihi��S�i��h
��
i��Dl�qi�

� ��Dl�qi�hi��S�
i��

h��i��Dl�qi�

� ��h��i��Dl�qi�S�
i��

h��i��Dl�qi�

Thus X
d�Xi

��fid�fi��d� �
qn��X
l��

�
�
fiH

��
i Dl�qi�fi��H

��
i Dl�qi

�

�

qn��X
l��

�
�
h��i��Dl�qi�S�i��h

��
i��Dl�qi

�

�
qn��X
l��

�
�
Sl�qiR

�i��S�i��Sl�qiR
�i�
�
� �ei

�
qn��X
l��

�
�
R�i��S�i��R

�i�
�
� �ei

� ��i��ki�

since R�i� consists of ki strips� By de�nition� �i�� � �i �
�

kiliq�i
� Thus ��i��ki �

�
liq�i

� proving the claim�

Proposition 	��� With respect to the partition Xn�n��� the maps f and fn are
close in the sense thatX

c�Xn�n��

��fc�fnc� � ���n�� � �
X

i�n��

��i �
X

i�n��

�

liq�i
�

Proof� For c � Xi�i�� we set d �� �P i��
i ���c� Then d � Xi� Using this� we �ndX

c�Xn�n��

��fc�fnc�

�
X

i�n��

X
c�Xn���n

��fic�fi��c�

�
X

i�n��

X
c�Xi���i

��fic�fi��c� �since i 
 n implies Xi�i�� 
 Xn�n���

�
X

i�n��

X
c�Xi���i

��fiP
i��
i d�fi��P

i��
i d�

�
X

i�n��

X
c�Xi���i

�
��fiP

i��
i d�fid� � ��fid�fi��d� � ��fi��d�fi��P

i��
i d�

�

� ���n�� � �
X

i�n��

��i �
X

i�n��

�

liq�i
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where the last inequality in this calculation follows from lemma ����

Lemma 	���� �Iteration lemma��X
c�Xn�n��

��fmc�fmi c� � m �
X

c�Xn��

��fc�fic��

Proof� Since Xn�n�� � Xn��� the left hand side is �Pc�Xn��
��fmc�fmk c�� More�

over�

��fx � fmx �� fmk xg� �
mX
i��

��fx � f ix �� f ikx� f
i��x � f i��k xg�

�
mX
i��

��fx � f ix �� fkf
i��xg�

� m � ��fx � fx �� fkxg�
since f preserves �� This completes the proof�

Conclusion ����� Suitable iterates of the maps f and fn are also close with respect
to the partition Xn�n�� in the sense that the termX

c�c��Xn�n��

j��fmnc � c��� ��cfmn

n�� � c��j

converges to � as n���

Proof� X
c�c��Xn�n��

j��fmnc � c��� ��cfmn

n�� � c��j

�
X

c�c��Xn�n��

���fmnc�fmn

n��c� � c��

�
X

c�Xn��

��fmnc�fmn

n��c� �since Xn�� 
 Xn�n���

� mn �
X

c�Xn��

��fc�fn��c� �by the iteration lemma �

� mn �
	

 X
c�Xn��

��fc�fPn��
� c� �

X
c�Xn��

��fPn��
� c�fn��P�c�

�
X

c�Xn��

��fn��P�c�fn��c�

�
A

� mn �
	

�

X
c�Xn��

��c�Pn��
� c� �

X
c�Xn��

��fPn��
� c�fn��P

n��
� c�

�
A

� mn �
	

��n�� � X

c�Zn��

��fc�fn��c�

�
A

� mn �
	

��n�� � �

X
i�n

��i � �
X
i�n

�

liq�i

�
A
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by proposition ����
Now we use the fact that mn � qn��� For a suitable choice of parameters� the

last term in the above equations converges to zero�

Algorithm 	���� Choose mn � f�� � � � � qn�� � �g so that mnpn�� � lnqn �in
Z�qn��Z��

Proposition 	���� For any sequence ���n�n�N we can choose the parameters in the
construction so that

P
c�c��Xn�n��

j��fmn

n��c � c�� � ��c���c��j converges to zero as
n���

Proof� By algorithm ����� we have

mn�n�� � mnpn���qn�� � lnqn�qn�� �
lnqn
knlnq�n

�
�

knqn
�

This yields

fmn

n�� � Hn���S�n���
mnHn�� � Hn��Smn�n��Hn�� � Hn��S �

knqn

Hn���

Therefore

��fmn

n��c � c�� � ��Hnf
mn

n��H
��
n c � c��

� �
�
S��knqnSj�qnR

�n� � Sk�j�qnR�n�
�

� �
�
S��knqnR

�n� � Sk�qnR�n�
�

�
Qn�k

knqn
�

If c� c� � Xn�n�� then we can write c � Sj�qnR
�n�� c� � Sk�j�qnR

�n� for suitable
integers j� k � f�� � � � � qng� Here we call the second variable k � j instead of k to
make the next calculation easier� Namely� we get the estimate

X
c�c��Xn�n��

j��fmn

n��c � c��� ��c���c��j �

qn��X
j��

qn��X
k��

����Qn�k

knqn
� q��n

����
� qn

qn��X
k��

����Qn�k

knqn
� q��n

���� �
By the intersection counting lemma ���� this term equals

qn �
�����Qn��

knqn
� q��n

�����
����Qn�qn��

knqn
� q��n

����
�
� �qn

����kn��qnknqn
� q��n

���� � �

qn
�

which clearly converges to zero as n���

Theorem 	���� For any sequence ���n�n�N we can choose the parameters in the
construction so that

P
c�c��Xn�n��

j��fmnc � c�� � ��c���c��j converges to zero as
n���
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Proof� X
c�c��Xn�n��

j��fmn
n c � c��� ��c���c��j

�
X

c�c��Xn�n��

j��fmn

n��c � c��� ��c���c��j

�
X

c�c��Xn�n��

j��fmnc � c��� ��cfmn

n�� � c��j�

By proposition ���� the �rst summand converges to zero as n��� By conclusion
����� so does the second�

Conclusion ����� f is weakly mixing�
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