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Abstract. We establish general criteria for ergodicity and Bernoulliness for volume-
preserving diffeormorphisms and flows on compact manifolds. We prove that every
ergodic component with non-zero Lyapunov exponents of a contact flow is Bernoulli.
As an application of our general results, we construct on every compact 3-dimensional
manifold a C°° Riemannian metric whose geodesic flow is Bernoulli.

1. Introduction
This paper represents a completed, revised and expanded version of the 1988 preprint
'Invariant cone families and stochastic properties of smooth dynamical systems' by the
first author. The current version was written during his visit to IHES at Bures-sur-Yvette
in May-June 1991, whose support and hospitality are readily acknowledged.

Our primary goal is to establish verifiable criteria for ergodicity and stronger stochastic
properties, specifically the Bernoulli property, for several important classes of smooth
dynamical systems with absolutely continuous invariant measure. The first part of the
paper which includes §2 and the first part of §3 is primarily expository. It is needed both
to provide a conceptual framework and to establish convenient notations for the original
results which are contained in the rest of the paper.

We consider, in particular, symplectic diffeomorphisms of compact symplectic
manifolds and geodesic flows on compact Riemannian manifolds and, more generally,
contact flows on compact contact manifolds. The most widely applicable general known
method of proving ergodicity and other stochastic properties for smooth dynamical
systems is to deduce it from a certain kind of asymptotic hyperbolicity for infinitesimal
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t Partially supported by the NSF Grant. DMS 8896198 and a Sloan Foundation Fellowship.
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families of orbits. This method goes back to the seminal works of Hopf [H] and Anosov
[A] who showed how ergodicity (and in Anosov's case stronger stochastic properties)
can be obtained from uniform hyperbolicity. The method was later extended to apply
in the much more common situation of non-uniform hyperbolicity. Since the history of
the emergence and applications of this method is long and some aspects of it, especially
those related to the study of dynamical systems with singularities, are rather involved,
we will not try here to give comprehensive historical remarks. Instead we will discuss
primarily the contributions of Pesin and Wojtkowski which are crucial for establishing a
natural conceptual framework for the subject and on which our work is directly based.

The results of Pesin [PI], [P2] play the fundamental role in this area. Pesin shows that
a rather weak, at least very non-uniform, kind of hyperbolicity, namely non-vanishing
of Lyapunov characteristic exponents, produces ergodic and Bernoulli components of
positive measure. In §3 below, we present appropriately adapted versions of some of
his results (cf, Theorems 3.2, 3.5 and Corollary 3.1). In the continuous time case,
according to Pesin, every ergodic component with non-zero characteristic exponents is
either Bernoulli or admits a measurable eigenfunction. We prove (Theorem 3.6) that for
a contact flow the first alternative always takes place. In order to build effective criteria
for ergodicity upon these results, one needs to append the Pesin theory on both sides,
i.e. to find verifiable methods for checking the non-vanishing of Lyapunov exponents
and for a better understanding of the nature of ergodic components which are in general
described by Pesin theory in a rather indirect way.

The first task was very effectively accomplished by Wojtkowski in [W]. He showed
that the existence of a family of cones in the tangent bundle, which is mapped into itself by
the linearized dynamical system, is in a number of cases sufficient for the non-vanishing
of the exponents. Certainly Wojtkowski was not the first one to associate cone families
with hyperbolicity. The importance of his work lies in the general and purely qualitative
character of the cone conditions he uses. In fact, Wojtkowski's results do not depend on
the smooth structure of the system; they deal with linear extensions of measure-preserving
transformations and flows. It turns out that Wojtkowski's results can be put into a more
general and more convenient framework. This task is accomplished in §2. The notion
of infinitesimal Lyapunov function which we introduce helps to clarify the conditions
under which the existence of an invariant cone family guarantees non-vanishing of all
Lyapunov exponents. Our approach is a development of that by Lewowicz [LI], [L2]
and Markarian [Ma]. In particular, Theorem 2.1 is a generalization of Theorem 1 of
[Ma].

Passing from the ergodic components of positive measure given by Pesin's theorems
to actual ergodicity requires some assumptions about 'uniformity' of the non-uniformly
hyperbolic structure. Pesin's own strategy for doing that, which he applied to geodesic
flows on surfaces without focal points [P3], used monotonicity and convexity properties
for the Jacobi fields and included the construction of a global, i.e. defined everywhere
outside of a fixed exceptional set and not just almost everywhere, expanding foliation
whose leaves include local expanding manifolds as open sets. A similar approach was
used in the first author's work on Bernoulli diffeomorphism on surfaces [K] and related
later work on smooth (Gerber and Katok [GKJ) and real-analytic (Gerber [GJ) models of
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pseudo-Anosov maps. Such procedures involve first producing a global invariant plane
field inside the cone field and then integrating it. Those steps usually required ad hoc
arguments, often long and delicate, based on special structures of the examples under
consideration.

The main technical advance which allows us to bypass the subtleties of the construction
of a global foliation is an observation that a continuous version of the same condition
(existence of an infinitesimal Lyapunov function or an invariant cone family) which
guarantees non-vanishing of the Lyapunov exponents allows one to extend almost every
local stable and unstable manifold so that it reaches uniform size without too much
wiggling (cf, §5). Let us point out that the two-dimensional case can be treated separately
by a method suggested by Burns and Gerber [BG1] which does not extend to the multi-
dimensional case. After the extension of the stable and unstable manifolds is achieved,
a relatively standard application of methods of Pesin theory leads to the conclusion that
ergodic components are essentially open sets. A somewhat stronger version of the same
condition which guarantees the uniform transversality of stable and unstable manifolds
almost everywhere, then allows it to be concluded that the ergodic components must
contain a connected component of the open set carrying the invariant cone family (§6).

The results of this paper (Theorem 2.1, Theorems 4.1 and 4.2) provide a unified
and simplified treatment of the ergodicity and strong stochastic behavior for all known
cases of smooth invertible conservative dynamical systems for which some sort of non-
uniformly hyperbolic behavior has been found. They also provide a framework for
finding new examples of systems with ergodic and Bernoulli behavior. As an interesting
application we construct in §7 a C°° Riemannian metric on every three-dimensional
compact manifold with Bernoulli geodesic flow. The construction appeared as a result
of discussions between the first author and Michael Anderson. Further development in
this direction appeared in the joint work of Marlies Gerber and the second author [BG3].
They constructed Riemannian metrics with Bernoulli geodesic flows on every smooth
manifold which is a product of factors of dimension less than or equal to three.

Similar methods can be applied to dynamical systems with singularities. The main
results of Pesin's work were extended in [KS] to a fairly general axiomatically defined
class of systems with singularities which includes billiard systems and other interesting
physical models. It seems that in order to obtain openness of ergodic components it
is necessary to impose extra more geometric assumptions on the singularities of the
system, in addition to assuming the existence of an infinitesimal Lyapunov function. The
key ideas for overcoming the influence of singularities were suggested by Bunimovich
and Sinai [BS] and developed in a systematic way by Chernov and Sinai [CS]. Based
on their method, Kramli, Simanyi and Szasz made important progress in the famous
problem of the hard sphere gas [KSS1], [KSS2]. Liverani and Wojtkowski combined
the general approach developed in [W] and the earlier version of the present paper with
the Chernov-Sinai method and proved criteria for symplectic systems with singularities
to have stochastic behavior [LW]. In the non-singular case their result is essentially the
same as Corollary 4.1 of rhe present paper.
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2. Cocycles over dynamical systems, characteristic exponents, Lyapunov functions and
cone families
Let (X, fi) be a Lebesgue probability space, T : (X, /x) -*• (X, fi) be a measure-
preserving transformation and A : X -*• GL(m, R) be a measurable map such that

max (log || A||, log HA"11|) e L\x, /*). (2.1)

These data determine a linear extension

T(A) : X x R * - > X x r , Tw(x, v) = (Tx, A(x)v).

Let

Afr n \ - l A(Tn~lx) • • • A(Tx)A(x) for n > 0
[A L(T "x)---A (T lx) for n > 0.

Obviously, (r(A))"(.x, u) = (T"x, A(x,n)v). Formula (2.2) determines a GL(n, Un-
valued cocycle over the Z-action {rn}nez. By a slight abuse of terminology, we will
sometimes call the map A itself a cocycle.

The multiplicative ergodic theorem [O] asserts that for almost every x e X the
following limits

lim - log ||A{x, n)v\\ = x+(u, x; T, A) d= X
 + (v)

n->oo n

and

lim - log ||A(*, -«)i; | | =X~(v, x; T, A) = x"(i;)
n->oo n

exist for every v ^0.
Furthermore, there is a Tw-invariant measurable decomposition defined for almost

every x € X,

W" = © E'x (2.3)

such that x ± ( f ) = ±A.,-(x) for every v e £!^\{0}, where X\(x) < A.2OO < • • • < k
The T-invariant functions Xi(x) are called the Lyapunov characteristic exponents of the
extension Tw. The dimension of the space E'x is called the multiplicity of the exponent
ki(x). If the transformation T is ergodic with respect to /z, the Lyapunov characteristic
exponents and their multiplicities are independent of x.

Let Q be a continuous real-valued function in Rm which is homogeneous of degree
one and takes both positive and negative values. We will call the set

C+(Q) = G-1((0,oo))U{0}

the positive cone associated to Q or simply the positive cone of Q. Similarly,

is the negative cone associated to Q or the negative cone of Q. We will call the positive
(resp. negative) rank of Q and denote by r+{Q) (resp. r~(Q)) the maximal dimension
of a linear subspace L c M.m such that L c C+(Q) (resp. L c C~(Q)). Obviously,
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r+(Q) + r~(Q) < m. Our assumption implies that r+(Q) > 1 and r~(Q) > 1. We will
call the function Q complete if

The prime examples of functions of this sort are

= signK(v,v)-\K(v,v)\1'2, (2.4)

where K(v,v) is a non-degenerate indefinite quadratic form. The positive and negative
rank of such a Q are equal correspondingly to the positive and negative indices of
inertia, i.e. the number of positive and negative eigenvalues for the quadratic form K.
The function Q defined by (2.4) is complete.

More generally, if A. is a positive real number and F is a real function on M.m which
is homogeneous of degree X and takes both positive and negative values, one can define
a homogeneous function Q of degree one by

Q(v)=signF(v)-\F(v)\l'k. (2.5)

Then one would mean by the positive and negative cone, positive and negative rank and
completeness of F the corresponding properties of Q.

The notions of positive and negative rank and completeness can be defined in a
somewhat more general context. Let C be an open cone in Rm, i.e. a homogeneous
subset C C Km such that C\{0} is open. The rank of C, r(C), is defined as the maximal
dimension of a linear subspace L C Rm which is contained in C. The complementary
cone C to C is defined by

C = (R"\ClosC)U{0}.

Obviously the complementary cone to C is C.
A pair of complementary cones C, C is called complete if r(C) + r(C) — m.
We will call a real-valued measurable function Q on x x Rm a Lyapunov function for

the extension T(A) (or simply for the cocycle A) if
(i) For almost every x e X the function Qx on Rm defined by Qx(-) = Q(x, •)

is continuous, homogeneous of degree one and takes both positive and negative
values,

(ii) The positive rank r+(Qx) and the negative rank r~(Qx) are constant almost
everywhere and Qx is complete for almost every x.

(iii) For almost every x e X

QTMWV) > Qxiv) for all i; 6 Km.

If the inequality in (iii) is strict for every v ^ 0, we will call Q a strict Lyapunov function
for Tw. The notion which is both useful and flexible lies in between the Lyapunov and
the strict Lyapunov property.

Definition 2.1. A real-valued measurable function Q on X x M.m is called an eventually
strict Lyapunov function for T*A) if it satisfies conditions (i)—(iii) above and the following
condition:
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(iv) For almost every x e X there exists n = n(x) > 0 such that for all t; e Km \ {0}

QT'(X){A{x,n)v)> Qx(v)

and
QT-»M(A(X, -n)v) < Qx{v).

Condition (ii) allows one to define the positive and negative rank r+(Q) and r~(Q)
of a Lyapunov function as the common values of r+(Qx) and r~(Qx) respectively for
almost every x.

The notion of eventually strict Lyapunov function gives a convenient and concise way
to formulate a generalization of some results of Wojtkowski from [W]. For Wojtkowski's
results in their original form see Proposition 2.1 and Corollary 2.2 below.

THEOREM 2.1. If a cocycle A : X - • GL(n,R) satisfies (2.1) and the extension T(A)

possesses an eventually strict Lyapunov function Q, then T^ has almost everywhere
exactly r+{Q) positive Lyapunov characteristic exponents and r~(Q) negative ones. For
almost every x one has E+ C C+(QX) and Ex C C~(QX).

This theorem was proved by Markarian [Ma, Theorem 1] in the case when Q is
obtained from a quadratic form by formula (2.4).

Proof. First, let us consider the decomposition of T into ergodic components. Both
condition (2.1) and the existence of an eventually strict Lyapunov function are inherited
by almost every ergodic component of T. On the other hand, the conclusion of the
theorem would hold for T if it held for almost every ergodic component of T. Thus we
may assume without loss of generality that T is ergodic.

Secondly, in order to establish the conclusion of the theorem, it is sufficient to show
that for almost every x e X there exist subspaces D+ and D~ of R of dimension r+(Q)
and r~{Q) respectively, such that for all integers n (both positive and negative)

A(x,n)Dx
tcC±(QTnx) (2.6)

and for all non-zero v e D^

limsup - log ||A(x, Tn)v\\ < 0. (2.7)
n->oo n

In fact one then has Df = Ef for almost every x e X.
We shall prove the existence of the spaces D^. The argument for D~ is completely

similar, with T"1 replacing T and the cones C~(QX) playing the role of C+(QX).
Let C j be the closure of the cone C+(QX). According to our assumption, it contains

a subspace of dimension r+(Q). For n = 1, 2 . . . , let

By condition (iii) from the definition of a Lyapunov function, the sequence {C+x} is
nested, i.e. C*x D C£x D . . . ; obviously each set C+x still contains a subspace of
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dimension r+(Q). Using compactness of the intersection of C+x with the unit sphere,
we deduce that the intersection

also contains a subspace of dimension r+(Q). From the construction of the set C+x and
from conditions (iii) and (iv), we see that for almost every x e X, any v e C^ox and
any integer n

A(x,n)vCC+(QTnx).

Thus if we take as Z)+ any r+(g)-dimensional space lying inside C^ox condition (2.6)
will be satisfied. In particular,

so that the function Qx is positive on C^ x. Since the intersection of the set C+, x with
the unit sphere is compact, the function Q*(w)/IMI has a positive lower bound q(x)
on the set C^ox. On the other hand, since Qx is a continuous homogenous function of
degree one, the function <2x(u)/IMI has an upper bound s(x). Thus there is a set of
positive measure E C X and positive constants c\, C2 such that for all x e E and all

cilMI < Qx(v) < c2||i>||. (2.8)

By ergodicity of T, almost every x e X has infinitely many positive and negative iterates
in the set E. If we replaced T by the induced map TE : E -» E and the extension T(A)

by the corresponding induced extension on E x W, the assumptions of the theorem
would still hold. On the other hand the assertions hold for T if they hold for TE- Thus
we may assume without loss of generality that (2.8) holds.

If x e X and n is a positive integer, let

QT-X(A(X, -n)v)
pn{x) = sup —— (2.9)

and
L(x,n) = log pn(x).

Since A(x)C^x = C^Tx, it follows that

Pm+n(x) < pn(x) • pm(T~"x).

Therefore L(x,n) is a sub-additive cocycle over T~*.
Condition (iii) implies that pn(x) < 1 for almost every x e X. From condition (iv) and

the compactness of the intersection of the set Cj , x with the unit sphere, it follows that for
almost every x e X there exists n(x) such that pn(X)(x) < 1. Hence fx L(x, n)d[i < 0
for all large enough n. Since we assumed that T is ergodic, the subadditive ergodic
theorem implies that for almost every x e X

»oo
f

jx
lim L ( * ' n ) = lim f L(x,n)dfi < 0. (2.10)

j
By (2.8) and (2.9), any v 6 C^x satisfies

< cr1 QT-»X(A(X, -n)v) < c~x Qx(v)pn(x) <c2c^pn{x)\\v\\. (2.11)
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By taking logarithms, passing to the limit in (2.11) and using (2.10), we obtain for any
non-zero v e C^ x (and hence for any non-zero v e

hmsup < lim I
n-*oo n n^°°Jx

L(x,n)diJ, < 0,

thus verifying (2.7). •

Lyapunov functions are intimately related to the invariant families of cones studied
by Wojtkowski and other authors. For a Lyapunov function Q, let

Cx = C+(QX).

Of course, Cx is a cone in Rm. Condition (ii) implies that the pair (Cx, Cx) is completef.
Condition (iii) implies

A(x)Cx C CTx, A~l(x) Cx c Cr-ix, (2.12)

and (iv) means that for almost every x e X there exists n = n(x) such that

Clos(A(x,n)Cx)cCT>x and C\os(A(x, -n)Cx) C CT-X. (2.13)

Definition 2.2. Let C = {Cx}, x e X be a measurable family of cones in Rm. Assume
that for almost every x the pair (Cx, Cx) is complete and properties (2.12) and (2.13)
are satisfied. Then the family C is called an eventually strictly invariant family of cones
for the extension Tw (or just for the cocycle A).

Thus the existence of an eventually strict Lyapunov function for Tw implies the
existence of an eventually strictly invariant family of cones. Conversely, if C is an
eventually strictly invariant family of cones, it is not difficult to see that there is some
eventually strict Lyapunov fuction Q such that Cx — C+(QX)\. But if we begin
with a homogeneous function Q and find that the cone field C+(QX) is eventually
strictly invariant, we cannot expect Q to be an eventually strict Lyapunov funtion. For
certain interesting classes of cocycles and cones, however, this does occur. The most
important case for applications involves cocyles with values in the symplectic group
Sp(2m, R) m = 1, 2 , . . . and the so-called symplectic cones which are defined later. For
the sake of clarity, we will precede the discussion of this situation by that of the special
case m = 1, i.e. we will consider R2 extensions and SL{2, R) cocycles. For this case,
we will present an explicit and very elementary proof.

Let us call a cone C c T connected if its projection to the projective space RP(n — l)
is a connected set. A connected cone in R2 is simply the union of two opposite sectors
formed by two different straight lines intersecting at the origin plus the origin itself. By
a linear coordinate change such a cone can always be reduced to the following standard
cone

5 = {(«, D ) e K 2 : « v > 0 ) U {(0, 0)}. (2.14)

t Note that the complementary cone Cx is not always equal to C~(QX). This happens exactly when arbitrarily
close to each v such that Qx(v) = 0 one can find v' such that Qx{v') > 0.
$ We thank Marlies Gerber for this remark.
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THEOREM 2.2. If an SL(2, R) cocycle possesses an eventually strictly invariant family of
connected cones C = {Cx}xex then it has an eventually strict Lyapunov function Q of the
form (2.4) such that the zero set of the function Qx coincides with the boundary of the
cone Cx.

Proof. First, assume that Cx = S for almost every x e X. Then if

(2.12) implies that a(x), b(x), c{x), d(x) are non-negative numbers. Since A(x) e
5L(2, Z) we have 1 = a(x)d(x) - b(x)c(x). On the other hand, let K{u,v) = uv
and assume that («, v) e 5. Then uv > 0 and

K(A(x)(u,v)) = (a(x)d(x) + b(x)c(x))uv + a(x)c{x)u2 + b(x)d(x)v2

> (a(x)d(x) + b(x)c(x))uv > (a(x)d(x) - b(x)c(x))uv = K(u, v).

(2.15)

Applying a similar argument to the iterate

A(x,n) = (a(x,n) b(x,n)c(x,n) d(x,n)),

we deduce from (2.13) that for n = n(x) we have b(x, n) > 0 and c(x, n) > 0, which
immediately implies using (2.15) that K(A(x,n)(u, i>)) > K(u, v).

In the case of an arbitrary family of connected cones, let us introduce a coordinate
change L : X —> SL(2, R) which takes two lines bounding the cone Cx into the
coordinate axis. Then L(x)Cx = S. For the cocycle B, B(x) = L(Tx)A(x)L~l(x),
the constant family of cones S is eventually strictly invariant and hence, by the previous
argument, the function Qo(x, u, v) = sign(«v) • |«D| 1 / 2 is an eventually strict Lyapunov
function. Hence for the original cocycle A, the function Q{x, u, v) = Q0(L(x)(u, v))
has the same properties. •

Let us proceed to the general symplectic case. We denote by a> the standard symplectic
form in R2m,

m

co{x,y) = ]T(x,ym+; - y,-xm+i),

and by K the following non-degenerate quadratic form of signature zero:

K(x) =

The cone
S = ( i £ R2m : K(x) > 0} U {0}

will be called the standard symplectic cone. The image of the standard symplectic cone
under an invertible linear symplectic map will be called a symplectic cone. Wojtkowski
suggested the following elegant coordinate-free description of symplectic cones and the
corresponding quadratic forms [LW]. It is possible that this description has been known
in symplectic geometry before, although we were not able to find an appropriate source.
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Let L\, Z-2 be two transversal Lagrangian subspaces in an 2m-dimensional symplectic
space (H, a>), i.e. complementary m-dimensional subspaces on which the symplectic
form a) vanishes. Then for any v e H there is a unique decomposition

v = i>i + i>2, vi e Li, i = 1, 2.

Let
KLlM(v)=w(vuv2) and CLI.L2 = K^M((0, oo)) U {0}. (2.16)

Then Ciui2 is a symplectic cone and Kiui2 is a corresponding quadratic form.
It is easy to see (e.g. by a direct calculation in the standard case) that for a given

symplectic cone C in a symplectic space there are exactly two isolated Lagrangian
subspaces L\, L2 which belong to the boundary of C and that either C = CLuLl or
C = Ci2iLr Thus the cone C canonically determines the form K: we have

K(C) = KLl.L2 or KLltLl, (2.17)

according to which form is positive on C.
For example, the standard cone S is CLuLl, where

L1={(x,0):xeRm} and L2 = {(0, x) : x e Rm}.

The following statement is a reformulation of Proposition 5.1 from Wojtkowski's paper
[W] in coordinate-free terms.

PROPOSITION 2.1. Let H, H' be two 2m-dimensional symplectic spaces. Let L\,Li C H,
L\, L'2 C H' be pairs of transversal Lagrangian subspaces and A : H —*• H1 be a
symplectic linear transformation such that A CLUL% C CL\,L'2- Then for all v € H

KL\,L'MV) > KLxM{v).

Furthermore, if
A(ClosCL,.i.1)CCi'|,ii,

then for any norm in H there exists e > 0 such that

The last proposition immediately implies the following relation between invariant cone
families and Lyapunov functions.

COROLLARY 2.1. Let A : X —> Sp(2m,M) be a cocycle over a measure preserving
transformation T : (X,fi) —> (X,fj.). If A has an eventually strictly invariant family
of symplectic cones C = [Cx], x G X, then it also has an eventually strict Lyapunov
function Q, where Qx has the form (2.4) with the quadratic form Kx of signature zero.
Furthermore, the zero set of the function Qx coincides with the boundary of the cone Cx.

Combining Corollary 2.1 with Theorem 2.1 we immediately obtain

COROLLARY 2.2. If a cocycle A : X -> Sp(2m, R) satisfies (2.1) and has an eventually
strictly invariant family of symplectic cones, then the extension T^ has m positive and
m negative characteristic exponents.
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Now we will very briefly mention how to obtain counterparts to the results from this
section for continuous-time dynamical systems.

Let {r,},£R be a measure-preserving flow on the Lebesgue measure space (X, fi). A
matrix cocycle over the flow is a measurable map A : X x M ^ G L ( m , R ) such that

A(x, fi + ti) = A(Thx, t2)A(x, fi) for a.e. x e X and all tu t2 e R.

The linear extension {7",(A)},eR of the flow determined by the cocycle A is defined as
follows:

Condition (2.1) becomes sup1<r<1 ||A(-,OII e Ll(X,fi). The definition of Lyapunov
characteristic exponents, the multiplicative ergodic theorem, the decomposition (2.3) and
all definitions and results concerning Lyapunov functions and cone families for linear
extensions are completely similar to the discrete time case.

3. Survey ofPesin Theory; the Bernoulli property for contact flows
3.1. Now let us consider a C1+£ (s > 0) diffeomorphism / of a compact m-
dimensional differentiate manifold M, preserving a Borel probability measure /A. The
differential Df : TM -» TM is a linear extension of / to the tangent bundle TM.
Although topologically the tangent bundle may not be the direct product of M and Rm,
this is always true up to a set of measure zero. Moreover, one can fix a Riemannian metric
on M and assume that the norm of vectors in TM generated by that metric corresponds
to the norm in the direct product. Thus the Lyapunov characteristic exponents exist
almost everywhere and define a decomposition of TXM similar to (2.3). When it does
not cause confusion we will use the same notations as in §2. Let

K and E;= 0 Ex. (3.1)
i:Xi(x)<0

The subspaces E~ and £+ are called the stable and unstable subspaces at the point x.
The first important result of Pesin theory is a kind of unique integrability of the families
of stable and unstable subspaces. Let dim£~ = s(x) and dim£+ = u(x).

THEOREM 3.1. There exists a set A, fi{M \ A) = 0, such that for every x e A there are
C1 submanifolds Ws

x and W" with the following properties:
(a) W*nWZ = {x}.
(b) W* and W" are embedded diffeomorphic images of closed balls of dimensions s(x)

and u(x) respectively. Moreover, such diffeomorphisms can be effected by the
exponential maps from certain neighborhoods of the origin in the spaces E~ and £+.

(c) TXWS
X = E' and T? = E+.

(d) fWx C W'w and fW; D W^x).
(e) If x,y e A and y e Wx, then for an open neighborhood U of y we have

U n Ws
y = U n Ws

x; similarly for Wu
x and W^.

(f) If x e A, then the distance between f(x) and f(y) goes to 0 exponentially as
n -*• oo if and only if /"(y) e H^,,(x) for some n. The same is true as n -*• —oo if
and only if f(y) 6 W"n(x) for some n.
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(g) The submanifolds Wx and W" depend on x in a measurable way.

The manifold Wx is called the local stable or contracting manifold of the point x;
similarly, Wx is called the local unstable or expanding manifold of x. Since the local
stable manifolds for / are at the same time the local unstable for / " ' , every result about
stable manifolds implies a similar statement about unstable ones. Accordingly, we will
sometimes omit one of those parallel statements.

Let us assume that Wx and W" are considered as elements of the disjoint union of
spaces of C1 embeddings of the standard ^-dimensional ball into M for k = 0 ,1 , • • •, m.
We can define the size of a local manifold in the following way. According to 3.1.b the
exponential map at the point x with respect to the Riemannian metric induced on Wx

establishes a diffeomorphism between a subset D of E~ and Wx. The size of Ws
x is

equal to the radius of the maximal ball about the origin which is contained in D.
By Luzin's theorem, one can find for every e > 0 a closed set Ae c A such that

fi(M \ AE) < s and the maps x —> Wx and x —> Wx are uniformly continuous on A£.
By throwing away a set of measure 0, we can assume that A = Ue>o ^- In particular,
there is a positive lower bound cr(s) for the sizes of local stable and unstable manifolds
for the points of the set AE. For x e Ae and for any positive number S < <r(e) we define
the S-truncated stable manifold of x, Wx

<s c Wx, as the image of the <5-ball about the
origin in E~ under the exponential map.

Let

A*'* = {x e AE : dim Ws
x = k, dim Wu

x = I}.

Pick a point x e A^1 and consider two small (m — &)-dimensional transversals T\
and 7*2 to the local stable manifold Wx. For every point y 6 A*£ sufficiently close
to x, the local stable manifold W* intersects each of the two transversals at exactly
one point. Correspondence between these intersection points defines a continuous map
between certain subsets of the transversals. Let us denote the domain of this map by
DeTi T2> i t s r a n 8 e by Rk

e j , Tl and the map itself by H^ Ti. We will usually suppress
the dependence on k and I in our notations. A completely similar construction can be
carried out for local unstable manifolds. If k + i = m, then local unstable manifolds can
be used as transversals to the stable ones and vice versa.

Let us call a measure on M absolutely continuous if its restriction to any coordinate
neighborhood is absolutely continuous with respect to the Lebesgue measure in that
neighborhood. The following result of Pesin plays the central role in the study of
ergodic properties of smooth dynamical systems via Lyapunov characteristic exponents.
It establishes the property which is usually called absolute continuity of families of local
stable manifolds. Let £ be a partition of M into open subsets of local stable manifolds
of points from A*'£ and M \ (J Wx. Let nx be the conditional measure induced by /A on
the element of % which contains x e A*i£.

THEOREM 3.2. Suppose that the measure \i is absolutely continuous and that x e Ak
e'

1

is a Lebesgue density point of the set Ak
e
x. For any two transversals T\, T2 to the

local stable manifold Wx, which are sufficiently close to each other, the sets Dk
e'£ Ti and

RE'jx Tl have positive (m — k)-dimensional Lebesgue measure and the map f/*'̂  Ti is
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absolutely continuous with respect to that measure. Furthermore, for almost every x in
Ak

e'
1 the conditional measure (is

x is absolutely continuous and its density with respect to
the measure ks induced by a Riemannian metric is bounded between two positive constants
which depend only on x and the Riemannian metric.

Non-vanishing of all characteristic exponents is sufficient for a kind of local ergodicity.

THEOREM 3.3. If, under the assumptions of Theorem 3.2, we have k + £. — m, then there
exists S = 8(e) > 0 such that for each x e M almost every point of the set

\J (w; u wp

belongs to the same ergodic component E of f. In particular, almost every point of M
lies in an ergodic component of positive measure.

Local stable manifolds can be extended or 'saturated' in a natural fashion. If x e M
and n > 0, let us denote the manifold f~"W},x by Ws

xn. By Theorem 3.1(d) if n > n',
then Ws

xn D Ws
x „,. Now we can define the global stable manifold of x, Ws

x = U^i, W^n,
which in general is not an embedded submanifold of M. The manifolds Wx n and W"
are defined similarly.

COROLLARY 3.1. In the assertion of Theorem 3.3 the manifolds W* and W" can be
replaced by Ws

y n or W* n and Ws
y n or W" correspondingly.

Pesin analyzes ergodic properties of diffeomorphisms with non-vanishing Lyapunov
characteristic exponents in great detail. His results in that direction can be summarized
in the following way.

THEOREM 3.4. Let E be an ergodic component for f which has positive measure and
non-zero Lyapunov characteristic exponents. Then E is a union of disjoint measurable
sets Eu...,En = Eo such that fEk = Ek+U k = 0 , . . . , N - 1, and fN restricted
to each set Ek is a Bernoulli map. Furthermore, the sets described in Theorem 3.3 and
Corollary 3.1 belong to the same £*.

The sets Ek from the theorem are uniquely defined up to a set of measure zero. We
will call these sets Bernoulli components for / .

Theorem 3.1 and 3.2 remain true for C1+£ flows with appropriate modifications.
A major but obvious difference for the case of smooth flows is the presence of an
invariant one-dimensional distribution determined by the direction of the flow. If the
invariant measure /u. vanishes on the set of the fixed points of the flow, which we will
always assume, this distribution contributes a zero Lyapunov exponent for the flow of
differentials. Theorem 3.3 and Corollary 3.1 are extended in a natural way to C1+e flows
for which the zero exponent has multiplicity one. The counterpart of Theorem 3.4 looks
as follows.

THEOREM 3.5. Let E be an ergodic component of positive measure for a Cx+e flow on
a compact manifold which preserves an absolutely continuous measure. Then either the
flow on the set E is a Bernoulli flow or it possesses a non-constant eigenfunction. In the
latter case, the flow E is isomorphic to a constant-time suspension over a Bernoulli map.
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For the original proofs of Theorems 3.1-3.5 see [PI] and [P2]. Pesin's proofs are
basically sound but some of them, especially in the absolute continuity part (Theorem
3.2), contain numerous minor gaps and errors. Proofs following very closely the line
of Pesin's argument but with the gaps filled and errors corrected can be found in [KS].
However, the presentation there is rather heavy, not surprisingly, most of all again in
the part concerning absolute continuity. An extra source of heavy notation in [KS] is
the need to generalize Pesin's theory to systems with singularities. A more conceptual
and lucid presentation of Pesin's theory is forthcoming in [KM1]; the shorter version
[KM2] may serve as a complement to the present account. Another account has recently
appeared in [PS].

3.2. There is a significant special case in which only the former alternative in Theorem
3.5 is possible.

Let us assume that M is a compact manifold of odd dimension 2m + 1. A contact
form on M is C1 differential 1-form a such that the (2m + l)-form a A (da)m is non-zero
at every point. The kernel of a is a codimension 1 distribution on M. The restriction of
the 2-form da to ker a determines a symplectic structure there.

There is a unique vector field X on M such that da(X, Y) = 0 for all vector fields
Y and oc(X) = 1. The flow <j> = {</>(},eR defined by X is called the contact flow on
M. It preserves the contact form a. Conversely, any flow on M that preserves a is a
constant speed reparametrization of <f>. The contact flow preserves the distribution Kera,
the symplectic structure there and the measure ix on M determined by the volume form
a A (doc)m.

The following result constitutes a useful new addition to Pesin theory.

THEOREM 3.6. Let M be a contact manifold as above. Let E be an ergodic component of
the contact flow <p which has positive measure and non-zero Lyapunov exponents except
in the flow direction. Then the flow on E is Bernoulli.

Proof. By Theorem 3.5 it suffices to show that any eigenfunction on E is /u.-a.e. constant.
Recall that / : £ —>• C is called an eigenfunction if / is measurable and there is X. e M.
such that

f(<p,x) = ea'f(x) for almost all x e M and t e E. (3.2)

We shall show that if / is an eigenfunction and A > 0, we can choose, for fA-a.e. x e E,
a number A(x) such that

0 < |A(JC)| < A and / ( 0 A W * ) = / (*)• (3.3)

If follows from (3.3) and the eigenfunction property (3.2) that / is a.e. constant. •
First we apply a version of the classical Hopf argument to / . In the flow case the local

stable and unstable manifolds are denoted by W*s and W*'" correspondingly where an
extra s stands for "strong". Acoordingly the families of those, manifolds are denoted by
Wss and Wsu. Those families are integrable with the orbit foliation. Resulting integral
manifolds are denoted by W°s and W°u. Let fiss and /zfU be the conditional measures
induced by \i on the leaves of Wss and Wsu.
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LEMMA 3.1. Let Q be the set of x e A such that f(y) = f(x)for (iss-a.e. y e TV" and
/ ( / ) = fix) for nsu-a.e. y' e W*". Then fi(M \Q)=0.

Proof. We may assume that when we applied Luzin's theorem to choose the closed set
Ae, we also arranged for / to be continuous on AE. Let A* be the set of x in A£ for
which { t e R : 4>,x e A£} has upper density > 1/2 as t -*• oo and as t -*• —oo. Since
fj.(M \ AE) -> 0, we see that fi(A£ \ A*) -»• 0 as s -» 0. Observe also that if x e AJ
and v 6 IV" D A* for some s < S, then there are arbitrarily large / for which both <f>tx
and 4>ty are in Ae. We see from (3.2) and the uniform continuity of / on A* (remember
that the sets A* are compact !) that f(x) = f(y). If x e A*s and y' e W™ n A* for
some s < S, we see by a similar argument that f(x) = f(y').

Now consider a fixed <5 > 0. Since {J(<s A* has full /n-measure, it follows from
the absolute continuity of IV" that for /x-a.e. x e A* the sets W*s D (\J(<5 A*) and
W"n( ( J € < i A*) have full /i^-measure in IV" and full /xiU-measure in WJ" respectively.
It follows that for each S > 0, fi-a.e. x e A J has desired properties. •

Let Xss and Xsu be the Riemannian measure on W" and W™ respectively. It follows
from the version of Theorem 3.2 for flows that for /x-a.e. x € A*, the measures [iss

and ixsu are absolutely continuous with respect to Xss and A,H, and there is a constant
c = c(x) such that d/j.ss/dXss < c everywhere in Wss and dfj,su/dXsu < c everywhere
in Wsu. By deleting a set of measure 0, we may assume that every x e Q has these
properties. Now let Qt = {x e Q n Ae D £ : x is a /u.Jf-density point of <? n AE n £ n Ws

x
s

and a /i i u -density point of Q n A£ n E n W*"}. Since Ue>o ^e has full measure, it suffices
to show that if x e Qe for some £ > 0, then x has property (3.3).

Choose a Riemannian metric on a neighborhood of x so that E~ and E+ are orthogonal
and exp^ maps neighborhoods of the origin in E~ and £+ diffeomorphically onto
neighborhoods of x in Wss and IV1". For a small ^ > 0, let

5 = {expx w : iu e £ J © £+ and ||w|| < ^}

and let
N = {4>,y : y e S and |f| < rj}.

If y 6 N fl A£, let W*(y) be the connected component of y in the set W* n Â  for
* = ss, su, os, ou. We may assume that 2r\ is less than the length of any closed orbit
of 0 and r\ is small enough so that S and all sets of the form Wss(y) n 5 or Wsu(y) n 5
have the property that any two points are connected by a unique geodesic.

We may also assume that if y, y' e .A£, y = exp^ v with u € E~, and ||v|| < rj/2
and y' = expx v' with u' e £+ and \\v'\\ < r]/2, then each of the sets

IVs" (y) n WOJ (y') and Wou (y) n W" (y')

consists of a single point which lies in N. Denote these points by z and z! respectively.
Define A(y, y') so that

Z' = 4>A(y,y')Z

and the curve V0(s) = <j)SA(y,y)Z, 0 < s < 1, lies in N. Observe that if both y and y' are
in ge, we have f{x) = / (y) = f(z) and

f(.<t>A(y,?)X) = f(<pA(y,y')y) = f(<l>A(y,?)Z) = f(z') = f(y') = f{x)
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Thus x has property (3.3) if we can choose y in Wss(x) n Ge and y' in Wsu(x) H Qe

so that A(y, y') is non-zero but as small as we wish. The next two lemmas show that
this is possible. Despite its formulation in dynamical terms, the first lemma essentially
belongs to symplectic geometry.

LEMMA 3.2. A(y, y') = da(v, v') + o(\\v\\2 + ||i/||2) as y ->• x in Wss(x) D Ae and
y' -* xin Wsu(x)DAE.

Proof. Let it : N -> S be the projection along the orbits of <j>. Let z" = jrz = 7rz'. Let
yi be the geodesic in W f t ( / ) with yi(0) = T a n d yi(l) = / . Let yi be the geodesic
in Wsu{x) n 5 with y2(0) = y' and y2(l) = x. Let y3 be the geodesic in Wss(x) n 5
with K3(0) = x and ^(1) = y. Let y4 be the geodesic in Wsu(y) n 5 with y4(0) = y
and ^ ( l ) = T . Finally let £ be the surface in S formed by the geodesies joining yi(s)
to Yi(\ — s) an (l Yi(s) t 0 74(1 — *) for 0 < J < 1. The precise construction of E is not
important. What matters is that one can see from the convergence of Wss(y) to Wss(x)
and of Wsu(y) to Wsu(x) in the C1 -topology that

f da = da{v, v') + o(\\v\\2 + | |i/| |2). (3.4)

Recall that To is the curve with T0{s) = ^>SA(y,y')Z, 0 < s < 1. Let F be the curve in
N such that starts at z', is tangential to Kera and has 7T O F = y. Then F ends at z and

« = / a = A(v ,y) + O( | |u| |2+| | l ; ' | |
2) , (3.5)

r ^r0

because the vector field X which generates (j> satisfies ct(X) = 1. Now observe that
Fo * F and 3S are closed curves that bound a surface which is tangent to the vector
field X and da vanishes on any 2-plane containing X. Using this and Stokes theorem,
we obtain

f da= f a,
which together with (3.4) and (3.5) completes the proof. •

LEMMA 3.3. There is c0 > 0 such that for any small enough S > 0 there are v e E~ and
v' e £+ such that

(2) expj v e Ge
 and expx v' e GE;

(3) \da(v,v')\ >c0S
2.

Proof. Let As = {(u, v') e E~ © E+ : 8/2 < \\v\\, \\v'\\ < 8} and ^ = {(u, v') e Aa :
||u|| < 5 and ||D'|| < 8}. Let Q = {(u, v') e Bs : exp^ v e Ge and exp^ v' e 5E}. Let

A._ and k+ be the Lebesgue measures on E~ and £+ and X their product. Since the
pullbacks of kss and ksu by expx are equivalent to k_ and A.+ respectively, and x is a
density point for both fiss and nsu, we see that

> 1 as 5 ^ 0 . (3.6)
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Now choose Co > 0 so that there exists (v, v') e A\ such \da(v, v')\ > Co- Let
Ds = {(u, v') e A5 : \da(v,v')\ > c0S

2}. Then Ds = {(Sv,Sv') : (v, v') e A } ,
and so for all <5

M A ) A(Z?i)
0- (3-7 )

The lemma follows from (3.6) and (3.7). •

4. Ergodicity and the Bernoulli property for systems with infinitesimal Lyapunov
functions: formulation of results
Various notions of Lyapunov functions and invariant cone families discussed in §2 in
the context of linear extensions of measure preserving transformations have natural
continuous analogues. We will begin with appropriate general definitions and then adapt
them to the specific situation of diffeomorphisms (or smooth flows) of compact manifolds
and their differentials.

Let X be a compact metrizable space and B a locally trivial W -bundle over X
whose fiber Bx is equipped with an inner product that varies continuously with x. Let
/ : X ->• X be a homeomorphism and / : B - > f i a linear extension of / . Since, unlike
in the measurable situation discussed in §2, the bundle B may be non-trivial globally, the
extension / can not in general be determined by a GL(n, R) cocycle over / . However,
it is often convenient to cover X by a finite system of neighborhoods over which the
bundle trivializes and to represent / locally in matrix form.

Let U C X be an open subset and By the restriction of the bundle B to U.

Definition 4.1. A continuous real-valued function Q defined on By is called a continuous
Lyapunov function for / if
(i) For every x 6 U the function Qx = Q(x, •) : R" -> R is homogeneous of degree

one and takes both positive and negative values,
(ii) There exist continuous distributions Z>+ C C+(QX) and D~ c C~(QX) such

that Bx — D+ + D~ for all x e U. In particular, r+(Qx) = dim D+ and
f~(Qx) = dim D~ are constant on U.

(iii) ifxeU, n > 0 and f"x e U, then for all v e Bx

Qf"x(f"v) > Qx(v).

Now assume that / has a invariant Borel measure p, that is positive on open sets. A
continuous Lyapunov function for / will be called eventually strict if
(iv) For ^,-almost every x e U there exist k = k{x) > 0 and t = l(x) > 0 such that

fkx e U, f-ex e U and for all veBx\ {0}

M and Qf-ix(r
lv) < Qx(v).

A continuous Lyapunov function for / will be called eventually uniform if
(v) There exists e > 0 such that for //.-almost every x e U there are k = k(x) > 0 and

I = i(x) > 0 such that for all v e Bx

QMf**) > Qx(v) + s\\v\\ and Qf->x(r
lv) < Qx(v) - e\\v\\.
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Continuous eventually strict Lyapunov functions are the direct counterpart of the
eventually strict Lyapunov functions in the measurable situation (Definition 2.1). They
will play the same role for local ergodicity (openness of the ergodic components almost
everywhere) as the latter play for the non-vanishing of the Lyapunov exponents. The
somewhat stronger notion of continuous eventually uniform Lyapunov function is needed
to ensure global ergodicity on connected components of the set U.

In order to introduce topological counterparts for the notions of invariant cone families,
we need to define a topology on the space of cones. For open cones in W a convenient
one is the Hausdorff topology on the intersection of the complement of the cone with
the unit sphere. This topology allows one to define a continuous family of cones in a
locally trivial bundle.

Definition 4.2. A family of cones C = {Cx}x^v is called a continuous eventually strictly
invariant family of cones on U for the extension / if it is continuous and
(i) There exist continuous families of subspaces Z>+ c Cx and D~ c Cx such that

Dt + D~ = BX.
(ii) If x e U, n > 0 and fx e U, then f"Cf-*x C Cx.
(iii) For /^-almost every x e U there exist k = k(x) > 0 and I = t(x) > 0 such that

f~kx € U, flx e U and

^ J c C , and /^(ClosCy^) c Cx.

One defines for e > 0 the £-interior of a cone C as the cone whose intersection with
the unit sphere S is the e-interior of S f~l C, i.e. [p e S D C; dist5(p, 3 S n C) > s}.

We will call a continuous family of cones C eventually uniformly invariant if (iii) in
Definition 4.2 is replaced by
(iv) There is e > 0 such that for /z-almost every x e U there exist k = k(x) > 0 and

£ = £(x) > 0 such that f~kx e U, f(x) e U and

/ * ( C y ^ ) c InteC, and rl{Cftx) C Int£C,.

All of the above definitions can be translated almost verbatim to the case of a
continuous flow on a compact metrizable space.

Let us now consider the special case when the compact metrizable space is actually a
smooth manifold M, the map / is a diffeomorphism, the bundle B is the tangent bundle
TM and the extension / is the differential Df. For the sake of future references it is
convenient to give special names for the above-defined notions in this case.

A continuous eventually strict (resp. uniform) Lyapunov function will be called an
infinitesimal eventually strict (uniform) Lyapunov function over U. Similarly a continuous
eventually strict (uniform) family of cones will be called an infinitesimal eventually strict
(uniform) family of cones.

For the flow case instead of the tangent bundle TM we will consider the vector-
bundle TM\E where E is the one-dimensional subbundle of TM generated by the
vector-field which determines the flow. The notions of infinitesimal eventually strict
(uniform) Lyapunov function and an infinitesimal strictly (uniformly) invariant family of
cones are defined accordingly.
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The following theorem represents the main general criterion of ergodicity based on
the notion of an infinitesimal Lyapunov function.

THEOREM 4.1. Let f be a C1+£ (s > 0) diffeomorphism of a compact manifold M which
preserves an absolutely continuous invariant measure positive on open sets. Let U C M
be an open set.
(i) Assume that f possesses an infinitesimal eventually strict Lyapunov function Q over

U. Then almost every ergodic component of f on the invariant set Uf = Unez / " ^
is open up a set of measure zero.

(ii) If f possesses an infinitesimal eventually uniform Lyapunov function Q over U, then
every connected component of the set Uf belongs to one ergodic component for f.
If Uf is connected then f restricted to Uf is Bernoulli.

Theorem 4.1 is proved in §5 and 6.
The analogous theorem holds for a flow except that, in general, one cannot say

anything about the Bernoulli property. In the case of a contact flow, however, one
can combine this result with Theorem 3.6 to obtain

THEOREM 4.2. Let <j> = {</>,},GR be a C1+E (e > 0) contact flow on a compact manifold M.
Assume that there is an open set U on which the flow <p has an infinitesimal eventually
uniform Lyapunov function. Then every connected component of {Jlf-R4>tU belongs to
one Bernoulli component of4>.

Let us consider now the case of a symplectic diffeomorphism / of a symplectic
manifold (M2"1, Q) where £2 is a closed non-degenerate two form. The 2m-form £lm

determines an invariant absolutely continuous measure on M2m which is sometimes
called Liouville measure. The differential D f : T M2m ->• T M2m can be viewed as a
symplectic cocycle in the sense of §2.

There is a natural topological counterpart of Corollary 2.1 which follows from the
fact that the correspondence C —*• K(C) defined by (2.11) is continuous from the cone
topology to the C° topology for homogeneous functions. For the reader's convenience
we formulate this statement explicitly.

PROPOSITION 4.1. Let B be a symplectic locally trivial linear bundle over a metrizable
compact space X and let f : B —>• B be a symplectic linear extension of a homeomorphism
f : X —*• X. Assume that f has a continuous eventually strictly invariant (resp. eventually
uniformly invariant) family of symplectic cones C = {Cx}x&u- Then f also admits an
eventually strict (resp. eventually uniform) Lyapunov function Q over x, where Qx has
the form (2.4) and dCx = Qx\0).

This proposition together with Theorem 4.1 immediately implies a criterion for
ergodicity of symplectic diffeomorphisms in terms of invariant families of symplectic
cones.

COROLLARY 4.1. Let f be a CI + e (e > 0) symplectic diffeomorphism of a symplectic
manifold (Af2m, ft) and let U C M2m be an open set.
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(i) Assume that f admits an infinitesimal eventually strictly invariant family of
symplectic cones over U. Then almost every connected component of the set Uf
is open up to a set of measure zero.

(ii) If f admits an infinitesimal eventually uniform family of symplectic cones over U,
then every connected component of the set Uf belongs to one ergodic component of
f. If Uf is connected, f restricted to Uf is Bernoulli.

5. The non-contraction lemma and the extension of stable and unstable manifolds
In this section and the next, we assume that M is a compact smooth manifold and
/ : M —y M is a C1+E(e > 0) diffeomorphism that preserves a Borel measure fi which
is absolutely continuous and has positive density with respect to the Lebesgue measure
class. The assumptions on fi mean that the conditional measures (is and \iu of \i on
the leaves of the stable and unstable foliations have positive density with respect to the
Riemannian measures Xs and A." on those leaves. In particular, a subset of a leaf of
W" that has full /u," measure is dense in that leaf. We assume that there is an open set
U Q M on which / has a continuous eventually strict infinitesimal Lyapunov function
Q. We fix a continuous Riemannian metric on M.

The results in this section are formulated for unstable manifolds; the results for stable
manifolds are exactly parallel. There are also analogous results for flows, which we
leave to the reader.

The definition of Ae in §3 does not take into account the Lyapunov function Q. In
particular, Theorem 2.1 does not tell us that £+ c C+(QX) and E~ C C~{QX) for all
x e AE. For this reason, we introduce

Ve = {xeUC\Ae: Qs(v) >e\\v\\ for all veE+ and Qx(w) < -e\\w\\ for all weE'}.

Since Qx and || • || are both homogeneous of degree one and vary continuously with x,
it is clear that each Ve is compact. Moreover it follows from Theorem 2.1 that (J£>o ve
has full measure in U.

LEMMA 5.1. (The non-contraction lemma.)
Let F be a compact subset of U and £ > 0. Then there exist S = 8(F, e) and

c — c(F, E) such that the following hold.
(i) The truncated unstable manifold W"tS is defined for every x e Ve D F.
(ii) Ifx eVeflF, ye W?<s, n > 0, fyeFandve TyW

u
x<\ then

v|| > c|M|.

Proof. Recall from the discussion after the definition of Ae in §3 that W"-s is defined
for all x e Ae 2 VE n F, provided S > 0 is small enough. By the definition of Ve,

inf inf Q^± >s. (5 1)
VnF £+\(0) ||-U ||

Note that Ve n F is compact, Qx varies continuously with x, and the local unstable
manifolds W" vary continuously in the C1 topology as x varies. We see from these
observations and (5.1) that if S > 0 is small enough, then W^s is defined for all
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x e VE n F and

inf inf inf ^ T =cx(F,s)>0. (5.2)
VnF "* ' II"11

On the other hand, the uniform continuity of x t-> Qx on the compact set F implies that
there is a constant c2(F) > 0 such that for all x e F and all v e TXM

Qx(v)<c2(F)\\v\\. (5.3)

Finally, since Q is an infinitesimal Lyapunov function,

QPy(Dfnv) > e,(i>), (5.4)

whenever y e U, n > 0, / " y e f/ and v e TyM. Thus if x, y and u are as in the
statement of the Lemma, we see from (5.3), (5.4), and (5.2) that

\\Dfnv\\>c2(F)-iQf,,y(Dfnv)

> c2(Fyl Qy(v)

>C2(F)~lci(F,e)\\v\\.

D
If W is a C1 submanifold of M, let gw be the Riemannian metric induced on W by

the metric that we fixed earlier. Define the size <?X(W) of W at a point x e W to be the
maximum radius of an open ball about 0 in Tx W on which the exponential map for gw

is defined and is a diffeomorphism.

COROLLARY 5.1. Let F be a compact subset of U F C IntF' s > 0. Then there is
r = r(e) > 0 such that ifyeF and f~"y e Ve n F for some n > 0, then ay{W^) > r.

Proof. Choose a compact subset F' of U such that F C IntT7'. Define c' and 8'
by applying Lemma 5.1 to F'. Let 77 = infxe/rdist(x, dF'). If / e Wj^y and
/ n y € F', then the derivative D / " contracts vectors in TyWf-ny by at most the factor
d. Hence f{Wjii) contains a ball whose radius in the induced metric of W" is at least
min(7?, c'S'). D

LEMMA 5.2. Let F be a compact subset of U. Then there is R = R(F) > 0 such that
°JC(W") > Rfor almost every x e F D A.

Proof. Choose a compact subset F' of U such that F C IntF'. It suffices to show that
for almost every x e AC\ F, there is r = r{x) > 0 such that ay(W^) > r for all y in a
dense subset of Wx" H F' . Then we can take R = infx€F dist(jc, dF').

Let E be an ergodic component such that n(E D F') > 0. Choose £ > 0 so that
/A(£ ( I F ' n Ve) > 0. Since / is ergodic on E, /u.-a.e. y e E has the property that there
is n > 0 with f~"y s f f l Ve. By Corollary 5.1, there is r > 0 such that CT>(W>") > r
for /x-a.e. y e E C\ F'. We now see from Corollary 3.1 and Theorem 3.2 that for /x-a.e.
x e E n F' , the set of > in H "̂ n F ' with cry(W%) > r has full /x"-measure. By our
hypothesis on /x, a subset of W" D F with full /z"-measure is dense in W" H F' .

The lemma now follows, because, as is easily seen from Theorem 3.3, the union of
the ergodic components E such that /x(F n F) > 0 has full measure in F. •
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So far we have seen that the existence of an eventually strict infinitesimal Lyapunov
function Q implies that unstable manifolds are typically reasonably large. Now we study
how Q controls the direction of the unstable manifolds. Let C+ = C+ (Qx). We use
the Riemannian metric on M to define the e-interior Int6 C+ of this cone. Recall from
Theorem 2.1 that for almost every x e U n A we have

TXWU
X = E+ c C + . (5.5)

For typical x, this relationship extends to the whole of W".

LEMMA 5.3. Almost every x e U fl A has the property that

Ty W? C C+ for all y e W? n U.

Proof. We may assume that (5.5) holds at x and that x e Ae for some s > 0. By the
Poincare Recurrence Theorem, we may also assume that there is a sequence nk -*• oo
such that f-"kx £ A£ n U for all k and f~ntx -* x as k -»• oo. It follows from (5.5),
the uniform continuity on Ac of the local unstable manifolds W (with respect to the C1

topology) and the continuity of the cone family C+ on U that there is S > 0 such that if
x' € Ae, dist(x:, JC') < 3 and y' e W";\ then TyW?, C C+,. Hence if y e W?, we have

for large fc. Applying Df"kx gives us

•
The next Lemma is crucial in §6. Together with its analogue for stable manifolds, it

implies a locally uniform transversality of typical stable and unstable manifolds.

LEMMA 5.4. For almost every z € U there are 6 = 6(z) > 0 and a neighbourhood N of
Z such that, for almost every x e N, we have

TyW? c Into C+ for all y e W? D N.

Proof. Since Q is eventually strict, we may assume that there is I > 0 such that f~'x e U
and Df'(Ct,x) C C+. By continuity, we can choose a neighbourhood N Q U of x and
6> > 0 such that /~'iV c U and for all y e N

For almost every y e N we. have Tf-iyW", c Cj"_/;c, which implies that

T-yWy" C Df'(C+_,y) c Intas Cy
+. (5.6)

It follows from absolute continuity (Corollary 3.1) that for almost every x e U l~l A
property (5.6) holds for ^-a.e. ^ e H "̂ D TV. Since a subset of WJ* fl Â  with full
/x-measure is dense, we see that

TyW? C Into C+ for all y € Wx" D JV.

D
If the infinitesimal Lyapunov function g is eventually uniformly invariant, there is a

global version of Lemma 5.4.
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LEMMA 5.5. If Q is eventually uniform, there is 8 > 0 such that for almost every x e U
we have

TyW? c Into C+ for all y e W? n U.

Proof. Almost every y e U has the properties that y e A and there is a sequence
nk -»• oo such that f~"ky e U n A and Tf-tyWf-.ky C C/-«ty for each *. For such y
we have

•/"'C;_^y. (5.7)

Since Q is eventually uniform, there is 6 > 0 such that for almost all y the right hand
side of (5.7) lies in Int20 CJ~. Thus for almost every y 6 U D A, we have

Now one can apply essentially the same absolute continuity argument as at the end of
the proof of the previous Lemma. •

6. Proof of the main theorem
In this section we use Lemmas 5.2, 5.4, and 5.5 together with their analogues for stable
manifolds to prove Theorem 4.1. The corresponding result for flows can be proved in a
similar way; this is left to the reader.

The first part of the argument is some simple Euclidean geometry. Let k and k' be
positive integers and set n = k + k'. Let C and C be cones in R" of rank k and k'
respectively. Assume there is e > 0 such that

<(t>, v') >s for all veC\ {0} and v' e C" \ {0}.

Let IV and IV' be C1 submanifolds of R" with dimension k and k' respectively. Suppose
that we have

TXW c C and TX,W c C

whenever x e W and x' e W and we make the canonical identifications of TXW and
7VR" with W. Assume that there are x0 e A and x'o e W such that

0xoW > 1 and ax'oW > 1,

where a denotes the injectivity radius of a submanifold of W defined by the Euclidean
metric.

LEMMA 6.1. If dist(x0, XQ) < sin2(£/2J, then ffnW'/d.

Proof. Suppose x e W, x' e W and x # x'. Let u(x,x') be the unit vector that
points from x to x', v(x,x') the orthogonal projection of u(x,x') onto TXW, and
6(x,x') e [0,7r/2] the angle between u(x,x') and TXW. Similarly, let u'(x,x') be
the unit vector that points from x' to x, v'(x,x') the orthogonal projection of v'(x,x')
onto TX>W and O'(x,x') the angle between u(x,x') and TX>W. Our assumptions about
W, W, C and C tell us that

min (8(x, x'), 6'(x, x')) < jt/2 - e/2.
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Now let W = {(x, x') e W x W : x + x'} and define the vector field V on W by

V(x,x') = (v(x,x'),v'(x,x')) .

We may assume that (*o,*o) e W. Let (JC,, x/) be the integral curve of V starting at
(xo,x$. This curve is defined until (x,,x't) -> d(W x W) or l(t) = dist(x,, *,') -> 0.
Since the curves xt and x', have at most unit speed, the first possibility cannot occur until
/ > 1. On the other hand, /(0) < sin2(e/2) and

— = - cos2 0 (xt,x't) - cos2 0' (x,,x't) < - cos2 (7r/2 - e/2) = - sin2 (e/2).

Therefore there is r e (0, 1) such that l(t) -»• 0 as t /* T. It is clear that Hmr^,r x, exists
and lies inWHW'. •

Let us now return to the situation described at the beginning of §5.

Definition 6.1. An open subset N of U has the intersection property if there is S > 0
such that both W ^ and W^s are defined for almost every x e N and W^s D W ^ ^ 0
for /x x /x almost every (y, z) & N x N.

We emphasize that we are requiring only that W"s and W*-* intersect somewhere,
and not that they intersect in N. It is a straightforward exercise to prove the following
Lemma using Lemmas 5.2, 5.4, 5.5 and 6.1.

LEMMA 6.2. (i) Under the assumptions of part (i) of Theorem 4.1, almost every x e U
has a neighborhood N(x) with the intersection property.

(ii) Under the assumptions of part (ii) of Theorem 4.1, every x e U has a neighborhood
N{x) with the intersection property.

Now we need a version of the Hopf argument.

LEMMA 6.3. Let N be an open subset of U that has the intersection property and let <p
be an L1 function that is invariant under f. Then <p is almost everywhere constant on N.

Proof. For a bounded measurable function g : M -> R, let

£+(*)= lim s u p - ^ > ( / * C O ) and g~(x) = limsup- £*( / "* (*) ) .
n nn->oo

Then #+ and ~g~~ are /-invariant and, by Birkhoff Ergodic Theorem, equal on a set G
of full measure. Since {g4" : g is continuous} is L'-dense in the space of L1 invariant
functions, it suffices to prove that g^~ is constant when g is continuous. The continuity
of g and the contraction of the stable and unstable manifolds as t —> oo and t —*• — oo
respectively imply that g4" is constant on W* and ~g~ is contant on W" for each x e A.

Since G D A has full measure in M, it follows from absolute continuity that we can
choose xo e N so that G n W"o has full ^"-measure in W"a. The intersection property
implies that Ws

x D W^ ^ 0 for almost every x e N. On the other hand, since /x"-a.e.
point of W"o is in G, the union of the Ws leaves that intersect W"o in points that are not
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in G has measure 0. We see that, for almost x e N, there is a point y e W* n W"o D G.
We have

Thus g^ix) = 'g'ixo) for almost every x e N.
It follows immediately from Lemma 6.3 that each neighbourhood N(x) in Lemma

6.2 lies modulo a set of measure 0 in a single ergodic component of / . This proves
the ergodicity statements in both parts (i) and (ii) of Theorem (4.1). The claims about
the Bernouilli property in (ii) follow from Theorem 3.4. The proof of Theorem 4.1 is
complete. •

7. Riemannian metrics with Bernoulli geodesic flows on compact manifolds of
dimension 3
We shall construct on any compact 3-dimensional manifold M a C00 Riemannian metric
whose geodesic flow is Bernoulli.

The geometric basis of the construction is the fact that M contains a knot K such that
M\K admits a hyperbolic structure, i.e. a complete Riemannian metric of finite volume
and constant curvature — 1. For orientable M this was proved by Myers [My], using
Thurston's theorem on the existence of hyperbolic structures [Th, Theorem 1.2], [Mo,
Theorem B]. Myers constructs his knot in the following way. Start with a triangulation
of M and consider the dual 1-skeleton S of its second barycentric subdivision. Then S is
a graph in which four edges meet at each vertex. One now replaces the vertices of S by
by so called 'true lover's tangles'. This operation removes the vertex and joins each of
the four edges that met at the vertex with one of the others. Applying the operation to all
vertices converts 5 into a link. Myers shows that the complement of any link obtained
in this manner has a hyperbolic structure. Since an even number of edges meet at each
vertex, it is always possible to choose the edge joinings so that one obtains a knot.

For non-orientable M, consider the double cover D, and let r : D —*• D be the
covering transformation. Myers' construction can be performed in a r-equivariant way to
obtain a r-invariant link L in D, such that D\L has a hyperbolic structure and L projects
to a knot K in M. By the Mostow rigidity theorem, there is a map a : D\L —> D\ L
that is homotopic to r and is an isometry of the hyperbolic structure. Note that a2 = id,
because a2 is an isometry of the hyperbolic structure and is homotopic to T2 = id. Since
D \ L has a hyperbolic structure, n\ (D \ L) has trivial center, and hence D \ L is neither
the torus T3 nor a Seifert fibration. It now follows from a theorem of Tollefsonf [To] that
there is a homeomorphism h of D \ L isotopic to the identity such that a = h~l or oh.
Hence (D \ L)/a and (D \ L)/z are homeomorphic, and indeed diffeomorphic, since we
are in dimension 3. Thus M \K admits a hyperbolic structure.

Now consider M \K with its hyperbolic structure. It has one end, which is a cusp
that is a warped product F x e . [0, oo), where F is a compact flat surface. Let M be the
compact Riemannian manifold with boundary obtained from M \ K by cutting off the
cusp along the horospherical surface F\ = F x {1} and changing the warping function
to / : [0, 1] ->• K with the properties:

t We thank Jean-Pierre Otal for drawing Tollefson's result to our attention.
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• f(t) = e~' for t near 0.
• / is positive and strictly convex.
• All derivatives of / vanish when t = 1.
Then Int M has negative curvature, dM = F\ is totally geodesic, and one will obtain

a smooth Riemannian manifold by gluing F\ x [0, 1] onto M.
We now attach to M along F\ a Riemannian manifold P that is locally the product of

an interval and the disc D2 with a certain Riemannian metric g0. We choose g0 so that
it is radially symmetric, 3D2 is a closed geodesic, and the curvature is a non-negative,
non-increasing function of distance from the center and vanishes in a neighborhood of the
boundary. To construct P, we form the Riemannian product of (D2, g0) with an interval
[0,1] and then use an isometry i/r of (D2, g0) to identify the two ends. With appropriate
choices of go. £ and if, there will be an isometry cp : dP —> F\ and the manifold obtained
by using <p to attach P to M will be diffeomorphic to M. Our requirements on g0 and
/ ensure that we obtain a C°° Riemannian metric.

Now consider the geodesic flow g' of this metric on the unit tangent bundle T'M.
Let n : TlM ->-Mbe the projection. If u e TlM, let yu(t) = n(g'u), and let Y$ be the
Jacobi field along the geodesic yu with

Yi(t) =dng'% for all t.

Then TuT
lM = {£ e TUTM : («, ^'(0)) = 0}. Recall that g' is a contact flow. The

contact form au on TUTXM is defined by

We shall prove that g' is Bernoulli by constructing an infinitesimal eventually
uniformly invariant Lyapunov function Q for g' acting on the restriction to a suitable
open set U of the bundle TTXM/E, where £ is the one dimensional subbundle tangential
to the flow. We identify the fibre over u of TTlM/E with

kemM = {$ eTuTM : (^(0), u) = 0 = (Ff'(0), «)}.

Note that the only geodesies of (D2, g0) that do not intersect 3D2 transversally are closed
geodesies in the flat region near 3D2 that are parallel to 3D2; see [BG2, Proposition
2.4]. It follows easily that almost every geodesic of M enters Int M. Since dM is totally
geodesic and M has non-positive curvature, these is S > 0 such that every geodesic in
Int M contains a point with distance at least 25 from dM. We define

U = {ue TlM : dist (itv, dM) > 8}.

Let B = Du€u kerau, define Qo : B -> R by

and set

It is obvious that 2 is homogeneous of degree 1 and takes both positive and and negative
values on kerau for each u € U. Condition (ii) of Definition 4.1 holds because we take
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and
D~ = {§ e kerau : Y^O) = -l>'(0)}.

We now verify condition (iii) of Definition 4.1. Suppose that u e U, r > 0, gr« e t/
and £ € kera«. Then

Qo(rf«rf) = (I'«(T),l'f(r)).

We need two lemmas.

LEMMA 7.1. Suppose that Y is a Jacobi field along a geodesic y in a Rietnannian manifold
and (R(Y(t), y(t))y{t), Y(t)) < 0/or all t. Then {Y(t), Y'(t)) is non-decreasing.

Proof. (Y, Y')' = (Y1, Y') + {Y, Y') = (Y1, Y') - (R(Y, y)y, Y)>0. D

LEMMA 7.2. Let y be a geodesic in (D2, go) such that y(t\) e dD2, y(t2) € dD2 and
y(t) e Int D2 for t\ < t < t2- Let Y be a Jacobi field along y. Then

Proof. Let Y = (Yj,Y±) be the decomposition of Y into components tangential and
perpendicular to y. Then (Y, Y') = {Yr, Yj) + {Y±, Y'^) and the tangential term is non-
decreasing by Lemma 7.1. Let N be a continuous field of unit normals to y. Then
Y±(t) = y(t)N(t), where y(t) is a solution of the scalar Jacobi equation

y'(t) + K(y(t))y(t) = 0. (7.1)

There are constants a,b,c, and d such that

y\h))

for all solutions y(t) of (7.1); it follows from the argument in Lemma 2.5 in [BG2] that
there is a solution z of (7.1) with z(f,) = l .z ' f t ) = O,z(t2) = - l ,z ' ( f 2 ) = 0. Thus
a = — 1 and c = 0. Since the Wronskian y'(t)z(t) — z'(t)y(t) of >> with z is constant,
we see that y'(t2) = —y'(t\) for all solutions y of (7.1), and so d = — 1. It follows from
Proposition 2.7 of [BG2] that if y(tO = 0 and y'(tx) = 1, then y(t2)y'(t2) > 0. Hence
b < 0 and

n
Choose a sequence of times 0 = to < t\ < • • • < tn = x such that in each interval

[/,-, ti + 1] either
(0 Xl[r,,r,+I] lies in M, or
(ii) y|[[,,(l+1] is a maximal geodesic in P.

In case (i) we see from Lemma 7.1 that (F?(f,+1), Yfa+i)) > (^(f,), Y^tj)). In case
(ii) we use the fact that P splits locally as the Riemannian product of (Z)2, g) and an
interval. Let YD and F/ be the projections of Y^ onto the D2 and interval directions.
Then we can apply Lemma 7.2 to YD and Lemma 7.1 to Y/, yielding

^te)) +
= <!>(?,•), !>'(«,•)).
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It now follows that ( ^ ( T ) , Y'^X)) > (^(0), ^'(0)>, and consequently Q(dgz$) >
Thus Q is an infinitesimal Lyapunov function. It remains to verify that Q is eventually

uniform. To do this, observe that, since IntM has negative curvature, there is r\ > 0
such that 0 < 7j < 1 and for all (w, t) € U x [—n,ri] the sectional curvature of every
plane at yu(t) is less than — rj1. We see from the proof of Lemma 7.1 that if « 6 U and
|*| < r], then

(Y$(t), Y{(t))' > 0 for all non-zero £ e kerau.

Hence for all u e £/ we have

G(<te"£) > G(£) > Q(dg~"i;) for all non-zero | e keraM.

It follows using the homogeneity of Q and a compactness argument that there is e > 0
such that for all u e U and all £ € kerau we have

and

Thus Q is an infinitesimal eventually uniform Lyapunov function. It follows from
Theorem 4.2 that g' is Bernoulli.

REFERENCES

[A] D.V. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Proc. Steklov
Inst. Math. 90 (1967), 1-235.

[BG1] K. Burns and M. Gerber. Continuous cone families and ergodicity of flows in dimension three. 9
Ergod. Th. & Dynam. Sys. (1989), 19-25.

[BG2] K. Burns and M. Gerber. Real analytic Bernoulli geodesic flows on S1. Ergod. Th. & Dynam. Sys.
9 (1989) 2 7 ^ 5 .

[BG3] K. Burns and M. Gerber. Real analytic Bernoulli geodesic flows on product manifolds with low
dimensional factors. J. Reine Ang. Math. To appear.

[BS] L. Bunimovich and Ya. Sinai. On a basic theorem of the theory of dissipative billiards. Mat. Sb. 90
(1973),415-431.

[CS] N. Chernov and Ya. Sinai. Ergodic properties of some systems of 2-D discs and 3-D spheres. Usp.
Mat. Nauk. 42 (1987), 153-174.

[G] M. Gerber. Conditional stability and real analytic pseudo-Anosov maps. Mem. Amer. Math. Soc.
321 (1985) 1-116.

[GK] M. Gerber and A. Katok. Smooth models of Thurston's pseudo-Anosov maps. Ann. Scient. Ec.
Norm. Sup. 15 (1982), 173-204.

[H] E. Hopf. Statistik der geoda tischen Linien in Mannigfaltigkeiten negativer Kriimmung. Ber. Verh.
Sachs. Akad. Wiss. Leipzig Math. Phys. 91 (1939), 261-304.

[K] A. Katok. Bernoulli diffeomorphisms on surfaces. Ann. Math. 110 (1979), 529-547.
[KM1] A. Katok and L. Mendoza. Smooth Ergodic Theory. Unpublished notes.
[KM2] A. Katok and L. Mendoza. Dynamical systems with non-uniformly hyperbolic behavior. Supplement

to A. Katok and B. Hasselblatt. Introduction to the Modern Theory of Dynamical Systems. Cambridge
University Press: Cambridge, 1994. pp 649-700.

[KS] A. Katok and J. M. Strelcyn. Invariant Manifolds, Entropy and Billiards; Smooth Maps with
Singularities. Springer Lecture Notes in Mathematics 1222. Springer: New York, 1986. pp 1-283.

[KSS1] A. Kramli, N. Simanyi and D. Szasz. Ergodic properties of semi-dispersing billiards: I. Two cylindric
scatterers in the 3D torus. Nonlinearity 2 (1989), 311-326.



Infinitesimal Lyapunov functions 785

[KSS2] A. Kramli, N. Simanyi and D. Szasz. The K-property of three billiard balls. Ann. Math. 73 (1991),
37-72.

[LI] J. Lewowicz. Lyapunov functions and topological stability. J. Diff. Eq. 38 (1980), 192-209.
[L2] J. Lewowicz. Lyapunov functions and stability of geodesic flows. In Geometric Dynamics. Springer

Lecture Notes in Mathematics 1007. ed. J. Palis. Springer: New York, 1981. pp 463-479.
[LW] C. Liverani and M. P. Wojtkowski. Ergodicity in Hamiltonian systems. Dynamics Reported. To

appear.
[Ma] R. Markarian. Non uniform hyperbolic billiards. Preprint.
[Mo] J. W. Morgan. On Thurston's uniformization theorem for three dimensional manifolds. The Smith

Conjecture, eds, J.W. Morgan and H. Bass. Academic: New York, 1985. pp 37-125.
[My] R. Myers. Simple knots in compact, orientable 3-manifolds. Trans. Amer. Math. Soc. 273 (1982),

75-91.
[O] V.I. Osceledets. A multiplicative ergodic theorem: characteristic exponents of dynamical systems

Trans. Moscow Math. Soc. 19 (1968), 197-231.
[PI] Ya.B. Pesin. Families of invariant manifolds corresponding to nonzero characteristic exponents. Izv.

Akad. Nauk SSSR Ser. Mat. 40 (1975), 1332-1379; English trans. Math. USSR Izvestija 10 (1976),
1261-1305.

[P2] Ya.B. Pesin. Characteristic Lyapunov exponents and smooth ergodic theory. Usp. Mat. Nauk 32:4
(1977), 55-112: English transl. Russian Math. Surv. 32:4 (1977), 55-114.

[P3] Ya.B. Pesin. Geodesic flows on closed Riemannian manifolds without focal points. Izv. Akad Nauk
SSSR Ser. Mat. 41 (1977), 1252-1288; English transl. Math USSR Izvestija 11 (1977), 1195-1228.

[PS] C. Pugh and M. Shub. Ergodic attractors. Trans. Amer. Math. Soc. 312 (1989), 1-54.
[Th] W.P. Thurston. Three dimensional manifolds, Kleinian groups and hyperbolic geometry. Bull. Amer.

Math. Soc. 6 (1982), 357-381.
[To] J.L. Tollefson. Involutions of sufficiently large 3-manifolds. Topology 20 (1981), 323-352.
[W] M. Wojtkowski. Invariant families of cones and Lyapunov exponents. Ergod. Th. and Dynam. Sys.

5 (1985), 145-161.


