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§ 1. Introduction 

A substantial part of recent progress in the theory of smooth dynamical 
systems is based on better and more systematic understanding, than before, 
of the role played by "hyperbolic" behavior and more specifically by 
nonuniform hyperbolicity and Lyapunov characteristic exponents. One 
and probably the most important aspect of this development concerns 
ergodic properties of smooth dynamical systems with respect to absolutely 
continuous invariant measures or other measures naturally connected 
•with the smooth structure. The main work in that area in the last decade 
was done by Pesin [10], [11], [12], [13], and is now often referred to as 
the Pesin theory. Both the methods employed by Pesin and his results 
are essential for the subsequent development. He discovered the crucial 
role of nonuniform hyperbolicity and Lyapunov characteristic exponents 
and using these tools developed an ergodic theory for smooth dynamical 
systems with respect to an absolutely continuous invariant measure. His 
results include the celebrated entropy formula which shows that the 
entropy comes exclusively from the exponential expansion, the description 
of ^-partition and a complete classification of systems with nonzero ex-
ponents. 

Among the developments that appeared after Pesin's work I would 
like to point out Mané's proof of the entropy formula [8], which contains 
a fundamental simplification of the original approach, the recent works 
of Ledrappier [6] and Ledrappier and L.-S. Young [7] on the characteri-
sation of measures satisfying the entropy formula and a work on ergodic 
theory of geodesic flows on manifolds of nonpositive curvature by Bal-
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Imann and Brin [1]. The lack of space does not allow me to discuss here 
an extensive work by various authors on absolutely continuous invariant 
measures for one-dimensional maps and on various special, primarily 
2-dimensional examples, including both conservative transformations 
and maps with nonuniformly hyperbolic attractors. 

In this talk I am going to discuss another aspect of the development 
based on the concept of nonuniform hyperbolicity, namely, how certain 
global "exponential" properties of a dynamical system produce certain 
types of orbits including the abundance of periodic'orbits and large hyper-
bolic sets. The structure of a dynamical system on a locally maximal 
hyperbolic set is well understood. It includes such ingredients as stable 
and unstable manifolds, local product structure, shadowing property, 
closing lemma, local stability of the set, density of periodic orbits among the 
recurrent orbits, Markov partitions, existence and uniqueness of measure 
with maximal entropy on basic sets, the uniform distribution of periodic 
orbits according to that measure and the growth of the number of periodic 
orbits with the exponential rate given by the topological entropy. Thus, 
the existence of an infinite locally maximal hyperbolic set for a given 
dynamical system provides considerable information about the orbit 
structure of the system and all effects obtained that way persist under 
small perturbations of the system. 

Most of the results discussed below are contained in my papers [2], 
[3], [4], [5], although in several cases I will formulate theorems in slightly 
stronger or more general form than they were written. 

Before proceeding to a more technical discussion let me outline the 
strategy of the approach. We begin with a certain "global" property 
which indicates that some kind of exponential growth is present. Here 
are some examples of global exponential properties. 

(i) Positive topological entropy, i.e., the exponential growth rate ot 
the number of different orbits distinguishable with an arbitrary fine buf 
fixed precision, 

(ii) Exponential behavior of the iterates of the map /* induced by 
a diffeomorphism / : M->M on the fundamental group TZ^M), i.e., the 
exponential growth of the word-length norm of the iterates f%y for all 
(or some) y eyp1(JIf)\{id}. 

(iii) Similar exponential behavior of the maps induced on homology 
groups. 

(iv) Exponential growth of the volume of a ball on the universal co-
vering of a compact Eiemann manifold M. This property appears when 
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the dynamical system under consideration is the geodesic flow generated 
by the metric. 

(v) In the same situation as in (iv), the exponential growth of the 
fundamental group nt(M) is another exponential type property. 

We will derive from a global property the existence of invariant mea-
sures for the dynamical system such that orbits typical with respect to 
such a measure possess a weaker type of hyperbolicity than the orbits 
belonging to a hyperbolic set. The linearized system along such an orbit 
allows an exponential dychotomy but the coefficients in front of the 
exponential terms may oscillate as the initial point moves along the orbit. 
This is the reason for calling those orbits nonuniformly hyperbolic. How-
ever, in our case the oscillations of the coefficients are not too big, they 
are essentially subexponential. The existence of many such regular non-
uniformly hyperbolic orbits follows from Oseledec's Multiplicative Ergodic 
Theorem [9]. A neighborhood of a regular nonuniformly hyperbolic orbit 
possesses certain properties similar to a neighborhood of a hyperbolic 
set. Using proper variations of closing and shadowing arguments one can 
catch many orbits which never leave a (noninvariant) neighborhood with 
uniform hyperbolic estimates and thus possess a uniform hyperbolic 
structure. This construction may be supplemented with the estimates 
on the number of different orbits found and on the quality of hyperbolic 
estimates along those orbits. 

Let us discuss the last notion in detail. Let x be a hyperbolic periodic 
point of period n. The degree of hyperbolicity of x is measured by the 
number 1 

m(x) = — min |log|A||. (1) 

Oui' standard set-up in the discrete time case is to consider a diffeomorphic 
embedding / : TJ->M of an open neighborhood CT of a compact invariant 
set JT; here Jf is an ambient smooth manifold. Let for an open set Y 3 r 
and for % > 0, neZ+9 P£z(/) be the number of hyperliolic points xeY 
of period n with m(x) ^ %. 

Furthermore, let 

n-*oo W 
and 

^ ( / ) = i n f ^ ( / ) . 

If JT = M we will write px(f) instead of p%(f). 
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Similar definitions can be made for a continuous time dynamical 
system in a similar set-up. In the definition of m(x)9 the eigenvalue 1 
corresponding to the direction ,of the vector field should be excluded; 
instead of periodic points, periodic orbits would be counted; instead of 
orbits of a fixed period, one should count all orbits of period < T. 

§ 2 . Main results and applications 

We will assume the standard set-up described above. All maps and flows 
are assumed of class 01+a for some ô > 0. In the continuous time case we 
also assume that the flow does not have fixed points on r (added in 
proof: I have recently been able to remove this assumption). In both 
cases, hr will denote thè topological entropy of the dynamical system 
restricted to r. We assume hr > 0. 

THEOREM 1. Let f: U-> M and dim M = 2. Then for every e > 0 

*JE .̂(/)>*r-
THEOREM 2. Let ft: TJ-> M be a flow add dim M = 3. Then for every 

Phr-s(f) > Ar-
THEOREM 3. Under the assumptions of Theorem 1, for every s > 0 and 

every open set V => r there exists an invariant locally maximal hyperbolic 
set As c V such thatf\A is topologically conjugate to a subshift of finite type 
and 

*( /L . )>*r -« -
THEOREM 4. Under the assumptions of Theorem 2, for every s > 0 

and every open set V 3 r there exists an invariant locally maximal hyperbolic 
set A8c V such that ft\A is topologically conjugate to a suspension over 
a subshift of finite type and 

Mft\A8)>hr-e. 
COROLLARY 1. The topological entropy h(f) of anyG1+d diffeomorphism 

f: M->M is upper-semicontinuous as a function of f in G° topology. • 
Proof. Follows immediately from Theorem 3 applied to r = M and 

from the topological stability of hyperbolic sets. 
THEOREM 5. Let f: M->M be cm area-preserving diffeomorphism of 

a compact surface. Then f has a hyperbolic periodic point iff 
loffllDPII 

lim ë " J " >0. (2) 
n-*oo M 
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Here we assume that a Eiemannian metric is fixed on M so that 
)|D/|| = max sup ||D/ü||/||t?||. However, the quantity in the left-hand 

œeM veFxM\{0} 
part of (2) does not depend on the choice of Eiemannian metric. 

All results stated above about the existence of many periodic points 
and nontrivial invariant sets depend on smoothness. M. Eees [14] construct-
ed an example of a minimal homeomorphism of the 2-torus with positive 
topological entropy. It is not clear, however, whether the 0fl+a assump-
tion can be replaced by 01. 

The next group of results deals with the situations where the existence 
of many periodic orbits has been established by topological or variational 
methods. Such methods, however, usually say nothing about the hyper-
bolicity of those orbits. By applying the above-stated theorems one can 
ensure the existence of many hyperbolic orbits. 

Let / : T2->T2 be a diffeomorphism of the two-dimensional torus 
which acts on the first homology group hyperbolically. This action is 
determined by an integer matrix A = A such that det A = ±1 and 

|tr-4.| > 2. Let X be the eigenvalue of A of absolute value greater than 1 
and a = log\X\. Then h(f) > a. 

COROLLARY 2. For every e > 0 

Pa-sif) > a-
If, in addition, f is an Anosov diffeomorphism then 

Pa(f)>a-
Let M be a compact surface of genus greater than one and / : M->M 

be a diffeomorphism homotopic to a pseudo-Anosov map jf0. Then h(f) > a 
where a = h(f0) and a is also equal to the exponential growth rate of the 
word-length norm for the iterates fiy where y is an arbitrary element 
of %x(M) different from identity. Nielsen's theorem implies that the expo-
nential growth rate of the number of periodic orbits for / is > a. 

COROLLARY 3. For every e > 0 

Pa-s(f) > a. 
The next example is more interesting. Let a be a Eiemannian metric 

of class 02+(5 on a compact surface M with negative Euler characteristic F 
such that the total area of M is equal to v. Let <p° be the geodesic flow 
generated by that metric. The exponential growth rate p0iX for the num-
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ber of hyperbolic closed geodesies with the positive Lyapunov exponent 
5̂ X coincides with what we denote by px(q>t). Let K(F, v) = ( —2TZFIV)112. 

If or is a metric of constant negative curvature then this number repre-
sents the common value of the topological entropy, entropy with respect 
to Liouville (smooth) measure and the positive Lyapunov exponent along 
any orbit. 

THEOREM 6 [4]. 

Po,K(E,v) > #(-E> v) 
and this inequality is strict unless a is a metric of constant negative cur-
vature. Moreover, for every metric of nonconstant curvature th&re exists 
sa > 0 such that 

P<r,K(E,v)+ea>K(E,V). 
Thus, any metric of nonconstant curvature has more closed geodesies 

with stronger hyperbolic properties than any metric of constant curva-
ture on the same surface with the same total area. 

This theorem follows from Theorem 2 and an entropy estimate. The 
metric a is conformally equivalent to a metric a0 of constant negative 
curvature and the same total area. Let Q be the conformai coefficient. 
Its average is equal to one. Therefore, the average of g1/2, which we will 
denote by Qa9 is less than 1 unless Q S 1. 

Let ha be the topological entropy of the geodesic flow $. Here is the 
desired entropy estimate. 

THEOREM 7[4]. 

ha^Q-1E(E,v). 

§ 3 . Hyperbolic measures 
Let (i be a Borei probability measure supported by T and invariant and 
ergodic with respect to a map or a flow under consideration. Let Xi < 
X% < . . . < Xr *>e the Lyapunov characteristic exponents of the dynamical 
system with respect to p. The multiplicative ergodic theorem implies 
that for /«-almost every point œ e T there exists a measurable invariant 
decomposition of the tangent space TXM = F1(x)@...@Ff(x) such that 
for VGFì(X) 

f-^-fcoo t 

By the ergodicity, dim2^(a?) must be constant /«-almost everywhere. 
We will denote this dimension by ft£ and call it the multiplicity of the 
exponent Xi-
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DEFINITION 1. A measure p is called hyperbolic if 
(i) in the discrete time case, all Xi are different from 0, 
(ii) in the continuous time case, the zero exponent has multiplicity 

one. 
Sometimes we will also call a nonergodic invariant measure hyperbolic 

if almost all its ergodic components are hyperbolic measures. 
For a hyperbolic invariant measure p let 

m({i) = min (#?). 

This definition agrees with (1) for a measure concentrated on a single 
hyperbolic periodic orbit. Naturally, m(fjt) characterizes the minimal rate 
of exponential behavior typical for the system. 

THEOREM 8. Let ft be an invaricmt ergodic hyperbolic measure for a map 
or a flow. Let x e supp/*. Then for any ô > 0, any neighborhoods Y B x and 
"W 3 supp^, and any collection of continuous functions y19...9<ph there 
exists a hyperbolic periodic point z e Y such that the orbit of z is contained 
in W and 

m(z) >m(jn) — ò. 
Moreover, in the diffeomorphism case 

porjB—1 

l(pers)-1 £ <Pi(fz)-J9idß\<d 
fc=0 

for i =1, ...,1c. A similar property holds for flows. 

The last statement means that the orbit of the point z is almost uni-
formly distributed with respect to fi. 

Theorem 5 follows easily from Theorem 8 since (2) implies the existence 
of an /-invariant measure whose largest exponent is positive and the 
preservation of area ensures that the second exponent for that measure 
is negative. Another corollary is "weak stability" of hyperbolic measures 
in C1 topology. 

COROLLARY 4. Let \i be an invariant ergodic hyperbolic measure for 
a diffeomorphism f or aflowft. If fn converges to f (correspondingly f[n) con-
verges to ft) in G1 topology, then fn (ffl) has an invariant hyperbolic measure 
[jtn such that fin converges to (i wealcly. 

THEOREM 9. If, under the assumptions of Theorem 8, p is not concentrated 
on a single periodic orbit9 then z has a transversal liomoclinic orbit. 
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COROLLARY 5. If a diffeomorphism or a flow has a hyperbolic ergodic in-
varicmt measure whose support is an infinite set then its topological entropy 
is positive. 

THEOREM 10. Under the assumptions of Theorem 8, let supp fi = F 
and hß(f) (corr. hp(ft)) be equal to h > 0. Then for any e > 0 

pUif)>*> icon. pLe(ft)>h). 
Theorems 1 and 2 follow easily from Theorem 10, variational principle,, 

and Euelle's entropy inequality [15]. 
THEOREM 11. Under the assumptions as in the previous theorem, there 

exists an f-invariant, locally maximal hyperbolic set A8 such that the restriction-
f\A is topologically conjugate to a subshift of finite type and 

Mf\A,)>h(f)-°-
Moreover9 any orbit on A8 is almost uniformly distributed with respect to /& 
(cf. Theorem 8). 

Theorem 11 and its counterpart for flows which we do not formulate 
explicitly imply Theorems 3 and 4 in the same fashion as Theorem 10 
implies Theorems 1 and 2. 

It also allows us to strengthen weak stability of Corollary 4 to "entropy 
stability". 

COROLLARY 6. Under the assumptions of Corollary 4, the sequence of 
measures fin can be chosen with the additional property hß (/J->fy«(/) 
(corr. A ^ / î ^ - M / , ) ) . 
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