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Introduction

In this paper we begin a study of C° classification of area-preserving
Anosov diffeomorphisms .of the two-torus and transitive Anosov flows on 3-
manifolds. One of our main results is a new type of rigidity phenomena. It is well-
known [HP2] that the weak-stable and -unstable foliations of such dynamical systems
always have transverse differentiability class Cl. We show that if these foliations
.are C2 (actually, much less will do—for example, they need only be Cl’1 at every
periodic orbit) then they are C. For an area-preserving Anosov toral
automorphism, we deduce from this that if either stable or unstable foliation is C2,

then the automorphism is C*°-conjugate to a linear automorphism (cf. Theorem 0.6).

Similarly, for an Anosov flow arising as the geodesic flow of a metric of
negative curvature on a compact surface which is close to a metric of constant
negative curvature in C4 topology, we prove that if the weak unstable (geodesic-
horocycle) foliation is c? (or chbl 4 periodic orbits) then the metric itself has

constant negative curvature (cf. Theorem 0.13).

We believe the small perturbation assumption can be removed.

Conjecture If the weak unstable foliation of the geodesic flow associated to a
metric of negative curvature on a compact surface is C2 then the metric must have

constant negative curvature.

Another purpose of this paper is to introduce two new real-valued invariants

for volume-preserving Anosov flows on 3-manifolds. These invariants are the



Godbillon-Vey numbers of the weak-stable and weak-unstable foliations. The
existence of these invariants entails proving that there is a well-defined notion of
the Godbillon-Vey <class for codimension-one foliations with transverse
differentiability class C1+a, for a > % We further show that the resulting
Godbillon-Vey invariants for geodesic flows characterizes those flows arising from

metrics of constant negative curvature. This follows from properties of the

Mitsumatsu defect, Def(g), of a metric g with negative curvature on a closed

surface.

In our study of the Godbillon-Vey invariants for Anosov flows, we obtain
continuous families of Cl+a foliations, for any o <« 1, which are topologically

conjugate but not Cl-conjugate, and which have continuously varying Godbillon-Vey

invariants. We believe these provide the first examples of topologically conjugate

geometric structures with differing real characteristic classes.

The remainder of this paper is organized as follows:

§|. Statement of Results

I. Smoothness of Foliations

§2. C®-Regularity of functions C™ along leaves
§3. Modulus of continuity for weak-unstable foliations

§4. The Anosov cocycle and local obstructions to smoothness



1L Rigidity for Anosov Flows

§5. Vanishing criteria for the Anosov cocycle
§6. Vanishing of A% and C™-rigidity
§7. Rigidity for toral automorphisms

§8. Rigidity for Anosov geodesic flows

IIIl. Godbillon-Vey Classes

§9. Godbillon-Vey classes for C1+°‘—foliations
§10. Foliations transverse to a circle fibration

§11. The Mitsumatsu defect and rigidity.

This work was initiated while the first author was visiting the California
Institute of Technology, whose hospitality and the excellent working conditions
provided are gratefully acknowledged. The first author is also thankful for the
support of the Mathematical Sciences Research Institute, Berkeley, during the

completion of this work.



§{, Statement of Results

1. Let M be a closed orientable Riemannian 3-manifold. Let ftM — M be a
C*-flow on M with generating vector field £ = c% fy =0 The flow {ft} is Anosov if
there is a continuous Df; — invariant splitting TM = et @ EO @& E-, with Eo
spanned by £ at each point p € M; and E+, respectively E~ are spanned by unit
vector fields h+, respectively h™ for which there are constants cl,cz"Y > 0 such

that forall pe M

IDfy(h* () > epe”t for t > 0

IDf,(h™ (P < eVt for t > 0.
A Ck, 1-form 7 on M satisfying
(e.D 7€) =1 7thhH) = 0; 7(h) = 0

is called a transverse invariant 1-form to {ft}. For k > 1 it makes sense to_ write

d7, and form the exterior product 7Ad7. The 3-form TAdT is flow invariant. If it
is not identically zero, then both its positive and negative part define absolutely
continuous invariant measures for the flow {ft}. By the theorem of Livshitz and
Sinai [LS] any absolutely continuous invariant measure for an Anosov flow is given
by a positive density. Thus, TAdT is either identically zero or does not vanish at
all. In the first case, by Plante (Theorem 3.1, [P1]) there exists a compact smooth
section for the flow which must be a 2-torus, and hence the flow is smoothly
conjugate to the suspension of an Anosov diffeomorphism of the 2-torus. In the

second case, 7 is a contact form, and we will refer to this case as a contact Anosov



flow. Such a flow can be extended to a Hamiltonian flow on M X R with a

homogeneous Hamiltonian function (cf. Appendix, [Ar])

For an Anosov flow {ft} with splitting TM = E* (45] EO @ E-, define the weak-
stable distribution E¥S = EO @ E, and the weak-unstable distribution EYY = E* &)
EO. Both are uniquely integrable 2-plane bundles on M, and the resulting foliations

are denoted W¥S and WWY, respectively.

The individual integral manifolds of the distributions EYY and E¥S are C°-

submanifolds of M, and depend continuously on £ in the C%-topology [HPI1]

Ewu EWS

However, the distributions and are only known to be of class Cl, again by
Hirsch and Pugh [HP2]. OQOur first main purpose is to determine precisely the degree

of differentiability of these distributions.

Let S be a closed orientable surface with a Riemannian metric g of negative
curvature. Let M denote the unit tangent bundle of S, and =:M — S the projection
along the circle fibers. The geodesic flow {ft} on M associated to the geodesicb
vector field ¢ is contact Anosov. For further discussion, see [An], [Eb] or [GK].
The integral curves of the vector fields ht and h™ on M project under 7 to the

horocycles on S.

2. A continuous function f:(a,b) & R is in the Zygmund class, A,x(a,b) on just Ay, if

(O.‘Z.) Ax(f) = sup lim sup fx+h) + f(x-h) - 2f(x)]
a<x<b h—-0 | |h|



is finite. A function in A, has modulus of continuity w(S) = K-S:log SI, S > 0, for
appropriate K > 0 (cf. Theorem 3.4, [Z]). Thus, every f € A, is o-Hodlder
continuous for all oo < 1, but need not be Lipshitz or of bounded variation. The
definition of Zygmund classs extends to functions on R" using essentially the same

norm as in (0.2), and where the supremum is taken over any open set in R". Denote

by , respectively Ck’l, C , the class of functions f whose k-th

derivative exists everywhere, and is respectively «-Hoélder, Lipshitz, Zygmund or

with modulus of continuity w.

A 2-plane bundle E on a 3-manifold is said to be of class Ck’A* if it is

Ax

k
spanned locally by vector fields which are of class C ' in local C*®-coordinates.

Theorem 0.1. Let {f,} be a wvolume-preserving C®-Anosov flow on a

Riemannian 3-manifold M.

EWS Ewu

a) The distributions and

1,Ax

are always of differentiability class

b) If {ft} has a Cz-transverse invariant 1-form T, then EY and E™ are

C LA 1-dimensional distributions on M.

This theorem is proved in Section 3.

Note that b) follows immediately from a), for E¥* = E"Y A ker(r) and
similarly for E~. It is not possible to remove the hypothesis that {ft} is a contact

flow in b), as one can make a simple time-change to obtain a flow where E* and E-



are not even C1 (e.g., see Theorem 4.11, [P1]).

Under the hypothesis of Theorem 0.1, it is possible to deduce from Theorems

3.5 and 3.8 of Hirsch-Pugh-Shub [HPS] that there exists an a, 0 < o < 1, such that

EWY EWS C1+°L.

and are The Holder exponent o depends upon the global Anosov
exponent A in the definition of the Anosov flow. The much sharper result of
Theorem 0.1 is obtained from using a “local contraction principle”, Proposition 3.3

below, versus the global contraction principle behind [HPS].

3. For an area-preserving C3-Anosov diffeomorphism F of the 2-torus T2, Anosov
observed in ([An], Section 24, especially lemma 24.1) that if either the stable or
unstable distributions of F are Cz, then at each periodic point p of F, of period n,
there exists a differential relation of the third order which F7 mus"t satisfy at p.
Thus, there are countably many obstructions to F having either C2-stable or
unstable foliations. A considerable part of the present work is based upon our
study and elaboration upon Anosov’s observation. In particular, the next three

results put his obstructions into a comprehensive framework.

For each p € M, let \lfp:(—e,e)2 — M be a transversal to the flow {ft} satisfying
conditions (3.1) from Section 3, which imply that ¥p maps the x-axis in R2 into the
unstable leaf Wgu through p, the y-axis into the stable leaf wgs’ and

D¥p(8/3xry o) = h¥(¥p(x,00), Ixi<e

D¥p(8/3¥, ) = B0y, Iyl < e



Let p be a periodic point for the flow {ft} with period to- Then fto induces a

Poincare return map on the transversal Tp given by the image of ¥p. Let F(x,y) =

, [ AX + o(x,y)

X )] : (—e, 6)2 - R2 denote this return map in coordinates. The partial
y X,y

derivatives of @(x,y) and ®(x,y) are denoted by subscripts x and y. Let us define

v 4)\2-)\3
(0.3) Au(p,to) = m wxywyy = ‘nywxy -+ )\nyy

and similarly, define A‘g(p,to) by reversing the roles of ¢ and ¥ and interchanging x

and y in (0.3).

Theorem 0.2 Let {f{} be a wvolume-preserving c3 Anosov Jlow on the closed 3-

manifold M and let p € M be a periodic point for {f t} of period tO‘

(i) If the first derivative of the weak unstable distribution EWYY
(respectively, the weak stable distribution EYS) has near p modulus of continuity
w, where w(s) = 0(s ‘log sl) or satisfies a Lipshitz condition at p, then A‘g(p,to) =0

(respectively, A‘g (p,io) = 0)

(i) If in addition {fy) is ct, and if EWY (respectively E¥S) has a
measurable second derivative almost everywhere, then Aﬁ(p,to) = 0. (Respec-

tively, AZ(p,tO) = 0.)

Statement (i) is completely local and is proved in Section 4. Statement (ii)



uses the construction of cocycles of A\g and A‘Sy (see below) in Section 4. It is

proved in Section 5.

Since every Anosov flow has infinitely many periodic points, Theorem 0.2
shows there are a countable number of relations on the 3-jet of the local return
maps of the flow which must hold whenever the weak-stable or -unstable
distributions are Cl’1 or even if ’gheir first derivatives have modulus of continuity

0(s | log sl).

In Section 4 we also show that the numbers Ag(p,t) (and in the corresponding
stable case Ag(p,t)) of (0.3) can be defined for any point p € M and time t, and the

values satisfy a cocycle law:
0.4) A¥ep) + A¥r 09 =AYt + 9
A¥opt + A¥t ) = AYipt + ).

Let Hl({ft};R) denote the group of Cl-cocycles over the flow {ft}, modulo the CL

coboundaries.

Theorem 0.3. Let {f} be a wvolume-preserving C3-Anosov Jflow on the closed 3-
manifold M. Then the cohomology classes A* = [A¥] and A~ = (a¥] in HIUEY; R)
are well-defined, independent of the choices of transversals ¥p and the ambient
metric on M. Furthermore, {f} is C*® and (f't) is another volume-preserving C™-

Anosov flow on a 3-manifold 1\71, and M — M is a Cl-diffeomorphz‘sm

10



conjugating the flows, then oxAY = AY and %A = A"

It follows that A* and A~ are Cl-invariants of Anosov flows as above. The
proof of Theorem 0.3 is contained in Sections 4 and 5, except for the Cl—invariance

which follows from results of [Kal.

A basic problem is to understand how much information about the flow {ft} is
contained in the classes A and A~. Our next result identifies those flows with

zero cohomology.

Theorem 0.4. Let {fy} be a volume-preserving transitive C*°-Anosov flow on a
compact 3-manifold M. Then AY = 0 if and only if the weak-unstable

distribution E¥Y is C®, and A~ = 0 if and only if EYS is C*.

This theorem is proved in several steps in Section 6.

Combining Theorem 0.4 with the results of Livshitz, discussed in Section 5, we

deduce:
Theorem 0.5. Let {fy} be as in Theorem (0.4). If the obstruction A¥(p,ty) of (0.3)
vanishes for every periodic orbit of period tg, then E¥Y is C*°, and similarly for

EYS,

4, Let l":T2 - ’I‘2 be an Anosov diffeomorphism. The suspension construction

yields a flow {f},:} on the 3-manifold M = T? X R/(x,r) ~ (F(x),r+1) to ﬁvhich the

1



results above apply. In Section 7 we prove a much stronger conclusion for this

case.

Theorem 0.6. Let I—T:T2 — T2 be an area-preserving C-Anosov dif feomorphism.
Either both stable and unstable distributions E¥ and E- are not Cl’1 at some
(maybe dif ferent) periodic orbits of F, or these distributions are C*° and there is

a C%-conjugacy between F and a linear Anosov automorphism of T2. In

particular, if At =0o0raA = 0, then F is linear up to C°°-conjugation.

5. In part IIl of this paper, we define and study two new invariants for volume-
preserving C3-Anosov flows on closed 3-manifolds. As remarked above, this requires
defining the Godbillon-Vey invariant for foliations of class C1+°‘, where o < 1.

C1+a

Note that we say a foliation § of M is of transverse class if there is a

covering of M by open foliation charts for which the local transverse transition

functions are C1+°L.

Theorem 0.7. Let & be a codimension-one foliation on a closed, orientable 3-
manifold M, and assume that § has transverse dif ferentiability C1+°‘ for a >

Ll Then there is a natural construction of the Godbillon-Vey class GV(F) €

2
H3(M,R). Furthermore, GV(¥) depends only upon the C1+3 conjugacy and C1+6

concordance class of & for any 8 > %
Recall that two C1+°‘-foliations ‘:3'0 and 8’1 or M are C1+°‘-concordant if there

is a codimension-one cl+® foliation & or M X I whose restrictions to M X {0} is Fo

and to M X {1} is ‘Jl (cf. Lawson [Lal).

12



It follows from the work of Tsuboi [T] that the Godbillon-Vey class cannot be
defined for all codimension-one Cl-foliations, and we suspect that his methods
extend to show that for a < %, GV(¥) cannot be defined for all foliations & of

transverse class C1+a.

A surprising fact is that the invariance at GV(%) under diffeomorphism can be

improved from the statement in Theorem 0.7.

Theorem 0.8. Let § and & be codimension-one C1+°°-folz'ations on closed

orientable 3-manifolds M and M’, respectively, for o > l. Assume there exists a

2
dif feomorphism 8 : M — M’ conjugating & to §’, and either

(0.5) 0is C'"P where 8 + o > 1, or
(0.6) ¥ and 8’ are C2, and 0 is Cl
Then GV(&F) = 0xGV(F’).

Theorems 0.7 and 0.8 are proved in Section 9.

If we add a topological hypothesis to the assumptions of Theorem 0.8, then it is

possible to prove what appears to be an optimal result.

Theorem 0.9. Let M and M’ be the total spaces of Sl-fz'brations over an orientable
surface S. Let & and &’ be C1+°‘ foliations on M and M’, respectively, which are

transverse to the fibers of these fibrations and have o > Also assume that

ST

13



F is the weak-stable foliation of a transitive Anosov flow on M. If there exists a
homeomorphism &M — M’ conjugating 8 to 8’, with 8 absolutely continuous

transversally to &, then 8*GV(F’) = GV(8).
Theorem 0.9 is proved in Section 10.

It is not possible to remove the hypothesis of absolute continuity

transversally, as examples show.

For codimension-one Cz—foliations, G. Rabi proved in an unpublished manuscript
[R] that GV(¥) is a Cl-invariant. The proof of Theorem 0.8 we give is adapted from
a more general result wvalid in all codimensions, and is part of an analysis of
secondary and Chern-Simons invariants for foliations of class C1+a, o < 1, in {Hu
3. However, the proof we give for Theorem 0.8 can be seen to be similar to that of

Rabi.
We are grateful to E. Ghys for bringing Rabi’s work to our attention.

6. Let {f t} be a volume-preserving C3 Anosov flow on a closed 3-manifold M. 'The
distributions E¥Y and EY¥S are uniquely integrable, and we set ‘Ju(ft) = WYY and
Ss(ft) = st, the corresponding CI’A*-codimension—one foliations of M. From
Theorem 0.8, both foliations have well-defined Godbillon-Vey classes, and for [M]

the fundamental class of M, define the secondary characteristic numbers of {ft} by

©.7) {gvu(ft) = <GV(F'(f,), IMI>
’ gvS(f,) = <GV(&(fy), MI>

14



If M is not orientable, then lift {ft} to the orientable double cover of M, and divide
the numbers in (0.7) by 2. (Also note: the foliations ifu(ft) and 3’3(ft) are
generically not of class C1 plus bounded variation, by Theorem 0.2 (ii), so the
extension of the Godbillon—Vey class given by Duminy-Sergiescu in [DS] does not
suffice to define (0.7).) We next collect into one theorem our results about these

invariants.

Theorem 0.10. Let {f t} be a volume-preserving C3 Anosov flow on a closed 3-

manifold M.

a) gvu(ft) and gvs(f ¢) depend continuously on {f;} in the c3 topology on

flows.

b) There are C3 l-parameter families of such flows on which gv“(ft) and

gvS(f,) vary continuously and non-trivially.

c) Let {f{} and {f ¢} be two such flows on 3-manifolds M and M, respectively.

Let &M — M be a c1¥B

-dif feomorphism conjugating F(f g to FUT t» with 8 > 0.
Then gvu(ft) = + gvu(ft), with + if 8 is orientation preserving, and —

otherwise. Similarly for gvS(f -
d) Let {f,(g)} be the geodesic flow for a metric g of negative curvature on a
a surface S. Then

gvi(f () = gvS(f (&),

and we set gv(g) & gvi(r (g).

15



e) Define the Mitsumatsu Defect of a metric g of negative curvature on a

surface S of Euler characteristic x(S) to be
(0.8) Def(g) = (27)% X(S) — gv(g)
Then Def(g) > 0, with equality if and only if g has constant curvature.

f) gvig) is an invariant of the length function egnrl(S) — RY which assigns
to each [Y] € wl(S) the length of the unique closed geodesic representing [Y): if g

and g are metrics of negative curvature on S and £y = Eé then gv(g) = gv(g).

The conclusion of Theorem 0.10 e) was first proved by Mitsumatsu in [Mi] for
Cz—foliations. In Section 11 we show how his proof can be adapted to the critical
case of C1+°°-foliations. Mitsumatsu also derived an integral expression for Def(g),
again under the hypothesis that ‘Ju(ft(g)) is C2. This integral expression also holds
for the extended invariant gv(g), which we now briefly describe. Let w = 3/38 be
the unit vector field on M tangent to the fibers of the projection m:M — S along
the circle fibers. Let k(g):S — R be the Gaussian curvature function for g. Let H

= H*'M — R denote the positive Cl-solution on M of the global Ricatti equation
0.9) ¢gH + H? + kiglom = 0.
In Section 11 we prove:

Theorem 0.11. For g of negative curvature,

16



(0.10) Def(g) = 3] (%ig)z dvol.
M

It is well-known that I H-vol is the metric entropy of the flow {f ()} with

M
respect to the smooth (Liouville) invariant measure (cf. [Pe]). Formula (0.10)
suggests that Def(g) should be viewed as a kind of mean variation of the

distribution of the closed orbits of {ft(g)}, based on an analogy with the results of

[Kal.

7. Now we can state two of the main results of this paper:

Theorem 0.12. Let S be a compact surface with negative Euler characteristic, and
let M denote the unit tangent bundle to M. Then there exists a family of
codimension-one, CI’A*-foliations {850 < s < 1} on M such that gv(Fg) varies
non-trivally and continuously with respect to S. Furthermore, all of the

foliations §g are topologically conjugate.

Proof: Choose a C®-path of metric {gsl0 < s < 1} of negative curvature from gy 2
metric of constant negative curvature, to a metric g1 of non-constant negative
curvature.

Then set g = FUf +(8s)), and the conclusions follow. #

Theorem 0.13. Let g be a metric with negative curvature on a closed surface S.

Assume that the foliation FY(f(g)) is C?, and that at every point p € M the

solution H of (0.9) satisfies

17



2
0.11) Hp? + 2 2 — " 28 ) > 0.
a0 862
Then the metric g has constant negative curvature. In particular, if g is C4-
close to a metric of constant negative curvature, then the above-mentioned

conditions are satisfied so that g has constant negative curvature.

This theorem is proved in Section 11. It is deduced from the results of Section
8, which assert that under the assumption of the theorem the foliation E‘U(ft(g)) is
C* conjugate to the geodesic-horocycle foliation of a metric of constant negative

curvature, and from Theorems 0.10 and 0.11.
8. We conclude this section by formulating five open questions.

Problem 0.14. Does there exist a volume-preserving c3- anosov flow {fy} on a

closed 3-manifold for which gv(f,) > gvS(f,)?

The study of the relation between the length function Eg of a metric g and the
geometry of g has an extensive tradition (cf. [BK], [GK], {Ka]). The second author
has conjectured that the function Eg uniquely characterizes the metric g. Detailed
discussions are given in the problem survey [BK] and the references therein. Based

on Theorem 0.10f), we ask:

Problem 0.15. Does there exist a formula for gv(f,(g)) in terms of the length

Ffunction £,? Can gv(f.(g)) be derived from knowing the ¢-function for £,?
4 t 4

The class of Zygmund functions most commonly arises in the study of

18



regularity of kernels for singular operators (cf. [St], [Kr]). This suggests the
following speculative question, to which a positive solution would fit perfectly with

the program of A. Connes in [Col.

Problem 0.16. In the case where {ft} is a geodesic flow, can the conclusion of
Theorem 0.1 be deduced from an analytic principle? For example, does there
exist a natural singular operator associated to a metric of variable negative
curvatﬁre (possibly associated to the induced representation of the fundamental
group on the circle at infinity), whose regularity properties can be wused to

1,
deduce that E¥Y is C A*?

Next, we pose a question whose solution would remove the hypothesis (0.11)

from Theorem 0.13, and settle affirmatively the Conjecture of the Introduction:

Problem 0.17. Can the invariant gvu(ft) be calculated from the cohomology class

AY? For a geodesic flow {f 1(8)}, does At = 0 imply that gv(TY( 1(8) = (27)° x(8)?

Finally, we would like to understand what information about the flow is
contained in the cohomology classes A% and A” in general, i.e. when those classes do
not vanish. We restrict our discussion to the case of geodesic flows. In that case
A” is determined by At For, let :!M — M be the “flip” transformation which sends
tangent vector v with footpoint p € S to the vector —v with the same footpoint.

Then A" = A",

By Livshitz Theorem [L1], {L2] the class A% is determined by the number Ag

(p,to) for periodic points (cf. 0.3). That number actually depends only on a periodic

19



orbit, and not on the choice of a particular point on it. In our case periodic orbits
are closed geodesics and each such orbit is uniquely determined by a non-zero free
homotopy class of closed curves on the surface S. The set I' of all such classes is
independent of the metric. Thus, the class AY determines a real-valued function on
T and we will say that two metrics have the same classes At ir corresponding
functions on T coincide. Obviously, any diffeomorphism of S isotopic to the

identity, applied to a metric, does not change the class At

Problem 0.18. Characterize the set of metrics of negative curvature on S with the
same class AY. More specifically, is this set, factorized by the action of the
group of diffeomorphism of S isotopic to the identity, always finite-

dimensional?

20



I.  Smoothness of Foliations

§2. C®-regularity of functions C* along leaves.

Rigidity for Anosov dynamical systems often turns on proving rigidity first for
the solutions of equations along the stable and unstable manifolds. Hyperbolicity
along these manifolds accounts for the “algebraic” local rigidity encountered. To
then prove global rigidity, one must have results implying that local behavior along
stable and unstable manifolds suffices to determine global behavior. (cf. [An], [Kal,

[Gk], (L1}, [L2], [LMM].)

In this section, we prove a result, first proven by (Lemma 2.3, [LMMJ),
characterizing the C*°-functions on R" by their local restrictions to complementary
C”*.foliations of Rn, with a transverse regularity hypothesis. Our proof is based
on an idea of C. Toll, and is presented both for the sake of completeness (Theorem
2.1 will be applied in a crucial way in §6, for the case n=2), and because of the
simplicity of the approach. Recently, yet another proof wusing Taylor

approximations has been given by J.-L. Journe [J].

The basic data is the following: 8’1 and ‘&’2 are C0 transversal foliations of R™

with dimensions of leaves k and (n-k), respectively. They also satisfy:

(2.1) For i = 1,2, each leaf LIi, of Tfi through p € R" is a C®-submanifold of R",

and the family of submanifolds p ~ Lli) is a continuous function of p, with C®°-

21



submanifold topology on the LIiJ.

(2.2) For each p € R", there are coordinates ®:(—e,e)® — R, such that for (%,y) =
(Ryp-aXys VoY) ®0,0) = p, ®X,y() for X € (——e,e)k is into the leaf L11) through
®0,yy) and for dy = dy;A..Ady_ ., w‘f = A"'k(d)'l)*(d?) defines a continuous
(n—k)-form on image ®. Here, A“'k(df'l)* denotes the push forward map on (n—k)-
measures. Similarly, w® = Ak(d)'l)*(di) is a continuous k-form on image @

2

transverse to %'2.

(2.3) For i = 1,2; for each integer € > 0, consider an £-triple {vl,...,ve} of vector
fields on R" tangent to ifi as in (2.1). Then D(vl) o) D(ve)c.«)i is a continous form

on the image of &, for each chart ® as in (2.2).

By the results of Hirsch-Pugh-Shub [HPS] and Section 1, the complementary
stable and unstable foliations for an Anosov diffeomorphism, restricted to a
coordinate patch, provide examples of foliations satisfying (2.1)—(2.3). For an
Anosov flow one has to take a smooth transversal to the flow and the foliations are

the intersections of weak-stable and weak-unstable manifolds with the transversal.

Theorem 2.1. Let ¥, and ¥, be transverse foliations on R" satisfying (2.1)—(2.3)

alone. Let f:R"™ — R be a continous Junction satisfying

(24) For i = 1,2; for each p € R", the restriction of f to the leaf Lri, of &,

through p is C°, and the leafwise C™-jet of f depends continuously on p.

Then f is C*® on R™
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Proof: The conclusion on f is local, so we can assume that f has compact support
in a neighborhood of the origin which is the image of a coordinate map, as given in
(2.2) for p = (0,0). Next, 81 and ‘Jz are transverse, so without loss of generality,
we can assume that, for ¢ > 0 given, after & C®-coordinate change on R™ then in

coordinates (X,¥) = (xl,...,xk, Yir-a¥q) on R™.

(2.5) The leaf at 3’1 through (0,0) is ¥ = 0; and the leaf at ‘JZ through (0,0) is X =

0.
(2.6) The leaf at &, through (0,¥) is given by a graph

Ll = (x 39 € RY.

1
0,y
where P:R" — Rn'k satisfies

2.7 $(&,0) = 0; IBE,Y) — van_k < € for i = 1,...k, ”5% Tbl(g,y)lan_k <ealXe€

rRX, y € Rk,

(2.8) The leaf at &, through (¥, d) is given by a graph L%,S = {(P(X,¥), )7);? € R"'k}

where :R" — rk satisfies

(2.9Yp(0,y) = 0; [[P(X,¥) — }—{”Rk <ejforj=1,..,n—Kk,l| aiyJ El(i,y)if <egalXE

Rk, 3 e ROV,

The hypothesis (2.1) implies that ¥(%, Vo) is a C™ function of % for fixed Vo,

and the C°°-jet on Rk of P depends continuously on ¥, A similar conclusion holds
0
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for 6(20,?). The hypothesis (2.2) further guarantees that the coordinates on R™ can
be chosen so that for fixed )_(0’ y — %(io, y¥) induces a continuous map on (n-k)-

measures, and similarly for X — w(i,?o).

After these lengthy preliminaries, the proof is rather immediate. Let (€, 77) =
¥ -~
(E,...,Ek, nl"“’nn-k) denote coordinates on R" = R" , and let f denote the Fourier

transform:

_n
(2.10) 1,7 = (27 2 I expli§€ - X + 7 - V) f(X,y)dxdy.

Rn

Lemma 2.2. For each integer m > 0, there exists constants C(m), T(m) > 0 such

that
(2.11) | f(te + t7) | < Clmt™ for t > T(m)
for all unit vectors (£,7) € R™.
Theorem 2.1 follows immediately from Lemma 2.2, for f has compact support in
R™ and (2.11) implies that f € HS(R™), the s-Sobolev space, for all s > 0. By the

Sobolev Lemma, f is C*®° on R™.

Proof of Lemma 2.2:

Either Il < 2K, or I§l < 2Ifl, possibly both. We will assume the first holds

and establish (2.11). The second case follows by the same proof, interchanging the
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roles of ‘ifl and ‘{52.

Consider F(t) = f(t§,t7). Introduce a change of coordinate ¥ = »(G,¥), X = U

for 4 € Rk, vV E R"'k, into (2.10) and separate out the variable V to obtain

-n
(212)  F(t) = (2m) 2 l dv I exp {it (€ - T + 7 - BTG,V - 1(T,P(T,7) - Plx(T,7)dT

Rn-k Rk

where ¥l- d¥v is the image of dy under the map ¥ — ¥(X,¥). By assumption, Pl is
v v

continuous in ¥ and C*- in u.

Let A be an invertible k X k matrix whose first row is £, and whose subsequent

rows form an orthonormal basis for the complement to €. Let B be a k X (n—k)

matrix whose first row is 7], and has 0 for all other entries.

variable z = 2(v,0:R¥ — R¥ by

(2.13) z=1+ A"l B ¥,

The choice of A and B ensures that
£.z=¢€ T+ 7 PG

The norm of the matrix Al . B satisfies

-1 iz
2.14 A"l . B < I o
(2.14) I I < il <

Introduce a new

so for € > 0 appropriately small, the differential of @ — Z(V,T) is invertible and

uniform in V. Furthermore, Ev(ﬁ) is injective in U, so we can define a differentiable
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inverse, i = a(V,z), whose Z — C%®-jet is uniform in V. Now substitute this

change-of-variable into (2.12) to obtain

-n

(2.15) F(t) = (27) 2 J dvj exp(it £02) F(z,9)dz
Rn—k Rk

where

(2.16) F(Z,¥) = f(a(¥,2), P(a(¥,2),¥) - Bl (a(¥,2),¥) - lol(7,2)

has compact support in (Z,V), is C* in Z and the C®-Z-jet of F is continuous in V.

Thus, the Fourier transform

(2.17) Fo(t) = (27) 2 I exp(it € - Z) F(Z,v)dz
Rk
has super-polynomial decay in t, uniformly in V. As (2.15) is obtained from (2.17) by

integrating a compactly supported function over Vv, the formula (2.11) follows. #

Remark 2.3. In the above proof, it was not necessary to assume that all quantities
considered are continuous in the transverse variables. In order to derive the
estimate (2.11), a weaker hypothesis at appropriate local Lp-integrability on the
various quantities would suffice. We leave it to the reader to make these changes
as needed. In our applications, 31 and i'fz are transversally Cl, so these

considerations are immaterial.
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§3. Modulus of Continuity for Weak-unstable Foliations

In this section we prove Theorem (0.1. We begin with a somewhat weaker result,
namely we will show that the weak stable and unstable bundles for a volume-
preserving C’-Anosov flow {ft} on a 3-dimensional manifold M are Cl’w, where w(s)
= K - s - llog sl for an appropriate constant K. Our proof of this is close in spirit
to the classical approach to proving that these bundles are C1 via the Arzela-Ascoli
Theorem (cf. [Pu]). However, the argument given below is much more delicate than
the classical case, and more precise than the global hyperbolic contraction methods
of Hirsch-Pugh-Shubt [HPS]. We will use the facts that the weak-stable and
-unstable bundles are Cl, and that their integral submanifolds are as smooth as the
Anosov flow with Cl-dependence on the base point of these submanifolds in the C3—

topology. The proofs of these facts are in [HPS].

Let {ft} be a fixed volume-preserving C3-Anosov flow on M. Denote by £ the
vector field on M generating {ft}. Endow TM with a Riemannian metric whose

volume form is invariant under the flow and for which £ is a unit vector field.

For each point p € M, consider a smooth transversal Tp C M to € of a fixed
size which depends upon the point p in a C*° way. Let Wg and WIS; denote the
connected components containing p of the intersection of the weak-unstable and
weak-stable manifolds at p with Tp. Let Eg and Eg be the unit tangents to W'; and
Wg at p; so {Egp € M) = EY and {E;Ip € M) = ES define Cl unit vector fields on
M. (Caution: EY and E* need not agree, and E¥ and E- need not agree.) Introduce
a coordinate system on each Tp so that WE and W; correspond to the x-axis and y-
axis, and so that the unique invariant smooth transverse measure for {ft} becomes

the standard area form in R2 in these coordinates. We can also assume that the

27



standard coordinate fields 3/0x and 3/3y along Wg and WE are unit vector fields.
An example of such a coordinate system is the exponentiation of a coordinate

system in the subspace of the tangent space TpM spanned by Eg and EISJ.

We can also insist that the coordinate systems on Tp depend upon p in a Cl—
way, when considered as C®-maps of a subset of R2 into M. This is possible since
we know that the weak-stable and weak-unstable manifolds and their C*°-jet bundles
depend C1 on the base point. For future reference, we formalize the properties of
these coordinates:

For some € > 0, there is a Cl-map

¥:MX (—,e? = M

such that ¥p(x,y) = ¥(p,x,y) is the above coordinate system on Tp, and we have:

(3.1.D) \I/p:(—e,e)2 — M is a C* embedding, with ¥p(x,0) € wY, ¥p(0,y) € WIS) for Ixi

< €, Wyl < €.

(3.1.ii) The curves ¥p(x,0), ixl < € and ¥p(0,y), lyl < € depend cl on p in the C*°-

topology of curves in M.

(3.1.iii) For dv = i(f) . d(vol), where d(vol) is the Riemannian volume form on M,

Wp*(dv) == dx*dy.
For § > 0, consider the set V(§) of all Cl-vector fields v on M satisfying:
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(3.2.1) At each point p € M, v(p) is tangent to Tp
. -1 s 2 e
(3.2.1i) DOV )(v(p) = (1,vp(0)) € T(O,O)R » with IV, (0) < §
(3.2.1i1) v is §-Cl.close to the line field EY.
The set V(8) is clearly convex, and V(0) is the unit vector field spanning EY.

For each t > 0, define an operation &, on V(§): For v € V(d), (iftv)(p) is equal
to the projection of th(v(f_tp)) to Ty along the flow, and then pointwise rescaled so
that (3.2.i1) hoids. [t follows from the usual Cl-contraction arguments that for 60 >
0 small enough, the image of &, lies in V(§). In fact, for any v € V(§), v

converges C1 to the vector field EY. We will prove the following:

Theorem 3.1. Let ‘Jt be defined as above, for t > 0. Then there exists € 6, K >
0 such that for every ¢ < €0 there exists T(e) so that for any t > T(e) and v €

V(§), if q € Wg and ¢ < d = dist(p,q) < ¢, then in the coordinate system ¥y,

(3.3) Dg(&,v)q) — Dg(&Fv)p) < Kd - Ilog d', where Dg denotes dif ferentiation

along W; by 3/9y.

Remark 3.2. Since condition (3.3) is closed in the Cl-topology, and EY =tlim Fv
— 0
for v non-vanishing, an obvious corollary of Theorem 3.1 is that the derivative

DsEY has module of continuity w(s) = K - s - ilog s' in the stable direction. As

DSEu is C3 along the weak-upstable manifolds, we conclude that DSEu is Cl+w on M.

Proof of Theorem 3.1: It is enough to consider only integer values of t. Let F =
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iFl and f = fl to simplify notation.

For each € > 0, choose §(¢) > 0 so that (3.3) is satisfied for K = 1, t = 0, all v
€ V(6(e)) and all p EM, q € WIS) with € > dist(p,q) > €2 Such 8(e) exists by virtue

of the uniform continuity of DgEY.

For q € ‘WIS), let q’ € Wfp be the image of q under the Poincare map from Tp to

Tfp‘ Let d = dist(p,q) and d’ = dist(fp,q’). We will show:
Proposition 3.3. There exists K > 1 and € > 0 with ¥(p,x,y) defined for Ixl < €9

lyl < €1s S0 that if v € V(G(el)), d < ¢y and

3.4) ist(q) — Dgv(p)l < K - d - ilog d|,
then
(3.5) DsFv(q’) — DFv(fp)| < K - d’ - ilog d'}.

Proposition 3.3 implies Theorem 3.1 via a simple inductive argument. First,
choose € > 0 with € < € and 661 greater than the expansion coefficient Ap of f
at every point p € M. Set 60 = 6(61). By the Anosov condition, for any p € M and
q € WlsJ with d = dist(p,q) < €(, there exists t = T(p,q) such that the Poincaré map
from Tp to Tf"tp sends q to a point @ € Tf"tp' and €; > dist(fi,l, Q9 > eg. Again
using the Anosov condition, for fixed ¢ > 0 there is an integer T(e) such that for
any pE M, q € Wg with dist(p,q) > ¢, then T(p,q) < T(e). Let v € V(§;), then (3.3)
holds for p,g as above, and K as given by Proposition 3.3. Applying Proposition 3.3

inductively to the iterates G"v of v, and the iterates f"p and FM§, we arrive at the
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conclusion of formula (3.3) when n = t = T(p,q).

To establish formula (3.3) when t > T(p,q), starting with v € V(60), observe that
w = gt-T(p,q) v € V(60), and we apply the previous inductive argument to the

vector field w.

Proof of Proposition 3.3. Let F be the Poincare map from Tp to Tfp' We write F

in our coordinates \pr(x,y) and \Iffp(x’,z):

(3.6) F(x,y) = (\px + @p(x,y), oY + Bp(xy))

where the first jets of the functions ©p and wp vanish at (0,0), and we have Ikpl >

)\0 > 1 for some )\0, independent of p. Differentiating gives us

3.7 Df(x’y)(i,n) = (Ap€ + (pp)x(x,¥)€ + (wp)y(x.y)n,kg,ln + Wplx(x,¥)E + (Wp)y(x,¥)).

For the rest of §3, we will suppress the dependence on p in the expansion (3.7).
Furthermore, we will only consider what happens along the y-axis. We then have
F(0,y) = (0,z(y)), where

(3.8) z(y) = k'ly + v(o,y) = Al + %yz + o(y2).

with d = wyy(0,0). Here, and throughout when we write o( ) or 0( ), we are giving a

result uniform in p. From (3.8) we derive

(3.9 y(z) = Az - ANd 22 + o(zz).
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Let us now write down the local expressions for the partial derivatives of the

Poincare map F:
ex(0,y) = ay + ay2 + o(yz); a = pxy(0,0); a = % Pxyy(0,0)
py(0,y) = by + By + oly?% b = yy (0,0 8 = 1 pyyy (0,0
(3.10) Yx(0,y) + cy + Ty? + o(yz); c = Pgy(0,0); ¥ = % Yxyy(0,0)

2 2. . 1

Given v € V(J(el)), the restriction of v to the manifold Wg is given in coordinates,

after a rescaling, by (I,Vp(y)), where we expand V = Vp locally:

(3.11) v(y) = ﬁp + 'épy + Tply); Tp a cl-function with (0) = 0.

The hypothesis (3.2.ii) implies lkpl < 6(61). The vector field EY can similarly be
expressed in coordinates about p, after suitable rescaling, as (1, vp(y)), where vp has
a local expansion

(3.12) vply) = €5 - ¥y + Tp(y); 7o) = 0.

The hypothesis (3.2.iii) implies I.ép — £yl < 6(61).

For the remainder of the proof of Proposition 3.3, we will suppress the

dependence on p in (3.11) and (3.12).

We calculate the image v in Wfp coordinates using the specialization of (3.7):

(3.13) DF(L,#(y) = O + ©x(0,y) + Yoy ON1Ty) + B0,y + Hy)py(0,y),
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which after rescaling becomes (1,w(z)), where

M) + vx0,y(2) + Hy(@)y(0,y(2)
A+ ox(0,y(2) + V(y(2)) - py(0,y(2))

(3.14) w(z) =
As Dg is simply differentiation in the y-variable,
(DsW)(y) = € + F(y).
Our assumption means that
(3.15) TN < K - Iyl - |log Iyl

because the coordinate, y, coincides with the length parameter on Wg. We need to

calculate
_ dw
(Dgw)(z) = —-—-dz(z).

Our strategy will be to calculate the constant terms in Dgw and to estimate the rest

by a uniform constant times lzl. Let us denote

A(z) = px(0,y(2))
B(z) = py(0,y(2))
(3.16) C(z) = Px(0,y(2))
D(z) = Py(0,y(2)

u(z) = V(y(z)).

From (3.16) and (3.9), A, B, C and D are all of order 0(zl). Then (3.14) can be
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rewritten using (3.16), and differentiated to obtain:

dw,y _ N 2uz) + Vlcz) + v luz)piz)
az 2 =

(3.17) 1 1
(1 + NFA(2) + N u(z)B(z)

0 u) + v le@ 4+ 3 @) - pEne ) + 3 lw@iBz) + A tu)Bi)
(1 + 2ta@ + Nlu@Be)?

Let us calculate the quantities involved in (3.17) up to linear terms in z. We use

(3.9), (3.10) and (3.16):

Az) = a\z + 0(z%) = 0(izl)

A(2) = a\ + (2oA% — adMd)z + 0(z) = a\ + 0(z)

B(z) = 0(izl)

B’(z) = b + 0(z))

C(z) = 0(z)

C"(z) = e\ + 0(z))

D(z) = 0(zl)

D'(z) = d\ + 0(z))

w(z) = k 4+ 8z + o(z) = k + 00zl

w(z) = B\ + "f"()\z—%q 22 + 0z2) -  — \3dz + 0(z%) — N3z + oliz))
= O\ + MOz — )‘—g‘—i 22 + o(z2)) + 0(iz)).

Substituting these expressions into (3.17) we obtain

dw gy _ NE 4 NI + oo 4 K+ 00z) 0% + ozh) @ + Kb + 002D
dz - 1 4+ 0(1z) 1+ 0 (z)
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(3.18) ‘;—: (2) = ¢ + kd + A1 — a2ak — A 26k? 4+ A v(2) + o0z
Thus, we derive the simple expression
dw . (_l_v_! —_ -1,
(3.19) HE(Z) P (0) = N "7T(y(2)) + o(zh.
Now we use (3.15) and (3.9) to obtain the estimate
(3.20) N Ly + 00z < Khly(z) - llog ly(z)l‘ + 0(iz))
2 A3d
= K - () + 00z1%) - [loglz! + logh — 24 120 + o(IzI))'

Since log Izl is negative, log A is positive and {log Izll > log N if g < 1, the

expression on the right-hand side can be rewritten
3.21) K - (zl + 0(z%) - (log Iz — log X + 0(izD)
=K Izl - Ilog |z|[ — (K(log N) Izl + olizl)) + 0(izl).

Now the last term 0(zl) is uniform in p, and does not depend on the choice of K.
Thus, for a suitably large choice of K and sufficiently small g > 0,
— (K - (log N) 1zl) + 0(lz) < O uniformly in p € M and Izl < €;. Thus,

dwe,) _ dw zl -

W) -2 O <Kl 1log izl]

proving Proposition 3.3. #

35



A variant of the proof of Proposition 3.3, taking into account the actual linear
terms in the expansion of (3.17), yields a sharper result, Theorem 0.1 of the

introduction. The key change is reflected in:

Proposition 3.4. Given K > 0, there exists ¢; > 0 and C(K) > 0 so that if v &

V(6(el)), d = dist(p,q) < ¢y and

(3.22) (DsvX@) + (DsvX(—q) — 2(Dsv)(p)| < K - d,

then for d’ = dist(fp,q’),

(3.23) (DsFVv)a) + (DgFv)(—q’) — 2ADFVEP)| < K - ¢’ - (1 + C(K)).

Proof: The first step is to obtain a better estimate for g—‘z!(z) than (3.18). Since the
Poincaré map F is C3, the functions A, A’, B, B/, C, C, D, D’ all have expansions
into first-order Taylor series. After substituting these expansions in (3.17), we
obtain a linear expansion for %, for constants g and It

(3.24) d¥W(z) = ¢g + Ny + ¢yz + 00z,

The key point is again that Cyp €4 and 0(lz|2) are uniform in p € M. In particular,

by (3.9)
(3.25) ev(2) + y(—2) — 2y(0)] = 0(z)
uniform in p. Combining (3.24) and (3.25), the left-hand side at (3.23) is estimated by
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(3.26) NI () + Fy(—2) — 2700 + 0(1z14)
2
. A<
<Kzl + ——Jgﬂ Iz|2l + 00z1%),
< K-zl - (1 4+ CK) - lzb),
where C(K) is chosen so that
2.1 2 2 2
(3.27) K- CK) - lzlI“ > 5 K - A\ ¥yy - 121 + 0021%), for all p € M. #
Note that C(K) can be chosen monotone decreasing in K; i.e., if K/ > K, then
C(K’) can be chosen C(K’) <« C(K). In particular, there is a uniform choice of C(K) if
K is bounded away from zero.

We use Proposition 3.4 to prove an analog of Theorem 3.1.

Proposition 3.5. There exists K > 1 and 60,60 > 0 so that for any 0 < ¢ < €

there exists T(e) such that for any t > T (¢) and v € V(é'o), if q € W;S; and ¢ < d

= dist(p,a) < ¢, then
(3.28) (DsF v)a) + (DsFyv)(—aq) — 2(DsFv)(p) < K - d.

Proof. Only the changes from the proof of Theorem 3.1 above will be indicated.

Choose €y 60 > 0 as before, except we insist that, for d = dist(p,q)

(3.29) I(DsvX@) + (Dgv)(—q) — 2(Dgv)(p)| < d
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for all q € WIS’ with ¢y > d > eg, v € V(§g). Given p € M and q € WISJ, define p =

F'Tp and @ = F'Tq, where T = T(p,q) and so € = dist(p,q) > e(z). Set dy =

dist(F"5,F"4). Then (3.29) holds for §,d, and we can repeatedly apply Proposition 3.4
to p,d to obtain for 1 < n < T(p,q)
(3.30) (DsF™)(q) + (DgE™V)(—q) — 2DsF™Vv)(p)

<dg -1+ Cdl)(l + Cd2) -+ (1 4+ Cdp)

n i
<d % (L + ONg).

Here, C = C(1) works for each step of the induction, as at stage n we are working
with Kq ="1/1r1 1 + C)\ai) and can use C(K,) = C(1) for the next application of
1=
Proposition 3.4. Now set K =-.Sr°1 (1 + CAgh), and (3.28) follows. #
1=

1,A
Remark 3.6. As in Remark 3.2, it follows from Proposition 3.5 that EYisC* along
the curves Wg, for all p € M. As EY is C2 along the weak-unstable manifolds of

LA
{ft}, we conclude that EY is C” * on M, and Theorem 0.1 is proven. #
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§4. The Anosov cocycle and local obstructions to smoothness

In this section we construct a real valued cocycle over the flow {f;} from the
action of G’t on the 2-jets transverse to the weak-stable foliations. At every
periodic point p of the flow with period t,, there is a real-valued obstruction
A?{(p,to), which actually depends only on the periodic orbit to which p belongs, to
this cocycle being cohomologous to zero. In the case where {ft) is the suspension
of a toral automorphism, A\g(p,to) coincides with Anosov’s obstruction to the
distribution E" being C2 at p ([An], Section 24). This observation of Anosov is
generalized by the last result of Part I: at each periodic point p, there is an w-
Holder semi-norm on DsEu, so that A‘g(p,to) #£ 0 implies UDSEuI](g < 0.
Consequently, EY cannot be Cl’1 at p, and the modulus of continuity of DSEu is

precisely w(s) = O(s - | log s I).

Note that all of the results of this section have obvious counterparts

involving the obstructions A‘g(p,to) for the weak-stable distribution E¥S,

We continue with the notation of section 3. The basic technical idea of the
present section is to analyze how &, acts on the 2-jet or mod o(Iylz) germ of a
vector field v € V(§). Also, in this section care must be taken with the dependence

»

on base points, and the presence of “~7”,

For v € V(8), p € M, recall that after rescaling in local coordinates ¥p(x,y), v
has the form (1, \'/p(y)) along the y-axis, where i’rp(y) = I'Ep + @py + 'T'p(y). Define
"f;(y) so that Fp(y) = "J"’;(y) - y. Then ’T"l';(y) is continuous, and '7';(0) = 0. Note .

that v is C2 at p precisely when ’?;(y) is Cl at y = 0.
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The vector field EY is expressed in coordinates about p, after rescaling, as

(1, vp(y)), where

(4.1) vp(y) = £p -y + T’;(y) - y.
Our interest is in how ‘-i"; is transformed under ‘.}'t. Let i}tv be expressed in

coordinates about f,p, after rescaling, as (1,w(z)) where by (3.14),

k- u(z) 4+ \lC@) + Apluz)D(z)
1 + A\p'A(2) + N\plu(z)B(2)

4.2) w(z) =

Combining (3.16), (3.10) 'and (3.9), we obtain expansions up to order 2 for the terms in

(4.2):
A(z) = haz + (>\2cx - % . >\3ad)22
B(z) = Aoz + (N8 — 1 a%ba)2?
(4.3) Cz) = hez + W2y — 1 a%e)z?

D(z) = Mz + (\%6 — % 234222
w2) = Npz + X102 -z + G WP - 22

where all of the coefficient functions are evaluated at p. Substituting (4.3) into

(4.2), after simplifying and eliminating terms at order larger than two, we obtain

(4.4) w(z) = ()x'lflp + c)z + A‘,;l:(p,t,v)z2 + )\'1’7"*()\z) -z + o(zz)
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where

(4.5) AYpav) = Bpad — ax'h — (ac + IZed) + .

Differentiating the identity Px¥y — Py¥x = 1 yields a + )\2d = 0, and (4.5) can be

rewritten:

(4.6) Adpv) = Land - 2, — 2ac — Vo) + .

We define Ag(p,t) = Ag(p,t,Eu). Then substituting (4.1) into (4.6) and

expressing in terms of F:

4.7 A¥D,0 = L ONbyy - & — 205y Bxy — MByybxy) + Mixyy-

The vector field EY is the unique invariant field transverse to the manifold Wg, so
A‘g(p,t) is independent of EY, as the €, are uniquely determined by {fy} and ¥p. For
example from (4.4) we obtain:

(4.8) bp=N"" 8+

and if p = ftp is a fixed point,

(4.9) ‘ ep = _Ac

Also, there is the relation

2).

(4.10) 7% (2) = lr*og) + AY(p,t) + ofz
f ¢P o u
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We next study the function (p,t) — A:I;(p,t).

Lemma 4.1. Let (ft} be a volume-preserving C4 Anosov flow. Then the function

AY :MxR-RiscCL

Proof: All of the quantities in (4.7) depend upon the basepoint p and time t in a C1

way. #

A coordinate system V¥ is said to be special adapted coordinates if ¥ satisfies
(3.1), and for each p € M, the vector field EY is given in local coordinates, after

rescaling, as (1, vp(y)) where vp(y) = 7’5(}') -y + o(yz). That is, €5 = 0.

The existence of special adapted coordinates follows from knowing that the

distributions E" and ES are Cl.

Lemma 4.2. Let ¥ be special adapted coordinates. Then for each t and p € M, in

coordinates ¥p(x,y) and \I!ft(xl,z), we have Pxy(0,0) = 0.
Proof: By assumption, ep =0 = eftp. Then by (4.8) we conclude 0 = ¢ = wxy(0,0)#

Corollary 4.3 Let ¥ be special adapted coordinates. Then the invariants Ag(p,t)

have the stmplified form
¥ =\
(4.11) Au(p,t) = N - Pgyy-

Proof: Given pxy = 0 = £p, we obtain (4.11) from (4.7). #
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Proposition 4.4. Let ¥ be special adapted coordinates. For p € M and r,s € R,

(4.12) A¥o,t + A¥twpe = A¥t + 5.

Proof: Let DF,c = bx Oy denote the differential from Tp to T, _,
wx wy ftp
(x,y)
Px Py . .
DFg = |7 — denote the differential from Ty to Ty , and
¥x Yy F.( tP t+s P
+(%,y)
Px Py . . :
DFt+s =] .7 . the differential from Tp to Tf . The chain rule
Y y < y) t+sP
’

yields Px(0,y) = Px(0,9(0,y) - ©x(0,y) + Ey(O,w(O,y) - Px(0,y). Differentiate this
twice with respect to y, set y = 0, use Pyy = Exy = 0, and Gxﬁy = pxPy = 1 to
conclude Pyyy = Pxyy - by + Py - Yxyy» or Bxbyyy = PxPx - Pxyy = Pxbxyy +

Px¥xyy:

This last equation is equivalent to (4.12), using (4.11). #

Actually, Formula (4.12) holds for all adapted coordinates ¥, not necessarily
special. We leave it to the reader to check this. The interpretation of (4.12) is
that A\g : M X R = R is a cocycle over the flow {ft}. In 'part II, we analyze the

consequences of this cocycle being a coboundary.
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toral automorphism (Lemma 24.1, [An]).

Proposition 4.5. Let {fy} be a volume-preserving C3-Anosov flow on M. Suppose

that EY is C2 at p, and p is a periodic point with period t..
Then AY(p,to) = 0, or

2 3 2 _
(4.16) (AN — NMxyPyy — A — Dpxy¥xy + 2% — Ngyy = 0.

Proof: It’s given that 'r’r';(y) = 7'}'-‘ b (y) is a Cl function, so (4.10) implies Ag(p,to)
to
= 0. We then substitute (4.9) into (4.7) and simplify. #

Corollary 4.6. Let p be a periodic point for the flow {f t} with period to. If

A‘g(p,to) = 0, then EY is not C° at p.

This last corollary is not sharp, and we conclude this section with a general,
local result which is sharp. Let F : (—~v£,'£)2 - R2 be a volume-preserving C3-Anosov
embedding satisfying

F(X,O) = (xx + w(x,O),O)g A > 1
-1
F(O,y) = (0, A%y + ®»(0,y))
(4.17) ’
0= ‘Px(oso) == §0y(0,0) = wx(0.0) = wy(0,0)

N 4+ ox(x,y) (k-l + wy(x,y)) — fpy(X.y)wx(x,Y) = L

Let EY and ES denote the unstable and stable invariant line fields for DF, and

suppose that EY(x,y) = (1,v(x,y)) for Ixl < ¢, lyl < e. The field EY is cl by [HPS],
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so there is an expansion v(0,y) = Ly -+ 7(y), with 7(0) = 0. Define A; by the

formula (4.7), using £ = £p.

For w(s) = s -1 log s |, s > 0, set

(l)’w = lim sup I (y)l
lyl<e wllyl)

(4.18) EY
. | u‘l,(a) . ..
The semi-norm E™|5’" is finite by Theorem 3.1.

Theorem 4.7. Let F : (—e,e)® — R2 be a C3-4nosov map satisfying (4.17). Suppose

that A; # 0. Then
l,w .,
iEuo = 0.

Consequently, the restriction to the y-axis of the derivative field DgEY = (0, g—;’)
had modulus of continuity at y = 0 exactly w(s) = O(s - | log s 1), and is, in

particular, not Lipshitz at y = 0.
The following corollary of Theorem 4.7 coincides with part (i) of Theorem 0.2.

Corollary 4.8. Let {fy} be a volume-preserving C3- Anosov flow on a 3-manifold M.
Let p be a periodic point of period to, and suppose Ag(p,to) # 0 for some
coordinates ¥. Then the weak-unstable distribution of {ft} has class exactly Cl’w

at p and in particular is not Cl’1 at p.

Proof of Theorem 4.7: Via a C3-volume-preserving change of variables, we can
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assume F(0,y) = (O,A'ly) and F(x,0) = (Ax,0). From ¥(0,y) = 0, we deduce Py(0,0) =
0, and differentiating the last equation of 4.17 yields (,oxy(0,0) = 0. QOur hypothesis

is thus that

A;; = N - Pxyy(0,0) 5 0.

In the new coordinates, restrict EY to the y-axis and renormalize to obtain
the vector field (1,v(y)). The germ of v(y) at O has an expansion
).

viy) =8 -y 4+ 7y) -y + o (y

Applying DF to EY and renormalizing to obtain (1,w(z)), the invariance at EY implies

v(z) = w(z), so for the germ at y = 0 we deduce
(4.20) TNy = 7*y) + AL - ) + oliyD.

Now use (4.20) inductively to obtain

(4.21) T7*Oy) = AN "1*y) + n - x'“AI’; .y + E(y,n)
n . .
(4.22) E(y,n) = Z Mo Iy).
j=0
T(y)

Now to estimate lim sup fix 0 <y < e and n > 0. By the mean-value

lyl<e Ylog y’
Theorem, there is a point zy with 0 < z < A My so that

-n
(4.23) T/(zp) = o, T*\"y).
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Without loss, we can assume € < e'l, so that z - | log zl is monotone increasing for 0

< z < € and thus

Tzl IT*\ "yl
zyl log zpl = (\"My) 1 log Ny

which by (4.21) is estimated by

Ciat
(4.24) I *(y)l AR E(y,n)
: y - (nlog A — log y) (n-log A\ — log y) y(n - log A\ — log y)
At
The quantity in (4.24) has limit IB—EEX’ as n'1 - E(y,n) is seen from (4.22) to have limit
. AL
I —ull,w F
0. Thus,!E 0 Zl_og)\>0° #

Remark 4.9. It is natural to ask whether a local estimate on the Zygmund norm of
v/(y) at y = 0 can also be given using (4.21). The answer is undetermined, but we
make an observation. The estimate hinges on the behavior of the error term E(y,n)

of (4.22), with the relevant question being to obtain an estimate for

Y-l , i ?\j {O(X-jY) + o(—-)\-‘iy)) for n large.
=1
This is similar to a question implicit in our proof of Proposition 3.5: If the
expression in (3.29) is required to be less than ¢ - d, for ¢ > 0, can the resulting
constant K = Kf{(e¢) be chosen arbitrarily small as ¢ — 0? Again, the answer is
dictated by the accumulation of the estimate _0(lzI2) of (3.26), which is basically the

same error function appearing in E(y,n).
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II. Rigidity for Anosov Flows

§5. Vanishing criteria for the Anosov cocycle.

In Section 4 we defined the unstable Anosov cocylce A:I; over the flow {ft}.
In this section, we state two theorems of Livshitz [L1], [L2] (see also [GK]), which
give effective criteria for A:I; to be a coboundary. Recall that a cocycle A : M X R
- R over (fy} is a Cl-coboundary if there is a Cl-function £ : M — R such that
Alp,t) = £(fyp) — €(p), p € M, t € R. Two cocycles over {f;} are cohomologous if
their difference is a Cl—coboundary. Hl({ft};R) denotes the group of cocycles

modulo Cl-coboundaries. We record here a result implicit in Section 4:

Proposition 5.1. Let ¥ and ¥’ be two sets of adapted coordinates. Then the

corresponding Anosov cocycles Ag and A‘{:’ are cohomologous.

We define At = [A\g] € Hl({ft};R), the cohomology class of A‘g for some
adapted coordinates V. Let A- denote the corresponding class obtained from

reversing the roles of stable and unstable foliations.

Now we have the statement of Theorem 0.3 with C1 conjugacy replaced by C3

conjugacy.

Corollary 5.2. The cohomology classes AY and A- are well-defined invariants bf
{f¢), L.e. if the flows {ft} and {gt} are C3 conjugate then the classes At and A-

are carried over by the conjugating dif feomorphism.
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To finish the proof of Theorem 0.3 we need the following result of [Kal.

Theorem 5.3. If two volume preserving C® Anosov flows {f t} and {g{} on a

. compact 3-manifold are C1 conjugate then they are C™° conjugate.

Basic Problem. What information about the C°-conjugacy class at {f ¢} can be

derived from the invariants At and A2

A more specific question along that same line has been formulated in Section

0 (Problem 0.18).

The crucial point for Part II is to show At =0 implies that the weak-
unstable distribution E¥Y of {fy) is C®™. For a toral automorphism, AT = 0 or A- =
0 will imply {ft} is C®-conjugate to a linear map and a somewhat weaker but similar
result will follow for geodesic flows. Thus, we need to establish criteria for the
vanishing of A%t and A-. These are provided by two theorems of Livshitz, which we
now cite with their application to At and A-.

Theorem 5.4. (L1}, [L2]). Let A: M X R - R bea Cl-cocycle over a transitive (e.g.
volume-preserving) Anosov flow {ft}' Then A is a Cl-coboundary if and only if

Jor every periodic point p € M with period tg,
(5.1) Alp,ty) = 0.

Furthermore, any two continuous solutions of the equation A(p,t) = £(fyp) — £(p)

differ by a constant.
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Corollary S5.5. Let {f t} be a volume-preserving transitive C4-Anosov flow on a 3-
manifold M. Then the Anosov cocycle A‘g is a Cl-coboundary if and only if

A‘g(p,to) = 0 for every periodic point p with period t,.

Combining Theorem 4.7 with this corollary we obtain:

Corollary 5.6. If A% > 0, then the weak-unstable distribution E¥" of {f,} is not

ch! at some periodic point of (f,). Similarly, A~ # 0 implies that E¥S is not C''!

at some periodic point of {f t}. This establishes the statermnent of Theorem 0.4 in

one direction.

There is a second criterion due to Livshitz for the vanishing of a cocycle

over (f t}.

Theorem 5.7 (Theorem 9, [L2]). Let A : M X R - R be a Cl-cocycle over a
transitive Anosov flow {f t}' Suppose there exists a measurable function € : M —
R with

(5.2) Alp,t) = €(fyp) — €(p), a.e. p E M, all t > 0.

Then there is a Cl-function € : M - R satisfying (5.2) for all p € M, and £(p) =

¢(p) a.e. p € M.
The following corollary of this criterion implies statement (ii) of Theorem 0.2.

Corollary 5.8 Let {fy} be a volume-preserving transitive C4-Anosov flow on a 3-
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manifold M. If A% < 0, then for almost every p € M the first derivative, vi(y),

of the local angle function of EY at p does not have a derivative in y.

Proof. Let us choose a special adapted coordinate system. The set of points p € M
where VI,J(y) has a y-derivative of p is measurable and flow-invariant. Since the
flow is ergodic that set has either measure zero or full measure. In the latter case
for almost every p € M the function TF(y) (cf. (4.1)) has y-derivative at y = p.
Let q(p) be the value of that derivative so that T’I';(y) = q(p)y + o(lyl). By (4.10)

for almost every p E M and all t > 0
(5.3) a(fyp) — alp) = A,

Then by Theorem 5.7 q(p) can be extended to a C1 function on M such that (5.3)

still holds. Thus AY = 0. ' #
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§6. Vanishing of A% and C®-rigidity.

Assume there exists a Cl-function £ : M - R with A\g(p,t) = £(fyp) — &(p) for
all p € M, t € R. For {ft} a C®-flow on a compact manifold M, we will show this
forces EY to be a C*° vector field on M. When {ft} is a Ck—flow, k > 4, our proof
can be adapted to show EY is Ck'v, for appropriate v > 0. We leave the details of

these intermediate results to the reader.

Let V(§) be the convex cone of cl.vector fields on M introduced in Section 3.
Choose a C™®-vector field v € V(§), for § small, and for each s > 0 set v(s) = Fgv.
It is easy to show that the family {v(s)is > 0} converges exponentially fast in the
Cl-topology to EY. The main point is to show this family limits to a Cz-vector
field, when restricted to the stable manifolds Wg. From this, we use Livshitz
Theorem to deduce that EY is C3 along stable submanifolds, and can then invoke a
bootstrapping process to show EY is uniformly C* along the stable submanifolds.
As EY is known to be uniformly C* along the weak-unstable manifolds, we are in a

position to apply Theorem 2.1 to conclude that EY is C* on M.

Fix p € M, introduce coordinates ¥y, and let v(s) restricted to the stable

manifold Wg be given in these coordinates by

(6.1) V(S)(O,y) = (13 \./(D,S;Y))

Expand v(p,s;y) into its second order Taylor series

2,

(6.2) V(p,s;y) = k(p,s) + Up,s) - y + d(p,s) - y2 + oly
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Lemma 6.1. Given pE M and t > 0, let a, b, ¢, d, Y and N denote the constants
defined in Sections 3 and 4 for the Poincare map Fg : Tf p Tp. Then the
-s

Sfollowing hold:

(6.3) k(p,s) = A2 k(f_sp)
(6.4) Up,s) = ¢ + NIB(E_gp) + k(f_gp) - (d — A2a + N"2bk(f_gp)
(6.5) d(p,s) = d(f-sp) + AX(f_gp,s,v)

where k(f_gp) = k(f_gp,0); 2f_gp) = &f_gp,0), @(f_sp) = G(f_gp,0), and
(6.6) AYEspsv) =2y + (D — axh Brgp) — W%de — ac)
Proof: (6.3) follows from (3.14), (6.4) from (3.18) and (6.5) from (4.4). #

Let &(f_gp) denote the linear part of the invariant field EY at f.sp, as in (3.12).

Comparing (4.6) and (4.7), we obtain

6.7) AY(Espsv) — AY(Esp,®) = (L M — anh) (@e_sp) — ett_so).
Lemma 6.2. There are constants Cl > 0, >\0 > 1 so that lk(p,s) < C1 . )\625 for all p

€Mands > 0.

Proof: This follows from (6.3) using that lfi(q)l is continuous in q, hence bounded by
some Cl on M, and that there is a constant }\0 > 1 such that A = Mf_gp,s) > )\(S) for

allpeE Mand s > 0. #
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Lemma 6.3. There are constants C2 > 0, >‘0 > 1 so that E(p,s) — Up) < C2 . )xas

Joral pe M and s > 0.
Proof: The invariance of EY yields the relation &(p) = ¢ + N &(f_gp), so that
6.8) Bps) — &p) = N1 (Bfgp) — Lf_gp)) + k(f_gp,8) - {d + N2 . (b - k(f_gp)—a)).

It is straightforward to show that the terms in both brackets in (6.8) have uniform

bounds on M for s > 0, so that (6.8) yields

1&(p,s) — &(p) < Xal . C" + k(f_gp,s) - C”

-1
<A -G

using Lemma 6.1. #

The crucial estimate for this section is the next:

Lemma 6.4. There is a constant C3 so that 1g(p,s)! < C3 for al peMand s > 0.

Proof: By the hypothesis of this section, there is a Cl-function £ with Ag(p,s) =

£(fsp) — £(p). From (6.5) we then obtain

(6.9) a(p,s) = a(f_gp) + A¥(f_gpis,v)

— (f.gp) + €p) — £(f_gp) + {A¥(f_gp,s,v) — A¥(f_gp,s)).

The lemma is thus a consequence of the next estimate:
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Lemma 6.5. There is a constant C, > 0 so that

b 4 b 4
(6.10) Au(f_gp,s,v) — Au(f_gp,s) < Cy
forall p € M and s > 0.

Proof: Using (6.7) and Lemma 6.3, it suf fices to show there exists C4 so that for

all pand t > 0, % N — a)\'li < Cy4. First, observe that \d = )Cl

to show I?\'lal < C4. Next, recall that a = gaxy(0,0) and \ = ©,(0,0), so

a, so it suffices

(6.11) vla = adz(log <px(0,z))| % (log Mz,s))

Z’f-sp = Z‘““f_sp'

It suffices to consider s = N an integer, so that

N-1 N-1
1, _d i _S e 4 g
‘la =4 > 10g \F z,1)}z=,,f_Np => 410 R A il T
i=0 i=0 !

There is a bound CS > ’-‘—i— log }\(r,l)( , for all p € M, so we obtain
dr r=p

N-1 o)
mlal < o5 D> aeNpt < cg DL #
i=1 i=1

Proposition 6.6. For each p € M, the restriction EUIW§ is C3 near p.

Proof: For each q € WS, in the coordinates ¥q through q, let Eu(o v) "~ (1, vq(y).

For given v € V(§) a C™ field, Lemma 6.2 shows that ¥{(q,s;0) converges to vq(0)

exponentially fast in s, and uniform in q. Likewise, Lemma 6.3 implies V'(q,s;0) = a%;

(V(q,s5y)) y=0 converges to v{l(O), uniformly in q. Finally, Lemma 6.4 implies that the

second derivative
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2
(6.12) a,s0) = 95 Glasy)), g
d 2 y
y
is uniformly bounded in s > 0 and q € M. By the chain rule, we can convert these
pointwise results, for wvarying q, into estimates for vp(y) for p fixed with y

variable.

Lemma 6.7. Let £ be real with Ifl < ¢, and set q = ¥4(0,6) € W5. Then the k-jet of
p p
Vp(z + €) about z = 0 depends uniformly in p and q on the k-jet of Vq(z) about z

= 0. Conversely, the k-jet of Vq(z) depends unformly on the k-jet of Vp(z + £).

Proof: Let I'pq : (-6,6)2 - R2 be the holonomy map for the flow {Ft} from Tp to Ty,

in terms of the coordinates ¥, and ¥q. Then note Ipq(0,y) = (0,y + £), and

Thus, Vvp(z + €) is determined by DI'pq and vq(z), and so the k-jet of Vp(z + €) at
z = 0 is determined by the k-jet of V4q(z) at z = 0 and the (k + 1) — jet of Ipg-
The coordinates ¥p and ¥4 depend C* on p and q, so the holonomy map T'pq is C*°
in p and q also. Thus, for I§l < € and q = ¥p(0,£), there are bounds on the (k + 1)-
jet of I‘pq, uniform in p and such q. The first assertion of the lemma now follows
from the chain rule. The second is a consequence of the uniform invertibility of

Tpq» where oy = Tgp. %

By Lemma 6.7, the functions {V/(p,s;y)is > 0} converge uniformly clto vp(y),
and moreover, the family of second derivatives {V/(p,s;¥))s > O} is uniformly

bounded in s > 0 and y. Therefore, the limiting derivative function vi,(y) is
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Lipshitz in y, and hence absolutely continuous. This implies that for a.e. lyl < e,

the second derivative vp(y) exists and v’x; is integrable to the function vi,.

Next note that by Lemma 6.7 again, the second derivative vél'(O) exists for a.e.
g € W3, with q = ¥p(0,y), Iyl < €. Thus, by the Fubini theorem, va’(O) exists for

a.e. g € M.

Define a function q : M — R a.e. by requiring that q(p) be the quadratic part
of the expansion of vp(y) at y = 0, where it exists (so q(p) = % vp(0)). The

invariance of EY under ift yields
(6.14) AY(p,t) = alfyp) — alp), ae. p € M, t > 0.

By our hypothesis that (6.14) has a Cl-solution and Theorem 5.7, the function q is
a.e. equal to a Cl-function. We conclude, using Lemma 6.7, that vi,’ is a.e. equal to a
Cl-function. As vi, is absolutely continuous, this implies vi, is itself a C2-function,

so that vp is C3 as asserted in Proposition 6.6. #

Proposition 6.8. For n > 3, suppose that for all p € M, vply) is C" at y = 0, and

Cn+1

the n-jet has a uniform estimate in p. Then vp(y) is with a uniform

estimate on the (n + 1)-jet.

Proof: We introduce notation modifying that of §§3 and 4. For each p € M,

consider the expansions up to order n:

n .
(6.15) vpy) = D vie) - v + oly™
i=1
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n .
(6.16) ox(y¥) = At + D apt) - v + oly™

i=1
n .
(6.17) pyly) = Z bi(p,t) y' + oly™
i=1
n .
(6.18) buy) = D ci(p,ly’ + oly™
i=1
n .
(6.19) Pyy) = Mo + D ditp,iyt + oly™
i=1

Then we deduce from the invariance of EY under Ft that

Z eyt + a4 Zd yl)(Zvly

ve, W) = =1 + oly™.

o\ + Za vh + (Zb y‘)(z a;yh)

(p,t)

(6.20) - [Zc yi 4t Zvlyl + Z"ldﬁ'lﬂ]' D! 4 oy™

i,j=1 (p,t)

where D is the denominator of the above, and

620 Dl = \l.(14 Z( né-¢ [Z(a + D @by )] ] . oly™

j+k=i

=1 = nley + N 2oy — L AH=D™ Ty + oly™.

n »
Now recall that z = )\'ly + ©0,y) = }\'ly + > j"l S a4 y‘], and solving for y

j=2
gives an expression
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n .
(6.22) y = Az + E gJ-z‘] + o(z™.

=2
Substituting (6.22) into (6.20) and extracting the coefficient of z” yields
(6.23) va(fyp) = Mp,)"2 - vn(p) + Snlp,t)

where ¢p(p,t) is a polynomial in the coefficients {ai,bi,ci,di,eiii = 1, 2,--n} and
{Vl""’vn-l}’ but not involving v,. Consequently, the function ¢n(p,t) is C1 in both p

and t. Now rewrite (6.23) as
(6.24) va(p) = Mp, ¥ - (valfyD) + Salpi)

Set t = 1, let $u(p) = ¢n(p,1), and recursively substitute (6.24) into itself to obtain

an expression

k
(625 va® = {D_ Mp+D A0} + Nok-+1P ™ (valfp) + Salfyp)-
J=0

Both vp(p) and ¢n(p) are bounded functions on M, and n > 3, so letting k —

in (6.25) yields

O
(6.26) va® = {D_ e, i + D" gqitm}-
j=0

By the hypothesis of Proposition 6.9, and invoking an argument similar to the proof
of Proposition 6.7, we conclude that s‘n(fjp) has a uniform bound on its stable

derivative:
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(6.27) IDssn(f ;p)| < Cg-

J
From the expansion Ap, j + 1) = > )\(fip,l), we also obtain a uniform bound
i=0
(6.28) %DS{?\(D, J+ 1)2—11}} < C7 - Np, § + 1)2-n; i>lL, peM

Combining (6.26), (6.27) and (6.28) shows first that Dgv; exists everywhere on M,
and also provides the estimate
N 2
(6.29) Dgvpl < Cp - Cq- Np, §j + DM
I S n!p FZO 6 7 ’

where \p,1) > )\0 > 1 for all p € M.

Via an argument similar to the proof of Lemma 6.7, the estimate (6.29) implies
the functions vp(y) are cntl 4t vy = 0, and also provides a uniform bound on

vn+1(p). This proves Proposition 6.8. #

Now we can establish the remaining half of Theorem 0.4.

Theorem 6.9. Let {f t} be a volume preserving, C-Anosov flow on a compact 3-
manifold M. Suppose that the Anosov invariant AT = 0. Then the weak-unstable
foliation of {f} is C®. If A- = 0, a similar result holds for the weak-stable

Joliation.
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Proof: At =0 implies that Eu}WE is C3 for each p € M by Proposition 6.6. Then
via the inductive result, Proposition 6.8, the restrictions EU;WIS) are C", with
uniform estimates in p for all n. Along the unstable manifolds WY, Hirsch-Pugh-
Shub [HPS] show that EY Wg is C*° with uniform estimates in p. Then by Theorem
2.1, we conclude that Eul’l"p is C* for each p. As the submanifolds Tp vary C®
with p, and E" is C* along the flow {f,}, we conclude that E" is C° on M. The
weak-unstable distribution is spanned by EY and the vector field generating (ft}’ so

Theorem 6.9 is proven. #
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§7. Rigidity of toral automorphisms

In this section we complete the proof of Theorem 0.6.

Theorem 7.1. Let F : T2 = T2 be an area-preserving C° Anosov dif feomorphism
of the 2-torus. Suppose that either stable or unstable Anosov invariant vanishes:

At = 0or A- = 0. Then F is C*® con jugate to a linear automorphism of T2.

Proof: Suppose AT = 0. The other case is completely similar. By Theorem 6.10
applied to the suspension over F, if A% = 0 then the unstable foliation WY for F is
C®, This foliation is uniquely ergodic; i.e., there exists a unique (up to a constant
multiple) measure uY defined and finite on Borel subsets of piecewise smooth
compact transversals to WY, and which is invariant under its holonomy. We first
prove that in our case, this measure is represented by a closed, non-vanishing
smooth 1-form v on T2. Choose a closed oriented C°-curve C in ’I"‘2 which is
transverse to WY and intersects every leaf. The holonomy map gog :C - C for WU
is a C*° diffeomorphism, as WY is C*°. The rotation number of qaé is a quadratic
irrational, which follows from the fact that any Anosov diffeomorphism of ’I‘2 is
topologically conjugate to a linear hyperbolic automorphism. Thus, by a
fundamental theorem of M, Herman [He], the map qaé is C®°-conjugate to an
-irrational rotation of a circle, and consequently it has exactly one invariant
probability Borel measure which is obtained by integrating a C°°-1-form v on C.
The holonomy of WY diffuses v to a C*®-closed 1-form on T2, which is also denoted
by v. Integrating v along transversals defines a transverse invariant Borel measure

for WY. By unique ergodicity this smooth measure must be a constant multiple of

uh.

62



Observe that F}, also defines a transverse invariant Borel measure for WY,

so there is a constant A > 1 with

(1.1) F*y = a1 4.

Choose a C*°-non-vanishing 1-form w on T2 which vanishes on the tangents
of W5, and such that w ~ ¥ = dx ~ dy. The stable foliation W¥ is F-invariant, so
F*w = f - w for some non-vanishing function f. By (7.1) and the invariance of the

volume form dx -~ dy, we conclude f = A.

Choose vector fields u, s on T2 with u(x) € TX(T2) tangent to Wg, s(x) €

Tx(Tz) tangent to W5 and so that

(7.2) wlu(x)) =1 ; v(x(x)) = 1.

Then for each x, (u(x), s(x)) is a positively oriented unit 2-frame field satisfying

(7.3) DF(u(x)) = X - u(F(x))

DF(s(x)) = A1 . s(F(x))

i

Lemma 7.2. The flows of the vector fields u and s commute.
Proof: It suffices to show the Lie bracket [u, s] = 0. Observe that F,lu, s] =

[Fxu, Fysl = [u, s] by (7.3). Thus, the bracket [u, s] is a continuous invariant line

field for F. The only such field for an Anosov diffeomorphism is the zero one. 0

63



Corollary 7.3. Each point x € T z has an open neighborhcod with a Euclidean

structure defined by the C™-local coordinates

(7.4) (a, b) — expla - ulx)) - exp(b - s(x)) - x.

Moreover, the coordinate systems defined by (7.4) at nearby points x and y

dif fer by translation. a

Theorem 7.1 now follows, for Corollary 7.3 asserts there is a global C™-flat
metric structure on 'I‘2 in which, by formulae (7.3), F is linear. Conjugate this flat
structure to a standard one on T2, and F will be algebraic in the new coordinate

system. a

Remark 7.4. The key to the proof of Theorem 7.1 was the construction of the
vector fields {u, s} on T2 which are expanded at a constant rate by F. This used
Herman’s Theorem in a crucial way. It is tempting to apply this proof to the case
of flows on 3-manifolds, but one lacks a result corresponding to Herman’s Theorem.

For some partial results overcoming this lack, see the excellent paper by Ghys [G1].
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§8. Rigidity for geodesic Anosov flows

Let S be a closed orientable Riemann surface with metric g, and assume the
curvature kg is everywhere negative. Let M = Tls denote the unit tangent bundle
for S and €g the geodesic unit vector field on M for the metric g, and {ft(g)} the
resulting flow. [t is classical that {ft(g)} is a volume-preserving transitive Anosov
flow, so the results of Sections 3-6 apply (e.g. see [An], [Eb]). In this section, we
show how a theorem of Ghys can be applied to give a sufficient condition for the
weak unstable foliation for the geodesic flow (fy} to be C®-conjugate to the
corresponding geodesic-horocycle foliation for a metric with constant negative
curvature. | We will show later, in Section 11, that this forces g to also have

constant curvature, so that a very strong rigidity result holds.

Consider M as the principal SO(2)-bundle of orthonormal frames of TM. Then
there is a canonical framing of TM by vector fields € h, w satisfying the Lie

bracket identities (cf. [GK]):

[W)E] = h
[&h] = —kg o 7,

where T : M — S is the projection along the fibers. Let {¢*, w™ h™*} denote the
corresponding dual framing of T*M. Then w™ is the connection l-form for g, and
{¢*, h™} are the Solder forms [BC). The invariant Liousville measure Mfy} is given
by the 3-form dvol = w* ~ ¢€* - h™ The vector field w is tangent to the fibers of

7, and is also denoted by 3/30 where 0 is the unit speed parameter on SO(2) = Sl.
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Equation (8.1) implies w infinitesimally rotates the geodesic field £ into the

conjugate field h.

The canonical contact structure & for {ft} is defined by the identities:
(8.2) () = 1; F(w) = 0 = B(h).

Equations (8.2) imply & is invariant under the flow, so the stable and unstable
vector fields h-, h' lie in ker(®). Thus h* and h- can be written in terms of our

framing:

(8.3) ht =4t . (h + H'wW)

h- = = - (h + Hw)

for functions u+, M H+, H- on M. As h and w are C° vector fields, these
1L,A
functions are C " *. The weak-unstable distribution E¥" is spanned by (¢, h*}, and

EYS by {¢, h-). Integrability follows from the infinitesimal Anosov condition:

(8.4) &, h¥] = log A* - nt, A\ > Ao > 0, M constant

[6 bl =log - b, A <—Al<l
where ¥ and \- are continuous functions on M. Expanding (8.4) in terms of the
framing of TM, and using (8.1) yields a differential equation on M which HY and H-
must satisfy:

(8.5) - H +HY +kox =0
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E-H'+(H‘)2+ko7r=0.

This is just the Ricatti equation of the geodesic flow discussed in Section 0, with
H+, H- the unique positive, respectively negative, solutions defined on all at M. We
now state the main result of this section. [t is a rigidity theorem similar to
Theorem 7.1. The role of Herman’s theorem used in Section 7 is now played by the

rigidity theorem of Ghys (Theorem [11.4.2, [Gh]).

Theorem 8.1. Let S be a closed surface and g a C%®-Riemannian metric with kg
everywhere negative. Suppose the Anosov invariant At = 0, and the solution Ht

of (8.5) satisfies a dif ferential inequality at every point of M:

(8.6) 2. (w-HY? =HY - (w-(w-HY) + @YD > o
' Then there is o C™® dif feomorphism ® : M - M con Jugating the weak-unstable
foliation FU(f,() on M, where § on S has constant negative curvature, and M is

the corresponding unit tangent bundle.

Proof: Theorem 6.10 and At = 0 implies that i’fu(ft(g)) is a C®-foliation. Recall
that SO(2) acts smoothly on M, via rotation of the unit tangent vectors. Let R(8)
denote rotation by 6. Then R(7m/2) conjugates ifu(ft(g)) into ffs(ft(g)), so the stable

foliation is also C*°.

In order to apply Theorem IIl. 4.2 of Ghys [Gh], it is sufficient to exhibit a

Godbillon-Vey form for ‘Ju(ft(g)) which is nowhere vanishing.
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A 1-form on M vanishing on E¥" is provided by

(8.7) N* = w* — HY . n*,

and we calculate using the identities (8.1):

(8.8) dN*= dw* — dHY - h* — H*dh*

(8.9) N = i(w)dN* = —(w - HHn* + HY . ¢~

The Godbillon-Vey form is then

(8.10) n~dn = {—2w - HNH? — @HYH? + HY . (w - wHD) w* ~ £€* - n™

and so (8.6) is equivalent to 7 ~ d77 nowhere-vanishing. #

Question 8.2. [s it possible that (8.6) always holds; i.e., is (8.6) a property of the

unique solution ut of the Ricatti equation?
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III. Godbillon-Vey Classes

§9. Godbillon-Vey classes for Q_Ha-foliations.

In this section we define the Godbillon-Vey invariant for foiiations of
differentiability C1+a, a > %, and study the invariance under diffeomorphism of

this extension of the usual Godbillon-Vey invariant.

Fix a codimension-one Ck-foliation & on M, k > 1, and assume that & is
transversally orientable. Then there exists a Ck 1-form N* on M whose kernel is
preéisely the tangential distribution T to €. By the Frobenius theorem, there is a
Ck"1 1-form, 7, so that dN* = N* -~ 7. For k > 2, the Godbillon-Vey class of & is

defined in [GV] to be the de Rham cohomology class
(9.1) GV(®) = [7 - 47l € HJ (M),

of the closed 3-form 17 - d77. When M is a closed oriented 3-manifold, we define the

Godbillon-Vey invariant by gv(&) == I n -~ dn.
- M

A foliation chart for & is an open set U C M and a diffeomorphism onto, & :

U - (——a,a)3, where a > 0 and (—a,a) = {x € R | —a < x < a}, such that the
H

connected components of & l U correspond one-to-one to the level sets Py = Q_l({x}

¥

X (—~—a,a)2), for —a < x < a, called the plaques of & E U. The defining projection of

F | U is the map p = Ty O &, where Ty R3 - R1 is projection onto the first
factor. The chart (&, U) is regular if for some € > 0, there is an open set V.

containing U so that & extends to a foliation chart J¢ : V, — (—a —e, a + 6)3.
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Definition 9.1. A regular foliation covering of M is a coilection {(,, U.) 1€ U
which satisfies
1) {U; liewisa locally finite covering of M, such that U, N U i is always

i

connected, though possibly empty;
iil) Each (@ Uy is a regular foliation chart;

iiil) The intersection of a plaque in i:'éUi with a plague in ‘J!U j is always

connected (possibly empty);

iv) For some orientation on the mnormal bundle to ¥, the local defining

projections p; : U; — R are orientation preserving.

In (9.1.ii), we will assume all of the charts have image (—1, 1)3. The

existence of a regular foliation covering is standard (cf. [P2]).

We denote by (i,j) two indices i, j € U such that U; N UJ- < &, and say {i, j}

are admissible. We will write (i, j, k) if Ui N Uj N Uk =< . For each (i, j), define

Iij = pi(Ui N Uj)’ a connected subinterval of (—1, 1), and define the transition
function

_ -1
7ij(X) == pj(pi (x) N Uj)'
Let w : (0, o©) — (0, o) denote a continuous increasing function with w(0) = 0.
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Definition 9.2. Let k be a positive integer and w as above. We say that ¥ has
transverse dif ferentiability class ck+w (and total dif ferentiability class C° k+w}
if the leaves of § are C™° submanifolds of M, and there is a regular foliation
covering (&, U;) ; i €W of M satisfying:

) FEach &;: U, - (~—1,1)3 is a Ck-map, and the restriction of & to each

1

plaque of ¥ | U, is C°

ii) For each (i,j), the transition function ‘)‘i j is Ck, and the k-th derivative

k), I.. - R has modulus of 'contz'nuz'ty K - w, for some constant K.

REVIRREY

When w(s) = cs* for some ¢ > 0, 0 < o < 1, we say that & is Ck+a.

Assume that & is C1+°t, and let {(&, U)) g i = 1,.,N} be a cl+e regular
foliation chart for ¥. By (9.l.iv) the derivative ‘Y;j(x) = d%; 'Yij(x) is positive for

all x € Iij’ and we define for each (i, j)k
(9.4) §(y) = ¥50 vy €Uy =U; N U,

J

The collection of functions {Eij : Uij -+ R ’ (i,J)} is called the additive Radon-Nikodyn
(RN)-cocycle associated to the foliation covering, and satisfies the cocycle law for

(i, § k)
(9.9) Eij+sjk=5ik on UintnUk.
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Note that the Eij are C(k'l)+a~functions if ¥ is ck+a

For k > 1, there is a natural transformation from Ck-cocycles {Eij} over the
foliation cover {(@i, Ui)} of M into “Godbillon-Vey” classes. This first appeared in
the thesis of H. Shulman [Sh] for the RN-cocycle above, and was later developed
and expanded by several authors [BSS], [CC], [Hul]. The idea behind the results of
this section are based upon an extension of this transformation to Ca—cocycles, for

a > L As the results needed to carry this out are not well-known, we will briefly,

2

but completely, describe the construction of this transformation.

A continuous function A : M - R is of class Ck;z‘l if A is Ck when restricted
to the leaves of &, and the k-jets of these restrictions are absolutely continuous in
the transverse variable. In local coordinates, the interpretation of Ck;a is this: set
N _ -1 D20 i
Mx,y,2z) = Nod[ (x,y,z). Then for any u + v < k, [ay] [az] (\) is absolutely
‘continuous in x for fixed (yo,zg)- The corresponding Ck;a-topology on functions is
defined by taking the supremum over M of the leafwise k-jet norms, and by

- 2 : 3 [ 3 3 Wi
requiring L“-convergence of all expressions A% {é§] [52] N\, u + v <k. A formon

M is Ck;‘3 if all its coefficient functions, in local coordinates, are Ck;a.

Let M be any Riemannian manifold with a CX® foliation ¥. For A a CS2.

function, with k > 1, define a ck-1)a

-1-form d.&.)\ on M by first restricting A to the
leaves of &, applying the exterior differential, and then extending wvia the
orthogonal projection TM — T&. Note that if \ is a C1 function on M, then for

any plaque P C U; of &, (dNIP = (dgM|P.

Let (\, | i = 1,..,N} be a Cl;a partition-of-unity (p.o.u.) subordinate to the
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given foliation cover. For each i, set N’;‘ = p’;(dx), where dx is the standard

coordinate 1-form on R. Then define a 1-form N* on M by setting, on Ui:

* _ LN
(9.6) N* | U; = exp((i%) ?\jiij) Ni'

The compatibility requirement for N* to be well-defined is that N* U; = N* UJ-
on Ui N Uj’ and this is a consequence of (9.5). It is an immediate consequence of
(9.1.iv) that N* is nowhere-vanishing, and its kernel distribution is precisely T, the

tangential distribution to &.

Define a CO;a 1-form on M by setting

(1,42
Clearly, dAN* = 71 ~ N* as distributions, so that if N* is a C2-f0rm on M, then the

Godbillon-Vey form is represented by 77 ~ d77. For M oriented, the Godbillon-Vey

invariant has the expansion

gv(®) = | 7 -~dn

N

- 2 M) n-an

i=1

N
=Z I*i"’“‘"’l“i)

i=1

g.

N
i=1 (,4,K) ],
1
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We will extend formula (9.8) to cocycles {’éij} of class Ca, for oo > l.

2

Theorem 9.3. Let § be a codimension-one C1+°‘-foliatz’on on a closed oriented 3-

manifold M. I[If a > then there is a well-defined Godbillon-Vey invariant,

1
2’
gv(%¥), which agrees with (9.8) when ¥ is C2.

Proof: Let {)\i} be a Cl;a-p.o.u. subordinate to the given foliation covering of M.

For each (i,j,k) and x € Ii,j N Iik’ set

59 o) = ” Ao 27l day o 27h ~ oy o a7

{x)X(-1,1)2

Let m; : (—1,1) - [0,1] be a C®-function with compact support and which is 1 on the

projection of spt(ki) to (—1,1).

The first lemma follows immediately from definitions:

Lemma 9.4. For each (,j,k), the function ik is absolutely continuous with

compact support in” I j N L. For each x, ¢; jk(X) is anti-symmetric in i, j and k.

The goal is to define, by analogy with (9.8), the invariant gv(¥) via

(9.10) gv(®) = Z ey c¥ip m; - ¥y
(i,,k)

where I : c%(—1,1) X C?;L(—l,l) — R is a skew-symmetric bilinear form extending the

natural pairing
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1
I{f,g) = I f - dg.
-1
for Cl-functions f and g with compact support in (—1,1). (Note that wii and wik are
C* functions, and ik is absolutely continuous so cijk . wij is again C*,) The key
result is the following lemma, whose proof is taken from Stein (page 139, [StD). We

are indebted to J. Roe for bringing this result to our attention.

Lemma 9.5. Let f : st . R be a continuous function on the circle of Holder
class C*YE, for some e > 0 with 0 < a + € < 1. Let f(8) = éiz aneine be the
n

Fourier expansion of f. Then for § > 0 small,

9.11) > lagl? P < clae0)? - Linla + €, 65?2
nezZ

where we define

If(8y) — f(O)I

(9.12) Liplee 4+ €, 6;f) = sup If@)N + sup T
ocs! 0<10,-01<6 16,0,
1
_Jl—al2  ceta-1
9.13) cla,e,d) = {216} {5 + 0(8)}.

Proof: For L = Liplaa + ¢, 6;f) the uniform estimate If(6 + t) — f(@I < L - [ te

for 0 < itl < 6 implies for the same range of t that

Z uanP} 1—e'~”“"t]2 - I If(8 + t) — £O)% do

nezZ S 1
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< 2; - L2 latle
From this we deduce that
(9.14) lanl® - — € dt < 2x - L* . &—,
n 1420 2¢
neZ 0 t ,

Via the substitution s == nt, the integral in (9.14) is evaluated:

° i (1+2a) g
[ | 1—e?TinYy gy — it J (2rs)y® + ostsT1-2%as
0 0

) 2-2a
= Ini** . 27)% . {6——— + 0(62)}
2-2a
and collecting terms on the right side yields the estimate (9.11). #

Let Ca’6 (Sl) denote the Banach space at a-Holder functions, with the norm
defined by Lip(e,§;f). For all o, Let H%‘(Sl) denote the a-Sobolev space on S1 with

the norm of an element {a, l n € Z} defined by
|

Kenhd = D lan - (1 + i),
nczZ

An immediate corollary of Lemma 9.5 is then:

Corollary 9.6. For ¢, a > 0 and o + € < 1, and § > 0 sufficiently small, there is

a continuous inclusion
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coredigly % (sh

with norm bounded by C(a,d,¢e).

Define C%(—l,l) to be the Banach space of C%-functions with compact

support in (—1,1), and norm

Iflq = sup If(x)l + sup W—————f((%)—'.
X x=y Ix — yl
Proposition 9.7. For «,8 > 0, with a + B > 1, there is a compactly continuous

skew-symmetric pairing
. a
[:C3-1,1) X CO(=1,1) = R
which is defined on the dense subalgebra C (1:(——1,1) by

1

—1
Proof: Let 8 — eie define an inclusion of (—1,1) into Sl. For each f,g € C%(—l,l),
we thus obtain f, g € Ca’E(Sl) for § > 0 sufficiently small. By Corollary 9.6, for
all ¢ > 0 the Fourier expansions f{8) = = a,-,ei119 and g(8) = = b“einﬂ define classes

(1) = (ap) € HL® (S} and (g) = (by) € H5 ™ (S1). Then (g} = (n - by € HS ¢ (s

and we use the natural pairing of Sobolev spaces to define

(9.15) f,g) = <{f}, {dg)}> = Z n-ap - b
nczZ
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This can be rewritten as the Lz-inner product of the series, for a + 8 — 2e > 1,
(9.16) I(f,g) = <(n® €ag}, (n1"%+ep )>,

from which the continuity of I follows: Let {f;}, {gn} be two Cauchy sequences, and
suppose there is a ¢, 0 < ¢ < 1, for which all of the functions f{, and g, have
support in (—c,c). Then for a uniform § > 0, all of these functions embed in
Ha-e,6(s1) or Hﬁ_e’a(sl). Then by Corollary 9.6, formula (9.16) and the Cauchy-

Schwartz inequality, we conclude l(f, gm) is Cauchy in n and m. Finally, if f and g

are Cl-functions, then the identification of (9.15) with I}l fdg is standard. #

An immediate corollary of Proposition 9.7 is that formula (9.10) is well-

defined, for both cijk . wi.i and m, - wik are Ca-functions, for a > % and all i1,j,k, so
can be paired. Moreover, this pairing of 77 with d7 has an extension that will be

useful. Consider the class (a) of 1-forms on M with the property

(9.17) A € W) if for each foliation chart & : U — (—1,1)3, there is a C%*-function
agy (—=1,1) - R and a Cl;a-form AQ on (—1,1)3 so that
(@ 1y*a

= ag(x) . Ag

(x,y,2) (x,y,z)

We give the space (a) the topology of uniform Cl-convergence on leaves and

uniform C%-convergence transversally.

Proposition 9.8. For o, 8 > 0 with o + B > 1, there is a continuous, bilinear,

symmetric pairing
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I:’H(O’.) X MB) - R

A, B— JA ~ d(B)

so that for 7 a C*-form as above,

[ran—[n-a
M

as defined by (9.10)

Proof: Choose a foliation covering ((Qi,Ui) E i = 1,.,N} and a Cl;a-p.o.u. {ki}
subordinate to it. For each i, choose a C®-function m; : (—1,1) - [0,1] which has
compact support, and is 1 on the projection of the support of >‘i to (—1,1). For each

i, choose factorizations (@i_l)*A = a;A; and (Qi'l)* B = b, - B, as given in (9.17).

Then define

{9.18) ci(x) = J N o Qf;l(x,y,z) <A - Bi%x
(-1,1)%
N
(9.19) - JA ~ d(B) === Z I(Ciai, mlbl).
i=1

First, note that (9.19) is independent of the choice of mollifiers {mi}, for the pairing

I can be calculated using a sequence at Cl-forms converging to a;

i and bi’ and for

these the independence of {mi} is clear. To show the pairing I A -~ d(B) is
independent of the choice of covering and p.o.u. is then ean easy exercise using the
bilinearity of the pairing I. Finally, the stated properties of (39.19) are consequences

of Proposition 9.7. #
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Remark 9.9. Note that for A € U(x) and B € W(B) with o« + B > 1, we use I A -
d(B) to denote the pairing of (9.19), as distinguished from the Lebesgue integral I A
"~ dB, which is defined when A and B are Cl-l-forms. When A = B = 77 is CII,wwe
can identify I ndn = I n ~ d(7). In general they may not agree, for I A ~ d(B) is
defined by fl'\idrst restricting A and B to plaques of &, and this operation has a

kernel. A useful consequence of this quirk in the definition is that I dgh ~ d(B) =

I dh ~ d(B) for any Cl;a function h on M.

The remainder of the proof of Theorem 9.3 consists of showing that gv(&) is
independent of the choice of foliation covering and of Cl;a-p.o.u. ()\i}. This is
closely related to the following problem: Let f : M - R be a measurable function
whose restrictions to the leaves of & are Cl, and the leafwise 1-jets depend
measurably on the transverse parameter. Let dﬁ-f denote a 1l-form on M such that
dgflPx = d(fIPg) for all plaques Py C M, and so that for 77 the 1-form of (9.7) and
n=n4+ ds,-f, the 3-form 77 ~ d7 is integrable on M. The problem is to find the
minimum hypothesis on f so that 7 ~ d7 and 7[ ~ d7 define the same cohomology

class. A sufficient condition is provided by:

Lemma 9.10. Let 7 and dgf be transversally C*-1-forms for some a > %
Suppose there exists a sequence {fn} of Cl;a-functions on M such that {dgfn)
B

converges to def in the transverse C™ -topology, for some 8 > 1 — o. Then

In—dn=[ﬁAdﬁ.'

M M

Proof: By Proposition 9.8 and the Remark 9.9, we write
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Jﬁ~dr~7—~< n ~ d(®
3 |

It will suffice to show:

(9.20) def - dm =0
(9.21) n- d(dgf) = 0
(9.22) Idgf - d(d&.f) = 0.

Continuity of the pairing (9.19) implies we can calculate the integrals (9.20)
and (9.21) via Cﬁ—approximations to da,f, and C%-approximations to 77. Choose a
sequence of C2-l-forms {Mm} converging uniformly to 77 in the Ca-topology, and let
{fn) be the given functions with {dgfpn} converging uniformly to dgf in the CB-
topology. For these approximations to the integrands of (9.20) and (9.21), the pairing

(9.19) reduces to the usual integration of measures, so we can apply Stokes’ theorem.

The last ingredient used is the property of the pairing pointed out in Remark 9.9:

(9.23) Jd:}fn ~ d(B) = I dfp ~ d(B).
Now calculate:

m,n—o0
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= _lim_ | dfg ~ d(7m)

m,i—o

m,N—c0 |

M

= (0 by Stokes’ Theorem.

m,n—oc

m,N—o0

= 0 by the above.

N
For (9.22), write (@]1)* (dgf) = ajA;, so that [ dgf - dldgf) = = Iepa;, mpa) = 0

where c; = I )‘i Ai - Ai = 0 as Ai is a 1-form. #
(-1,1)2

Let (?\i} and {ii} be two Cl;a-p.o.u.’s subordinate to the foliation cover {(Eii,

U} Define a 1-form 77 on M by
(9.26) Uy =D dgk- &y
We must show I 7~ d = _[ n -~ d(n.

Define a function f : M - R by setting, on Ui

fiUi - Z R — A - &5

(i,4)
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On Ui - Uj - Uk’ sij -+ Ejk = gik’ SO f%Ui and fin agree on Ui N Uk and f is well-

defined. Note that f is C1 along leaves, and 7 = 1 + dsf, where d&.f = Z(d.&;\j —

dg)\j) ~ gij is C%* transversally. By approximating the functions {EiJ-} by Cl-
functions {E?J-}, we get fn = X (Xj — )‘j) . E?j converges to f in the C%-topology

transversally, and the same for {dgfn}. The equality desired follows from

Proposition 9.10.

Next suppose that two foliation coverings {(&, U;)

i = 1,.,N} and (S, UY)
! i =1,.,N”} are given. Choose a foliation covering @, Ui) | i = 1,..,N} for which
{U;} is a common refinement of {U;} and {U{'}. A Cl;a-p.o.u. {\} for {U;} can be
grouped and partially summed to yield a Cl;a-p.o.u. {\}} for {Uj}, and a Cl;a-p.o.u.
{)\i’} for {U'i’}. Use these partitions to define l-forms 7’ and 7’ as in (9.26). We

must show that
9.27) I o~ d) = [U” ~ d(m”),

and for this it suffices to show that each side is equal to In ~ d(n). We prove one

case, with the other following in the same way.

Let {€ij :U; N Uj — R} be the RN-cocycle for the covering {(Qi, Uk For
each (i,j), select (i’, j/) with Ui N Uj - Ui N U:i. Let Ei‘j :U; N Uj —+ R denote the

L ,
restriction of Ei’j’ to Ui N Uj.

Let {sij U N Uj — R} be the RN-cocycle for the covering {(J;, U;)}. Define

1-forms by
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10 = 2 Ny

(i,J)

(9.28)
7’ l _— ’
n lUi == E d)‘jgij’
{i,3)
a function f : M - R by
(9.29) U =D € — &)
(i,4)

and a corresponding 1-form on M by

| /

(i,4)

Then 7’ = 1 + dﬁ.f, dgf is C* and as above, f is the limit of Cl;a-functions {fn}
with {dgfn} converging C% to def. Thus, (9.27) follows from applying Proposition

9.10 twice, and noting that the two definitions of 7’ (and also for 77’’) agree.

This concludes the proof of Theorem 9.3. #

A fundamental problem is to determine the most general class of
diffeomorphisms which leave the Godbillon-Vey number invariant. There are
basically two previous results on this problem. The original definition of Godbillon
and Vey is easily seen to be C2-invariant. In a 1981 unpublished note [R], Gilles
Rabi showed that for & of class C2 and codimension-one, gv(&¥) is invariant under
Cl-diffeomorphisms. Independently, but later, the first author discovered a proof
of Cl-invariance using sémi-simplicial geometric methods valid in all codimensions.

In our study of the invariant gv(&), we prove three extensions of these results.
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Cl+a

Theorem 9.11. Let ¥ and & be codimension-one, -foliations on closed

oriented 3-manifolds M and M’, respectively. Suppose there exists an orientation
preserving C1+B-diffeomorphism d: M- M conjugating & to &, with a + 3 >

1. Then gv(¥) = gv(F).

Theorem 9.12 Let § and ' be C2, codimension-one foliations on closed oriented

3-manifolds M and M’, respectively. If there exists an orientation-preserving

Cl-diffeomorphz’sm ®: M - M conjugating & to §’, then gv(F) = gv(F’).

Proof of 9.11: Let {(Gi, U)) l i=1,.,N} be a C1+a-foliation covering for & on M.
Define U] = ®(U;) C M/, and for each i = 1,..,N choose a map @ : U - («»1,1)3 sQ

that the collection {(Q){, U{) i=1,..,N}lisa C1+a—regular foliation covering for §'.

Choose a Cl;a p.o.u. {)\;} on M’ subordinate to this covering, and use it to define 7.
Next , define a Cl;a‘p.o.u. {)\i} for the cover {Ui} by setting A\, = )\{ - ¢, and use

this to define 77. We must show
(9.31) j'TZ ~dm = Jn' ~dmn’) = J *() ~ d@* (M)
The idea behind proving (9.31) is that 7 and ®*(77’) are formed from cohomologous

RN-cocycles (cf. [H1]) whose coboundary function is Cﬁ-continuous, so that we can

apply Lemma 9.10.

For each i = 1,..,N and —1 < x < ], set

(9.32) T = & o] - @ pjh) ()
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Note Ti is C6-continuous, where § = min (a, A). The chain rule yields a

coboundary formula relating wi,j with w’i,j on Iij; and Elij with Eij on Ui N UJ-:
’ , -1

Define f : M — R and dgf on M by

N

(9.35) f=Z)\J--(TJ-OpJ)
=1
N

(9.36) def = Zl dgh; ~ (T; 0 p)
J=

N
Then using the property d%- e 7\j) = 0 and (9.34), we obtain:
Jj=1

(9.37) OHM) =1 + dgf

Choose a sequence at clfunctions {Tg} converging Ca-uniformly to TJ», for

each j, and set

N

— . n .
f""‘z 1>\J<>("I‘ui<>pJ)
J=

Then dﬁ,fn converges C6 to dgf, hence (9.31) follows from Lemma 9.10 as o + § > 1#

B

As the reader may observe, the hypothesis that & is C1+ is used in the

proof of (9.11) only at the conclusion, in order to construct the sequence of
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functions {f,} which have dgfn converging C6 to dgf. If such a sequence can be

shown to exist without requiring that the {Tj} be C'g—continuous, then the

hypothesis of Theorem 9.11 can be weakened to where ® is just Cl;a.

Proof of Theorem 9.12: We indicate the chenges to be made in the proof of

1

Theorem 9.11 in order to prove 9.12. First, the compositions p; o ® o p; and p; ©
ol o (p’i)'1 are Cl, so the transfer functions TJ- : (—1,1) - R are continuous.
Define f as in (9.35), dgf as in (9.36) and we then have o*n =n+ dgf. Note that
both ®*1’ and dgf are transversally Cl. Proposition 9.8 has an obvious extension
to a pairing between (1) and A(0), where (1) consists of the transversally Cl, 1-

forms on M, and U0) are the continuous 1-forms. Lemma 9.10 also extends

naturally, and the remainder of the proof is the same as for 9.11. #

Remark 9.13. It is reasonable to expect that with finer analytical techniques,
Theorems 9.11 and 9.12 can be proven with the hypothesis that & is only
transversally absolutely continuous. As the careful reader will observe, such an

extension would follow from showing that
Id77~d8,f=0=Jd(d3-f)*TL

when f is a leafwise smooth, transversally measurable function. We prove in
Theorem 10.1 below that if ¥ is the weak-stable foliation of an Anosov flow on a

circle bundle, then gv(&¥) is an invariant of absolute continuity.

Remark 9.14. The pairing I used to define gv(¥) makes use of an embedding of the
integrands of (9.8) into appropriate Sobolev spaces, and pairing there. Extending

this pairing to its full domain in Sobolev space gives our extension of gv(F). There
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are other possible schemes for extending the bilinear form I(f,g) = El fdg from the
Cl-functions to larger classes: one was considered by Duminy-Sergiescu [DS] j our
original idea is a geometric construction described in §10, which explains geometricly
the restriction o > % used above. DBoth of these extensions agree with the
extension used in this section. Other extensions may be possible using more refined
analytical techniques; for example, the pairing I has been studied by A. Connes in
[Co]l from the viewpoint of cyclic cocycle theory. We conclude this section with
two basic questions: Do further extensions of the pairing [ exist, and what are
B

their geometric significance? Can I be extended to a pairing CS(—1,1) X Ce(—1,1) -

R, for o + 8 < 17
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§10. Foliations transverse to a circle fibration

In this section we specialize the results of §9 to the case of a foliation on a
3-manifold which fibers over a surface, and with the foliation transverse to the
fibers. We first prove that gv(¥) for such & is invariant under homeomorphisms
which are absolutely continuous transversely, if & is the weak-stable foliation of a
transitive Anosov flow. Secondly, we recall the Thurston cocycle description of

gv(f¥), as originally defined for C2 foliations transverse to a circle fibration. This

l1+a

cocycle has a natural geometric extension to foliations of transverse class C s

which we describe. This geometric extension agrees with the definition of gv(¥)

given in §9. Its interest is because it shows the restriction o > 1 is mediated by

2

considerations of Hausdorff dimension.

Let S be a closed, oriented surface, ®* : M - S a smooth fibration with circle
fibers, and & a C1+a codimension-one foliation transverse to the fibers of .
Choose a basepoint p € S and identify ﬂ'l(p) = Sl. Then & determines a global

holonomy homomorphism
h = hg : T = 7S, p) - Dirrl**sh,

by lifting paths in S, with base point p, to leaves of & with initial point 8 € S1 and
terminal point hg_'(B). If & is the weak-unstable foliation of a geodesic flow, then hif

is precisely the action of rl(S, p) on the circle at oc.

Let S denote the universal cover of S. Then T acts naturally on §, and h.&.

defines an action of I on Sl, so we can define the quotient manifold M=S8SX Sl.
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There is a natural foliation & on M whose leaves are covered by the Poincaré discs
S X {9y, 8 € Sl. The holonomy homorphism of F is hff by construction.
Furthermore, there is a natural Cl+a diffeomorphism 90 : M= M conjugating & to

¥, and which is C* along leaves (cf. [Gol, [HH]).

Let 7 ¢+ M - S be a second circle fibration with a C1+°' foliation &’
transverse to the fibers of n’, Let ® : M" -~ M be a homeomorphism conjugating &’
to ¥, and set p’ = CD’l(p). Define hg, = h’ using the basepoint 7’(p’). Then &

determines a homeomorphism J : S1 — S1 such that

h'(§) = @ o hi§) o L, Yy e I.

Furthermore, 2 has the same properties of continuity and differentiability as
does ® transversally. Thus ® is transversally absolutely continuous if and only if

& is absolutely continuous. The map & induces a homeomorphism of suspensions
. NAY "/
Fg M- M
which is C along leaves, and is transversally of the same continuity as &. The
assignment ® — & — 9'1 o FQ o8 : M - M is & natural transformation which

replaces ® with a homeomorphism that is C™ along leaves, and whose transverse

continuity class is that of &.

Theorem 10.1. Let & be the weak-unstable foliation of a transitive, volume-

preserving Anosov flow {gt} on a closed, oriented 3-manifold M, where M fibers

over a closed Riemnann surface S. Let M’ be another oriented 3-manifold with a
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C1+°‘, codimension-one foliation §’. If there exists an orientation-preserving

homemorphism & : M — M’, conjugating § to §F with ® and (D'l transversally

absolutely continuous, then gv(§) = gv(§’).

mp_f: In the proof of Proposition 2.1 of [Gh 2], Ghys shows there is a smooth
fibration in circles on M which is transverse to . Then ® carries this fibration
into a topological fibration of M’, which can be smoothed to give a smooth fibration
in circles of M’ transverse to ¥’. Then by the discussion before the theorem, we

. o0z
can assume that ® is C 7.

Next, repeat the proof of Theorem 9.11, with the following modifications.
The p.o.u. (k’i} on M’ is chosen to be C*. The transfer functions (TJ»EJ' = 1,..,N} are
defined as in {9.32), but now note that each Tj is only measurable, and the cocycle
equation (9.33) continues to hold for a.e. x € Iij' However, the difference TJ- o p; -
T, o p; = E_'jj °Q — gy is C¢™* so that for the measurable function f =J§:1 )‘j . TJ-

N
© Py the leafwise differential dgf = > d}\j . TJ- o P; is C%* transversally, and C*
=1

along leaves.

Define a cocycle over the flow {gt} by setting

S
(10.1) o(x, s) = [ (dgD) dgg,
0

the integral of dgf along the path ‘Yt(x) = {gt(x)iO < t < s}. Recall that for any
leaf L C M, d(f[L) = dsfiL. As 7,(x) lies entirely within a leaf, the integral in (10.1)

is exact:
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(10.2) D(x,s) = f(gg(x)) — f(x). ae. x EM

Thus, by the measurable Livshitz Theorem 5.7 above, all of the obstructions to
solving (10.1) continuously vanish, so there is a continuous function f: M -R
which agrees with f a. e., and also satisfies (10.2) for all x and t. Then by Theorem
1 of [L1], this f is C* transversally and C*®° when restricted to the leaves of &.
Both deef and dgf are continuous on M. We are now in a position to apply Lemma

9.10, as in the proof of Theorem 9.11, to conclude gv(F) = gv(F'). #

The naturality of the construction of ¥ and M from § and M, and the
existence of 6 : M — 1\71, shows that all of the transverse geometric data for ¥ is
contained in the homomorphism h == hg : T - Diff1+a(Sl). Thus, one expects a
formula for gv(¥) in terms of h. For C2-foliations, this is provided by the

Thurston 2-cocycle, as we next recall.

For h : T - Diff+Sl, an action of T on S]L by orientation-preserving Cl-

diffeomorphisms, define the additive RN cocycle Uy, ¢t r X S1 — R by setting
Uy (7)(8) = log{div h(Y)(0)}

where div h(7Y) is the divergence of h(Y) with respect to the Haar measure df on S1

having total mass 27. When h(7Y) is C2, then vh('Y) is cl.

Definition 10.2. The Thurston cocycle of a homomorphism h : T - Diff(z)S1 is the

2-cocycle on T, Cy, ¢ T XT - R, defined by
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Sl

For a proof that (10.3) defines a cocycle, and an explanation of its origin, see

Bott [B].

When the action of T on S1 is by CHa diffeomorphisms, then each vh(’)’) is a
C%-function on Sl, so via the pairing | of Proposition 9.7, we can formally extend
(10.3) for a > % by setting

(10.4) Ch(71’ 72) = I[Uh(72)’ Uh(71 © 72)]-

It is a standard fact (cf. [B]) that for § a Cz-foliation and h = hg, the cohomology
class [ch] S Hz(I‘; R) is identified with GV(F) € H3 (M; R) under the integration
along the circle fibers map, 7, : H3(M; R) — H2(S; R) = Hz(l’; R). It is not hard to
show that this identification also holds for C1+a foliations, using the techniques of

39. We state this precisely, and leave the proof to the reader.

Let (S] € H2 (F; Z) be the fundamental class associated to the cycle defined
by the oriented surface S. Then there are integers {ni} and elements {‘Yl i,‘Yqi} so
’ ~y

P
i=1 ’ :

Proposition 10.3. For § a C“’OL foliation, a > %, and h = h.a, as above,

P
gv(®) = cylSl = D my - ep(¥ 5 Vg )
i=1

-1

Moreover, if W = & o h o O, where & : S1 — S1 is a C“'B dif feomorphism
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with o + ,3 > 1, then Chl [S] == ch[S]-

C1+a—actions

In the remainder of this section, we show how to define Cp for
using a completely geometric approach. Thurston remarked (see page 40 [B]) that
ch(71,72) is the area inside a planar curve determined by vh(72) and 1.Jh(“1l o Ya)

for ‘71 and 72 Cz-maps. This will be the basis for our extension.

s

Let f, g : S} - R be Cl-functions. Define C(f,g) : S! = R? by setting

Clt,g) (8) = (£(9), g®)), 8 € Sl
Identify S with the unit circle {(x,y) | x* + y“ = 1}, and let D* = {(x,y)ix* + y“ <
1} be the interior. Choose a Cl.extension of C{f,g) to a map D(f,g) : D? - R?. Then

by Stokes’ Theorem,

J fdg = J C(f,g)*(xdy) = JD(f,g)*(dx ~ dy),
st st D>
where the last integral represents the algebraic area inside the Cl—curve C(f,g). We

will set

(10.5) Alf,g) = I fdg = I D(f,g)*(dx ~ dy).

st D?
To define A(f,g) for functions which are not Cl, it suffices to have a good
definition of the algebraic area inside the curve C(f,g). We will show this exists

when o > ,l,, and f, g are C%. First, what appears to be a severe limitation to
L
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defining A(f, g) when o < % is provided by the following standard fact.

Lemma 10.4. Let f, g : S1 — R be C%*-continuous functions, with « < 1. Then the
image of C(f,g) in R2 has Hausdorff dimension no greater than the minimum of

{2, 3 - 2x}.

The estimate in Lemma 10.4 is sharp, although it is not clear that for (f, g)
of the form (vh('Yz), Uh('Yl o) ’72)) that this is sharp. As it seems natural to require
the curve C(f,g) have Hausdorff dimension less than 2, in order to define the area

inside the curve, this forces &« > = upon us.

1
2

Now represent S1 as the interval 0 <€ 0 < 2%, with 0 and 27 identified. Let T
- S1 be a finite set of points, given in increasing order, 0 < Y <y, <..<yy<
27, with YN+l = Yo for notational convenience. Let f,g : Sl — R be given. Define
piecewise-linear functions f, g : S1 — R by requiring fT(yi) = f(y;) and gT(yi) =

g(yi) fori=0,..,N, and fT, gT are linear between the points of T. Define
1
C(f,g,T) (8) = (fT(B), gT(B)), 8 €S,

a p.l. curve in R2. The algebraic area inside C(f,g,T) is then well-defined, and we

denote it A(f,g,T).

For a given finite point set T0 = T C Sl, let Tl denote the barycentric

subdivision of TO, and then for n > 1, let T, denote the barycentric subdivision of

n-1°
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Proposition 10.5. Let f, g : S} - R be C*-continuous, o > %

1) For each T, the sequence {A(f,g, Tpln = 0, 1,...} is Cauchy

i

2) The limit A(f, g) =nl_i.rgo Alf,g, Ty) is independent of the choice of initial
point set T.
3) The function A : CSY) x ¢S ~ R defined by 1, g = Alf,g) is bilinear,

skew-symmetric, and for f, g piece-wise C l-functz'ons, satisfies A(f, g) = I fdg.
1
S

Proof: Fix f and g, and let K be a constant so that f satisfies
£® — f@) <K -0 — [ 0<0<p<2m;

and similarly for g.

Define the mesh of T C SL, T = (Y15 a¥yh 8S

(10.6) mesh (T) = maxN {dist(yi, yi+1)}.

i=0,...,

Let TV C S1 be another subset with T C T’. Assume the points of T’ are ordered

and labeled as

T = {z 1,..,Nand 0 < j < p;}

Li' =
for integers p; depending on i, where

Yi = 23,0 < %10 <o < Fp < Vit
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Also, let z Yitl for notational convenience. The basic fact we need is the

vpi+1 =

elementary estimate:

Lemma 10.6. 4dssume that p; < d for all i. (So that there are at most d points of

T between uny twe adjocent points of T.) Then
Alf,g, T) — A(f, g, T) < K? (mesh TY** . 4 - N.
t !

Proof: Set a; = (f(y;), g(yi)) fori = 1,..,N and bi,j = (f(zij)’ g(zij)) fori=1,.,N, 0

<Jj<p + 1. Let aa denote the line segment in R2 from a; to TR Then
N N s
(10.7) A, 8, T) — AT = > EG)
H i Ii=1 1]
where E(i) is the algebraic area bounded by the segment aja; and the polygonal
curve joining bi,O to bi+l,0 via the points {bi,l’ bl,Z"“’bi,pi}'

Figure 10.1

Let Ai . be the area of the plane triangle with vertices a, b, . and b, ., ;. It is
»J — I T,J i,j+1

elementary to see that
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Pj

(10.8) %E(i)! < Z A ;
=1

We use the Holder hypothesis to estimate each Ai i First, vy < Zij < Yisp SO
3 ’

dist(y;, zi,j) < distly;, yi+1) < mesh (T).

Thus,
(10.9) £z, ) — fly)| < K - mesh(T)*
(10.10) &(z; ) — 8ly))| < K - mesh(T)*

and consequently
(10.11) dist(b; 5 a) < {2 - K - mesh(D*, 0 < j < p; + 1

giving the estimate Ai < K2 . mesh(T)za. Substituting this into (10.8) and (10.7)

yields:

N
AfeT) — ACETI < D D A

-

N L
< E K2 . mesh(T)**
i0 =1

<N.d- K2 . mesh(T)za. #

Now to prove part 1 of Proposition 10.5, take T’ = Tn+1 and T = Tp in the

lemma. We have d = 2, mesh (Tq) = 2n mesh(TO), and N = 2" . p, where p is the
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number of vertices in TO. Then

AMgT ) — Alf,gTp) | <27 p .2 K% . 2720

For a > this last term is summable in n, hence {A(f,g, Tp)} is Cauchy.

5

To prove part 2, let ’I‘(’) be another initial choice of a finite set in Sl. Set
TH = Ty U ’I‘b. We claim that for some d, and all n > 0, the number of points in
Th between any two adjacent points of Tp is bounded by d (and by symmetry, there
is a d’ which works for Th and Ty.) To find d, first note that there is some p so
that Tp contains at most one point of Tb’ in any closed interval defined by adjacent
points of Tp. Thus, for all n > 0, there is at most one point of Ty between any
two adjacent points of Tp+n' But Tp+n contains 2p~1 points between any two
adjacent points of T,, so we can take d = 2p-1‘ Now apply Lemma 10.4 to Ty and
T to conclude

1A(f,g, T2 — Alfg, Tyl < p - d - K2 . 271720

which tends to zero with n. Similarly, we obtain IA(f,g, Ty) — A(f, g, Tyl — O.
Part 3 of the proposition is immediate from the definition of A(f,g). #

The pairing A defined in Proposition 10.3 can be used to give a geometric

extension of the Thurston cocycle by setting cﬁ(‘?l, ‘12) = A(vh(‘72), vh(‘Y1 o ‘7.2)),
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and then

(10.12) gV, (8) = cplS] =

TM*U
K

n - A(vh(’}’z,i), uh(‘Yl’i o] 72,i)

In fact, this geometric extension of Ch is identical with the analytical extension
using I, as we will show in a moment. Our final comment on geometric extensions as
in (10.12) is that this can obviously also be applied for an arbitrary Cl+a,
codimension-one foliation via the embedding Cg(—l,l) - Ca(Sl), as in §9. However,
the correct viewpoint is to redo the construction completely in terms of semi-
simplicial methods, and then the geometric construction is seen to extend to all

codimensions (with an appropriate restriction on a!). This is developed in [Hu 3].

To show that (10.4) and (10.12) agree, we will show that for {f; = an} and
{gn = ng} as constructed above, the a-Holder norms of the differences (f — fp)
and (g — gp) tend to zero. Then the continuity of I and the fact that A and I agree

on piecewise smooth functions will conclude the proof.

Lemma 10.7. Let f, g : Sl — R be C*-continuous for any 0 < o < 1. Then for all

n > 0, the a-Holder norms of (f - f) and (g — gp) are dominated by

Kn =4 - K- (mesh Tp)%,

where K is the maximum of the a-Holder norms of f and g.

Proof: For 0 < x < ¥y < 27, we will estimate
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(10.13) (fly) — fply)) — (F(x) — fa(x < If(y) — fp(y)l + If(x) — Fu(xl

Let 8y be a point in Ty closest to x, and 8y a point in Ty closest to y. Then

consider

f(x) — fax) < (f(x) — fp(x)) + (f(8g) — fr0N

< If(x) — FO + Ifn(x) — Fa(Bx)l

< K -Ix — 0% + K - 18 — 04%

< 2-K . mesh(Tp%,

where 0% € Tp is the closest point to x in Ty such that x lies between 6y and 6%.

A similar estimate for y yields the Lemma. #
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§11. The Mitsumatsu Defect and Rigidity

In this section, we calculate the Godbillon-Vey invariant for the weak-
unstable foliation i'fu(ft(g)) of the geodesic flow ft(g) in terms of the Mitsumatsu

Defect of g.

Recall that S denotes a closed orientable Riemann surface with metric g
having everywhere negative curvature kg : S = R. Let M denote the unit tangent
bundle, * : M — S the fibration, £ = Eg the geodesic vector field, (ft(g)} the
geodesic flow, H = HY : M - R the unique positive solution of the Ricatti equation
(0.9), and {£, h, w} the canonical frame field on M introduced in §3. Note that H is

C1 on M, so the derivative along the fibers, w - H is continuous on M.

Definition 11.1. The Mitsumatsu Defect of g is

Def(g) = 3 - J (w - H)? dvol.
M

We will show:

Proposition 11.2. (Formula of Mitsumatsu). Let g be a metric of negative

curvature on a closed surface S with FEuler characteristic x(S). Then the

Godbillon-Vey invariant satisfies

(11.1) evie) % gv(Fr, (@) = @m? - X(S) — Def(g).

102



When the foliation ifu(ft(g)) is C?‘, the derivation of (11.1) was given by
Mitsumatsu [M]. The point of this Proposition is that the formula continues to
hold when the foliation is no longer C2. This is a critical extension, for our
conjecture is that the only cases where ‘Ifu(ft(g)) is C2 are those metrics with
Def(g) = 0. Before giving the proof, we draw three consequences of the

Proposition. The first was observed by Mitsumatsu (Lemma, p. 12, [MD.

Corollary 11.3. For g on S, and ifu(ft(g)) on M as above, we have gv(g) = (271')2 .

x(S) if and only if g has constant negative curvature.

Proof: Observe that Def(g) = 0 if and only if w - H vanishes identically on M.
Differentiating the Ricatti equation with respect to w, and noting that w - (kg o )
= 0, we obtain

(11.2) w-( -H + 2H -wH = 0.

The Lie identity [w, €] = h from (8.1) implies

(11.3) w-(€-H+¢-(w-H)=h-H.

Combining (11.2) and (11.3), we see that Def(g) = 0 precisely when h - H = 0. Now
this implies H is constant along the flow of h, which is ergodic. Thus, H is

constant, so by the Ricatti equation kg ¢ ® = —H2 is also constant. Conversely, kg

constant implies H is constant and w - H = 0. #

Corollary 11.4.  Let i}’u(ft(g)) be as above. Suppose there exists a cha.

homeomorphism conjugating this foliation to a foliation FYf t(8), where g is a
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etric of constant negative curvature on S. Then g also has constant negative

curvature.

Proof: By Theorem 10.1, gv[‘ifu(ft(g))] = gv[is"u(ft('é))], and thus Def(g) = Def(g) = 0

by Proposition 11.2. Then by Corollary 11.3, g has constant curvature. #

With the additional hypothesis that there is a Cl;a

homeomorphism
conjugating the flow {f,(g)} to the flow (f{(8)}, then Corollary 11.4 has an alternate
proof due to the second author [Kal. The last result is the local! solution of the

Conjecture formulated in the Introduction.

Corollary 11.5. Suppose that FYf +(8) is a c? foliation, and at all points of M
- 2 2
20w - H¥* +H°  — H w-.-(w- -H) >0.
Then g has constant negative curvature.

Proof: By Theorem 8.1, ifu(ft(g)) is C* conjugate to a foliation ﬁu(ft(é)), where g
has constant negati\/e curvature. Then by Corollary 11.4, g also has constant

curvature. #

We conclude this paper with a proof of Proposition 11.2. The strategy will
be to establish an approximate form of equation (8.10). Note that H is Cl, aﬁd from
(11.2) we obtain w - H = :21 - £ - (log H). Recall that H is characterized as the
unique function such that the vector field ht in (8.3) satisfies (8.4). As {ft(g))

admits a C*° contact 1-form, the vector field h' and its Lie bracket (€, h*1 are cl
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on M. Thus, £ - log H is a Cl-function on M, and we can define w - (w - H) = —% w

- (¢ - log H).

Thus, choose a sequence {Hp} of C? functions on M with {w - Hp} converging

1
2’

uniformly to w - (w - H). The vector field w is differentiation along the sl fibers

uniformly to w - H in the C%-topology, for a > and w - (w - Hp) converging

of T : M — S, so one way to obtain Hp is to write H = 3 hg eiEB, as a Fourier
<v4
series with respect to the fibers (cf. [GKI]), with each hZ :S - Ra Cl’a~functi0n.

Then choose C2-approximations {hE j} converging Cl’Ol to hE’ and set

Define 1-forms N: = w* — Hp h™. Then define a 1-form
(11.4) Ta = i(w) - dN’r';

= —(w - Hp) - h™* + Hyp - €4

so that

(11.5) dng = —d(w - Hp) ~ h™* + (wk- Hp) w* - ¢, + dHp - €* + Hy - w* ~ 1™,
(11.6) 7 ~ d7y = (—2(w - Hp)? — H2 + Hy - (w - (w - Hpd} w™ ~ €% » h™,

Then the trick observed by Mitsumatsu is that dvol is invariant under the action

of SO0(2) on M, so that

11.7) 0 = J w - (Hy - wHp) dvol
M

105



— J (w - Hp)® dvol + J Hp(w - (w - Hp)) dvol.
M M

Combining (11.6) and (11.7) yields

(11.8) J Mn ~ dMp = —~J H?‘ dvol — 3J (w - Hn)2 dvol.
M M M

Lemma 11.6. lim ——I H% dvol = (2m)° x(S).

n—oo

M
Proof: lim —J H2 dvol = —J H? dvol
n—oo
M M

=I€~Hdvol+Jkgowdvol
M M

= 27)% X(S)

where we use the Ricatti equation H2 + € - H + kg o ™ = 0, the invariance of dvol

under (ft}, and the Gauss-Bonnet Theorem. #

Continuity yields ldgog J (w - Hn)2 dvol = Def(g), so that
M

nlitgo J Mn ~ dMp = (‘2‘1!')2 - X(S) — Def(g).

M

On the other hend, by the remerks above, (8.10) defines the form 77 ~ d77 on M, so
that IT] ~ dn coincides with the definition of gv(g) via the distributional pairing
M .
(9.13). In particular, continuity of the pairing implies thatnl_i'rgo I Tn ~ dflq = J n -
M M

dn. This proves Proposition 11.2. #
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