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Abstract: With a plane closed convex curve, T, we associate two area preserving 
twist maps: the (classical) inner billiard in T and the outer billiard in the exterior of 
T. The invariant circles of these twist maps correspond to certain plane curves: the 
inner and the outer caustics of T. We investigate how the shape of T determines 
the possible location of caustics, establish the existence of open regions which are 
free of caustics, and estimate from below the size of  these regions in terms of the 
geometry of T. 

Introduction 

A closed convex curve, T C R 2, in the Euclidean plane defines two natural dyna- 
mical systems: the classical billiard ball map, qSr (inside T), and the "outer billiard," 
~br, in R2\int(T). The phase space, ~/' = ~br, of the inner billiard is the space of 
directed straight lines (rays) intersecting T. The phase space, 7Jr, of the outer 
billiard map is the set of points in the exterior of T. With a natural choice of  
coordinates in the phase space, both billiards are area preserving twist maps. 

Invariant circles for these twist maps correspond to certain geometric objects. 
In the case of qSr these are the caustics of  T (famous in the geometric optics). 
A caustic, 7 C int(T), corresponding to an arbitrary invariant circle F may have a 
complicated structure. For instance, the jumps of the tangent direction for F corres- 
pond to the discontinuities of  7. In particular, these caustics are not convex. There 
are other types of nonconvex caustics. For instance, the equator of ~br, for a table 
T of constant width, is an invariant circle. The corresponding caustic is not convex 
(unless T is circular). In Sect. 1 where we deal with the inner billiard map, we 
restrict our setting to the convex caustics. The present techniques do not work 
without this assumption. 

If  a caustic ? is convex, then it is simply the envelope of the correspond- 
ing family, F, of rays. For sufficiently smooth tables T a necessary and sufficient 
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condition for the existence of such caustics is the positivity of the curvature of T. 
This is a consequence of two well known results. One is a theorem of Lazutkin 
[15] (a version of KAM) that ensures the existence of smooth convex caustics near 
T. The other one is a theorem of Mather [16] that excludes all invariant circles if 
the curvature vanishes at least at one point of T. 

The situation for outer billiards is somewhat different. In this case the invariant 
circles directly correspond to the simple closed Lipshitz curves, F C R2\int(T), 
encircling the table. In general, F is neither smooth nor convex. However, for a 
sufficiently smooth table T, with a strictly positive curvature, an application of 
KAM ensures the existence of smooth convex invariant circles F arbitrarily close 
to T and arbitrarily far away from it [18, 6]. To emphasize the analogy between 
the inner and the outer billiard maps, we call the invariant circles for Or the outer 
caustics. 

The objective of this work is twofold. First, for the inner billiard map we 
establish a quantitative version of Mather's theorem [16], compatible with Lazutkin's 
results [15]. Namely, we prove that if the minimal curvature of the billiard table 
T (appropriately normalized) is sufficiently small, then the convex caustics are lo- 
cated only near the boundary of the table. In particular, we estimate from below 
the area inside T which is "free of  convex caustics," see Theorems 1.3 and 1.4. To 
interpret our results, let us consider the following "mental experiment." There is a 
one-parameter family, Tt, of convex billiard tables, sufficiently smooth, and with a 
strictly positive curvature. We can think that our billiard table, T, is slowly chang- 
ing with time. Suppose that under the deformation the minimal curvature of T is 
gradually decreasing to zero, while the global shape of the table remains essentially 
unchanged. Then, by the results of Sect. 1, the convex caustics are gradually pushed 
out to the boundary (Theorems 1.3, 1.4). 

Second, we find a counterpart of Mather's theorem for outer billiards 
(Theorem 2.1), and establish a quantitative version of it. We prove that if the 
minimal radius of curvature of the outer billiard table T is sufficiently small (with 
respect to the size of T), then the outer caustics are confined to the union of two 
disjoint annular regions in ~u. One of the regions, ~ j ,  is a topological annulus sur- 
rounding T. The other annular region, ~2, is infinite, and is bounded away from 
~ul. We estimate from below the area of the annular region, 7J), ., between ~1 and 
~2, which is "free of outer caustics" (Theorem 2.2 and Corollary 2.8). This is a 
counterpart, for the outer billiard map, of Theorem 1.4. 

Imagine a deformation of the outer billiard table, analogous to the "mental 
experiment" described above. Under the deformation the minimal radius of curvature 
of T goes to zero, while the general shape is unchanged. Then, by our results, the 
region tP1 shrinks to the table, while ~u2 stays bounded away from T. Thus, when 
Pmin(T) = 0, the outer caustics are bounded away from T (Theorem 2.1.). The 
annulus ~ f ,  free of outer caustics, surrounds the outer table. This is a counterpart 
of Mather's theorem [16] for outer billiards. The result is sharp, in the sense that 
there are examples of outer billiard tables T, Pmin(T) = 0, with outer caustics (see 
examples in Sect. 3). 

The annulus 7~f is contained in a Birkhoff region of instability [3, 13], d ,  O d  = 
F1 U F2. The complement of ~4 in 7 t is the union of two invariant annuli, d l  
and d2 .  The annulus ~4 ! is between T and F1. It contains the outer caustics of 
the first kind. The annulus -~2 is the exterior of F2. It contains the outer caus- 
tics of the second kind. Thus F1 and F2 are the "last outer caustics of  their 
kind." A region of instability contains orbits with complicated asymptotic behavior 
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(Mather [17], Le Calvez [5]). In particular, in int(M) there are orbits homoclinic 
to F1, F2, as time goes to z~oo respectively (Theorem 2.3). 

The results on outer caustics are presented in Sect. 2. Note that in Sect. 2 we 
don't assume that the caustics are convex. In fact, we don't impose any addi- 
tional restrictions on outer caustics. This is why the proofs in Sect. 2, especially in 
Subsects. 2.6, 2.7, are longer and more technical than the proofs in Sect. 1. 

We point out that the radius of curvature for an outer billiard table plays in the 
preceding discussion a role analogous to that of the curvature for an inner billiard 
table. This is a manifestation of a partial duality between the two dynamical systems. 
The origin of  this phenomenon lies in the projective duality between points and 
lines in the Euclidean plane. This correspondence shows in the similarity of  the 
basic constructions for the two billiard maps in question. For example, the string 
construction for the inner billiard is analogous to the area construction for the outer 
billiard (see Sects. 1.3 and 2.3). The mirror equation for the inner billiard has a 
counterpart for the outer billiard (see Eqs. (1.5) and (2.11)). 

The last section of the paper is devoted to an informal discussion, comments 
and examples. As we have noted above, the techniques of  Sect. 1 are suitable for 
obtaining a priori estimates on convex (inner) caustics only. In order to extend our 
results to the general case, we need to improve our understanding of the geom- 
etry of  nonconvex billiard caustics. There is virtually nothing on this subject in 
the literature. In Sect. 3 we discuss a few examples of  billiard tables with special 
nonconvex inner caustics. In one of the examples we construct a one-parameter 
family of billiard tables having the astroid as a caustic. Also in Sect. 3 we give 
examples of outer billiard tables with a vanishing radius of curvature (or a comer), 
and having outer caustics. This illustrates the sharpness of Theorem 2.1. 

We have reported and discussed the results of this paper at various meetings 
and workshops in 1992-93 [9]. When the present work was finished, Phil Boyland 
brought to our attention that he has obtained a version of Theorem 2.1 in 1988, 
and has announced this and other results in his lectures on outer billiards in 1989. 
He also informed us that he was writing up his results. The manuscript has since 
appeared [23]. (Added in proof). 

1. Inner Caustics 

1.1. Preliminaries and Notation. A billiard table, [T], is a domain in R 2 bounded 
by a convex closed C I curve, T, which is C 2 except for finitely many (singular) 
points, si, 1 <_ i <_ N.  We denote by ~b = ~ T  the set of unit tangent vectors in R 2 
with footpoints on T, directed inward, and endow ~0 with the natural topology. 
Fixing an initial point in T (and orienting T positively), we parametrize T by the 
arclength, 0 < s < [T[. Let v E # be a vector with a footpoint s, and let 0 be 
the angle between v and the positive tangent direction to T at s (Fig. 1.1). The 
parametrization v = v(s, O) identifies �9 with the cylinder {(s, 0) "0 < s < ]T[, 0 < 
0 ~ ~z}. The curvature, ~(s) is defined for s+s i ,  1 <- i < N,  and we don't impose 
any restrictions on ~(s) as s ~ si. 

The billiard flow in [T[ is defined as the free motion of a point mass with the 
unit speed inside [T[, with the elastic reflections from the boundary. The set ~b 
is a natural cross-section of the billiard flow, and the first return transformation, 

; (D ~ 4 ,  (p(s,O) = ( S l , 0 1 )  , is called the billiard ball map (Fig. 1.1). 
Let l (s ,s  I) be the Euclidean distance between the corresponding points on T. 

The map q~ is differentiable at (s, 0) if  T is C 2 at s and Sl. The differential is 
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"1" 

Fig. 1.1. The billiard ball map. 

given by 

0S  1 K ( s ) l ( s ,  S 1 ) - -  sin 0 0S 1 l ( s ,  S 1 ) 

0s sin 01 ' 00 sin 01 

001 

0s sin 01 ' 

001 ~C(Sl )l(s,  Sl ) - sin 01 
= (1.1) 

00 sin 01 

tc(s)K(sl ) l(s,  sl ) - ~c(s) sin 01 - /Z(Sl  ) sin 0 

This formula is a special case of  Eq. (4.10) in [14]. The proof  is elementary, and 
we leave it to the reader. 

Denote by s ' - s  the arclength of  T from s to s I (in the positive direction on 
T). Set 

h(s , s ' )  = (s' - s)  - l ( s , s ' ) ,  t = 1 - cos 0.  (1.2) 

Then d s d t  = d s ld t l ,  and 

dh(s ,  s l )  = t lds l  - t d s ,  (1.3) 

i.e., ~b is an area perserving twist  map,  and h is a generat ing func t ion  (see, e.g., 
[5, 6, 11, 13]). 

We identify ~b with the set of  rays, (i.e., oriented straight lines) intersecting T, 
and let X be the space o f  rays in R 2. Endowed with the natural topology, X is 
diffeomorphic to the infinite cylinder, X ~_ S 1 • R, and r C X is a bounded do- 
main. Denote by T X  the tangent bundle of  X, and let T p X  be the pro jec t iv i zed  
tangent  bundle. Topologically, T p X  ~_ S 1 x S I x R. We will make use of  a "phys- 
ical" interpretation of  TpX,  as follows. A poin t  at  inf ini ty  of  R 2 is a family of  
rays with the same direction. The set of  points at infinity is the absolute (a topo- 

logical circle), and let [I 2 be the union of  R 2 and the absolute (with the natural 

topology). Note that [i 2 is homeomorphic to the disc, not the projective plane. Any 
ray, l E X,  defines a unique point at infinity, oo(l),  and we complete l with e~(l).  
Any pair ( l ,A ) ,  A E l, (including the pair (l, oc ( l ) ) )  defines an inf ini tes imal  light 
beam,  centered at l, with the focus ing  poin t  A. I f  A is a finite point, the light beam 
consists of  the rays F, "very close to" l, and l/f3 1 = A. I f  A = ec( l ) ,  the light 
beam consists of  rays l/, very close to and parallel to l. 

With any infinitesimal light beam ( l , A )  we associate a differentiable curve, 
7 = ~(I,A) = {/(t)  : --e < t < e}, on X,  where l (0)  = l, l ( t )  (? 1 = A. The curve 7 is 
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not uniquely defined, but its tangent line at t = 0 does not depend on the choices in- 
volved, and defines a point, r = r(l ,A) E TpX. This is a one-to-one correspondence 
between TpX and the set of infinitesimal light beams. Restricting this isomorphism 
to Tp~b C TpX, we obtain a description of points of Tp~b as the infinitesimal light 

^2 
beams (l, A) , l  N T:t:O. We set f ( l , A ) =  A E R , the focusing point of the beam. 

The mapping f : TpX ~ R 2  ^ 2 D, as well as the restriction, f " Tp~ -+ R , is onto 
(but neither map is a fibration). 

We say that a curve F C �9 is an invariant circle if F is isotopic to a 
boundary component of 4~ and ~b(F)= F. Both boundary components of ~b are 
trivial invariant circles, and we disregard them in what follows. If T is C 2 
then ~b is a C 1 area preserving twist map, and, by Birkhoff's theorem ([3], 
see also [11,13]), any invariant circle is the graph of a Lipshitz function, i.e., 
F = {(s,O(s)):O < s <_ [T[}. We identify F with a family of rays, F = { lr(s) :  
0 _< s _< ITI}, in R 2, and let (F) C R 2 be the intersection of the closed (left) half- 
planes of { l r ( s ) :O < s <_ IT[}. By definition, (F> is a convex closed set, and 
<r> c IV]. 

Definition 1.1. Let the notation be as above, and let F C CbT be an invariant 
circle. We say that F is a convex invariant circle /f  every ray lr(s), 0 < s <- 
IT[, is a supporting line of  (F>. The boundary, ? = 3((F>) C [T], is the caustic 
corresponding to the invariant circle F. 

Remarks. Our setting is closely related to the billiard flow in [T], which is a 
Hamiltonian system [1, 13]. Invariant circles, F C ~b, correspond to the invariant 
tori in the phase space of the flow. A caustic, 7 = 0((F)), is the "trace" of F in 
the configuration space. The extremal points, A E 7, are the focusing points of the 
infinitesimal light beams, ( l ,A)  C TpF. 

In this work we restrict our attention to convex invariant circles. Their caustics 
are, by definition, convex. This property fails for general invariant circles (see Sect. 3 
below). 

1.2. Mirror Equation o f  the Geometric Optics. Let T be an oriented plane curve 
without selfintersections (not necessarily closed). Assume that T is C 2, with the 
curvature tc(M),M E T, and denote by ~b the space of rays intersecting T. Let 
M E T, A C R 2. Set d(A) = -4-IAMI, with the plus sign if A belongs to the left half- 
plane determined by the positive tangent to T at M, and the negative sign otherwise. 
Let ( l ,A)  E Tp~b, M = l A T. The signed distance d(A) = -4-1AM I is a function on 
TpqK Denote by dqb the differential of q~, and let dp~b be the projectivization, dp4) : 
T~4~---+ Tp~b. We will use a well known formula from the geometric optics (the 
"mirror equation," see, e.g., [21], Lemma 1). 

Proposition 1.1. In the notation above, let (I,A) E Tpq~, and let (re, B) = dpd?(l,A), 
M = l C l m .  Let 0 be the angle between T and l, and set a = d ( A ) , b = d ( B )  
(Fig. 1.2). Then 

1 1 ~ ~ ( M )  
- + (1 .4 )  
a ~ = ~ s i ~ - O  

If A :l:B are points in R 2, we use notation AB for the interval directed from A 
to B, and, if there is no danger of confusion, for the corresponding oriented line. 
We denote by lAB[ the length of the interval AB. 
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[ 

Fig. 1.2. Mirror equation of the geometric optics. 

T 

Fig. 1.3. Notation for Corollary 1.1, Lemma 1.1, and Lemma 1.2. 

Corol lary 1.1. Let [T] be a bill&rd table with a convex caustic 7. Let A,B E 3; 
and M E T be as shown in Fig. 1.3. Let 0 = O(7,M ) be the corresponding angle. 

I f  M is a C 2 point o f  T, then 

1 1 ~c(M) (1 .5)  
IAM~ I + IBM[ - 2 sin0 " 

Proof  This is a special case of  Eq. (1.4) with a = IAMI, b = IBM[. [] 

Equation (1.5) immediately implies the following. 

Theorem 1.1. A convex, C 2 billiard table with a point o f  zero curvature has no 
convex caustics. 

Since convex caustics correspond to convex invariant circles, Theorem 1.1 is a 
weakened version of a result of  J. Mather 's  [16]. Mather 's  proof  of  the nonexistence 
of  invariant circles [16] uses the differential of  the billiard map (see Eq. (1.1)), and 
the orientation preserving homeomorphism q~r : T ~ T, associated with an invariant 
circle F. We can deduce Mather 's  theorem from Eq. (1.4). Since the proof  would 
require a discussion of  general (nonconvex) caustics, we do not give it here. We 
refer the reader to Wojtkowski [21], page 397, for a geometric optics approach to 
Mather 's  theorem. In the rest of  this section we will obtain a quantitative improve- 
ment of  Theorem 1.1. 
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1.3. Lazutkin Parameter of  a Caustic. The String Construction. Let 7 C [T] be a 
convex caustic. For any M E T let MA, MB be the supporting rays to 7, and let 0 = 
O(M) < ~z/2 be the corresponding angle (see Fig. 1.3). The curve ? is rectifiable, 
and we denote by I?ABI the arclength of 7 from A to B (in the positive direction 
on ~). 

Lemma 1.1. The quantity 

L(7,M ) = IAM] + IBM[-  ]~A B] (1.6) 

does not depend on M. 

Proof Denote by da the arclength element on ~. A straightforward computation 
gives 

d(IM BI) = - c o s  Ods(M) + da(B), d(]M A]) = c o s  Ods(M) - da(A). 

This, and the equation 
d ( 1 7 ~ l )  = d ~ ( B )  - d~(A) 

imply the claim. [] 

By the preceding lemma, the quantity L(7,M ) = L(7), defined by Eq. (1.6), de- 
pends only on the (convex) caustic 7- Lazutkin [15] used L(7 ) to study the caustics 
near T (these are necessarily convex). We call L(7 ) the Lazutkin parameter of the 
caustic 7. 

We set S ( 7 ) =  L ( ? ) +  171. The quantity S(7) has a "physical" interpretation. 
Imagine that the curve 7 is made from a thin smooth wire, and that we have a 
closed string of length S(7), made from unstretchable material. We wrap the string 
around the wire, and pull it tight at a point, M. When we drag the string around 7, 
preserving the conditions above, the point M traces the table T. This is the string 
construction, and S(?) is the string parameter of the caustic 7. For a given convex 
closed curve, 7, and any S > 171, the string construction produces a unique table 
T = T(S) such that 7 is a caustic in T, and S(?) = S. This is well known in the 
literature, see, e.g., [18, 12], or [19], where it is attributed to Minasian. In fact, the 
string construction goes back to the antiquity, at least in the special case when 7 is 
an interval, [AB]. It produces the family of (confocal) ellipses with loci A and B. 
When B -= A, we obtain the circles centered at A. 

1.4. Estimates from Above on the Lazutkin Parameter. We fix a billiard table [T], 
and use the preceding notation. 

Lemma 1.2. Let ? be a convex caustic, and let L = L(y) be the Lazutkin param- 
eter. Let M E T, and let O(M) be the corresponding angle (Fig. 1.3). Then 

sin 30(M) 
L < 2 (1.7) 

~ c ( M )  

Proof Denote by a,b,c the sides of the triangle ABM. Since [TAB[ > c, by 
Lemma 1.1, L < a + b -  c. By cosine theorem 

4absin 2 O] 1/2 
c = (a + b ) 1 (~--~)~ j 
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Using the inequality (valid for 0 < x  < 1) 1 - x  < ( l - x )  t/2 with x = 4 a b  
sinZO/(a + b) 2, we obtain 

4absin20 ( !  ~ ) - i  
L < -- 4 + sin20 (1.8) 

a + b  

The claim follows, by Corollary 1.1. [] 

For any A E R 2, let 3(A, T) be the distance from A to T. For any continuous 
curve 7 C [T], let 3min(7)= minA~/5(A,T) and bmax(7)= maxA~:3 (A, T) be the 
distance and the deviation of  7 from T. Set 

K = inf ~c(M), K = sup ~c(M). 
Mc T MET 

Note that if  T is C 2, then te = Kmi~(T), K = ~Cmax(T). Denote by d = d(T)  the 
diameter of  T. For M E T denote by w(M)  the width of  the strip formed by two 
parallel supporting lines of  T, one of  which contains M. Set w = minMw(M), the 
width of  T. 

Proposit ion 1.2. For any convex caustic y its Lazutkin parameter, L = L(?), 
satisfies 

L _< 2d3~c 2, L <= 2/1s (1.9) 

Proof Rewrite Eq. ( 1 5 )  as 

sin 0 (M)  = 2 + ~c(M). 

From this, Eq. (1.8), and the well known inequality 

2 + < - -  
= 2 

we obtain 

L < 2 tc2(M). 

Since a + b < 2d, we have L < 2d3~c2(M) which implies the first inequality in 
Eq. (1.9). The second inequality is immediate from Eq. (1.7). 

The following is a variation of  Theorem 1.1. 

Theorem 1.2. Let IT] be a convex billiard table satisfying the standing assump- 
tions: T is C 1 and piecewise C 2. I f  the curvature ~c(M) on T is not bounded 
away either from zero or from infinity, then T has no convex caustics. 
Equivalently, the billiard ball map, O : cb ~ ~, has no convex invariant 
circles. 

Proof  The equations ~c = 0 or K = oo imply, by Proposition 1.2, that L(y) < 0 
for any convex caustic y. But the Lazutkin parameter of  a caustic is 
positive. [] 
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1.5. Estimates from below on the Lazutkin Parameter 

Proposit ion 1.3. Let 7 C [T] be a convex caustic with a Lazutkin parameter L(7 ). 
Then 

amax(7) < v~L(7) 1/2 �9 

Proof Set L = L(7). Let M C T, and let A,B E ~ be the corresponding points of  
support (see Fig. 1.4.). The line AIB1 is tangent to 7 at C E ?, and is parallel to 
the tangent line to T at M. The height ]MH I of  the isoceles triangle A1B1M is 
equal to the width of  the strip formed by the two tangent lines. Since 7 is convex, 
I~AI < IAAll + [A1Bll + IBBll, hence 

L > ]A,M[ § IB~MI- IA,B, f. 

Expressing the sides of  the triangle A 1MB! via IHM] and the angle A 1MB1 = ~z - 20, 
we obtain 

L sin 0 1 0 
IHMI < 2(1 - cos0)  -- i L c ~  ~ . 

Since IHMI = IA,MI sin0 < ds in0 ,  we have 

]HM I < 2d 
tan 0/2 

1 + tan 2 0/2 

The graphs {(t,L/2t) " 0 < t < 1} and {(t,2dt/(1 + t2)) �9 0 < t < 1} intersect at 
to = (L/(4d -L))  1/2. Note that to < 1, since L(7 ) < 2d for any 7. Substituting this 
into the inequalities above, with t = tan 0/2, we obtain 

]HM[ < 1L~/2(4d- L) 1/2 < v / ~ .  

Since 5max(7)= max~c[HM], this implies the claim. [] 

Fig. 1.4. Notation for the proof of Proposition 1.3. 
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Corollary 1.2. The deviation o f  any convex caustic f rom T satisfies 

6max(7) < min{v~cd 2, (2d /K)  1/2} . 

Proo f  Immediate from Propositions 1.2, 1.3. [] 

1.6. Regions f ree  o f  Convex Caustics 

Definition 1.2. We say that a region X C [T] is f ree  o f  convex caustic, i f  7 N 
int(X) = ~0 f o r  any convex caustic 7. 

We denote by IXI the Lebesgue area of a region, thus t[T]t is the area of the 
billiard table. Let ri, --- rim(T) be the radius of a maximal inscribed disc (inradius). 

Proposition 1.4. I f  a billiard table satisfies the condition 

rin > v/2tr 2 , (1.10) 

then [T] contains a disc, X, f ree  o f  convex caustics. Its radius, r f ,  satisfies r f  > 

rin -- x/~kd e. 

Proo f  Let Oin be the center of a maximal inscribed disc, and let )? be the closed 
disc of radius rin - v ~ k d  2 centered at Oil. Assume that convex caustics can pass ar- 
bitrarily close to Jr. Since the set of convex caustics is closed, there is one, y, passing 
through 2 .  By triangle inequality and Corollary 1.2, d(Oi~, T)  < ri~(T), which is a 
contradiction. Thus, J2 is contained in a bigger disc, X, flee of convex caustics. [] 

Corollary 1.3. I f  a billiard table satisfies 

~:K < (v~d2) -1 , (1.11) 

then there is a disc, X c [T], f ree  o f  convex caustics, and r f  > K -1 - ,r 2. 

Proo f  Follows from Proposition 1.4, since rin >= K - 1  �9 [] 

Corollary 1.4. Suppose the billiard table satisfies 

1 w 
< x/z3--~-d ~ "  (1.12) 

Then there is a disc, X c [T], f ree  o f  convex caustics, and 

r f  > w/3 - ,r 2 . (1.13) 

Proo f  By a theorem of Blaschke ([4], see also [22]), rin > w/3. Hence, Eq.(1.10) 
is satisfied, and the claim follows from Proposition 1.4. [] 

Theorem 1.3. Let  T be a billiard table satisfyin9 condition (1.11). Then [T] con- 
tains a convex reoion, X, f ree  o f  convex caustics, and 

IXl > t v%[r[d2 
{[T]l = I[T]I (1.14) 
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Proof In view of  Theorem 1.2, we can assume that ~ > 0. For any a > 0 set 
X~ = {A E [T] ' 6(A, T) > a).  Then X~ is a convex region (empty for large a). 

For a closed convex curve, ? C [T], and s E T, let R(s) be the halfline perpen- 
dicular to T at s, and let a(s) be the distance from s to the nearest point o fR( s )  N 7 
(Fig. 1.5). I f  a(s) < Pmin(T) for all s, then the area I[T]\[7]I, between 7 and T, is 
given by 

ivl 1 
I[T]\NI = f a ( s ) ( 1 -  a(s)~c(s))ds. (1.15) 

0 

Equation (1.15) is proved by approximating T near s by the circle of  curvature. 
Let a < 1/K, and set 7 = 0X~. Equation (1.15) implies 

IX~l > IETlt-alTI. (1.16) 

Set a = v~/cd 2. By Corollary 1.2, Eqs. (1.11) and (1.16), the region X = X~ is 
free of  convex caustics and satisfies Eq. (1.14). [] 

The estimate on the area free of  convex caustics becomes especially attractive 
for C 2 billiard tables. 

Theorem 1.4. Let T be a C 2 billiard table with 

x/2d2tcmin(T)tcmax(T) < 1. (1.17) 

Then [T] contains a convex region, X, free of convex caustics, and the area of X 
is bounded below by Eq. (1.14). 

Proof Since T is C 2, we h~ve ~ = ~ i~(T) ,  K = ~c~(T) ,  ~nd the preceding the- 
orem applies. [] 

2. Outer Caustics 

2.1. Outer Billiard Map. Let p(~),0 < ~ < 2~z, be a nonnegative periodic function, 
satisfying the following conditions. First, p( �9 ) is continuous, except for a finite 
number of  points, and if p is discontinuous at ~, then the one-sided limits p+(~)  = 

l imp(~ ' ) ,  as ~'--+ ~ + 0 ,  exist (we allow p i ( ~ ) =  cx~). Second, Jo2~p(~)d~ < c~. 
Third 

2~ 2re 

f p(~)cos~da = f p(oc)sin~dc~ = 0 .  (2.1) 
0 0 
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Finally, we assume that the set {p(cQ = 0} is the union of  a finite number o f  closed 
intelwals and points. 

The curve T = {(x(~),y(cQ) : 0 < r _< 2~}, with the radius of  curvature p(cQ, 
is given by the differential equations 

x'(~) = p(~)cos  c~, y ' (~)  = p ( ~ ) s i n ~ .  (2.2) 

By our assumptions, T is a closed strictly convex curve, of  length IT] = f2~ p(~)d~. 
An interval [~_,c~+] o f  zeros of  p produces a corner point, M E T, with 

the two directed tangent lines, l+(M), with the angles ~• and a cone of  
supporting rays l(c~)'~_ < ~ < ~+. Thus, T has a finite number o f  corner 
points, and T is C 1 everywhere else. Let ez be an isolated zero o f  p, or let 
p be discontinuous at cz, with p ( c ~ ) = 0  or p + ( ~ ) = 0 ,  Then T is C 1 but not 
C 2 at the corresponding point, M, and the curvature, ~c(M')=  1/p(M~), 
goes to infinity, as M ~ approaches M from at least one side. Thus, T is 
piecewise C 1 and piecewise C 2, with a finite number o f  points o f  infinite curvature. 
The one-sided curvatures, ~ ; •  oo, are defined everywhere. To simplify 
the exposition, we assume in what follows that the function p(M) 
is bounded. 

Let T be as above, let [T] C R 2 be the corresponding convex domain, and 
set 7. = Rz\[T] .  We define a mapping ~ : 7* -+ 7.. For A E 7., let l+, l_ be the 
two supporting lines for T through A. Let M+ = l+ fq T be the corresponding 
points o f  support. Let Am E l+(A_l E l_)  be the unique point such that ]AM+] = 
]AIM+[(]AM_] = ]A_,M_]) (Fig. 2.1). We set ~ ( A ) = A 1 .  By our assumptions on 
T, ~/, = ~ is a homeomorphism, and ~ -  t ( A )  - -  A _  I. 

Definition 2.1. The homeomorphism ~ " 7* -+, 7* is the outer billiard map (corres- 
pondin9 to the outer billiard table T), and 7* is the phase space of  the outer 
billiard. 

k• 
[T] r'i \ / ~ - 1 )  

M (oh) ~ - 1  

Fig. 2.1. The outer billiard map. 
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Remark. I f  T is not strictly convex, the outer billiard map may have discontinuities. 
Outer billiards about convex polygons were investigated in [10]. 

We choose a reference direction in R 2, and assign to any ray l the angle, a(l) ,  
it makes with the reference direction. The function l -+ a( l )  takes its values in the 
circle of  directions, S 1 = {0  ~ 0~ ~ 2~Z}. For every direction ~, there is a unique 
supporting ray l for T (on the right of  T), with c~(l) = ~. This is a homeomorphism 
between S 1 and the set o f  supporting rays for T. Let M(c 0 E T be the supporting 
point of  l(~) (Fig. 2.1). This establishes a parametrization, c~ + M(a ) ,  of  T by S 1. 
The mapping c~ ~ M(c 0 is one-to-one if  (and only if) T has no comer  points, i.e., 
T is C I. We will also use the parametrization of  T by the arclength. Since 

dct/ds = re(M), ds/dc~ = p(M) , (2.3) 

the two parametrizations are equivalent if  0 < ~c( �9 ) < oc. 
For A E 7*, let l (a)  be the corresponding supporting ray, let M = M(cQ c T be 

the point of  support, and set r = ]MA] (Fig. 2.1). This defines a homeomorphism 
A --+ ( a , r )  of  7* onto the semiinfinite cylinder, S 1 x R+. We set O(a , r )  = (cq,r l) .  

L e m m a  2.1. Let the notation be as above (Fig. 2.1). Suppose that M, M~ are 
regular points, and set p = p(M),pl  = p(M1). Then ~ is C 1 at ( e , r )  : 

0~.1 _ ps in  (oq - e)  - rcos(oq - ~) 

~o~ r 1 

~cz 1 sin ( ~ l  - -  ~) 

~r rl 

(?rl (PPl -- r r l )  sin (0q - ~) - (prl + p l r )  cos(cq - 0~) 

90{ r 1 

Or1 pl sin (~I - ~) - rl cos (~1 - ~) 

ar  rl 
(2.4) 

Proof Straightforward computation. [] 

Equations (2.4) extend to the case when M, M1 are not necessarily regular. 
Denote by p+,  p~ the one sided radii o f  curvature at M, MI respectively. The tangent 

space, R 2, to 7. at A splits into a finite number of  cones (at most four). The 
differential, dOln, exists in the interior o f  each cone, and is given by Eqs. (2.4), 
with p = p+,Pl = P~, depending on the cone. Across a ray in R 2, separating a 
pair o f  these cones, d~l  A may have a jump discontinuity. We leave the details to 
the reader. The following is immediate from Eqs.(2.4) and these remarks. 

Corollary 2.1. The differential of  the outer billiard map is bounded everywhere, 
and can have only jump discontinuities. I f  the radius of  curvature is a continuous 
function, then the map is C 1. 

Remarks. 1) By preceding corollary, T may not be C 2 (not even C 1 ), and have a 
C 1 outer billiard map. 2) Comparing Eqs. (2.4) with Eq. (1.1) we see that the radius 
of  curvature plays for outer billiards the role of  curvature for the inner billiards. 

For any pair c~ - n < c~-1 < ~, of  directions, we denote by H(c~_l,c0 the area 
of  the "triangle" formed by the supporting lines l (c~) , / (a- l )  and T (Fig. 2.1). 
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Proposition 2.1. The function H ( e - l , e )  is C 1, and 

d H  = lr2dc~ 1 2 - ~ r _ l d e _ l .  (2.5) 

For any cartesian coordinates ~, tl in R 2, we have d~dq = rdrd~. The outer billiard 
map preserves the fo rm rdrde. 

Proo f  Equation (2.5) and the identity d~dtl = rdrde are proved by a straight- 
forward calculation. By Eqs. (2.4), r ldr ldel  = rdrdc~. [] 

1 2 The map ~ (x, y )  (xb y~ ) is an area preserving Corollary 2.2. Set  x = ~, y = ~r . = 
monotone twist map, and H(X_l ,X)  is a 9enerating function. 

Proo f  Immediate from Eqs. (2.4) and Proposition 2.1. [] 

Remark. Denote by d the group of  affine orientation preserving automorphisms 
of  R 2, and let g c d be the subgroup of  conformal transformations. I f  T, T1 = 
g(T) ,9  E ~r are two outer billiard tables, then 9 conjugates the outer billiard 
maps: 9~b = ~19. Thus the outer billiard is equivariant with respect to ~r dim 
z~' = 6, as opposed to the inner billiard which is equivariant only with respect to 
C, dim g = 4. 

We fix an outer billiard table T, and study the invariant circles of  the corre- 
sponding map ~b" ~---+ ~.  To emphasize the analogy with the inner billiard, we 
call them the outer caustics of  T. Thus, F C 7 / i s  an outer caustic, if F is isotopic 
to T, and ~b(F) = F. To simplify the statements, we assume F 4= T, the trivial outer 
caustic. 

With any Lipshitz curve, F C R 2, we associate its set of  tangent cones, {Cp C 

R 2 �9 P E F}. The lines l C Cp are the (generalized) tanoent lines of  F. For almost 
all P E F the cone Cp consists of  a unique tangent line, Cp = lp. 

Lemma 2.2. Let  T be an outer billiard table such that the outer billiard map is 
C 1. Let  F C 7 j be an outer caustic. Then the tangent lines o f  F don't  intersect 
T. 

Proo f  Since F is an invariant circle for a C 1 twist map, by Birkhoff's theorem ([3], 
see[ l l ]  or [13] for a modem proof), F is a Lipshitz graph, r = r (e ) ,0  < c~ < 2n. 

Assume that there is a tangent line to F intersecting T. By a straightfor- 
ward topological argument, the set o f  lines which are tangent to both F and T is 
nonempty. Let 1 = l(~0) be such, let Po E F, Mo E T be the points of  tangency, and 
set [PoMol = ro > O. Then the ratio [r(~) - ro[/]c~ - ~ol is not bounded as c~ ~ ~o, 
which contradicts Birkhoff's theorem. [] 

2.2. Counterpart o f  the Mirror Equation. We use the notation above. Let A E 
kU, B = ~(A), and let M be the point o f  support (Fig. 2.2). Set r = JAM I = IBM]. 
Choose Euclidean coordinates (x ,y)  in R 2 so that AB is the positive x-axis. We 
compute d~  " R 2 -+ R~ in the basis ~/~x, 3/Oy. 

Lemma 2.3. Let  T be a regular outer table, i) Let  M C T be a point o f  continuity 
fo r  the radius o f  curvature o f  T. Then 
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Y X 

B 

Fig. 2.2. Notation for Lemma 2.3, Proposition 2.2. 

i i)  Let M ~ T be a C 1 point, which is a jump point for the radius of  curvature, 
and let p_(M)=#p+(M) be the one-sided radii of  curvature. Then dO has a jump 
across the x-axis in R2A . Denote by dO-(dO+) the differential restricted to the 
halfplane R2A - = {v = (Vx, Vy)" Vy > 0} (R 2+ = {v = (Vx, Vy)'Vy < 0}). Then 

, 1 

iii) Let M be a corner point of  T, with the tangent lines l+(M), and let VM C 
be the cone formed by their tails, R+(M). Let p•  be the one-sided radii of  
curvature at M. For points A E int(VM), 

For points A E R_(M),  the differential dOI m can have a jump across the x-axis. 
The two matrices dO• defined as in ii), are given by 

Analogously, there can be a jump in dOIA for A C R+(M), and dO• are gh)en by 

Proof Straightforward calculation. [] 

Corollary 2.3. The outer billiard map about a table T is C 1 i f  and only i f  the 
radius of  curvature is a continuous function. 

Proof Immediate from the preceding lemma and Corollary 2.1. [] 

In what follows we assume that T is an outer table with a continuous radius of  
curvature. 
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Proposit ion 2.2. Let O : ~ ---' ~P be the outer billiard map about T. Let A,B = 
O(A) E 7 s, and let M E T  be the point of  support (Fig. 2.2). Set r = I A M  I= 
]BM[. Let l be a line in R 2, and let m = d O ( l  ) C R  2. Denote by e(fi) the 
signed angle between MA (MB) and I(m). I f  M is not a corner point of  T, 
then 

co t e  + cotfi  = 2 p (M)  . (2.11) 
F 

I f  M is a corner point, then cot c~ § cot fi = 0. 

Proof We consider the three cases of  Lemma 2.3. In the first case we choose 
a vector u = (x ,y)  E l C R 2, and set v = dO(u) E m. By Lemma 2.3i, v = ( - x -  
2 p ( M ) y / r , - y ) .  Then c o t e = - x / y ,  c o t f i = [ x + 2 p ( M ) y / r ] / y ,  and Eq.(2.11)  
follows. In the remaining two cases, the lines l ,m are parallel, 
hence e + f l = 0 .  [] 

Equation (2.11 ) is a counterpart of  the "mirror equation" of  the geometric optics, 
Eq. (1.4). 

2.3. Area Parameter and Area Construction. Let T be an outer table, and let 
F C ~ be a Jordan curve such that any supporting ray, l(e),  o f  T intersects F at 
two points. Denote them by A(e),B(e),  and let S(e)  be the area enclosed between F 
and the line l (e)  (see Fig. 2.3). Set a (e )  = IMA(e)[, b(e)  = IMB(e)I. The following 
is proved by a direct computation. 

Lemma  2.4. Let the notation be as above, and assume that the functions a(e), b(e) 
are continuous. Then S(e) is a C 1 function, and 

dS(e)  = ~(b(e )  z - a (e )  2) d e .  (2.12) 

Corollary 2.4. Let F C ~P be an outer caustic for a table T. The area enclosed 
between F and a supportin9 line, l(e), does not depend on e. 

Proof By Birkhoff's theorem, F is the graph of  a Lipshitz fimction, r(e) .  Since 
a (e )  = b(cc) = r(e) ,  by Eq. (2.12), S(e)  = const. [] 

Fig. 2.3. Area parameter of an outer caustic. 
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Fig. 2.4. Notation for Lemma 2.5. 

Definition 2.2. Let T be an outer table, and let F be an outer caustic for  T. The 
area S cut o f f  o f  F by any  supportin9 line o f  T depends only on F. We say that 
S = S(F)  is the area parameter o f  F. 

Let F C R 2 be a Jordan curve, and S > 0. Suppose that for any direction 
there is a unique ray, l(~), such that the area enclosed between l(~) and F is equal 
to S. Assume that l(~) intersects F in two points, A(~) and B(~) (Fig. 2.3). Denote 
by T = T(F ,S )  the locus of  the midpoints, M(~),  o f  the intervals [A(~),B(~)],0 < 
~ _ < 2 ~ .  

Proposition 2.3. I f  T is convex, then T is an outer billiard table, F is an outer 
caustic for  T, and S = S(F). 

We will not need this result, and we leave its proof to the reader. We say 
that T = T(F,S)  is obtained by the area construction. The area construction is 
a counterpart o f  the string construction, and the area parameter is an analog of  
the Lazutkin parameter for a caustic (see Sect. 1.3). For a given Jordan curve 
F, and S > 0, the curve T = T(F, S) may have singularities, even if F is con- 
vex (see [7] and Sect. 3 below). We will use Corollary 2.4 in a slightly different 
form. 

Corollary 2.5. I f  F is an outer caustic for  T, and S is the area parameter o f  F, 
then T = T(F,S) .  

2.4. Counterpart o f  Mather's Theorem for  Outer Billiards. We fix a regular outer 
table T. By an annulus we will mean a region, ~ C T, homeomorphic to the 
standard annulus and homotopic to T. The boundary, 0~J, of  a compact annulus 
consists of  two disjoint Jordan curves. 

Definition 2.3. We say that a region X c 7 j is free o f  outer caustics i f  in t (X)N 
F = ~ for  any outer caustic F. 

Lemma 2.5. Let F be an outer caustic, A E F ,  B = ~ ( A ) ,  M = A B N T  (see 
Fig. 2.4). Let AP (BQ) be the other supportin# line from A (B). Let 0 01) be 
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the angle between AB and AP (BQ), and set r = [AM I =IBM[. Then 

cotO + cotq  < 2p(M)/r.  (2.13) 

Proof Assume first that A is a C 1 point of  F, and let l, m be the tangent lines to 
F at A,B respectively. Let e,/~ be the angles between AB and 1,m (Fig. 2.4). 

By Lemma 2.2, the lines l,m don' t  intersect T. Hence, c~ < 0,fl < r/, and 
Eq. (2.11) implies the claim. Since F is Lipshitz, C 1 points are dense, and, by 
continuity, Eq. (2.13) holds everywhere. [] 

Inequality (2.13) will play a crucial role in obtaining a priori estimates for outer 
caustics. Before proceeding with this, we establish an analog of  Mather 's  theorem 
[16] for outer billiards. We say that a region, X C ~ ,  is invariant i f  O(X) = X. 
Recall that a Birkhoff region of instability (for a general twist map)  is an invariant 
region, • ,  which is an annulus whose boundary consists of  invariant circles, and 
these are the only invariant circles in ~ .  We are interested in the Birkhoff regions 
of  instability for the outer billiard map. I f  d is compact, then 0sJ  = F0 U F1, where 
F0 = T is possible. In the noncompact case, ~?~ = T0. 

Theorem 2.1. Suppose that the radius of curvature of an outer table T has a zero. 
Then there is a Birkhoff region of instability, ~/ C ~P, such that To = T. 

Proof By assumption, T has either a corner point or a C 1 point, M,  with p(M) = O. 
Let 2 be a supporting line to T at M,  and let A,B be the intersection points of  2 
and an outer caustic T (Fig. 2.5). By Proposition 2.2, the tangent lines l,m to F at 
A,B are parallel, and the distance between them satisfies p > w = w(T), the width 
of  T. Hence [AM[ = IBM[ > w/2. 

By Birkhoff's theorem, T is the graph of  a function, rr(c O. We can assume with- 
out loss of  generality that [AM I = rr(O). Thus rr(O) > w/2 for any outer caustic 
F. Therefore there exists a > 0 such that min~rr (e)  > a for all outer caustics F. 
Otherwise, there would be an outer caustic, F 4= T, intersecting T, which is clearly 
impossible (see [12] for a related argument). 

F 

I m 

Fig. 2.5. Notation for the proof of Theorem 2.1. 
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We have shown that the annulus s~ = {(cqr) �9 r < a} is free of outer caustics. 
By a well known argument (see [11, 16] or [13]), there is a Birkhoff region of 
instability, ~r containing ~ .  [] 

2.5. "'Icecream cone" Construction. We fix an outer billiard table T, and denote by 
Pmin,/)max the minimum and the maximum of the radius of curvature. Let 1 = l(e) be 
a supporting ray for T, and let M E T be the point of support. For r > 0 let A,B E I 
be the two points with ]AM] = IBM] = r. Denote by 0 = O(r) (~/= t/(r)) the angle 
between 1 and the other supporting line, AP(BQ), from A(B) to T (Fig. 2.6). Both 
O(r), q(r) are positive monotonically increasing functions of r, and 0(0) = ~/(0) = 
0. Let F = F(~) be such that O(F) + t/(F) = re, and set O(F) = O, q(F) =- 71, A(F) = 

ft, B(F)= [~, P(F)=/5 ,  Q(F)= Q. For any r in the interval (0,F), the supporting 
lines PA and QB intersect at C, forming the triangle ABC. The figure formed by 
the intervals CP, CQ, and the region [T], resembles an icecream cone, hence the 
name.  

Lemma 2.6. Let the notation be as above, and let d = d(T)  be the diameter of  
T. i) For 0 < ~ < 27c and 0 < r < F(e), we have 

2(F - r)/d < cot 0 § cot t/. (2.14) 

ii) Let F be an outer caustic intersecting l at a distance r(ct) < F(c~) from M. 
Then 

r2(cQ - F(cOr(c 0 + p(~)d > 0. (2.15) 

Proof i) We suppress c~ from notation. Let P1,Q1 be the projections of/5,{) to l 
(Fig. 2.6). If X, Y,Z are points in R a, we denote by X Y Z  the angle formed by XY 
and YZ. As r varies from 0 to F, the points P and Q monotonically move on T 
from M to/5 and Q respectively. By convexity of T, 0 < .4A/5, q </~BQ. Hence 

cot 0 + cot ~/ > cotC3AP ) + cot(/~BQ). 

I 

Fig. 2.6. "tcecream cone" construction. 
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From Fig. 2.6 we have 

cot( AAP ) -- 

cot(BBQ) - 

From 0 + ~ = re, we obtain 

IP1AI + I~iAI = cot 0 + (F - r ) / I eP l l ,  
[PP, I 

IB~I - I~ Q11 
= -cot(re - iT) + (1 = - r)/lQ Qll. 

[QQI] 

cot 0 + cot ~ ~ (~ - r ) (IPPl  1-1 + IQ 01 l--l) " 

Since IPf,[ ,100~I < d, this implies Eq. (2.14). ii) From Eqs. (2.13-2.14) we 
have 

2(F - r)/d < cot 0 + cot r/ < 2p(~)/r, (2.16) 

which immediately implies the claim. [] 

Remark. Equation (2.15) yields another proof  of  Theorem 2.1. 

2.6. Bounds on the Area Parameter. We assume the preceding notation, and denote 
by F = {r(~) �9 ~ C S 1 } an arbitrary outer caustic. For A E 7 j, set 6(A) = d(A, T), 
the distance from A to T. Set 

rmin(/') = minr (e ) ,  rmax(iF) = maxr (a ) ;  

5min(F) = min 6(A), ~ m a x ( / ' )  = max 6(A).  
AEF AEF 

Thus, 6rain(F) is the distance and 6max(F) is the deviation of  F from T. I f  we think 
of  ~u as a vertical cylinder, then r is the height of  the point (~,r) .  Thus, train(F) 
and rmax(F) are the smallest and the biggest heights for points in F. 

L e m m a  2.7. i) Let R > 0 be such that the osculating disc of  radius R at any 
M E T contains T. Then for any A(~, r) E ~, 

6(A) > V / ~ + r  2 - R >-- min {R, r2/3R} . 

ii) For any outer caustic F, 

V/p2ma• + r2mi.(r) -/)max < = 6min(r) < rmin(F), (2.17) 

~///?2ax-}-r2max(T) --/?max __--~ (~max(T) < rmax(F) < (~max(T)q-d. (2.18) 

iii) I f  rmin(F) < x/~/? . . . .  then r2in(F) < 3pmaxCimin(F). / f  rmax(F) > xf3/?max, 
then Pmax < 6max(F). 

Proof i) Let 1 be the supporting ray through A, let M E T be the point of  support, 
and let D = D(M,R) be the osculating disc. Then A is outside D, and 6(A) >= 
v /R2+  r 2 -  R, the distance from A to D. The other inequality is elementary, ii) 
Taking R =/?max in i), we have for any A(7, r )  E F " pV/~ma~ + r 2 - Pmax < cS(A) < 
r. Maximizing and minimizing 5 and r, we obtain Eqs. (2.17), (2.18) respectively. 
iii) By i) and Eqs. (2.17), (2.18). [] 
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Fig. 2.7. Notation for Lemma 2.8. 
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L e m m a  2.8. Let [T] be an arbitrary convex table, o f  diameter d and width w. 
Let M C T, and let l be a supporting line for T at M. Let MP be orthogonal to 
l, and set h = IMP[ (Fig. 2.7). Let PK, PL be the supporting lines for  T through 
P, and let A,B E l be the points o f  intersection. Then 

lAB[ > hw/(h + d) .  (2.19) 

Proof  Let CE and DF be the supporting lines orthogonal to l, and let K~ = 
CE n PK, L1 = DF A PL be the intersection points (Fig. 2.7). Set [MA[ = a, [MC[ = 
u, ]MB[ = b, [MD[ = v. From the similar triangles AMP and ACK1, BMP and BDLI" 

a u - a  b v - b  

h I CKII' h IDL [ 

Since ]CKII,[DLI[ < d, we have 

a + b ( u +  v ) -  (a + b )  w -  (a + b) - - .  > > 
h d d ' 

which implies the claim. [~ 

Proposition 2.4. Let F be an arbitrary outer caustic, and let S(F)  be the area 
parameter. Then 

1 62max(F)w 
S(F)  > 2 6max(F ) § d ' (2.20) 

Wr4ax(r) 
S(F)  > 4(rmax(F) § d)(r2ax(F) § 2p2max) " (2.21) 

Proof  We use notation of  Fig. 2.8. For M E T and a supporting line l = l(c 0 at 
M,  Let P E F be such that P M  is perpendicular to l. Let PA,PB be the supporting 
lines for T from P. Since T is an outer caustic, it intersects the line PA (PB) 
at one more point, W(B').  Therefore AABP is contained in the region between 
l and F, hence S(F)  > IAABPI . Set IPMI = h h(cO. Since 3max(F) = max~h(ct), 
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P 

ql C 
D 

Fig. 2.8. Notation for the proof of Proposition 2.4. 

Eq. (2.19) implies inequality (2.20). We set, until the end of  the proof, rmax( / "  ) = r, 
Pmax = p. By Lemma 2.7, 

•max(/" ) ~ ~ J r _  p2 _ p -- 
r 2 

V / ~  4_ p2 q_ p �9 

Substituting this into Eq. (2.20), and noting that r x < r, we obtain 

s ( r )  > 
WF 4 

2(r 2 + 2p 2 + 2 p v / 7 2 +  p2)(r + d) ' 

The inequality ~ / 7 ~ p  2 < p q-r2/2p implies Eq. (2.21). [] 

We assume from now on that T satisfies 

16dpmin/w 2 < 1, (2.22) 

and let ~4 be the nonempty set of  directions c~ such that 

16dp(c~)/w 2 < 1. (2.23) 

Lemma 2.9. Let Y(~) be as in Sect. 2.5. Let F be an outer caustic. For any ~ E ar 
we have the dichotomy." 

2r(~) < Y(~) - ~r _ 4dp(~) = 2 r_ (~ ) ,  

2r(~) __> ~(~) + ~y2(~)  _ 4dp(~) = 2r+(~) ,  

(2.24) 

(2.25) 

Proof If r(~) > t=(cz), Eq. (2.25) holds. For r(~) < Y(~) we use Lemma 2.6, ii). 
By Eq. (2.23) and the inequality (it holds for all ~) 2Y(~) > w, the roots, r+(r162 
of  the quadratic inequality (2.15) are real and distinct, hence the claim. [] 
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Definition 2.4. We choose a reference direction, 0 E S 1 , SO that p(0) = Pmin- We 
denote by G1 ((32) the set of  outer caustics F such that Eq.(2.24) (Eq. (2.25)) 
holds, with ~. = O, and let G be the set of  all outer caustics. By Lemma 2.9, 
G = G1 U G2, a disjoint union. We say that F E G is' o f  the first (second) k i n d / f  
F E G1 (F C G2). 

Proposition 2.5. Let the notation be as above, and let F be an outer caustic, i) 
I f  F E G1, then 

64d3 2 
S(F)  < --~-Pmin �9 (2.26) 

ii) I f  F E G2, then 

W3(W 2 -- 32dpmi,) 
S(F)  > 8(w + 2d)(w 2 + 8p~ax) " (2.27) 

Proof i) We set e = 0 and suppress it from notation. Using the inequality 1 - x  < 
x/1 - x  < 1 - x / 2  with x = 4dpmin/Y 2, and Eqs. (2.24-2.25), we obtain that the 
roots r+ satisfy 

r_ < 2dpmin/Y <= 4dpmin/W < w/4,  (2.28) 

r+ > [y2 _ 2dpmin]/r > w[1 - 8dpmin/W2]/2 > w/4.  (2.29) 

Let F be an outer caustic, and suppose r(~) < Y(e) for some ~ E S 1. We use 
notation of  Fig. 2.9. By ]AABC] = 2rZ(c~)/(cot 0 + cot 1/), and Eq. (2.16), 

S < r2(o~)d/[r(o~)- r(~)] . (2.30) 

A I 

F 

A 

/1 

1 

T 

Fig. 2.9. Notation for the proof of Proposition 2.5. 
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By Eq. (2.28), r = r(0) < w/4. Since F(~) > w/2 for any c~, the preceding inequal- 
ity implies S(F) < 4r2d/w. Using Lemma 2.9 and Eq. (2.28) again, we obtain 
Eq. (2.26). ii) For any a,b > 0 the function f ( x ) =  x4/(x + a)(x2 + b 2) is mono- 
tonically increasing on [0, oo), and for any x > ~ > 0. 

f ( x  - ~) > 
X 4 _ 4e, x 3 

(x -[- a ) ( x  2 + b 2) " 

(The proof is elementary, and we leave it to the reader). By Eqs. (2.21), (2.29), 

w ( 2  4d~min ) 
S(F) > -4f  

which implies the claim. [] 

2. 7. Annulus Free of Outer Caustics and a Birkhoff Region of Instability 

Lemma 2.10. Suppose the outer table T satisfies 

32dpmin/W 2 < 1. 

Then for any outer caustic F C G2, we have, either rmin(/') => W/2 or 

1 

[ 1 > 1 + 1 -~- W2(W 2 - -  32dpmin) 

(2.31) 

(2.32) 

By Proposition 2.5, S(F) satisfies Eq. (2.27), hence 

W3(W 2 -- 3 2 d p m i n )  

8(w + 2d)(w 2 + 8PZax) 

This implies, in view of Eq. (2.31), 

wd 
< 

2N(N - 1) 

2 4d(w + 2d)(w 2 + 8Pmax ) 
N ( N -  1) < 

wZ(w 2 - 32dpmin) ' 

Using the identity N(N - 1) = (N - 1/2) 2 - 1/4, we rewrite this as 

l [ (16d(w+_2_d) (w2  +8P_:max)~ ]/21 
N < ~ 1 + 1 ~- W2(W 2 - -  32dpmin) J ' 

which implies Eq. (2.32). [] 

Corollary 2.6. Let the outer table satisfy 

64dpmin/W 2 < 1. 

(2.33) 

(2.34) 

S(F) < wd /2N(N-  1). 

Proof Suppose rmin (F  ) < w/2, and set rmin(/"  ) = w/2N, N > 1. By Eq. (2.30), and 
Y(cO > w/2 for any e E S 1, we have 
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Then for any F E G2, 
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w 3 

rmin(F) > 4(1 + 6x/2)dpmax " (2.35) 

Proof If  rmin(ff)  ~ w/2, there is nothing to prove. We set  rrnin(ff) = w/2N, N > 1, 
and use Eq. (2.32). Using ( N -  1) 2 < N ( N -  1), and that, by condition (2.34), 

we obtain the estimate 

N - l <  

l -  32dpmin/W 2 > 1/2,  

2~v/2[d(w + 2 d ) ( w  2 § 8,O2ax)] 1/2 

w 2 

From this, and w < d < 2pmax, we get 

N < 1 + 12v~dpmax/W z < (2 + 12v~)dpmax/W 2 , 

which implies the claim. [] 

Lemma 2.11. Let F be any outer caustic. I f  

S(F)/dw < 1/25, (2.36) 

then 
r,2a• < 8 d v / ~ P m a x ~ .  (2.37) 

Proof Set S = S(F). By Eq. (2.20) (we leave details to the reader) 

6max(F) < -- + + - -  
w w 

To simplify notation, set z = rmax(F), p = Pmax, e2 = S/4dw, and let A be the right- 
hand side of  the equation above. By Lemma 2.7, ~ + p 2 p  < A. Using the 
inequality 

z 2 
< V / ~ + p 2 - - p  

2p + z2/p 

and that, by Eq. (2.36), 2p > A, we obtain the bound 

z 2 < 4pZA/(2p - A ) .  

Since, by Eq. (2.36), e < 1/10, the inequality 

A = 4d82 + 2~/2dev/1 + 2~ 2 < 2x/2de[1 + (1 + v~)e]  < 4x/2de[1 + (1 + x/2)8]p 

implies A < p (in fact, A < (.72)p), thus, z 2 < 4pA. By the preceding inequal- 
ity, 4pA < 8x/2[1 + (1 + x/2)8]dpe < 16dpe. Substituting this into z 2 < 4pA, we 
obtain the claim. [~ 

Corollary 2.7. Suppose the outer table T satisfies condition (2.34). Then for any 
F E GI we have 

rm,x(F) < v / ~ w - l d ~ / ' D m i n P m a x  �9 (2.38) 
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Proof By Proposition 2.5, i) 

S(F) < dw/64, (2.39) 

which is stronger than the assumption of the preceding lemma. The same proof, 
with the stronger bound (2.39) yields 

r,2~ax(F) < ~ Pmax S V / ~ ,  (2.40) 

which, by Eq. (2.26), implies the claim. [] 

Now we can prove the main result of this section. 

Theorem 2.2. Let T be an outer table satisfyin9 the condition 

pl/2 ~3/2  (8x/5(1 q- 6 v / R ) ) - l w 4 / d  2 (2.41) minPmax < 

Then there is a Birkhoff region of instability, sr c ~,  0~r = Fl U I'2, such that 
/'1 C G1, F2 C G2. i) I f  Pmin > 0, then 

= 320(1 + 6V~)2d4pminp3ax - 1 > 0. (2.42) 

ii) I f  Pmin = 0, then F1 = T (i.e., sd surrounds the table), and 

gw 6 

]sr > 16(1 + 6x/2)ZdZPZax " (2.43) 

Proof Condition (2.41) implies Eq. (2.34). Let F1 E G1, F2 E G2 be arbitrary outer 
caustics. By Corollaries 2.6, 2.7, and Eq. (2.41), 

w 3 
rmax(rl) < ~ / ~ d ~ P m a x  < < rmin(F2). (2.44) 

w 4(1 -I- 6v/2)dpmax 

v / ~ d  Pv/~mp w 3 m a x  
a ~  , b ~ 

w 4(1 q- 6x/~)dpmax " 

Set 

The annulus ~7 = {(cq r)  : a < r < b} is free of outer caustics, and let sr be the 
Birkhoff region of instability containing ag. Equations (2.42), (2.43) follow from 
Id l  >= I~r = To( b2 - a2) �9 [] 

Corollary 2.8. Let the outer table T satisfy 

7 Pminflrnax ~ 225(w/10) s. (2.45) 

Then the conclusions of  Theorem 2.2 hold. 

Proof The number c = [Sv~(6x/2+ 1)] -I  is between .006 and .0066, hence 
c2/16 >225 x 10 -s. Since d __< 2pmax, the inequality (2.45) implies Eq. (2.41). [] 

In the rest of this section we assume that T satisfies Eq. (2.41), and use the no- 
tation of Theorem 2.2. We assume, for simplicity of exposition, that d is bounded. 
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(The possibility that sr is unbounded, i.e., 0 d  = F1, remains open, see the discus- 
sion in Sect. 3). Then F1 is the "last outer caustic of the 1st kind." and F2 is the 
"first outer caustic of  the 2nd kind." By results of Mather's [17] and Le Calvez' 
[5], the region s~r contains orbits with complicated behavior. We formulate a simple 
special case, referring the reader to [17, 5] for complete statements. 

Corollary 2.9. Let the table T satisfy Eq. (2.41) or Eq. (2.45), and let the notation 
be as in Theorem 2.2. Then for  any pair o f  indices i , j  E {1,2}, there is an orbit 
(9 C i n t ( d )  which is s-asymptotic to a subset o f  Fi and o)-asymptotic to a subset 
of G. 
Remark. To illustrate the preceding results, consider the case Pmin(T)= 0. Re- 
call that d C 7 j is the Birkhoff region of instability surrounding T. Then, by 
Corollary 2.9, there are orbits (9 = {Ai : i E Z} C ~,  with the following striking 
behavior. The "starting point", A0 C d ,  is far away from T, but An = On(A0) get 
arbitrarily close to T as n ---+ +oc,  or n ---+ - o c ,  or both. 

3. Examples and Discussion 

3.1. Inner Billiard. Astroid as a Nonconvex Caustic. We use notation of Sect. 1. 
Let T be a billiard table. A C 1 invariant circle, E C ~br, defines a caustic, 7 C R 2, 
as the envelope of the family of rays corresponding to F. We can show that, in 
fact, 7 C [T]. 

Let a : ~ b - +  ~, o-(s, 0 ) =  ( s , ~ -  0), be the canonical involution (the time re- 
versal symmetry). Since a~bcr = ~b - l ,  the involution a sends invariant circles into 
invariant circles. The pair, F, a(F) ,  of  invariant circles defines the same caustic, 
thus the correspondence F ---+ y is two-to-one. 

Suppose F is piecewise C I . A comer point of F produces a jump discontinuity 
in the caustic. Let A, B E 7 be the two focusing points in question. We include, by 
convention, the interval [AB] into ~. For instance, let T be an ellipse with foci A, B. 
Let T be the family of  rays passing through foci. Then F is an invariant circle. 
It is piecewise C l, and has two comers. The set of  focusing points consists of  A 
and B. At the comers of F the focusing point jumps from one of the foci to the 
other. By our convention, the caustic 7 is the interval lAB] traced twice, once in 
each direction. 

If  the billiard table is C 2, then the map ~b is C 1, and Birkhoff's theorem ensures 
only that the invariant circles are Lipshitz. We don't know how to define the cor- 
responding caustic if the invariant circle is only Lipshitz. On the other hand, we 
point out that nobody has yet exhibited an invariant cicle that was not piecewise 
C 1. Thus, in what follows, we restrict our attention to this class of invariant circles. 

What closed plane curves 7 can be caustics? I f  7 is convex, the string con- 
struction, see Sect. 3, provides a one-parameter family of tables, T = Tr(7), with 
the caustic 7. Note that the string construction, in general, increases the regularity 
by one. Thus, if ? is piecewise C I, the tables T will be only piecewise C ,  in 
general. If  7 is a convex polygon, then T is a finite union of elliptic arcs [12], and 
the curvature of T jumps at the junctions. In special cases, however, T may have 
greater regularity than piecewise C 2. One such special case, of course, is ? = lAB], 
an interval. 

Which nonconvex curves can occur as caustics? R. Douady [6] mentions non- 
convex caustics as a possibility (referring to his Fig. 3 on page IV-5 that shows a 
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billiard table with a special nonconvex caustic). To our knowledge, this is the only 
discussion of  the subject in the literature. We point out that the string construction, 
as a means of  producing billiard tables with a given caustic, can be extended t o  
some nonconvex curves. By way of  example, we discuss the case of  astroid. 

The astroid, 7 C R 2, is given by the equation 

ixl2/3 + 1y12/3 = 1 . (3.1) 

Denote by C1 . . . . .  C4 the four quadrants of  the plane, and let 71 . . . . .  74 be the 
corresponding arcs of  7 (see Fig. 3.1). From every point, M,  in the exterior of  7 
there are two tangent lines to 7. For instance, if  M C C1, the tangency points, A, B, 
belong to 72 and 74 (Fig. 3.1). I f  M is on the coordinate axes, the tangent lines in 
question coincide, but the points o f  tangency remain distinct. They are the opposite 
cusps of  7. 

Let dcr be the arclength element on 7. For any A,B E 7 we use notation ]7 A] 
for the length of  the arc of  7 swept by a point moving along 7 from B to A in the 
positive direction. 

For M E C~ let A = A(M) E 72,B = B(M) ~ 74 be the points of  tangency. Fix 
L > - 1  and define the curve TI(L) C Cl by TI(L) = {M E C1 IAMI + I B M I -  
I/~1 = L}. For L > - 1  the curve TI(L) is real analytic, and belongs to the exterior 
o f  7- The endpoints of  TI(L) are on the coordinate axes. Analogously, we define 
the curves Ti(L)C Ci, i = 2,3,4. The four curves, T/(L), fit together, making a 
closed convex real analytic (for L > - 1 )  curve T(L), containing the astroid 7 in 
its interior (Fig. 3.1). The curve T ( - 1 )  passes through the cusps of  7, and has an 
infinite curvature there. 

The description of  T(L) as the locus of  points satisfying 

IAM[ + IBMI - 17AI = L (3.2) 

c2lcl 
M 

I .) 
Fig.3.1. Astroid as an inner caustic. 
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~/2 

" _ _ . z  

F 

Fig. 3.2. lnvariant circle corresponding to the astroid. 

is completely analogous to the string construction, see Sect. 1.3. In fact, y is a 
caustic for the table T = T(L), and L plays the role of the Lazutkin parameter. 
More precisely, let F be the set of tangent rays to ? oriented so that the angle 
O(M) (Fig. 3.1) satisfies O(M)< ~/2. Then F C ~br is an invariant circle, and 
let U =  a(F) be its "mirror image." The invariant circles F, U have four points 
in common, the four comers corresponding to the four cusps of  the astroid, see 
Fig. 3.2 (U,  which is the reflection of F about the equator, is not shown). These 
corner points belong to the equator, E = {0 = 7c/2} C ~b, and are periodic with 
period two. At the corners the focusing point (living on y) jumps from a cusp of 
the astroid to the opposite one. Thus, by our convention, the caustic 7 is the astroid 
together with the "diagonals" (Fig. 3.1). When the focusing point traces y, it runs 
through each diagonal twice, once in each direction. 

The example above demonstrates some of the differences between convex and 
nonconvex caustics. Note that while we are traversing F in the positive direction, 
the focusing point moves in the negative direction on 7. Since F contains periodic 
points of period two, the rotation number is equal to 1/2, for any L. 

3.2. Billiard Tables of Constant Width and Related Examples. Let T be a closed 
convex curve. For any direction e denote by w(c 0 the width of the strip formed by 
the tangent rays with the directions c~ - ~/2 and c~ + ~z/2. The number w(e) is the 
width of T in direction ~. The width and the diameter of T (see Sects. 1,2) are 
given by w = min~ w(c 0, d = max~ w(~). 

Definition 3.1. (see, e.g., [22]). I f  w(ct)= const., we say that T is a curve of 
constant width. 

The circle is a trivial example of a curve of constant width. A popular exam- 
ple is the Releaux triangle [22]. It is formed by three circular arcs of the same 
radius, r, centered at the vertices of the equilateral triangle with the side r. The 
Releaux triangle is piecewise C t, it has three comers. A C 2 curve, T, has a con- 
stant width, w, if and only if its radius of curvature satisfies p(c 0 + p(~ + ~) = w. 
We will use the following characterization of curves of constant width [22]. Any 
chord of T, perpendicular to T at one end, is perpendicular to T at the other 
end. 

Let ~b be the phase space of the billiard map, and let E C @ be the equator. 
For any table T the time reversal involution is the reflection about E. The charac- 
terisation above means that a billiard table T has constant width if and only if the 
equator is an invariant circle (it consists of periodic points of period two). 
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Fig. 3.3. Involute of a table of constant width. 

Proposition 3.1. Let T be a noncircular C 3 table o f  constant width. The caustic, 
e = 7(E), corresponding to the equator, is not convex. 

Proof By preceding remarks, e is the envelope of  the normals to T, i.e., it is the 
involute of  T (see, e.g., [2]). By our assumptions, the radius of  curvature, p( �9 ), 
of  T is not constant. Hence e has cusps, corresponding to the critical points o f  
p ( .  ). [] 

Remark. For a typical table of  constant width, the caustic ~ consists of  a finite 
number of  concave arcs, joined by cusps, see Fig. 3.3. We also have examples o f  
caustics that contain both convex and concave arcs. (They are joined by cusps. We 
can show that a caustic does not have inflection points.) 

Proposition 3.1 shows that nonconvex caustics are not as rare as it seemed. Let 
T be a table of  constant width, and let e be the involute of  T. Let F C (b be an 
invariant circle near equator. Then the corresponding caustic, 7, is close to e, hence 
it has cusps. This indicates that a typical table o f  constant width has infinitely many 
nonconvex caustics, with rotation numbers close to 1/2. 

The coordinates (s, 0) or (~, 0) on ~b have a geometric meaning, where 0, 0 < 
0 < n, is the height in ~b. The equator is a circle of  constant height, E = {0 = n/2}. 
It is natural to ask if other circles of  constant height, Fo C ~b, 0 ~ 0, n/2, n, can be 
invariant. It turns out that Fo can be an invariant circle only if  0 satisfies tan nO = 
ntan 0, where n > 1 is an integer [8]. This equation has n solutions, Oi(n) (including 
the two trivial ones), and there is a one-parameter family of  real analytic billiard 

tables, T(a,n),O < a < 1, with the invariant circles _t/'!n)= {(s ,O):O = Oi(n)} [8]. 
The caustics, 71n)(a) C R 2, corresponding to these invariant circles are not convex, 
in general. 

3.3. Examples of  Outer Caustics. In this subsection T is an outer billiard table, 
qJ = R2\ in t (T)  is the phase space of  the outer billiard map, and F C 7 / i s  an outer 
caustic. Then T is obtained from F by the area construction, with the area parameter 
S = S(F), see Sect. 2.3. This observation allows to construct outer billiard tables 
with a prescribed outer caustic. 

Let F be a Jordan curve enclosing the area ][F]I, and let 0 < S =< I[F]I. We 
consider the family of  rays, f0, 0 < 0 __< 2n, cutting the area S off o f  F. Let T = 
T(F, S) be the envelope of  the family. Assume that the region ~20 enclosed between 
the chord Co C ~0 and F is connected for all 0 (Fig. 3.4). Then T is the locus of  
the midpoints o f  Co, 0 < 0 < 2n. Hence, if T is convex, it is an outer table, and 
F is an outer caustic for T. 

When is T = T(F,S)  convex? Examples show that, in general, T(F,S)  is not 
convex for all S even when F itself is convex [7]. Note that if F is centrally sym- 
metric and convex, then T(F, [[F]I/2 ) = O, the centre of  symmetry. Let c~,fl be the 
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M F 

Fig. 3.4. Outer table with a prescribed outer caustic (area construction). 
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angles between F and Co at the intersection points A,B(Fig.  3.4). Proposition 2.2 
yields a necessary condition for T to be convex: co te  § cot/3 > 0. Under some 
technical assumptions, this condition is also sufficient. In particular, we have the 
following result. 

Proposition 3.2. Let F be a closed convex curve. There is a positive number, So, 
depending on F such that the curve T(F ,S)  is convex for  any S < So. 

It is also clear from Proposition 2.2 that when c~ + fl = 7r, the corresponding 
point M E T has infinite curvature. Combining this with the preceding remark, we 
obtain the following. 

Proposition 3.3. Let F be a convex piecewise C 1 curve, and let S be such that the 
angles at the intersection satisfy ~,/3 < ~/2 (Fig. 3.4). Then T = T(F,S)  is convex, 
and has at most a finite number o f  points o f  infinite curvature (corresponding to 
c~ = fi = 7r/2). 

Remark. It is by no means necessary for F to be convex in order that T(F, S) be 
convex. For instance, let F be a small nonconvex C 1 perturbation of  the unit circle. 
By choosing S small, but not too small, we can ensure that T(F,S)  is convex. 

Let F be the unit square, and let 0 < S < 1/2. The curve T = T(F,S)  is the 
union of  four hyperbolic arcs (Fig. 3.5). Each diagonal of  F is the axis of  symmetry 
for two of  the hyperbolas. In view of  the obvious fourfold symmetry, it suffices 
to determine one of  these hyperbolic arcs, e.g., HAE. The corresponding hyperbola 
is given by xy  = S/2 in natural coordinates. The points A , E , H  have coordinates 
( , v / ~ ,  ,~ -~ ) , (1 /2 ,S ) , (S ,  1/2) respectively. The angle at the vertex H is equal to 
2 arctan 1/2S. In particular, T is convex, and has four comer points: E, F, G, H.  
The corner angle monotonically decreases from re(at S = 0) to 7r/2 (at S = 1/2). 
When S = 1/2, the curve T degenerates into the center of  symmetry, O. 

Let F be the parachute-shaped curve of  Fig. 3.6 (the precise form of  F is not 
important). We normalize F so that it encloses the unit disc centered at O (Fig. 3.6). 
The area in F below the diameter AB is equal to 6 + ~/2, where 6 > 0 is the area 
below the dotted line in Fig. 3.6. Assume, for simplicity, that F is symmetric about 
the vertical axis through O. Proposition 3.3 and the elementary considerations show 
that for any S, 0 =< S < =/2 the curve T = T(F,S)  is convex. For S < ~r/2, the 
table T is C 2, but for S = ~r/2 it has a comer at O. The angle at O is ~z - 2AOC, 
ile., it is determined by the length of  the arc AC alone. In the "degenerate case", 
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W Y / .  

\ ' ( "  F 
, / . . / 0 " , \ \ \  / 

V X x"i 
Fig. 3.5. Square as an outer caustic. 

F 

A B 

E 

Fig. 3.6. "Parachute" as an outer caustic. 

A = C, the point O E T is a C 1 point with p(O) = 0. Thus we obtain examples o f  
C l outer tables T with Pmin(T) = 0, having outer caustics. 

The examples above show that having a point of  zero radius o f  curvature on 
an outer table does not preclude the existence of  outer caustics sufficiently far 
away from the table. At present, there are no examples of  outer tables where the 
nonexistence of  outer caustics (at least at infinity) is proven. Outer tables made 
from two circular arcs seem to be good candidates [20]. 
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