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Abstract We consider cocycles over certain hyperbolic R
k actions, k ≥ 2, and show

rigidity properties for cocycles with values in a Lie group or a diffeomorphism group,
which are close to identity on a set of generators, and are sufficiently smooth. The
actions we consider are Cartan actions of SL(n, R)/� or SL(n, C)/�, for n ≥ 3, and �
torsion free cocompact lattice. The results in this paper rely on a technique developed
recently by D. Damjanović and A. Katok.
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1 Introduction

This paper is part of a research program that aims to classify Hölder and smooth cocy-
cles over higher rank abelian hyperbolic actions of Z

k or R
k, k ≥ 2, up to cohomology.

The results obtained so far show that such cocycles exhibit strong rigidity properties,
that is, they are cohomologous to constant cocycles, or the cohomology classes are
finite in number and easy to describe. We present here a quick overview of related
known results.
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1.1 The harmonic analysis method

The first rigidity result for cocycles over higher rank abelian actions was proved by
Katok and Spatzier [13] where it was shown that real valued smooth/Hölder cocycles
over a large class of natural hyperbolic Z

k or R
k, k ≥ 2, actions are smoothly/Hölder

cohomologous to constants.1 Those results cover in particular actions by hyperbolic
automorphisms of a torus, and Weyl chamber flows, e.g. Cartan actions of SL(n, R)/�
and SL(n, C)/�, for n ≥ 3, and � torsion free cocompact lattice. The proofs rely
mostly on harmonic analysis techniques, such as Fourier transform and group rep-
resentations for semisimple Lie groups. These techniques are difficult to apply to
cocycles with non-abelian range.

1.2 Geometric method for TNS actions

A geometric method for proving cocycle rigidity was developed in [12]. The basic idea
is to construct an invariant differentiable form using the invariant structures that exist
on the stable/unstable foliations, and the commutativity of the action. The solution is
first constructed as a differential form which is then shown to be closed and exact. The
class of actions for which this method works is more restrictive than in [13]. Those are
abelian higher rank actions on infranilmanifolds that exhibit a rich structure on the
family of stable/unstable foliations, so called totally non-symplectic (TNS) actions.
This method was applied successfully in [12] not only to real valued cocycles, but
also to small (i.e. sufficiently close to identity on a set of generators) cocycles with
values in general Lie groups. A related paper is [24] which contains rigidity results for
cocycles with values in compact Lie groups. The results show that for (TNS) actions
the cohomology classes are finite in number and easy to describe.

Note that there are difficulties in extending the results for cocycles with values in Lie
groups from [12] for (TNS) actions to cocycles with values in diffeomorphism groups.
Those difficulties are partially overcome in [23] where the cohomological equation
is solved under additional assumptions, like the existence of a fixed center fiber for
the extended higher rank abelian action. That paper also presents applications of the
cohomology theory of cocycles over abelian actions with values in diffeomorphisms.
These results are used to prove local rigidity of certain partially hyperbolic higher
rank actions on compact manifolds.

1.3 Geometric methods for Weyl chamber flows

An extension of the method [12] to real valued cocycles over chamber Weyl flows
can be found in the unpublished paper [Ferleger, S., Katok, A.: Unpublished] which
contains in a rudimentary form an important new idea of using commutation rela-
tions between stable and unstable directions of various elements of the action to show
exactness of the differential form solution.

More recently, Damjanović and Katok developed a different geometric method
that can be applied not only to Weyl chamber flows but also to their restrictions to
higher rank subgroups in general position (those actions are only partially hyperbolic)
[5]. This work uses the approach from [11] for finding cohomology invariants for cocy-
cles over partially hyperbolic actions that satisfy accessibility property. Accessibility

1 For a correction of an error in the original proof for the Hölder case see errata posted at
www.math.psu.edu/katok_a.



Geom Dedicata (2007) 124:109–131 111

roughly means that one can connect any two points belonging to the manifold support-
ing the partially hyperbolic dynamical system by transverse piecewise smooth pathes
included in stable/unstable leaves. This notion was introduced by Brin and Pesin [3]
and it is playing a crucial role in the recent surge of activity in the field of partially
hyperbolic diffeomorphisms. See [4,9] for two recent surveys. The cohomology invar-
iants described in [11], called periodic cycle functionals, are heights of the cocycle over
cycles constructed in the base out of pieces belonging to stable/unstable leaves. They
provide a complete set of obstructions for solving the cohomology equation.

An essential new ingredient introduced in [5] is the use of algebraic K-theory [17].
For Cartan actions on SL(n, R)/� or SL(n, C)/� many cycles are generated by a
finite number of types of elementary cycles which are given by commutator relations
between elementary unipotent matrices and their conjugates. Each elementary cycle
lies in the stable manifold for some partially hyperbolic element of the action, and
consequently the functional over it vanishes. This fact is used to reduce the description
of cohomology for cocycles to the classification of homomorphisms from the funda-
mental group π1(M) into the group that appear in the fiber. After that standard results
in rigidity theory, like Margulis normal subgroup theorem, can be employed to find
the cohomology.

1.4 Outline of the paper

One advantage of the method developed in [5] is that it can be extended to deal with
cocycles with non-abelian range. In the present paper we extend the results from [5]
to small cocycles with values in a Lie group or the diffeomorphism group of a compact
manifold. There are two improvements compared to the latter paper, one technical
and one more essential.

First, we construct the periodic cycle functionals and the solution of the cohomo-
logical equation when those obstructions vanish in the infinite-dimensional setup of
the diffeomorphism groups which requires certain norm estimates. Those technical
elements do not appear in the finite-dimensional case. Second, we show that in our sit-
uations the solution of the cohomological equation, which, for the non-abelian range,
has been constructed in [5] only on the universal cover, descends to the factor. This is
new even for the simple Lie group case.

For this second and more important improvement an interesting twist appears.
Rather than having homomorphisms from abelian groups into diffeomorphisms
groups, as in [23], we have homomorphisms from lattices in higher rank Lie groups into
diffeomorphisms groups. These homomorphisms are close to identity on a compact
set of generators. Consequently, in the proof of the main theorem we can use a recent
result of Fisher–Margulis [7] about local rigidity of isometric actions of higher rank
lattices on compact manifolds. Thus a local rigidity result about higher rank lattice
actions is applied to prove a cohomological rigidity result about abelian actions.

The paper is organized as follows: in Sect. 2 we review basic notions about cocycles
and metrics on diffeomorphisms groups and Lie groups, in Sect. 3 we construct an
invariant structure along stable/unstable leaves of any partially hyperbolic element
of the action, in Sect. 4 we review Katok–Kononenko periodic cycle functionals the-
ory [11] in the setup of cocycles with non-abelian range, in Sect. 5 we review basic
facts from the theory of partially hyperbolic difeomorphisms, in Sect. 6 we describe
Cartan actions on SL(n, R)/� and SL(n, C)/�, in Sect. 7 we review relevant notions
from K-theory, in Sect. 8 we review Fisher–Margulis local rigidity result for isometric



112 Geom Dedicata (2007) 124:109–131

actions, and in Sect. 10 we present the main results and their proofs which also use
two auxiliary statements from Sect. 9.

2 Cocycles and cohomology

Let M, N be smooth compact Riemannian manifolds endowed with metrics distM,
distN . Let Homeo(N) be the set of homeomorphisms of N, endowed with the oper-
ation of composition. Let K be an integer or K = ∞ and DiffK(N) ⊂ Homeo(N)
be the set of CK-diffeomorphisms of N. We introduce the standard C0 metric on
Homeo(N):

dN(u, v) := sup
y∈N

distN(u(y), v(y)), u, v ∈ Homeo(N), 2 (2.1)

For 0 < θ ≤ 1 and u ∈ Homeo(N), define the θ -Hölder norm

‖u‖θ = sup
x,y∈N

distN(u(x), u(y))
distN(x, y)θ

, (2.2)

which may be finite or infinite. The 1-Hölder norm is called Lipschitz norm. Note that
for any u ∈ DiffK(N), the Lipschitz norm ‖u‖1 is finite and ‖u‖1 ≤ ‖Du‖, where Du is
the derivative. For u, v, w, z ∈ Homeo(N) the metric dN has the following properties:

dN(vu, wu) = dN(v, w),

dN(uv, uw) ≤ ‖u‖1dN(v, w).
(2.3)

Using (2.3) we deduce:

dN(wz, uv) ≤ dN(wz, uz)+ dN(uz, uv)

≤ dN(w, u)+ ‖u‖1dN(z, v)
(2.4)

and

dN(u−1, v−1) = dN(u−1v, v−1v)

= dN(u−1v, u−1u) ≤ ‖u−1‖1dN(u, v). (2.5)

If K is a finite integer, one can introduce on DiffK(N) a structure of Banach man-
ifold, and in particular a structure of complete metric space. We briefly review this
standard construction. Let n = dim(N). If � ⊂ R

n is a compact set, then a function
f: � → R is CK if it has continuous derivatives of order K. The space CK(�) of all CK

functions on�, endowed with the norm defined as the supremum of the derivatives of
order up to K, has a structure of Banach space. Using coordinate charts that cover the
manifold, and taking maximum over the CK norms of the coordinate expressions, one
can define a norm on the space of CK vector fields on N that makes it a Banach space.
After that the exponential map in Riemannian geometry can be used to construct
charts from DiffK(N) into the set of vector fields. Note that it is standard to endow
Diff∞(N) with a structure of Frechet manifold [7]. The C∞ topology is defined as the
inverse limit of the CK topologies. We recall that two C∞ diffeomorphisms are close
if they are CK close for some large K.

2 Notice that Homeo(N) is not complete in that metric; see the proof of Proposition 3.3.
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Let α: R
k × M → M be a smooth action of R

k on M. For simplicity, in what follows
we denote α(a, x), a ∈ R

k, x ∈ M, by ax. Throughout the rest of this section H is a
connected Lie group endowed with a right invariant metric dH .

Definition 2.1 A continuous map β : R
k × M → DiffK(N) (or β : R

k × M → H) is
called a cocycle over α if it satisfies:

β(a + b, x) = β(a, bx)β(b, x), a, b ∈ R
k, x ∈ M. (2.6)

Definition 2.2 (a) A cocycle β: R
k × M → DiffK(N) is said to be cohomologous to a

constant cocycle if there exists a homomorphism π: R
k → DiffK(N) and a continuous

map h: M → DiffK′
(N), K′ ≥ 0, K′ ≤ K, such that

β(a, x) = h(ax)π(a)h(x)−1. (2.7)

(b) A cocycle β: R
k × M → H is said to be cohomologous to a constant cocycle if

there exists a homomorphism π: R
k → H and a continuous map h: M → H such that

(2.7) holds.
The map h is called transfer map.

Definition 2.3 Let α: R
k × M → M be an R

k-action.
(a) Let β : R

k × M → DiffK(N) be a cocycle over α. The extended action α̃:
R

k × (M × N) → M × N is defined by

α̃(a, x, y) = (α(a, x),β(a, x)(y)),

(b) Let β: R
k×M → H be a cocycle over α. The extended action α̃ : R

k×(M×H) →
M × H is defined by

α̃(a, x, g) = (α(a, x),β(a, x)g), a ∈ R
k, x ∈ M, g ∈ H.

Any cocycle β: R
k × M → DiffK(N) can be viewed as a map β: R

k × M × N → N.
In order to state our results, we need to assume certain regularity for cocycles. We
assume throughout the paper that the regularity in R

k and N variables is CK. For the
Mth variable we need at least Hölder regularity. One way to obtain this is to require
that the cocycle, viewed as a map β: R

k × M × N → N (or β: R
k × M → H), to be

CK, or C∞. If this is the case, we will call the cocycle CK-cocycle, respectively smooth
cocycle. A broader class of cocycles which we will consider later is that of θ -Hölder
cocycles.

Definition 2.4 Let θ ∈ (0, 1]. (a) The cocycle β : R
k × M → DiffK(N) is said to be

θ -Hölder if there exists a C1 > 0 constant and a compact set of generators S ⊂ R
k

such that for any a ∈ S:

dN(β(a, x),β(a, y)) ≤ C1distM(x, y)θ , x, y ∈ M. (2.8)

(b) The cocycle β : R
k × M → H is said to be θ -Hölder if there exists C1 > 0 a

constant and a compact set of generators S ⊂ R
k such that for any a ∈ S:

dH(β(a, x),β(a, y)) ≤ C1distM(x, y)θ , x, y ∈ M. (2.9)

In both (a) and (b), the smallest value C1 is denoted by ‖β‖θ and is called the
θ -norm of β.
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Any CK-cocycle is θ -Hölder for any 0 < θ ≤ 1, as immediately follows from the
mean value theorem.

Definition 2.5 Let 0 < λ < 1. (a) A θ -Hölder cocycle β: R
k × M → DiffK(N) is said

to be λ-center bunched if there is a compact set of generators S ⊂ R
k such that:

� := sup
a∈S,x∈M

‖DNβ(a, x)±1‖λθ < 1, (2.10)

where DN is the derivative in the N direction.
(b) A θ -Hölder cocycle β: R

k × M → H is said to be λ-center bunched if there is a
compact set of generators S ⊂ R

k such that: � := supa∈S,x∈M ‖Ad(β(a, x)±1)‖λθ < 1,
where h is the Lie algebra of H, Ad: H → Aut(h) the adjoint representation and ‖ · ‖
represents the operatorial norm on Aut(h) with respect to some fixed norm on h.

In both cases, a CK-cocycle is said to be λ-center bunched if it satisfies (2.10) with
θ = 1.

If β is θ -Hölder and close to the identity, then (2.5), (2.8) and (2.10) imply that β−1

is θ -Hölder as well, and

‖β−1‖θ ≤ λ−θ‖β‖θ . (2.11)

We assume in the future, without loss of generality, that the set S appearing in
Definitions 2.4 and 2.5 is the unit cube in R

k. We denote by Q(Rk) the unit cube in R
k.

3 Invariant structure along a stable foliation

The main result in this section allows to construct an invariant structure under the
extended action by a cocycle in the presence of a contracting invariant foliation for
the action in the base. Several techniques used in this section appeared before in
[12,21,22]. We present the proofs for cocycles with values in diffeomorphism groups,
and refer to [21] for the proofs for cocycles with values in Lie groups.

Definition 3.1 Let M be a compact manifold, and α: R
k × M → M a smooth action

on M. Let W be a continuous foliation of M with smooth leaves W(x), x ∈ M. The
foliation W is called α-invariant if

α(t, W(x)) ⊂ W(α(t, x)), x ∈ M, t ∈ R
k.

Definition 3.2 Let M be a compact manifold. If α: R × M → M is a smooth flow on
M, an α-invariant foliation W is called contracting if there exist constants C2 > 0, 0 <
λ < 1, such that

distW(α(t,x))(α(t, x),α(t, y)) ≤ C2λ
tdistW(x)(x, y), x, y ∈ M, t ≥ 0. (3.1)

An α-invariant foliation W is called expanding if there exist constants C2 > 0, 0 <
λ < 1, such that

distW(α(−t,x))(α(−t, x),α(−t, y)) ≤ C2λ
tdistW(x)(x, y), x, y ∈ M, t ≥ 0. (3.2)

Remark The contracting/expanding foliations we actually use in this paper are stable,
respectively unstable, foliations of a partially hyperbolic element of an R

k action and
the flow is the restriction of that action to the one-parameter group generated by the



Geom Dedicata (2007) 124:109–131 115

element. Those foliations have the property that the distance between pairs of points
in the same local leaf is equivalent to the distance between points on the manifold.
This will allow to replace distW(x)(x, y) by distM(x, y) in some of the future arguments.

Proposition 3.3 Let M, N be compact manifolds, α : R × M → M a smooth action,
and W an α-invariant contracting foliation of M with constants C2 > 0, 0 < λ < 1.
Let β: R × M → DiffK(N) be a θ -Holder cocycle over α that is λ-center bunched. For
x ∈ M, t ≥ 0, define γx,t: W(x) → DiffK(N) ⊂ Homeo(N) by

γx,t(y) = β(t, y)−1β(t, x). (3.3)

Then the following statements hold:

(1) The family of homeomorphisms {γx,t(y)}t≥0 converges in Homeo(N) as t → ∞
to a homeomorphism:

γx(y) := lim
t→∞ γx,t(y). (3.4)

(2) The map γx: (W(x), distW(x)) → (Homeo(N), dN) is uniformly θ -Holder.
(3) γx(x) = IdN .
(4) The family of functions {γx}x∈M is invariant under extended action on M ×N, that

is,

β(t, y)γx(y) = γtx(ty)β(t, x), y ∈ W(x), t ≥ 0. (3.5)

(5) If y ∈ W(x) and µ > λθ then

lim
t→∞µ−tdN(β(t, x),β(t, y)γx(y)) = 0. (3.6)

(6) The family of functions {γx}x∈M is uniquely determined by (2), (3), and (4).

Proof We use a version of the well-known “telescopic argument” which is more famil-
iar and straightforward when the range of the cocycle is abelian but also appears in
non-abelian situations e.g. in [12,21,22]. Notice that λ-center bunching condition is
crucial for this argument.

(1) A complete metric on Homeo(N) is given by

max{dN(u, v), dN(u−1, v−1)}, u, v ∈ Homeo(N).

Let x ∈ M, y ∈ W(x). We show that the family {γx,t(y)}t is uniformly convergent
in a complete metric on Homeo(N) as t → ∞. Let t′ ≥ t > 0. To simplify the
notation, during the proof we denote β(1, x) by β(x). We denote by [τ ] the inte-
ger part of the real number τ , and by {τ } the fractional part of τ . We estimate
only d := dN(γx,t′(y), γx,t(y)). The estimation for dN(γ

−1
x,t′ (y), γ

−1
x,t (y)) is similar.

Using (2.6) for any z ∈ M we have:

β(t′, z) = β(t′ − t + t, z) = β(t′ − t, tz)β(t, z). (3.7)

By (3.7), applied for z = x, by (2.3), and again by (2.6), we have:

d = dN(β(t′, y)−1β(t′, x),β(t, y)−1β(t, x))
= dN(β(t′, y)−1β(t′ − t, tx)β(t, x),

β(t, y)−1β(t′ − t, ty)−1β(t′ − t, ty)β(t, x))
= dN(β(t′, y)−1β(t′ − t, tx),β(t′, y)−1β(t′ − t, ty)).

(3.8)
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Using now repeatedly (2.6), (2.4) and triangle inequality for the metric dN , (3.8)
becomes:

d = dN(β(t′, y)−1β((t′ − 1)x)β((t′ − 2)x) · · ·
β((t′ − [t′ − t])x)β({t′ − t}, tx),

β(t′, y)−1β((t′ − 1)y)β((t′ − 2)y) · · ·β((t′ − [t′ − t])y)β({t′ − t}, ty))

≤ dN(β(t′, y)−1β((t′ − 1)x)β((t′ − 2)x) · · ·β((t′ − [t′ − t])x),
β(t′, y)−1β((t′ − 1)y)β((t′ − 2)y) · · ·β((t′ − [t′ − t])y))
+dN(β(t′, y)−1β((t′ − 1)y)β((t′ − 2)y) · · ·β((t′ − [t′ − t])y)β({t′ − t}, ty),

β(t′, y)−1β((t′ − 1)y)β((t′ − 2)y) · · ·β((t′ − [t′ − t])y)β({t′ − t}, tx))

≤
[t′−t]
∑

k=0

dN(β(t′, y)−1β((t′ − 1)y) · · ·β((t′ − k + 1)y)β((t′ − k)x),

β(t′, y)−1β((t′ − 1)y) · · ·β((t′ − k + 1)y)β((t′ − k)y))

+dN(β(t, y)−1β({t′ − t}, ty)−1β({t′ − t}, ty),

β(t, y)−1β({t′ − t}, ty)−1β({t′ − t}, tx)). (3.9)

Note that by (2.6) we have

β(t′, y)−1β((t′ − 1)y) · · ·β((t′ − k + 1)y) = β(t′ − k + 1, y)−1. (3.10)

Using now first (3.10) and (2.3), and later chain rule, (2.8), (2.10), and (3.1), one
can bound the right hand side in (3.9) by

d ≤
[t′−t]
∑

k=0

‖β(t′ − k + 1, y)−1‖1dN(β((t′ − k)x),β((t′ − k)y))

+ ‖β(t, y)−1β({t′ − t}, ty)−1‖1dN(β({t′ − t}, tx),β({t′ − t}, ty))

≤ C1C2C3

⎛

⎝

[t′−t]
∑

k=0

sup
x∈M

‖DNβ(1, x)−1‖[t′−k+1]λ([t′−k])θdistM(x, y)θ

+ sup
x∈M

‖DNβ(1, x)−1‖[t]+1λ([t]+1)θdistM(y, x)θ

⎞

⎠

≤ C4�
tdistM(x, y)θ , (3.11)

where C3, C4 are constants independent of x, y, t, t′ and� < 1 is defined in (2.10).
Formula (3.11) implies (1).

(2) We show that the map y → γx(y) is uniformly θ -Holder. Let y′, y′′ ∈ W(x) and
t > 0. Then:

dN(γx,t(y′), γx,t(y′′)) = dN(β(t, y′)−1β(t, x),β(t, y′′)−1β(t, x))

= dN(β(t, y′)−1,β(t, y′′)−1)

≤ C1C2

[t]
∑

k=0

sup
x∈M

‖Dβ(1, x)−1‖kλkθdistM(x, y)θ

≤ C3distM(x, y)θ ,

where C3 is independent of x, y.
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(3) This is obvious.
(4) This follows from the identity β(t, y)γx,t′(y) = γtx,t′−t(ty)β(t, x), which is a conse-

quence of (3.3), by taking limit as t′ → ∞.
(5) By (2), (3) and (4) follows:

dN(β(t, x),β(t, y)γx(y)) = dN(β(t, x), γtx(ty)β(t, x))

= dN(IdN , γtx(ty))

= lim
t′→∞

dN(β(t′, ty)−1β(t′, tx)

≤ CλtθdistM(x, y)θ , (3.12)

where the last inequality follows as in the proof of (2). Then (3.6) follows by
taking limit as t → ∞.

(6) Let �x: W(x) → Homeo(N) be another family of functions that satisfies (2)–(4).
From (4) follows that:

�x(y) = β(t, y)−1�tx(ty)β(t, x). (3.13)

Then (3.13), (2), (3), and (2.4) imply

dN(�x(y), γx,t(y)) = dN(β(t, y)−1�tx(ty)β(t, x),β(t, y)−1β(t, x)))

≤ ‖DNβ(t, y)−1‖dn(�tx(ty), IdN)

≤ ‖DNβ(t, y)−1‖dn(�tx(ty),�tx(tx))

≤ ‖DNβ(t, y)−1‖λtθ‖�‖θdM(x, y)θ

≤ C4�
tdistM(x, y)θ , (3.14)

where C4 is a constant independent of t and � < 1 is defined in (2.10).

From (3.14) and (3.4) follows that �x = γx. �

Remark One can think of the quantity γx(y) as the “height” of a point on the leaf of
a lifted foliation in the space M × N. The lifted foliation projects on the contracting
foliation W.

Note that a similar invariant structure can be introduced over an expanding folia-
tion. In this case γx(y) is defined by

γx(y) = lim
t→−∞β(t, y)−1β(t, x). (3.15)

The analog of Proposition 3.3 for Lie group cocycles is shown below.

Proposition 3.4 Let H be a connected Lie group that has a cocompact lattice � and a
right invariant metric dH. Let α: R×M → M be a smooth action, and W an α-invariant
contracting foliation of M with contraction constant 0 < λ < 1. Let β : R × M → H
be a θ -Holder cocycle over α that is λ-center bunched. For x ∈ M, t ≥ 0, define
γx,t: W(x) → H by γx,t(y) = β(t, y)−1β(t, x). Then the following are true:

(1) The family {γx,t(y)}t≥0 converges in H as t → ∞.
(2) The map γx: (W(x), distW(x)) → (H, dH) given by

γx := lim
t→∞ γx,t

is uniformly θ -Hölder.



118 Geom Dedicata (2007) 124:109–131

(3) γx(x) = IdH .
(4) The family of functions {γx}x∈M is invariant under the extended action, that is,

β(t, y)γx(y) = γtx(ty)β(t, x), y ∈ W(x), t ≥ 0.
(5) If y ∈ W(x) and µ > λθ then

lim
t→∞µ−tdH(β(t, x),β(t, y)γx(y)) = 0.

(6) The family of functions {γx}x∈M is uniquely determined by (2), (3), and (4).

Proof Proposition 3.4 follows from Proposition 3.3 if we observe that H acts on the
compact manifold N := H/� by left multiplications, which are diffeomorphisms, so β
can be seen as taking values in Diff∞(N). Full details can be found in [21]. �

Remark Notice that the existence of a lattice is not necessary to construct the func-
tions γx in Proposition 3.4, but rather a technical condition used to reduce the proof
to the diffeomorphism case. For general finite dimensional Lie groups one can use a
right invariant metric and proceed along the proof in [21].

Assume now that the foliation W is contracting/expanding under the action of sev-
eral R-flows that are parts of a higher rank abelian action. The following proposition
shows that the “height” γx(y) introduced in Proposition 3.3 does not depend on the
particular R-subflow used to build it. In order to mark the dependence of γx on α, we
sometimes write γ a

x if a ∈ R
k is a generator of the R-subaction α used to construct the

flow.

Proposition 3.5 Let M, N be compact manifolds, α : R
k × M → M a smooth action,

and W an α-invariant foliation of M. Let 0 < λ < 1 and β : R
k × M → DiffK(N)

be a θ -Holder cocycle over α. Let a, b ∈ R
k. Assume that W is contracting (with con-

traction constants λa and λb) for the subactions induced by Ra and Rb, and that β is
max(λa, λb)-center bunched. Then:

(1) β(b, y)γ a
x (y) = γ a

bx(by)β(b, x), for y ∈ W(x);
(2) γ a

x = γ b
x , for all x ∈ M.

Proof We start proving (1). For x ∈ M, define the function �x: W(x) → DiffK(N) by

�x(y) = β(b, y)−1γ a
bx(by)β(b, x). (3.16)

Clearly �x(x) = IdN , and since the family {γx}x is uniformly θ -Hölder, the family {�x}x
is also uniformly θ -Hölder. We will show that �x satisfies condition (4) in Proposition
3.3, and then Proposition 3.3, (5), implies that �x = γx.

Since a+b = b+a, the cocycle equation (2.6) givesβ(b, ax)β(a, x) = β(a, bx)β(b, x).
Together with (3.5) this gives:

β(a, y)�x(y) = [β(a, y)β(b, y)−1]γ a
bx(by)β(b, x)

= β(b, ay)−1γ a
(a+b)x((a + b)y)[β(a, bx)β(b, x)]

= [β(b, ay)−1γ a
(a+b)x((a + b)y)β(b, ax)]β(a, x)

= �ax(ay)β(a, x). (3.17)

To prove (2), observe that γ a
x satisfies Proposition 3.3, (4), as applies to γ b

x : this
is exactly (1) in this proposition. So, using Proposition 3.3, (5) again, it follows that
γ a

x = γ b
x . �
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The analog of Proposition 3.5 for Lie group valued cocycles has a similar statement
and proof.

4 Partially hyperbolic diffeomorphisms

The results in the previous section only show uniform Hölder regularity for the func-
tions γx. If the cocycle β is CK or smooth, one can prove higher regularity results.
We will rely on the theory of partially hyperbolic diffeomorphisms as presented in
[3,10,25].

Assume K finite. For CK cocycles with values in DiffK(N) we show in Theorem 4.2
the following:

• The functions γx takes values in DiffK(N).
• The function y → γx(y) is CK as a function W(x) → DiffK(N).
• If γx, γ ′

x correspond to β,β ′ respectively, then γx as a function W(x) → DiffK(N)
converges CK to γ ′

x as β converges to β ′ in CK-topology.

For CK cocycles with values in a Lie group one can show, using the reduction to
cocycles in the diffeomorphism group of N := H/�, that:

• The function y → γx(y) is CK as a function W(x) → H.
• If γx, γ ′

x correspond toβ,β ′ respectively, then γx as a function W(x) → H converges
CK to γ ′

x as β converges to β ′ in CK-topology.

If K is infinite and β takes values a diffeomorphism group then the functions γx
takes values in Diff∞(N) and the functions y → γx(y) are C∞ as functions W(x) →
Diff∞(N). These facts are proved in [21] using the construction of the stable foliation
from [10, Theorem 5.5]. A similar statement is true for Lie group valued cocycles.
Note that we do not know if the functions γx depend smoothly on β, but this fact is
not needed in the sequel.

Let L be a linear transformation between two normed linear spaces. The norm
and conorm of L are defined as ‖L‖ := sup{‖Lv‖; ‖v‖ = 1} and m(L) := inf{‖Lv‖;
‖v‖ = 1}.

Let X be a compact Riemannian manifold. A C1-diffeomorphism f : X → X is
called partially hyperbolic if the derivative Df : TX → TX leaves invariant a continu-
ous splitting TX = Es ⊕Ec ⊕Eu, Es 
= 0 
= Eu, such that Df contracts Es by a constant
0 < λ− < 1, Df −1 contracts Eu by a constant 0 < λ+ < 1, and the inequalities

‖Ds
pf‖ < m(Dc

pf ) and ‖Dc
pf‖ < m(Du

pf )

hold for all p ∈ X.
A CK- foliation is a continuous foliation that is CK along the leaves.
Assume that f is a partially hyperbolic Cr-diffeomorphism, 1 ≤ r < ∞, that leaves

invariant a C1-foliation L tangent to the central direction Es. We call f r-normally
hyperbolic at L if:

m(Du
pf ) > ‖Dc

pf‖k and ‖Ds
pf‖ < m(Dc

pf )k, (4.1)

for all 0 ≤ k ≤ r and p ∈ X.

Theorem 4.1 [10] Let X be a compact manifold, f ∈ Diffr(X), r ≥ 1, a diffeomorphism
that is r-normally hyperbolic at a Cr-foliation Lf .
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(1) The distributions Es and Eu are integrable. The corresponding foliations are
called stable, respectively unstable, and are denoted by Ws, respectively Wu. The
foliations are Hölder, and their leaves Ws(x) and Wu(x) are Cr and depend con-
tinuously on x ∈ X in Cr-topology. The leaves can be characterized as follows.
Let 0 < λ′− < λ−, 0 < λ′+ < λ+. Then

y ∈ Ws(x) if and only if lim
n→∞(λ

′−)−ndistM(f n(y), f n(x)) = 0,

y ∈ Wu(x) if and only if lim
n→∞(λ

′+)−ndistM(f −n(y), f −n(x)) = 0.
(4.2)

(2) If g ∈ Diffr(X) is Cr close to f , then g is r-normally hyperbolic at a unique
Cr-foliation Lg and the stable and unstable leaves of g converge in Cr to those of
f as g converges to f in the Cr-topology.

We are ready to discuss the regularity properties of the functions γx. We restrict
the discussion to the setup relevant for the proof of the main result.

Theorem 4.2 Let M, N be compact manifolds, α : R × M → M a smooth action, for
which the time one map α(1) is an r-normally hyperbolic to a CK foliation Wc

α(1) of
M. Let Ws

α(1) be an α-invariant contracting foliation of M with contraction constant

0 < λ < 1, which also is the stable foliation of α(1). Let β : R × M → DiffK(N) be a
CK-cocycle that is CK-close to IdN on the set of generators S. Then the map y → γx(y)
takes values in DiffK(N) and is CK as a function from Ws

α(1)(x) → DiffK(N). More-

over, if γx and γ ′
x correspond to β and β ′ respectively, then γx converges CK to γ ′

x as β
converges to β ′ in CK-topology.

Proof We start by observing that formula (3.4) gives the same limit γx if we take
the limit using discrete time n ∈ N. Note also that β CK-close to IdN on the set of
generators S implies that β is λ-center bunched. The idea of the proof is to construct a
partially hyperbolic diffeomorphism f for which the stable foliation is given by γx, and
then read the regularity properties of γx from the regularity properties of the stable
foliation.

Let X = M × N, f : X → X, f (x, z) = (α(1)(x), z) and g: X → X, g(x, z) =
(α(1)(x),β(1, x)(z)). The map f is a partially hyperbolic diffeomorphism with center
foliation with leaves Wc

f (x, z) = Wc
α(1)(x) × N. It is immediate that f is K-normally

hyperbolic to the foliation Wc
f . Since β is CK-close to IdN on the set of generators

S, the map g is a CK-perturbation of f . Observe now that the graph of the function
Ws
α(1)(x) � y → (y, γx(y)(z)) ∈ X coincides with the stable leaf Ws

g(x, z) of g. This
follows from the characterization of the stable leaf given in formula (4.2) and from
the contraction properties of the functions γx shown in Proposition 3.3, (5). �

5 Cycle functionals

In this section we review the theory developed by Katok and Kononenko in [11] which
allows to study cocycles over partially hyperbolic actions that have accessibility prop-
erty. Our set-up is that of cocycles over abelian actions with values in diffeomorphism
groups. The statements here have analogs for cocycles with values in Lie groups and
the proofs are similar.
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In what follows M and N are compact manifolds, α : R
k × M → M, k ≥ 1, is a

smooth action on M, and β : R
k × M → DiffK(N) a θ -Hölder cocycle over α which

is λ-center bunched. All the foliations that appear in this section are assumed to be
α-invariant, continuous, and with smooth leaves, and contracting or expanding under
the action of certain subflows Ra, a ∈ Q(R). Therefore the construction of the functions
γx introduced in Sect. 3 can be carried over. In order to emphasize the dependence
of the function γx on a certain contracting/expanding foliation W, we introduce the
notation γW

x .

Definition 5.1 Let F1, . . . , Fr be a family of foliations of M. An ordered set of points

(x1, . . . , xl, xl+1), xi ∈ M, 1 ≤ i ≤ l + 1,

is called an F1,...,r-path of length l if for every i = 1, . . . , l there exists j(i) ∈ {1, . . . , r}
such that xi+1 ∈ Fj(i)(xi). If xl+1 = x1, the path is called F1,...,r-cycle.

Definition 5.2 Let F1, . . . , Fr be a family of foliations of M, each Fi either contract-
ing or expanding under the action of a subflow Rai ⊂ R

k, ai ∈ Q(Rk), and P =
(x1, . . . , xl, xl+1) an F1,...,r-path. We define the height of β over the path P to be

H(β, P) = γ
Fj(l)
xl (xl+1) . . . γ

Fj(2)
x2 (x3)γ

Fj(1)
x1 (x2). (5.1)

Remark It follows from Proposition 3.5 that the height H(β, P) does not depend on
the particular subflows Rai. A different choice of the flows for which the foliations are
still contracting/expanding gives the same height.

The following proposition shows a necessary condition for the triviality of a cocycle.

Proposition 5.3 Let F1, . . . , Fr be a family of foliations of M, each Fi either contract-
ing or expanding under the action of a subflow Rai ⊂ R

k, ai ∈ Q(Rk). Assume that
the cocycle β is cohomologous to a constant cocycle. Then all the heights of β over
F1,...,r-cycles are trivial, that is, equal to IdN.

Proof Let π : R
k → DiffK(N) be a homomorphism and h: M → DiffK(N) a trans-

fer map such that (2.7) holds. Let C = (x1, . . . , xl, xl+1), xl+1 = x1, be a F1,...,r-cycle.
Assume that the foliation Fj(i) is contracting (the proof for expanding is similar) under
the action of a subflow Ra ⊂ R

k. Then

γ
Fj(i)
xi (xi+1) = lim

t→∞β(ta, xi+1)
−1β(ta, xi)

= lim
t→∞ h(xi+1)π(ta)

−1h(taxi+1)
−1h(taxi)π(ta)h(xi)

−1

= h(xi+1)h(xi)
−1, (5.2)

where for the last equality we use the continuity of h and that

lim
t→∞ distM(taxi, taxi+1) = 0.

Thus

H(β, C) = γ
Fj(l)
xl (x1)γ

Fj(l−1)
xl−1 (xl) . . . γ

Fj(2)
x2 (x3)γ

Fj(1)
x1 (x2)

= h(x1)h(xl)
−1h(xl)h(xl−1)

−1 . . . h(x3)h(x2)
−1h(x2)h(x1)

−1

= IdN . (5.3)

�
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Another instance when all the heights are trivial appears when we work with only
one foliation.

Proposition 5.4 Let F be a contracting or expanding foliation under the action of a
subflow Ra ⊂ R

k. Then the heights of β over all F-cycles are trivial.

Proof We assume that F is contracting. Let C = (x1, . . . , xl, xl+1), xl+1 = x1, be a
F-cycle. Then:

H(β, C) = γF
xl
(x1)γ

F
xl−1

(xl) . . . γ
F
x2
(x3)γ

F
x1
(x2)

= lim
t→∞β(ta, x1)

−1β(ta, xl)β(ta, xl)
−1β(ta, xl−1) . . .

β(ta, x3)
−1β(ta, x2)β(ta, x2)

−1β(ta, x1)

= IdN . (5.4)

�
Under additional assumptions on the family of foliations, the necessary condition

presented in Proposition 5.3 is also sufficient for the cocycle to be cohomologous to a
constant.

Definition 5.5 Let F1, . . . , Fr be a family of foliations of M. The family is called tran-
sitive if for any x, y ∈ M there exists (x, x2, . . . , xl, y) an F1,...,r-path joining x and y.
The family is called locally transitive if there exists an integer N ≥ 1 such that for
any ε > 0 there exists δ > 0 such that for any x ∈ M, y ∈ BM(x, δ), there is a F1,...,r-
path (x = x1, . . . , xl = y), l ≤ N, such that dFj(i)(xi)(xi+1, xi) < ε for i = 1, . . . , l and
j(i) ∈ {1, . . . , r}.
Proposition 5.6 Let F1, . . . , Fr be a family of transitive locally transitive foliations, each
foliation Fi either contracting or expanding under the action of a subflow Rai ⊂ R

k, ai ∈
Q(Rk). Assume that H(β, C) = IdN for all cycles C determined by the family. Then β is
cohomologous to a constant cocycle.

Proof Let x ∈ M fixed and y ∈ M arbitrary. Since the family of foliations is transitive,
there is a F1,...,r-path C connecting x and y. Define the function h: M → DiffK(N) by

h(y) = H(β, C). (5.5)

From H(β, C) = IdN for all cycles C it follows that the function h is well defined.
Indeed, if C′ is another path connecting x and y, then the concatenation of C, listed
from x to y, and C′, listed from y to x, gives a cycle. Thus H(β, C′)−1H(β, C) = IdN ,
and H(β, C) = H(β, C′).

Continuity of h is a consequence of the local transitivity of the family of continuous
foliations with smooth leaves and the fact that the cocycle β is Hölder.

We verify now that h is a transfer map. Let a ∈ R
k. Note that if C = (x = x1, ..., xl = y)

is an F1,...,r-path connecting x and y, then it follows from the α-invariance of the family
of foliations that aC = (ax1, ..., axl) is a F1,...,r-path connecting ax and ay. Hence

h(ay) = H(β, aC)h(ax)

= γ
Fj(l−1)
axl−1 (axl) · · · γFj(2)

ax2 (ax3)γ
Fj(1)
ax1 (ax2)h(ax)

= lim
t→∞β(εl−1taj(l−1), axl)

−1β(εl−1taj(l−1), axl−1) · · ·β(ε2taj(2), ax3)
−1

β(ε2taj(2), ax2)β(ε1taj(1), ax2)
−1β(ε1taj(1), ax1)h(ax1), (5.6)
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where εi ∈ {±1}, depending on the foliation Fj(i) being contracting or expanding.
Observe now that:

β(taj(i), axi+1)
−1β(taj(i), axi)

= β(a, xi+1)β(taj(i) + a, xi+1)
−1β(taj(i) + a, xi)β(a, xi)

−1,
(5.7)

for 1 ≤ i ≤ l − 1. So (5.6) becomes:

h(ay) = β(a, xl) lim
t→∞

(

β(εl−1taj(l−1) + a, xl)
−1β(εl−1taj(l−1) + a, xl−1)

· · ·β(ε2taj(2) + a, x3)
−1β(ε2taj(2) + a, x2)β(ε1taj(1) + a, x2)

−1

β(ε1taj(1) + a, x1)
)

β(a, x1)
−1h(ax1). (5.8)

Note that
lim

t→∞β(εl−1taj(l−1) + a, xl)
−1β(εl−1taj(l−1) + a, xl−1)

= lim
t→∞β(εl−1taj(l−1), xl)

−1β(a, εl−1taj(l−1)xl)
−1

β(εl−1taj(l−1), xl−1)β(εl−1taj(l−1), xl−1)

= lim
t→∞β(εl−1taj(l−1), xl)

−1β(εl−1taj(l−1), xl−1),

because β θ -Hölder implies that

lim
t→∞β(a, εl−1taj(l−1)xl)

−1β(a, εl−1taj(l−1)xl−1) = IdN .

Similar identities hold for the other products on the right hand side of (5.8), so (5.8)
becomes:

h(ay) = β(a, xl)h(y)β(a, x1)
−1h(ax1) = β(a, y)h(y)β(a, x)−1h(ax). (5.9)

Define π: R
k → DiffK(N) by

π(a) = h(ax)−1β(a, x). (5.10)

Note that π is well defined because x is fixed. We show that π is a representation, that
is

π(a + b) = π(a)π(b). (5.11)

Formula (5.11) is equivalent to

h((a + b)x)−1β(a + b, x) = h(a)−1β(a, x)h(b)−1β(b, x), (5.12)

which follows immediately from (5.9) if we replace y by bx and take into account that
β(a + b, x)β(b, x)−1 = β(a, b).

We finish the proof by observing that (5.9) is equivalent to

β(a, y) = h(ay)π(a)h(y)−1, (5.13)

that is, β is cohomologous to a constant cocycle. �

Remark Under better accessibility properties for the foliations, [11] presents Hölder
regularity results for h.
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6 Cartan actions on SL(n, R)/� and SL(n, C)/�

For the rest of the paper K is either the field of real numbers R or the field of complex
numbers C. Let G = SL(n, K). Let D+

n ⊂ G be the group of diagonal matrices with
positive elements. We parameterize D+

n as follows:

D+
n =

{

diag(et1 , . . . , etn)|t = (t1, . . . , tn),
n

∑

i=1

ti = 0

}

.

The n − 1 dimensional subspace of R
n given by

Dn =
{

(t1, . . . , tn)|
n

∑

i=1

ti = 0

}

can be viewed as the Lie algebra of D+
n via the inverse of the usual exponential map.

So D+
n is isomorphic to R

n−1.
Let � ⊂ G be a torsion free co-compact lattice, that is a discrete group of co-finite

volume without elements of finite order. The quotient space G/� has a structure of
compact manifold. We consider the action of D+

n on the space G/� by left translations.
This type of actions is called Cartan action.

Let α : D+
n × G/� → G/� be a Cartan action. Introduce a right invariant met-

ric d(·, ·) on SL(n, K), and denote in the same way the induced metric on G/�. Let
1 ≤ i, j ≤ n, i 
= j, be two fixed indices, and let exp be the exponential map in SL(n, K).
Let vi,j be the elementary n × n matrix with only one non-zero entry, that in position
(i, j). We denote eij(s) = exp(svi,j) and define a foliation Fij on G/� with leaves:

Fij(x) = {eij(s)x|s ∈ K}. (6.1)

Note that it is immediate from the definition of the foliation Fij that its leaves are
invariant under left multiplication by eij(s). Vice versa, since the leaves are one K-
dimensional, the motion along the leaves can be described in terms of multiplication
by eij(s).

The foliation Fij is invariant under the action α. Indeed, eij(s) = Id + svi,j, and a
direct calculation shows that

α(t)(Id + svi,j)x = (Id + seti−tj vi,j)α(t)x. (6.2)

Formula (6.2) also shows that the foliation Fij is contracting under the action of α(t)
if ti < tj, and is expanding if ti > tj. Consequently, any element in D+

n that has the
entries pairwise different acts as a partially hyperbolic diffeomorphism on G/�. The
dimension of the center distribution is n − 1 if K = R and 2(n − 1) if K = C.

7 Generating relations and Steinberg symbols

Proofs for the results in this section can be found in [17]. See also [16,26]. Throughout
this section we assume n ≥ 3.

The abstract Steinberg group Stn(K) is defined by generators and relations. The
generators are denoted by xij(t), t ∈ K, i, j ∈ {1, 2, . . . , n}, i 
= j, and are subject to the
relations:

xij(t)xij(s) = xij(t + s) (7.1)
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and

[xij(t), xkl(s)] =
⎧

⎨

⎩

1, j 
= k, i 
= l
xil(st) j = k, i 
= l
xkj(−st), j 
= k, i = l,

(7.2)

Steinberg obtained the following presentation of the special linear group SL(n, K).

Theorem 7.1 The group SL(n, K) is generated by eij(t), i 
= j, t ∈ K, subject to the
relations:

[eij(t), ekl(s)] =
⎧

⎨

⎩

1, j 
= k, i 
= l
eil(st) j = k, i 
= l
ekj(−st), j 
= k, i = l,

(7.3)

where [·, ·] denotes the commutator,

eij(t)eij(s) = eij(t + s), (7.4)

and

h12(t)h12(s) = h12(ts), (7.5)

where

h12(t) = e12(t)e21(−t−1)e12(t)e12(−1)e21(1)e12(−1)

for each t ∈ K
∗.

The natural map φ: Stn(K) → SL(n, K) defined by φ(xij(t)) = eij(t) is a homomor-
phism. Its kernel is denoted by K2(K). The kernel coincides with the center of the
Steinberg group. We use for it multiplicative notation, and denote the neutral element
by 1.

Here is a way to construct elements in K2(K). Let u, v ∈ K
∗. Then the diagonal

matrices

Du =
⎛

⎝

u 0 0
0 u−1 1
0 0 1

⎞

⎠, D′
v =

⎛

⎝

v 0 0
0 1 0
0 0 v−1

⎞

⎠,

commute and belong to SL(3, K). Using an embedding of the SL(3, K) in the upper
left corner of SL(n, K), n ≥ 3, it follows that Du, D′

v belong to any SL(n, K), n ≥ 3.
Choose now representatives U, V ∈ Stn(K), that is φ(U) = u,φ(V) = v, and define
{u, v} = UVU−1V−1. Then {u, v} is an element in K2(K).

Alternatively, for any unit in u ∈ K and i 
= j one can define

wij(u) = xij(u)xji(−u−1)xij(u)

and

hij(u) = wij(u)wij(−1).

Then {u, v} := [hij(u), hik(v)] is an element in K2(K). The map

K
∗ × K

∗ � (u, v) → {u, v} ∈ K2(K)
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is bi-multiplicative, that is {u1u2, v} = {u1, v}{u2, v} and {u, v1v2} = {u, v1}{u, v2}, and
skew-symmetric, that is {u, 1 − u} = 1. Moreover, it is shown in [17] that

{u, v} = hij(uv)hij(u)−1hij(v)−1. (7.6)

A presentation for the K2(K) in terms of relations and generators was found by
Matsumoto [16].

Theorem 7.2 Let K be a field. Then the kernel K2(K) of the natural map φ: Stn(K) →
SL(n, K) is generated by the elements {u, v}, u, v ∈ K

∗ subject to the relations:

(1) {u, 1 − u} = 1, for u 
= 0, 1,
(2) {u1u2, v} = {u1, v}{u2, v},
(3) {u, v1v2} = {u, v1}{u, v2}.

Any bi-multiplicative map c(·, ·): K
∗ × K

∗ → A into an abelian group A satisfying
c(u, 1 − u) = 1A is called Steinberg symbol. If A has a structure of Hausdorff space,
and the Steinberg symbol is continuous as a function K

∗ × K
∗ → A, then the symbol

is called continuous. The following results belong to Milnor:

Theorem 7.3 (a) Every continuous Steinberg symbol on the field C of complex num-
bers is trivial.

(b) If c(x, y) is a continuous Steinberg symbol on the field R of real numbers, then
c(x, y) = 1 if x or y is positive, and c(x, y) = c(−1, −1) has order at most 2 if x and y
are both negative.

8 Fisher–Margulis local rigidity result for isometric actions

Definition 8.1 Let � be a finitely generated discrete group, H a connected Lie group
and N a compact manifold. On the set of representations from � into H, or on the set
of group representations from � into DiffK(N), one can introduce the compact-open
topology.

A representation ρ0: � → H is called locally rigid if for any representation ρ: � →
H, that is close to ρ0, there exists an element in H that conjugates ρ and ρ0.

Let k1, k2 ≥ 0, integers. A smooth representation ρ0: � → Diff∞(N) is called
CK,k1,k2 -locally rigid if for any representation ρ: � → DiffK(N), that is Ck1 -close to
ρ0, there exists a diffeomorphism h ∈ Ck2(N) that conjugates ρ and ρ0.

The following theorem of Fisher–Margulis [6] will be used in the proof of the main
result.

Theorem 8.2 Let � be a discrete group with property (T). Let M be a compact smooth
manifold, and let ρ0 be a smooth action of � on M by Riemannian isometries. Then the
action ρ0 is CK,K,K−κ locally rigid for every κ > 0 for K > 1.

Remark The previous theorem has a smooth version as well. For our application we
need only the finite smoothness version.

9 Two auxiliary statements

The following regularity result can be found in [14,Theorem 2.1]. The proof of the
finite regularity version follows immediately from the proof of the smooth version.
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Theorem 9.1 Let X1, X2, . . . , Xk be C∞ vector fields on a manifold M, of dimension
N, such that their sum

∑k
i=1 Xi is a totally non-integrable distribution and, for each

j ≤ r, the dimension of the space spanned by the commutators of length at most j at
each point is constant in a neighborhood. Let P be a distribution on M. Assume that for
any positive integer p ≤ n the p’s partial derivatives Xp

i (P) exist as continuous or local
L2 functions. Then P is a C[n/r−N/2] function on M. Moreover, if all partial derivative
Xp

i (P) exists as continuous or local L2 function, then P is a C∞ function on M.

The following theorem of Newman [18] will be used in the proof of the main result.
See [2], Sect. 9 for a proof.

Theorem 9.2 Let N be a connected topological manifold endowed with a metric. Then
there is ε > 0 such that any non-trivial action of a finite group on X has an orbit of
diameter larger that ε.

10 Main results

Theorem 10.1 Let H be a semisimple real Lie group with first cohomology group
H1(H, Lie(H)) = 0, or H = GL(n, R). Let n ≥ 3, G = SL(n, K), � ⊂ G a co-compact
torsion free lattice, and M = G/�. Let α : D+

n × M → M be the Cartan action. Let
β : D+

n × M → H be a CK-cocycle that is λ-center bunched, and close enough to the
identity of H on the set of generators S. Then β is cohomologous to a constant cocycle
via a C[K/2−dim(M)/2] transfer function h: M → H. Moreover, if β is Hölder or smooth,
then the transfer function is Hölder, respectively smooth.

Theorem 10.2 Let N be a compact manifold and K ≥ 2 integer.. Let n ≥ 3, G =
SL(n, K), � ⊂ G a co-compact torsion free lattice, and M = G/�. Let α: D+

n ×M → M
be the Cartan action. Let β : D+

n × M → DiffK(N) be a CK-cocycle that is λ-center
bunched, and close enough to the identity Id(N) on the set of generators S. Then β is
cohomologous to a constant cocycle via a C[K/2−dim(M)/2] transfer function h: M →
Diff K(N). Moreover, if β is smooth, then the transfer function is smooth.

Remark (a) It was proved by Weil [27,28] that H1(H, Lie(H)) = 0 for all semisimple
Lie groups without compact or three dimensional factors.

(b) Let S ⊂ D be a subspace that contains a two dimensional subspace in general
position, that is a subspace that intersects each hyperplane given by the equation
ti = tj, i 
= j, along a different line. Using [5], one can show that Theorems 10.1 and
10.2 hold for abelian actions on M given by exp S ⊂ D+

n .
(c) We do not have a result for Hölder or C1 cocycles with values in diffeomor-

phisms groups because a counterpart of the Fisher–Margulis result for representations
in Hölder homeomorphism groups or C1 diffeomorphism groups was not found yet.

(d) One should compare these results, in particular the regularity for the transfer
map, with the Livsic type results from [19]. The loss or regularity there appears in N
direction.

We prove Theorem 10.2 in full detail and then explain the changes needed for the
proof of Theorem 10.1.

Proof of Theorem 10.2 Let Fi,j, i 
= j, be the α-invariant foliations introduced in
Sect. 6. These foliations are smooth and their brackets generate the whole tangent
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space. As shown in [3], this facts imply that the system of foliations is locally transitive.
Each Fij-path built using these foliations can be described by a product of elements of
type eij(t). Indeed, each piece of an Fij-leaf can be parameterized by t → eij(t)x, t ∈ I,
for some x ∈ G and a compact interval I. The path is a cycle if and only if the product
of these elements belongs to �.

It follows from Proposition 5.6 that if the heights H(β, C) are equal to IdN for all
cycles C determined by a family of locally transitive foliations, then the cocycle β is
cohomologous to a constant cocycle. Furthermore, it follows from Proposition 5.4 that
if the cycle C is included in a stable or unstable leaf then the height H(β, C) is equal to
Id(N).

The height over a cycle is, so far, dependent of the word in eij(t)’s describing the
cycle. Changing the word, without changing the value of the product, can produce
a different height. We show first that if for a cycle the product of eij(t)’s is equal
to identity then the height over such a cycles is trivial. Using the presentation for
SL(n, R) from Sect. 7, each word in eij(t)’s representing the product can be written
as a concatenation of conjugates of the basic relations (7.3), (7.4), and (7.5). Each of
these relations defines an Fij-cycle.

The relations of type (7.3) or (7.4) give cycles that are contained in stable leaves
for elements of the action α. Indeed, in the case of (7.4), the motion along the cycle
is described by multiplication by eij(t), for various t’s, so the cycle is included in the
stable leaf of an element t ∈ D+

n with ti < tj. In the case of (7.3), we split the proof
into three cases.

(1) If j 
= k, i 
= l then the cycle is contained in the stable leaf of an element t ∈ D+
n

with ti < tj, tk < tl.
(2) If j = k, i 
= l then the cycle is contained in the stable leaf of an element t ∈ D+

n
with ti < tj < tk.

(3) If j 
= k, i = l then the cycle is contained in the stable leaf of an element t ∈ D+
n

with tk < tl < tj.

Consider now relations (7.5) for two cases, K = R and K = C separately.
Assume K = R.
We fix a small neighborhood U of the trivial cocycle in which the cocycle β needs

to be in order for the argument to work.
Let V be the neighborhood of IdN in Homeo(N) that does not contain any map of

period 2 (according to Theorem 9.2). Let A = {(1, 1), (−1, 1), (1, −1), (−1, −1)}. Let
C(s, t) be the cycle given by the product {t, s} := h12(t)h12(s)h12(ts)−1 for some s, t ∈ R.
Since the functions γx depend continuously on the cocycle β, there is a neighborhood
U of the trivial cocycle such that the heights H(t, s) over C(t, s), (t, s) ∈ A, belongs to V
if β belongs to U .

Recall from Sect. 7 that (t, s) → {t, s} is a Steinberg symbol with values in K2(R).
We show that when we vary (t, s) over R

∗ × R
∗ the height H(t, s) over C(t, s) gives

a continuous Steinberg symbol with values in an abelian subgroup of DiffK(N). For
t1, t2, s ∈ R

∗ consider the product � := {t1t2, s}{t2, s}−1{t1, s}−1. The Steinberg sym-
bol {t, s} is bi-multiplicative in Stn(R), so � is equal to identity of Stn(R). Using the
presentation for Stn(R) from Sect. 7, any word representing � can be written as a
concatenation of conjugates of the basic relations (7.3) and (7.4) (which respectively
coincide with (7.1) and (7.2)). So using the discussion above, the height over the cycle
determined by� is trivial. The height over a concatenation of two cycles is the product
of the heights over the cycles. This implies H(t1t2, s) = H(t1, s)H(t2, s). In a similar
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way one can show H(s, t) is multiplicative in the second variable. To show that the
height satisfies skew-symmetry, consider the relation {t, 1− t}. This relation is equal to
identity in the Steinberg group, because the Steinberg symbol {t, s} is skew-symmetric,
so any word representing {t, 1 − t} is a product of conjugates of the standard relations
(7.3) and (7.4). Using the discussion above it follows that the height H(t, 1− t) over the
cycle determined by {t, 1 − t} is trivial. We show that H(s, t) takes values in an abelian
group. This follows from the fact that any two symbols {t1, s1} and {t2, s2} belong to the
abelian group K2(R), so the following equality {t1, s1}{t2, s2} = {t2, s2}{t1, s1} holds in
Stn(R). As before, the identity in Stn(R) implies H(t1, s1)H(t2, s2) = H(t2, s2)H(t1, s1).
The continuity of the symbol H(t, s) follows from its definition and from the fact that
the abelian group in which the symbol takes values has a Hausdorff topology induced
from DiffK(N).

So (t, s) → H(t, s) is a continuous Steinberg symbol. Due to Theorem 7.3,b), the
only possible values for the height are Id(N) or an element of order 2 in DiffK(N).

We show now that if the cocycle β belongs to the neighborhood U described
above, then the height is trivial. The height is continuous in (s, t) ∈ R

∗ × R
∗. We

look at each connected component of R
∗ × R

∗. Let (t, s) ∈ (0, ∞)× (0, ∞). The other
cases are similar. Since (0, ∞) × (0, ∞) is connected, the image of the height is con-
nected. The image belongs to the union of the sets {h ∈ Homeo(N)|h = IdN} and
{h ∈ Homeo(N)|h2 = IdN , h 
= IdN}, which are both closed. It follows from Theorem
9.2 that the sets are disjoint. So the image is included in one of the sets. If the image
is included in the first set, we are done. Otherwise, let (1, 1) ∈ (0, ∞) × (0, ∞). Since
β ∈ U , the height over the cycle {1, 1} belongs to V . But V does not contain any map
of period 2, in contradiction to our assumption.

If K = C the proof is similar, but simpler, because Theorem 7.3(a), implies that the
continuous Steinberg symbol is trivial in this case.

After eliminating the contribution to the height that appears due to the relations,
the product contains only the elements that conjugate the relations. Cancellations of
type eij(t)eij(−t) = IdN do not change the height because the cycle determined by the
product eij(t)eij(−t) is contained in a stable leaf of an element of the action α, so the
height over it has to be trivial.

We consider now the height over an arbitrary cycle, not necessarily with the product
of eij’s trivial. Any cycle induces an element in the first fundamental group π1(G/�).
One has an exact sequence

1 → π1(G) → π1(G/�) → π1(�) → 1.

It is well known that for n ≥ 3 one has π1(SL(n, R)) = Z2 and π1(SL(n, C) is triv-
ial. If K = R then the cycles that induce the nontrivial element in π1(SL(n, R)) are
homotopic to the cycle determined by the extra relation. See [17].

Two cycles that induce the same element in the fundamental group have the same
height. Indeed, if their products are�1 and�2, then the concatenated product�1�

−1
2

gives a word that is equal to identity, so the height over the cycle determined by
�1�

−1
2 is trivial, so the heights over �1 and �2 are equal. Since the height over a

concatenation of two cycles is the product of the heights over the cycles, the height
determines a homomorphism ψ from π1(G) into DiffK(N). The above remarks about
the fundamental group of G imply that ψ factors to a homomorphism from � into
DiffK(N).
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If the cocycle β is CK-small on a set of generators S, then ψ is CK close to identity
on a set of generators of �. Indeed, this follows from the fact that the functions γx
used to construct the height are CK continuous as functions of β and from the fact that
the height depends only on the homotopy class of the cycle. Consider now the trivial
representation π0 of � into DiffK(N) as an isometric action on the smooth manifold
N. Then ψ is CK close to π0. Note that any cocompact lattice in SL(n, K), n ≥ 3,
has property (T)[8]. Thus Fisher–Margulis local rigidity result for isometric actions
(Theorem 8.2) can be applied, and ψ is CK−κ conjugate to π0. But this implies that
ψ coincides with π0. So all the heights over the cycles are trivial, and the cocycle is
cohomologous to a constant cocycle. Note that for this argument we only need the
C2-version of Fisher–Margulis result, that is we can assume K = 2. So this argument
works for smooth cocycle even though we do not have a result on smooth dependence
of the stable foliation on the cocycle β.

So far, the transfer map h: M → DiffK(N) is only continuous. To show higher reg-
ularity for h we employ standard results in rigidity. Look at h as a map M × N → N.
It is standard to show that for any partially hyperbolic element in D+

n , h is CK along
its stable and unstable directions. See for example [20]. This gives CK regularity along
a finite set of directions, that have the vectors tangent to their distributions, and their
length 2 commutators, generating the whole tangent space TM. The commutators
needed to consider are of type [eij(t), eji(s)]. Now Theorem 9.1, with r = 2, implies

that h is C[K/2−dim(M)/2] in the M direction. The statement about smooth cocycles
follows from Theorem 9.1 as well. �

Proof of Theorem 10.1 The proof is similar to the proof of Theorem 10.2. Note
that from a result of Borel [1] follows that any semisimple Lie group as well as
H = GL(n, R) has a cocompact lattice. So Proposition 3.4 can be applied and the
functions γx can be defined. To show that the height over the extra relation is not an
element of order 2 in H we use the fact that the cocycle is small on a set of generators.
As before, this implies that the height belongs to a small neighborhood of identity
in H. But H is a Lie group and consequently does not have small subgroups. So the
height is trivial.

When we study the height over general cycles, instead of a homomorphism from
π1(M) into DiffK(N)we have a homomorphism from� into the fiber H. Note that con-
tinuity of the functions γx is enough to guarantee the smallness of this representation.
This is why we obtain here a Hölder result as well. Fisher–Margulis result is replaced
either by the rigidity result of Weil [27,28]: a homomorphism π from a finitely gener-
ated group � to a semisimple Lie group H is locally rigid whenever the cohomology
group H1(H, Lie(H)) = 0; or by the result of Margulis [15] that H1(�, V) = 0 for
every homomorphism of � to GL(V), where V is finite dimensional and � is a lattice
in a higher rank connected semisimple algebraic R-group without compact factors. In
our case � is finitely generated because it has property (T), and it is also a lattice in
SL(n, R). Since the homomorphism is close to identity on a set of generators it has to
be trivial.

The smooth and CK regularity results for h follows as before. For the Hölder
regularity result one can apply the Hölder regularity result from [11]. �
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