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Introduction 

Cocycles and cohomological equations play a central role in ergodic theory as 
well as in its applications to other areas of dynamics. Among the questions which 
are reduced to cohomological considerations are existence of invariant measures and 
invariant geometric structures, time change for flows and, more generally, actions of 
continuous groups, orbit equivalence and its restricted versions, existence of eigen-
functions, classification of various kinds of product actions and many others. The 
subject is very diverse and includes many measure-theoretic, algebraic, analytic 
and geometric aspects. Very broadly, cohomological considerations produce two 
types of conclusions: 

(i) if the set (it is very often not a group) of cohomology classes under consideration 
allows a reasonable structure then the corresponding objects allow a nice classifi
cation. In the extreme case when the set of cohomology classes is very small (e.g. 
if there is only one class) one speaks about rigidity; 

(ii) if there is no good structure in the set of cohomology classes then individual 
classes are usually very "chaotic" and this often leads to construction of objects 
within a given class with various, often exotic properties. Conclusions of this type 
thus lead to genericity statements, as well as of counterexamples to certain naturally 
sounding hypotheses. 

In the classical ergodic theory, which deals with measure preserving or nonsin-
gular actions of Z and R, conclusions of the first type never appear; the same is true 
in the more general context of ergodic theory for actions of amenable groups. In the 
topological context the situation changes only slightly. On the other hand, there is 
a variety of interesting situations in finer categories such as Holder, C r , 1 < r < oo, 
or real analytic, where a description of cohomology classes is possible, and produces 
crucial insights into various classification problems. 

It is interesting to notice a difference between the classical cases of a Z or an JR. 
action, where such a classification only very rarely amounts to rigidity, and other 
cases, such as actions of higher rank abelian groups (i.e. Zk or Rk for k < 2), where 
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108 ANATOLE KATOK AND E. A. ROBINSON 

rigidity is quite widespread and is often crucial for understanding of structural 
questions. 

Furthermore, for actions of groups which are both "large" and "rigid", rigidity 
appears and becomes, in many respects, prevalent already at the ergodic theory 
level, e.g. in the measurable category. In fact, one of the central issues in dynamics 
of actions of such groups is a translation of the available measurable rigidity results 
into topological and especially differentiable context. The prime examples of such 
groups are noncompact semisimple Lie groups of real rank greater than one and 
lattices (discrete subgroups of cofmite volume) in such groups. Kazhdan property 
(T) is often a key ingredient in producing various rigidity properties, although by 
itself it leads only to a limited array of results. Still some rigidity results are being 
extended to specific property (T) groups beyond semisimple Lie groups of higher 
rank and their lattices. 

In the present work we almost completely concentrate on the classical cases. 
A more general setting appears only in basic definitions and in some comments 
meant to underline the contrast with those. The first two chapters deal with the 
measurable setting and hence all the results we prove or discuss are of type (ii). 
In the third chapter we introduce a general framework for the cohomological phe
nomena of type (i) (stability and effectiveness) with rigidity as a special case. We 
illustrate how these phenomena appear in several topological, symbolic and smooth 
settings. In the last two chapters we return to the type (ii) phenomena but in more 
specialized settings. Our aim there is to demonstrate how a "controlled chaos" 
can be produced in a variety of simple .smooth or other special situations. The 
crucial concept here is very fast periodic approximation in the number-theoretic 
(Liouvillean numbers), differentiable and measurable contexts. 

The purpose of this work is to introduce the main concepts and principal tech
niques and illustrate those by a variety of interesting example including both general 
statements and the treatment of particular classes of systems. We do not aspire to 
present a comprehensive survey of the subject. Accordingly, we keep references to 
a minimum. 

The present work is an updated, revised and expanded version of the second of 
the four parts of our work "Constructions in Ergodic Theory" originally intended 
to appear as a book form, which was mostly written on 1982-83, appended during 
the eighties and which has been circulated in the manuscript form. 

"Constructions in Ergodic Theory" is dedicated to a systematic although by 
no means exhaustive development of several principal classes of combinatorial con
structions of measure-preserving transformations which allow to obtain some non-
trivial properties and which are well adapted to the realization of abstract measure-
preserving transformations as smooth or real-analytic systems on compact mani
folds preserving an absolutely continuous or smooth measure, and as other special 
classes of dynamical systems. An updated version of the first part which contains 
a definitive account of the general concept of periodic approximation as well as 
its applications to establishing genericity of various ergodic properties in a variety 
of categories is about to appear as [Kl]. The third and fourth parts were left 
unfinished and their fate at the time of writing remains uncertain. 

The developments of the last decade, especially those dealing with actions of 
groups other than Z and R, changed the appearance, and, to a certain extent, 
even the basic perception of the area which is the subject of the present work. 
Still the program outlined and illustrated in Part II of "Constructions in Ergodic 
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COCYCLES, COHOMOLOGY AND COMBINATORIAL CONSTRUCTIONS 109 

Theory" has proved to be fundamentally sound. In fact, this program influenced 
some of the later developments such as the systematic use of, and the search for, 
invariant distributions for various classes of dynamical systems. We would like 
to repeat though that, revisions and additions notwithstanding, the present text 
to a large extent reflects the perspective of the early eighties and hence primarily 
describes and refers to work published by that time. We apologize for probably not 
sufficiently emphasizing certain more recent results. 

We would like to thank Alistair Windsor who carefully read the text and made 
some valuable suggestions. 

Michel Herman made fundamental contributions to differentiable dynamics, 
smooth ergodic theory, and, specifically the area covered in the present work. Aside 
from numerous published papers his thinking made a huge influence on the way we 
view these subjects. His untimely death is a tremendous loss for the world dynamics 
community. 

1. Definitions and principal constructions 

We are going to discuss a group of constructions which appear frequently both 
in the general theory of measure-preserving transformations and in various concrete 
situations. The central concept for this circle of ideas is the notion of an (untwisted) 
cocycle over a measure-preserving transformation (and more generally over a group 
action), and the corresponding notions of coboundary and cohomology. In order 
to explain this concept in the most natural way, we will leave, for the moment, the 
confines of classical ergodic theory, which deals with measure-preserving transfor
mations and flows, and consider the actions of more general groups. We will be 
able to touch only a few aspects of this subject. For a systematic review of basic 
notions in the area see [HaK]. A useful introductory discussion can be found [KH], 
section 2.9. 

Cocycles play a particularly important role in the ergodic theory and dynamics 
of actions of groups other than Z and M. Various aspects of this subject are treated 
in e.g. [Schl], [Zl], [HK1], [KSpl]. 

Another aspect of the subject which we will not be able to discuss has been 
developed in the remarkable papers of Herman [H4, H5]. It involves the use of 
cocycles in smooth ergodic theory, in particular to obtain below estimates of the 
Lyapunov characteristic exponents in nonuniformly hyperbolic situations. 

1.1 Cocycles, coboundaries and Mackey range. Let us consider a 
Lebesgue space (X, /x) and let T and G be two locally compact second countable 
groups. Let us suppose that S = {S7}ier is a measurable right action of T on 
(X, fi) by measure-preserving transformations. The action S is ergodic if any S-
invariant set has measure zero or full measure or, equivalently, if any S'-invariant 
measurable function is almost everywhere constant. 

DEFINITION 1.1. AG cocycle over the action S is a measurable function a : 
X x T - • G such that 

(1.1) a(z,7i72) = a(x,7i)a(5 f
7 lx,72) 

It follows from (1.1) that a(x,id7) = idc and a (x ,7 _ 1 ) = (a(S7-yx,j))~1. 
From a purely formal point of view, this is a special case of a concept familiar in 
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110 ANATOLE KATOK AND E. A. ROBINSON 

algebra, topology and other branches of mathematics. The same is true for the 
next two definitions. 

DEFINITION 1.2. Two G cocycles a and (3 over a F action S are called coho-
mologous if there exists a measurable map X/J : X —> G such that 

(1.2) P(x,*y) = ^-\x)a{xll)xlj{S1x). 

Let us note that for any cocycle a and for any ip the function /? defined by (1.2) 
is also a cocycle. 

DEFINITION 1.3. A cocycle a is called a coboundary if there exists a measurable 
map ip : X —> G such that 

(1.3) <*(xn) = ^~l(x)^(S^x). 

Curiously, in various cohomology theories there seems to be no established 
name for a cochain which provides the equivalence between two cocycles, i.e. in 
our situation for the function ip in (1.2). Following a prevalent, but by no means 
universal, usage in ergodic theory we will call those functions transfer functions. 

Notice that if the action S is ergodic then a transfer function ip is uniquely 
defined up to left multiplication by a constant function. 

DEFINITION 1.4. We will call a cocycle a an almost coboundary if it is cohomol-
ogous to a cocycle with constant coefficients, i.e. if there exists a homomorphism 
cj) : T —•> G such that for some measurable i\) : X —• G 

(1.4) a(x1y) = ^-l(x)<P(^(S1x) 

For a given cocycle, it is natural to ask whether it is a coboundary or at least 
an almost coboundary. The answer to this question depends on the solvability of 
equations (1.3) and (1.4) for tp. We will refer to such equations as cohomological 
equations. 

Since the function defined by (1.3) is always a cocycle, it is easy to construct 
a lot of cocycles which are coboundaries. As algebraic intuition would suggest, 
and as is confirmed by the discussion below, coboundaries should be regarded as 
trivial cocycles. As long as homomorphisms of T into G are known one finds many 
almost coboundaries too. The existence of cocycles other than almost coboundaries 
in many cases represents a formidable problem. This may not sound surprising to 
those who are familiar with cohomology theories in algebra and topology. However, 
the structure (or rather the absence of any reasonable structure) of the set of all 
cohomology classes of cocycles in many cases is strikingly different from what might 
be expected from familiar analogies. 

If G is an abelian group then the product of two cocycles (coboundaries) is again 
a cocycle (corr. coboundary); thus the cocycles form a group and the coboundaries 
a subgroup. Hence one can define the corresponding (first) cohomology group. 

If T = Z, all cocycles can be described rather easily. Namely, the cocycles are 
in a one-to-one correspondence with measurable functions h : X —» G. The formula 

f h{x)h(Sx)...h{Sn-1x) n>0 
(1.5) a(x,n) — < . N , , K J V ' ; \h-1(S-1x)...h-1(Snx) n<0 
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COCYCLES, COHOMOLOGY AND COMBINATORIAL CONSTRUCTIONS m 

determines a cocycle and every cocycle a can be represented in this way by making 
h(x) — a(x1l). A similar description is possible for the continuous time case 
( r = M), subject to certain inessential restrictions (cf. Section 1.3). 

The question of whether a cocycle over a Z action is a coboundary will be one 
of our central topics. The classification, up to cohomology, of cocycles over a Z 
action in a purely measurable setting does not make any sense as results of the 
next chapter will demonstrate. However, as will be seen in Chapter 3, in some finer 
categories it does become feasible for particular cases. 

As we have noted, the construction of cocycles other than almost coboundaries 
for larger groups may be difficult. This is related to various rigidity phenomena 
which assert that within various classes any cocycle is an almost coboundary. For 
actions of some sufficiently large groups, such as semisimple Lie groups or lattices 
in such groups the situation is strikingly different from the classical cases and 
rigidity phenomena appear already in the measurable category, the best known 
example being Zimmer cocycle superrigidity theorem [Zl] [FK]. For actions of 
amenable groups the orbit equivalence theory [CFW] implies that the situation 
in measurable category is essentially as chaotic as for the classical cases. However 
for abelian groups of higher rank, e.g. r = Mh on R71 h > 2 nontrivial rigidity 
phenomena appear in Holder and smooth categories [KSpl] [KSch] [Schl]. 

The following construction, which is sometimes called the Mackey range [Zl], 
[FK], [HaK] allows us to associate with a G cocycle over a right F action, a left 
action of G. It generalizes the notion of induced action well known in the theory 
of group representations as well as constructions of the special flow (flow under a 
function), and the induced and special (integral) automorphisms, familiar in ergodic 
theory. 

Any right T action S = {S 7} 7 er a n d G cocycle a over S determine a G extension 
Sa — {S^}7£r of S which acts on X x G by the following formula 

(1.6) S°(x,g) = (S^x,ga(x,<y)) 

The cocycle equation (1.1) is equivalent to the group property for the extension 

°7i 72 — 7271 

since 

57i ^72 = (5 f
7 l5'72x,^a(x,72)a(5'72x,7i)) = (Sl2llx,ga(x^2li)) = S^2ll{x,g). 

There is a natural notion of isomorphism between two G extensions Sa and 
S^ of a T action S, namely an isomorphism which preserves every fiber {x} x G, 
shifting it by an element of G 

(1.7) ip(x,g) = {x,g%l>(x)). 

Clearly 
ip o S%(x, g) = (57x, gfi(x, y)i/;(Syx)) 

and 
5 7 o i/>(x, g) = (57x, gip(x)a(x, 7)). 

Thus two cocycles a and (5 are cohomologous if and only if Sa and S@ are isomorphic 
extensions and in particular a is a coboundary if and only if Sa is isomorphic to 
the trivial extension Sld: 

(1.8) Slf(x,g) = (S^x,g) 
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112 ANATOLE KATOK AND E. A. ROBINSON 

and a is an almost coboundary if and only if Sa is isomorphic to a product extension 

(1.9) S*(x,g) = (S^x,g<l>(>y)) 

where <j> : T —> G is a group homomorphism. 
The group G acts on X x G in a natural way by the left shifts Lgo(x,g) — 

(x,gog), and this action obviously commutes with any extension Sa of the form 
(1.6). In particular it preserves the decomposition of X x G into orbits of the 
action Sa and thus, at least formally, we can consider the factor action of G on the 
space of these orbits. We will denote this factor action by La. In general, the space 
of its orbits may not have a good measurable structure. Even if it does, the natural 
invariant measure may be infinite. For example, for the trivial extension (1.8) the 
factor is naturally isomorphic to the group G itself, and if G is not compact there is 
no finite translation invariant measure. In general one takes the measurable hull of 
the partition into the orbits of S a , i.e. the measurable partition corresponding to 
the cr-algebra of measurable sets consisting of whole orbits of Sa. The factor action 
L a restricted to this measurable hull is called the Mackey range of the cocycle a. 

In the case of the constant coefficient cocycle (ft (cf. (1.9)) the action L^ is 
known as the action induced by the homomorphism 0. This action has a natural 
finite invariant measure if the subgroup c/>(T) C G is closed, unimodular, and has 
cofinite volume in G. In particular, this is true if </)(T) is discrete and the factor 
G/(j)(T) is compact. We proceed to discuss a natural generalization of this last 
condition to arbitrary cocycles. 

1.2 Lipschitz cocycles, Pseudo-isometries and the Ambrose—Kaku-
tani theorem. Let us consider two metrics d and d! on the same topological space 
X. we will call these metric uniformly equivalent if there are positive constants 
A, B and C such that for x, x' £ X, 

(1.10) Ad{x,x')-C < d'(x,xf) < Bd(x,xf) + C 

A map / between metric spaces (X, dx) and (Y, dy) is called a pseudo isometry 
if for some positive constants A, B and G, and for every x, x' £ X, x ^ x', 

Adx{x,x') - C < dY(f(x)J(x')) < Bdx{x,x') + C. 

It is clear that if we replace the metrics dx and dy with uniformly equivalent 
metrics d'x and d'Y then the pseudo isometry / remains a pseudo isometry with 
respect to these new metrics. 

Let us now return to group actions and cocycles. We will assume for the 
remainder of this section that T is a finitely generated discrete group and that G 
is a locally compact Lie group. Under these assumptions, both G and T possess 
natural classes of uniformly equivalent left-invariant metrics. Namely for T we take 
the word-length metric determined by any finite system of generators and for G, 
any left invariant Riemannian metric. 

DEFINITION 1.5. A G cocycle a over a r action S is called a Lipschitz cocycle 
if for almost any a ; 6 l , the map ax : ax(l) — a{lix) is a pseudo isometry from Y 
to G with constants A,B,C independent of x. 

The special cases T = Zn and G = E n or Z n are discussed in [K2]. In these 
cases the Lipschitz condition can be replaced by weaker "integrability" conditions. 

http://dx.doi.org/10.1090/pspum/069/1858534-b

Licensed to Univ of Wisconsin, Madison.  Prepared on Fri May 29 15:01:40 EDT 2020for download from IP 128.104.46.196.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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Some important properties of Lipschitz cocycles in a more general setting can 
be derived from the results in the unpublished paper [BKM] which concern the 
behavior of nets in metric spaces under pseudo isometries. A net is a discrete subset 
of a metric space with the property that every point is a bounded distance away 
from it. 

THEOREM 1.6. [BKM], Let T be a discrete cocompact (and hence finitely gen
erated) subgroup of a connected Lie group G. Then for every Lipschitz G cocycle a 
over a T action S on a Lebesgue space (X,n), the extension Sa has a fundamental 
domain D — U {x} x Dx where Dx is a bounded set in G whose boundary has 

Haar measure zero. 

By taking the restriction of ji x XQ to D , where XG is Haar measure in G, we 
obtain a natural finite invariant measure for the G action La in the factor of X x G 
into orbits of Sa. Obviously this conclusion holds for any cocycle /? cohomologous to 
a Lipschitz cocycle a since the factor actions L a and L@ for cohomologous cocycles 
a and f3 are in a natural correspondence. 

Let us illustrate this situation by the classical case r = Z, G — R. According 
to (1.5) any R cocycle a over a Z action S = {5n}nez is determined by a function 
h : X —» R. If we assume that 

(1.11) 0<A<h(x)<B 

then the cocycle determined by h is Lipschitz. In this case the extension of S to 
X x R is generated by the automorphism 

Sh(x,t) = (Sx,t + h(x)). 

The set 

D = {(x,t) : 0 < t < hiS^x)} 

is a fundamental domain for Sh and the factor action Lh = {L^}teR acts on D 
as the vertical flow, where pairs of points of the form (x,0) and (S~1x,h(S~1x)) 
are identified. In this way, the factor action can be naturally identified with the 
special flow over £ - 1 built under the function /i(6'_1x) and the invariant measure 
is induced from X x R. As we will show in the next chapter, for every L1 function 
g such that fx gdji > 0, one can find a function h satisfying (1.11) such that 

(1.12) g{x) = h(x) + *l){Sx) - ip(x) 

for a measurable function i\). In other words, the real-valued cocycle generated 
by any integrable function with non-zero average is cohomologous to a Lipschitz 
cocycle. For a generalization of this fact to other groups see [HK1]. 

The concept of a Lipschitz cocycle suggests a natural notion of equivalence for 
r actions. 

DEFINITION 1.7. Let r be a finitely generated discrete group. Two ergodic 
right r actions S = {S7}ier and T — {T7}7€r are called Kakutani equivalent if 
there exists a Lipschitz T cocycle a over S such that the corresponding action L a 

is isomorphic to the left action T~l = {T7-i}7Gr-

Licensed to Univ of Wisconsin, Madison.  Prepared on Fri May 29 15:01:40 EDT 2020for download from IP 128.104.46.196.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms
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THEOREM 1.8. (i) Kakutani equivalence is an equivalence relation. 
(ii) Let T be a cocompact discrete subgroup of a Lie group G. Then two ergodic 
right V actions S and T are Kakutani equivalent if and only if there exist Lipschitz 
G cocycles a and (3 over S and T correspondingly such that the corresponding left 
G actions La and L@ are isomorphic. 

This theorem, which is a relatively easy corollary of the results in [BKM], 
provides a generalization of the classical result of Kakutani [Ka] (cf. also [ORW], 
[K3]) concerning the case r = Z, G = R. 

Another interesting question is the extent to which the Ambrose-Kakutani 
theorem can be generalized. This theorem asserts in particular that every ergodic 
flow is isomorphic to a special flow over an ergodic automorphism. It is easy to 
see that in addition (1.11) can be satisfied, so that the Ambrose-Kakutani theorem 
essentially says that every ergodic flow (R action) is isomorphic to a flow obtained 
from a Lipschitz cocycle over an ergodic automorphism via the construction of 
Mackey range. The generalization of this theorem to the case r = Zn and G — Rn 

is obtained in [K2]. For further discussion of that case see [JR]. 
On the other hand, for many sufficiently large groups the Ambrose-Kakutani 

theorem is not true and orbit equivalence classes tend to contain lots of information 
about the acting group (cf. [Zl], [Z2], [Fu]). 

1.3 Cohomological equations for measure-preserving transforma
tions and flows. From now on, we will consider only cocycles over Z and R 
actions, i.e. measure-preserving transformations and flows. Any G cocycle over a 
Z action is determined by a measurable function h : X —> G via (1.5). For this 
reason, we will sometimes call the function h itself a cocycle. 

1.3.1 Cocycles over flows. Let us give a similar characterization for a special 
class of cocycles over a flow. We will consider the case where G is a Lie group and 
we will assume the existence for a.e. x of the derivative 

/-, 1Qx / x def da(x,t) 
(1.13) a(x) =- dt t=o 
Here a is a measurable map from X to the Lie algebra g = T^G of G, and the 
cocycle a can be recovered from a by solving the differential equation 

da(x,t) 
— j t — = £a(x,t)a{Stx) 

where Cg is the differential of the left shift by g, which carries the Lie algebra g to 
TgG. 

This condition, differentiability along the orbits of an action, is not very restric
tive. For example any real-valued cocycle a (and hence any vector-valued cocycle 
too) is cohomologous to a cocycle satisfying (1.13), namely the cocycle 

as(x,t) = I a(STx,t)dr. 
Jo 

for any positive s. 
We are now going to review some of the main cases where cocycles and coho-

mology appear in ergodic theory. See [HaK] for an additional discussion. 
1.3.2 Ergodicity and eigenvalues. Let us first observe that T is not ergodic if 

and only if the 1(*\ = 1 has a non-constant solution. Furthermore, the eigenvalue 
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problem for the ergodic transformation T is equivalent to the question of whether 
the constant S1 cocycle A, A(x, n) — An, is a coboundary. A similar characterization 
holds for flows. 

1.3.3 Compact group extensions. Next consider the compact group extension 
Sh of a measure-preserving transformation S 

Sh(x,g) = (Sx,gh(x)), 

where g G G, a compact group, and h : X —-• G is measurable. The extension Sh 

can be viewed as a measure-preserving transformation on (X x G, \i x Ac), where 
XG is the normalized Haar measure on G. If the G cocycles defined by hi and h^ 
are cohomologous then the corresponding extensions are isomorphic as measure-
preserving transformations. 

If G is abelian then 

L 2 ( I x G , / i x A G ) = 0 Hy. 

Here G* is the group of characters of G and Hx — {f(x)x(g) : / £ £2(AC,//)}. 
This decomposition is orthogonal and is invariant under the unitary operator USh 
corresponding to Sh. This means that any eigenfunction for Sh lies in one of the 
subspaces Hx. This leads to the equation 

(1.14) X(h(x))f(Sx) = f{x) 

for an invariant function f(x)x(g) £ Hx and 

(1.15) x(h(x))f(Sx) = Xf(x) 

for an eigenfunction f(x)x(g)- In other words, the questions reduces to determining 
whether the S1 cocycle x ° h o v e r $ 'ls correspondingly a coboundary or an almost 
coboundary. 

1.3.4 Induced and special transformations. The induced map TA is defined on 
a subset A of positive measure by 

rp _ rjimin{n>0:Tnx£A} 1 AX ± 

The special transformation Tn(.) (or integral transformation) is defined by a 
measure-preserving transformation T and a positive integrable integer valued "roof" 
function n on X. Tn(.) is a transformation of the set Xn^ = {(x, j) : x G X, 1 < 
j < n(x)} defined by 

1.16 Tn{.)(x,j) = \ , J 7 / ; 

^ (Tx, 1) it j = n(x) 
It preserves the measure induced on Xn(.) by the measure /i x A on X x Z, where 
A is the uniform measure on Z. 

The induced and special transformations correspond to particular cases of the of 
the Mackey range construction, discussed in 1.1, for the case T = G = Z. To obtain 
them in this way, we take for the induced map a Z cocycle over a transformation 
T determined by a function with values 0 and 1, (i.e. the characteristic function of 
a set), and for the special transformation, a Z cocycle with positive values. Let us 
note that a natural generalization of both constructions is provided by non-negative 
integer valued cocycles. Cocycles of this type play a central role in the theory of 
Kakutani equivalence (cf. [K3], [ORW]). 
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The isomorphism of induced maps TA and Tg of the form x —• Th^x leads to 
the following cohomological equation for a Z valued function h: 

(1.17) XA(x)=XB(x) + h(Tx)-h(x). 

Similarly, for special automorphisms with roof functions n{x) and m(x) this kind 
of isomorphism is equivalent to the existence of an integer valued solution i\) for the 
cohomological equation 

(1.18) n(x) = m(x) + \j)(Tx) - tp{x). 

The existence of an eigenfunction with eigenvalue A for an induced or a special 
transformation also has a simple cohomological formulation. If the special trans
formation Tn(.) has an eigenvalue A then 

(1.19) Xn(x) = /OrX/CTa;))-1 

where / is the restriction of an eigenfunction with eigenvalue A to the base. In 
other words, the cocycle Xn^ is a coboundary. Likewise for an induced map TA, 
the existence of an eigenfunction with eigenvalue A implies 

(1.20) \**M = f(x)(f(Tx)yl 

where / is the following extension to X of an eigenfunction g on A : f(x) = 
\g(T~l(x")x), where i(x) is the smallest positive number such that T~l^x G A. 

1.3.5 Special flows. Two special flows built over T, {Tt
 1 }teR a n d {Tt }teR 

are isomorphic if h\ and /12, considered as R cocycles, are cohomologous, i.e. if 

(1.21) h^x) = h2(x) + i/;(Tx) - il){x) 

for a real valued measurable function ip. In particular, if h is an almost coboundary, 
meaning the following cohomological equation has a measurable solution ip 

(1.22) h(x) = h0 + ip{Tx) - ip{x), 

then the special flow {Tt }teR is isomorphic to the suspension flow with a constant 
function. It is easy to see that HQ — fx hdfi. (see Proposition 2.1). The existence 
of an eigenfunction for the special flow implies that for some real r, 

(1.23) exp irh(x) = f{x)f-\Tx) 

for some measurable / : X —> 5 1 , so that the S1 cocycle exp irh(x) is a coboundary. 
Let us note that by exponentiating (1.22) we obtain (1.23) for any r = ^ ^ , k G Z; 
however, (1.23) may be true without (1.22). 

Isomorphism conditions (1.17), (1.18), and (1.21) are only necessary but not 
sufficient. They correspond to special types of isomorphisms which, in a sense, 
preserve orbits and preserve order on these orbits (cf. [K3], §3). It follows from the 
theory of Kakutani equivalence that there are many other cases of isomorphism. 
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2. Structure of equivalence classes 

Most of the material of this chapter is an amalgamation of results by Kocergin 
[Kc] and Ornstein and Smorodinsky [OS]. In [HK1] a completely different method 
is developed which yields most of these results. In the first section we arrive at the 
conclusion that in the measurable category each equivalence class of cocycles over 
an ergodic measure-preserving transformation is "uniformly distributed" within the 
subspace of all cocycles with a given average. Moreover, by modifying a cocycle on 
an arbitrarily small set, even subject to extra (sufficiently flexible) conditions, one 
can bring it within an arbitrary cohomology class. In the second section we push 
the same line of argument even further and show that every cocycle is cohomologous 
to a "regular" one, e.g. continuous or even continuously differentiable except for 
one point. Later in sections 3.3 and 3.4 we will show that the results of that kind 
can not be extended much further. Even a mild uniform condition stronger than 
continuity (e.g. a Holder condition) in many cases changes the picture completely. 

2.1 Majorization and density in L1. We begin with two preliminary re
sults. 

PROPOSITION 2.1. Let hi, h2 : X —> Rn be two measurable L1 cocycles over an 
ergodic measure-preserving transformation T. If hi is cohomologous to h2 then 

/ hid\i — \ h2d\i. 
Jx Jx 

PROOF. Let us assume that there is a measurable transfer function ip : X —* Rn 

(2.1) hi(x) - h2(x) = ip(Tx) - ip(x) 

The statement of the proposition is obvious if ip is integrable. In the general 
situation we apply the ergodic theorem for vector-valued functions to the function 
hi — h2. Since by (2.1) 

n- i 1 

- ^ / n ( T f c x ) - h2(T
kx) = -{^{Tnx) - *l>(x)) 

k=0 

so that by the ergodic theorem the left-hand side is close to Jx(h\ — h2)d/n on a set 
of large measure. On the other hand, the right-hand side must be close to 0 except 
for a set of small measure. This implies that Jx hidji = fx h2d[i. • 

The next lemma is useful in handling cocycles with values in compact abelian 
groups. 

t 
Let G = Tk © 0Z/fci . There is a natural epimorphism exp : H = R^ ©Z£ - • G 

i=l 
so that if the H cocycles h\ and h2 over a measure-preserving transformation T are 
cohomologous via the transfer function i/; then G cocycles exp oh\ and exp oh2 are 
cohomologous via exp^. 

LEMMA 2.2. Given a G cocycle over T, g : X —> G and ho £ IR*^ there exists 
an L1 H cocycle h such that exp/i = g and fx h(x)dfi = HQ. 

REMARK. Although the cocycle h has discrete components we assume that the 
lattice 1} is embedded into R^ so that integration makes sense. 
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PROOF. Since exp is a surjection on a compact subset of H we can find a 
bounded measurable branch for exp - 1 . By pulling back g along that branch we 
obtain a bounded and consequently integrable h such that exp/i = g. In order to 
correct the value of the integral we can add to h any integrable cocycle hf whose 
values lie in the kernel of exp. This kernel is a lattice in the continuous part of 
H and is a sublattice of finite rank in the discrete part. Obviously, one can find a 
lattice valued function with a given value of the integral so that the correction is 
possible. • 

Now we proceed to the central result of this section. It is very close to Theorem 
2 from [Kc]. However, the proof of that theorem indicated in [Kc] looks incomplete. 
We use instead a slight modification of the proof of a similar statement - Lemma 
1 from [OS]. 

THEOREM 2.3. Let f,g be two R or Z cocycles over an ergodic measure-
preserving transformation T such that H/HL1 < II^IIL1- There exists a cocycle h 
cohomologous to f and such that \h(x)\ < \g(x)\ almost everywhere. If f is non-
negative, h also can be chosen non-negative. Furthermore, if the function g is fixed 
then for every e > 0 one can find S > 0 such that if HfWi1 < ^IMIL 1 then the 
transfer function ip connecting f and h vanishes on a set of measure greater than 
1-e. 

PROOF. We will treat the cases of R and Z cocycles simultaneously. 
Let x £ X. Consider the set of all pairs of integers (k,£) satisfying the following 

properties 
(i) k < o < e 

(ii) For every m = fc, fc + 1, . . . ,£— 1 

m m 

£ l / ( r ^ ) | > £ l < ? ( ^ z ) | 
i—k i=k 

£ m 
(iii) E 1 / ( ^ ) 1 < E 1^(^)1 

i=k i=k 
It follows from the Birkhoff ergodic theorem and from the inequality W/WL1 < 

\\g\lL1 that for almost every x G l a t least one such pair exists and the values of k for 
all such pairs are bounded from below. Let (k{x),£{x)) be the pair satisfying (i)-(iii) 
with the minimal value of k. Such a pair is obviously unique. For fc = 0, — 1,— 2 , . . . , 
^ = 0 ,1 ,2 , . . . let 

Ak/ = {X£X, k(x) = fc, £(x) = £} 
The sets Ak,e form a partition of X up to a set of measure 0 and TrnA^^ — A_m?£_m 

for m — 1 , . . . ,£. We are going to construct a function /i, such that \h\ < \g\ and 

i(x) £(x) 

(2.2) Y, h{?lx) = E f(Tl^ 
i=k(x) i=k(x) 

The last condition implies that h is cohomologous to / via the transfer function 

o 

(2.3) 1>(x) = J2 h{?%x) - f^^-
i=k(x) 
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00 
In particular, ^ = 0 on the set (J Ak,o- Let us show how to construct h satisfying 

k=o 
(2.2). The solutions are slightly different for the real-valued and integer-valued 
cocycles. In the real case the easiest way is to put 

£{x) 

_ £ f{Tlx) 

h(x) = \g(x)\l-Hx) 

£{x) 
£ \g(T*x)\ 

i=k(x) 

Condition (iii) implies that \h\ < \g\. Condition (2.2) follows from this definition 
automatically. 

In the case of integer valued cocycles let us consider the following measurable 
sets 

% /..so ft={^^,/W = / i , \g(Tix)\=gi, z = 0, . . . ,*} 

£ £ 
Since by (iii) £ l/«l < £ #2 o n e c a n nno^ integers ho,..., hi of the same sign such 

£ £ 
that \hi\ < gi% = 0 , . . . ,*and £ / i 2 = £ / ; . We put for x e Be, / 0 , . . . , fe,go,... ,ge, 

i=0 i=o 
i = 0 , . . . ,£, h(Tlx) — hi. Condition (2.2) is obviously satisfied. 

It remains to estimate the measure of the support of the transfer function t\> 
oo 

defined by (2.3). Since ip = 0 on the set |J A^^ it is enough to estimate the 
fc=0 

measure of that set. We have from (ii) 

| | / | | L i > / |/(x)|dM = X ) l / ( r * a ? ) l ^ > 
JX\uAkj0 £=Q 

£ £—1 

£=0 ^Ao,e i=o Jx 

/X\uAfe)0 

2.4 
\g(x)\dn 

/X\uAk,0 

Since \g\ is an integrable function there is a function u(e) decreasing to zero at 
6 -> 0 such that if fi(B) < e fBgd/j, < uj(e). Thus (2.4) implies that | | / | | L I > 
cj(/x(supp i/j)). n 

Next two corollaries are also valid for both R and Z cocycles over an ergodic 
measure-preserving transformation T. 

COROLLARY 2.4. Every L1 cocycle f is cohomologous to a bounded cocycle. 

COROLLARY 2.5. Suppose f and g are L1 cocycles such that Jx fdjj, = 0 and 
||g||Li > 0. Then there exists an L1 cocycle h cohomologous to f such \h(x)\ < \g(x)\ 
almost everywhere. 

There is one more corollary for E-cocycles. 

COROLLARY 2.6. Given any two L1 cocycles f and g with Jx fd/j, — Jx gd/j, 
and e > 0, there exists an L1 cocycle h cohomologous to f such that \h(x)—g(x)\ < e. 
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Furthermore, h can be required to coincide with g on a given set of measure less 
than 1. 

A counterpart of that statement for Z-cocycles is the following. 

COROLLARY 2.7. Given any two integrable Z cocycles f and g with j x fd\i — 
fx gdfi, there exists an integrable Z cocycle h cohomologous to f and such that 

\h-g\<l. 

Furthermore, h can be required to coincide with g on a given set A of measure 
less than 1. If g is not constant outside of A the range of h may be required to be 
contained in the range of g. 

P R O O F OF COROLLARIES 2.4-2.7. Corollary 2.4 follows directly from Theo
rem 2.3 if we take g — (1 + e) Jx fd/i for a positive e. 

To obtain Corollary 2.5 it is enough to show that / is cohomologous to a 
function with arbitrary small L1-norm, because then Theorem 2.3 directly applies. 
To do that we represent / = /+ — /_ where /+ = max(/, 0). Since fx fd/i — 0, 
11/+1l̂ i — 11/_ ||£i. Let us fix an e > 0 and apply Theorem 2.3 to the pair /_ , 
(1 + f)/+. Thus, the function /_ is cohomologous to a nonnegative function h 
such that h(x) < (1 + c)f+(x) and consequently / — /+ — /_ is cohomologous to 
f+ — h> — e/+. The last inequality implies that | | /+ — /i||Li — J |/+ — h\dfi = 
2 J max(0, h — f+)dfi < 2e| | /+ | |^i . Since e can be chosen arbitrarily small this 
finishes the proof of Corollary 2.5. 

Corollary 2.6 follows from the previous one applied to the pair of functions 
f — g and s where s is nonnegative, less than e everywhere and is equal to zero on 
the given set. Thus, / = g + (/ — g) is cohomologous to g-\-h where \h{x)\ < s(x). 

A very similar argument applies to Corollary 2.7. Here we take as s a charac
teristic function of a set B C X\A such that the values of g on B are not equal to 
supg. • 
X\A 

Applying Theorem 2.3 and its four corollaries to each coordinate of a cocycle 
with values in H = Rk © Zl we obtain similar results for cocvcles with values in H. 
In particular, the following theorem follows immediately. 

THEOREM 2.8. Given asetUC X, fi(U) < 1, a measurable function f : U —> 
H = ~Rk 0 Zf, a vector HQ G Mk+i and an L1 H cocycle g over an ergodic measure-
preserving transformation T, the set of all cocycles cohomologous to g is dense in 
the set 

A(f,h0) = {heL1{X,H), h = f on U, I hd/j.^ho}. 

In particular, for U = 0 we obtain that every cohomology class is dense in the 
sub space of all cocycles with a fixed average. 

This theorem together with Lemma 2.2 implies a similar but even more uni
versal density result for cocycles with values in a compact abelian group of the 
form 

G = Tk x ©Z/7c 2. 
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COROLLARY 2.9. Given a set U C X, fi(U) < 1. a measurable function f : 
U —* G and a measurable G cocycle g over T, the set of all cocycle cohomologous 
to g is dense in the L1 topology in the set 

A(f) = {h:h = f onU}. 

In particular for U = 0 we obtain that every cohomology class of G cocycles is dense 
in the space of all measurable cocycles. 

2.2 Continuous and almost differentiable representations. In this 
section we consider only real-valued cocycles. 

THEOREM 2.10. Let C C L1 (X,/i) be a linear subspace of L1 dense in the L1 

topology and closed in the L°° topology (uniform convergence almost everywhere). 
Then for every f G L1(X, fi) the set Cf — {h G £, h is cohomologous to / } is 
dense in the L°° topology in the set {h G £, / hd/jL = j fdfi}. 

PROOF. Let us fix a function h G C such that J fdfi = J hdfi and e > 0. By 
Corollary 2.6 one can find a cocycle f\ cohomologous to / and such that \f\ —h\ < | . 
Then we began to apply Theorem 2.3 inductively. First we approximate f\ by a 
function h\ G C such that 

\\hi-h\\n<d-f 

where 6\ is chosen sufficiently small to ensure that, by Theorem 2.3, h\ — f\ is 
cohomologous to a function r\ such that | / i | < | via a transfer function -\p\ whose 

support has measure less than | . The function h\ + r\ = J2 is thus cohomologous 
to f\ and consequently to / . Then we approximate f>2 by h^ G C such that H/2 — 
^ H L 1 < ^2§ with an appropriately chosen 82 so that f'2 — h2 is cohomologous to 
a function r2, |r"21 < | via a transfer function supported by a set of measure less 
than ^, denote /12 + r2 = /3 , etc. In the limit we obtain 

/ ' = lim fn = lim hn 

and in both cases the convergence is uniform. Since hn G C and C is L ^ closed, 
f G C On the other hand, since the transfer function connecting fn and / n +i has 
support of measure less 2~n , by the Borel-Cantelli Lemma the sequence of transfer 
functions between / and fn converges in probability to a transfer function between 
/ and / ' . " D 

COROLLARY 2.11. [OS] Let X be a compact metric space, ji be a Borel proba
bility nonatomic measure on X,T : X —» X be a measure-preserving transformation 
(not necessarily continuous). Then every real-valued cocycle f G Ll(X,fi) is coho
mologous to a continuous cocycle. Moreover the set of continuous cocycles coho
mologous to f is dense in uniform topology in the space of all continuous functions 
with the same integral as f. 

This statement follows immediately from Theorem 2.10 if we put C = C(X), 
the space of all continuous functions. 

Corollary 2.11 can be strengthened by specifying the values of a continuous 
function cohomologous to / on any closed set F so that fi(X\F) > 0. The proof 
repeats that of Theorem 2.10 with an extra observation that f\ may be already made 
to coincide with the given function on F and all the successive approximations may 
be chosen in order not to change that. 
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Pushing the method described above a bit further one obtains the following 
result which looks quite striking at first glance. 

THEOREM 2.12. Let M be a compact differentiable manifold, jibe a Borel prob
ability measure on M, T : M —> M be a measure-preserving transformation. Then 
every real-valued cocycle f G L1(MJ/i) is cohomologous to a continuous cocycle f 
which is continuously differentiable except at a single point. 

SKETCH OF PROOF. First one finds a continuous cocycle f\ cohomologous to 
/ which is continuously differentiable outside a ball B\ of radius, say, 1/2 and 
can be extended to a continuously differentiable function. This is possible by a 
stronger version of Corollary 2.11 mentioned above. Then one approximates f\ in 
uniform topology by a continuously differentiable cocycle g± which coincides with 
/ outside B\. If the L1 norm of / i — g\ is small enough one can find a cocycle 
f'2 cohomologous to f\ (and hence to / ) which coincides with f\ outside a smaller 
ball B^ C B\ of radius 1/4 and extends to a continuously differentiable function 
and such that the support of the transfer function %\)\ has measure less than 1/2. 
Continuing by induction one constructs on the nth step the cocycle fn continuously 
differentiable outside of ball Bn C -Bn-i of radius 2 n + 1 which coincides with fn-i 
outside of the ball Bn-i and extends to a continuously differentiable function and 
such that a transfer function ipn connecting fn with fn-i is supported on a set 
of measure less than 2n . In the limit the function / = limn-^oo fn is continuous 

00 
everywhere and continuously differentiable outside of the single point f] Bn. By 

71=1 
the Borel-Cantelli lemma the series ]P ijjn converges and hence gives a transfer 

n=l 
function between f\ and / . Since f\ is cohomologous to / this finished the proof. 
• 

REMARK. AS many instances discussed in the next chapter will show, the single 
point of nondifferentiablity cannot be removed. 

The transfer functions involved in the equivalence between continuous cocycles 
will very often be discontinuous, even for a homeomorphism. 

For a homeomorphism / we will denote the set of / invariant Borel probability 
measures by M(f). 

PROPOSITION 2.13. Let f be a homeomorphism of a compact metric space X. 
The following three subspaces of C(X) coincide: 

(i) Ex = {<£:/ (pdu = 0 for all v G M(f)} 
(ii) E2 = C, where C = {^:0 = / i o / - / i f o r a continuous function h] 

(iii) E3 = B, where B = {(f) : 4> = h o f — h for & bounded Borel function h}. 

PROOF. Obviously E3 2 ^2; since the space E\ is closed we can apply Proposi
tion 2.1 and conclude that E\ D E%. Thus it is enough to show that E2 2 E\. This 
is a fairly straightforward argument using duality and the Hahn-Banach Theorem. 
We will present it here, because the same argument will appear several times in 
subsequent discussions. Consider the continuous linear operator A : C(X) —» C(X) 
such that (A(j))(x) = (f)(f(x)) — <fi(x). £2 is the closure of the image of A. The dual 
operator A* acts on the dual space C*(X). Since every element of C*(X) is the 
difference of two measures, M(f) spans KerA*. Thus \ G Ker A* if and only if for 
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every cf) G C(X), 
(A*x)<i> = x(M) = o. 

and (j) G E\ if and only if for every \ £ Ker^L*, x(0) = 0- I n other words x(0) — 0 
as soon as \ annihilates ImA By the Hahn-Banach Theorem, if (t> £ E2 one can 
construct \ such that x(0) — 1 a n d x ( I m ^ ) = 0- D 

REMARK. If the transformation / is minimal, i.e. all of its orbits are dense, 
then C = B. (Gottshalk, Hedlund, see e.g. [KH], Theorem 2.9.4.) 

In view of Theorem 2.10 and Proposition 2.13, we can see that unless / is 
uniquely ergodic there are many continuous cocycles which are coboundaries via 
discontinuous and even unbounded transfer functions. Theorem 4.2 below shows 
that this is the case in the uniquely ergodic situation as well. At the end of section 
3.3 we will give an example of a topologically transitive but not minimal transfor
mation and a naturally defined continuous function which is a coboundary with a 
bounded but discontinuous transfer function. 

3. Rigidity and stability 

We proceed to explore various situations where equivalence classes of cocycles 
have a reasonable structure. As the discussion in the previous chapter shows, one 
can hope to find such situations only if the topology in the corresponding space of 
cocycles is considerably stronger than the topology of uniform convergence. The 
most natural situations to look upon are analytic, smooth, Lipschitz or Holder 
cocycles over a transformation or a flow preserving the corresponding structure. 
Two basic concepts for the subsequent discussion are those of rigidity and stability. 
We will define these notions for cocycles over actions of fairly general groups but our 
discussion will be almost completely restricted to the case of a single transformation 
(Z-action), with several glimpses of the case of flows. 

3.1 Definitions. Let H be a topological space of G-cocycles over a measur
able measure-preserving action S of a locally compact second countable group I\ 
We will assume that the topology in H is stronger than the topology of conver
gence in probability uniform on compact subsets of T. In other words, if a sequence 
of cocycles an G H converges in H to a cocycle a, then for any compact subset 
K CT and any neighborhood U of the identity in G, and for any sufficiently large 
n a~1(x,7)a(x,7) G U for all 7 G K and for a set of x close to full measure. 

DEFINITION 3.1. The space H is rigid with respect to the action S if every 
cocycle a G H is an almost coboundary. If in addition, for every a G H, the transfer 
function ip which establishes the equivalence between a and a constant cocycle, can 
be chosen from a given class ^ of maps from X to G, we will call H \P'-rigid with 
respect to S . 

It is natural to allow a certain freedom of terminology and to speak of continu
ous, Holder, smooth, (Gr or G°°), or analytic rigidity when the transfer functions 
possess the corresponding properties. 

For Rn-cocycles over a measure-preserving transformation rigidity means that 
all of the functions from H with the fixed average are cohomologous to each other. 

For actions of certain groups, e.g. semisimple Lie groups of rank greater than 
one, or lattices in such groups, rigidity occurs for large classes of measurable cocycles 

http://dx.doi.org/10.1090/pspum/069/1858535
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[Zl], but for actions of Z, and more generally, of amenable groups, it can appear 
only if H has a sufficiently fine topology. There is however a big difference between 
the classical case (Z and R actions) and the situation for actions of higher rank 
abelian groups. 

In the latter case cocycle rigidity in Holder, smooth and analytic categories 
is quite widespread, appears for many natural examples of actions, both smooth 
[KSpl] and symbolic [Sch2], and is related with hyperbolic behavior in the smooth 
situation and with expansiveness in the symbolic one. Cocycle rigidity is a key link 
in the whole panoply of rigidity results for such actions including local and global 
differentiable rigidity [KSp2]. 

For the classical cases Holder cocycle rigidity very likely never happens and 
smooth cocycle rigidity appears for Diophantine translation of the torus and prob
ably only there. We will discuss this issue in the next section. 

A property which is much more common and definitely more useful in the 
classical cases is stability: 

DEFINITION 3.2. Under the same assumptions as in Definition 3.1, we will call 
the space H stable with respect to S if every class of cohomologous cocycles in H is 
closed. 

In this definition we assume that arbitrary measurable (7-valued functions are 
allowed as transfer functions between cocycles from the space H. However, equiv
alence classes within H may shrink considerably if we put certain restrictions on 
the transfer functions. In particular, it is conceivable that unrestricted equivalence 
classes are not closed while the restricted ones are and vice versa. This possibility 
suggests certain ramifications of the concept of stability. As before, let ^ be a 
certain class of maps from X to G. 

DEFINITION 3.3. The space H is called ^-stable with respect to the action S 
if every class of cocycles from H, cohomologous via transfer functions from ^ , is 
closed. 

Let us note that in general, ^-stability may not imply stability. 

DEFINITION 3.4. The space H is called ty-effective with respect to H if for any 
two cohomologous cocycles a,/? G If the transfer function ip belongs to ^ . 

Obviously, if H is ^-effective then ^-stability implies stability. 
Terms such as smooth, analytic or Holder stability and effectiveness have the 

obvious meaning. We observe that if equivalent cocycles are assumed to be defined 
everywhere and the transfer function is only assumed to be measurable, then the 
corresponding cohomological equation needs only be satisfied almost everywhere. 

If both spaces H and ^ consist of continuous maps, then there are certain 
obvious invariants which are preserved under cohomology via a transfer function 
from ^f. For example, if G is a subgroup of W1 and v is any measure on X invariant 
with respect to the action S, then for any 7 £ T the average 

/ a[x,^)dv 
Jx 

is a cohomology invariant (Proposition 2.13). This remains true even if ip is a 
bounded Borel function. These remarks together with Corollary 2.11 show that for 
continuous cocycles over transformations which are not uniquely ergodic equivalence 
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classes with continuous or bounded Borel transfer functions must be much smaller 
than the unrestricted equivalence classes. 

For r = Z and arbitrary (7, the conjugacy class in G of the product of the 
values of the cocycle along any periodic orbit is invariant. In sections 3.3 and 3.4 
we will discuss situations when these invariants determine the equivalence classes, 
thus producing stability. 

While no general theory exists for stability and effectiveness of smooth or other 
natural classes of cocycles, there is a good understanding of these phenomena for 
smooth dynamical systems with hyperbolic behavior and their counterparts in topo
logical and symbolic dynamics. To a lesser extent stability and effectiveness are 
understood for partially hyperbolic systems and for parabolic systems with suffi
ciently regular features. For a general discussion of hyperbolic, partially hyperbolic, 
parabolic and elliptic behavior in dynamics, see [HaK]. A general outline of stabil
ity and effectiveness properties is also discussed there. Presently we will glance at 
some characteristic phenomena which appear for each type of behavior. 

3.2 Translations of the torus and smooth rigidity. 
3.2.1 Diophantine and Liouvillean numbers. The example which we are going 

to describe plays a basic role in the theory of perturbations of completely integrable 
Hamiltonian systems. The rigidity result was known to Kolmogorov in the early 
fifties [Ko]. 

Let A = (Ai , . . . , Am) G Tm so that each A; is a complex number of modulus 1. 
We will call the vector A Diophantine if for some positive k and c and for arbitrary 

integers n\ such that J2 \nj\ > 0' 
j=i 

(3.1) E ^ > c E i " . 

If Xj — exp27rzaj, j = 1 , . . . ,ra, then (3.1) is equivalent to the following condition 
for the vector a = (a\,..., ani) of phases: for arbitrary integers n-i , . . . . nm such 

m 
that J2 \nj\ > 0 and for every integer n, 

J2aJ > c 
\J=1 

The vector of phases which is of course defined up to an integer vector is also 
called Diophantine. Often the vectors a (and corresponding A's) which are not 
Diophantine are called Liouvillean. 

Let Rx : Tm - • Tm be the rotation* of the torus by A, 

R\{zu i Z-m) — (AiZi, . . . , XmZm). 

This is the prototype example of elliptic behavior in dynamics ( see [HaK], Chapter 
7). 

*This terminology suits multiplicative notations on the torus we used so far. When additive 
notations are used as later in this section the same map R\ is called a translation and is denoted 
by Ta. 
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126 ANATOLE KATOK AND E. A. ROBINSON 

3.2.2 Cohomological equation over a rotation. 

THEOREM 3.5. If X is Diophantine then for every C°° function (real or com
plex) h on Tn there exists a C°° function ip (real or complex) such that 

(3.2) h{z) - hdfi = rl>(R\z) - tp(z) 
Jjm 

where \i is Lebesgue measure on T m . 
Furthermore, Diophantine vectors are the only ones for which this property 

holds. 

P R O O F . We will use Fourier expansion. For n i , . . . , n m G Z, let us denote 

Xni,...,n, I K ' . Then 
2=1 

/ ^ ^ni,...,nmXni,...,n 

and h is a C°° function if and only if the Fourier coefficients /ini,...,nm decrease 
faster than any power of |ni | + • • • + \nm\. 

Let us look for the Fourier expansion for the solution ip of (3.2). 

Y = / j Wni 5 • • • i nm Xni,...,nm • 

Its Fourier coefficients ipnij 

(3.3) 

If h is C°° and A is Diophantine, then it follows from (3.1) that the coefficients 
^ni,...,nm decrease faster than any power of |ni | + • • • + |nm | , so that ip defined 
through (3.3) is a C°° function. 

Conversely, if A is Liouvillean, then there exists a sequence of vectors nk = 
(nf, . . . , n^ ) such that for any natural number s as k —> oo, 

ni,.. 
S|n 

i^m 

^n 

•,™m 
*|>0 

are 

i,...,i 

found from 

^m m 

2=1 

(3 2): 

- 1 

E ^ ? - 1 ( m 

Define h by choosing its only nonzero Fourier coefficients as 

,1/2 

E ^ ; 
i=i 

1 for fc = 1, 

These Fourier coefficients decrease faster than any power of X!ln?l> hence the 
J = I 

function h is C°°. On the other hand, for a solution ip of the cohomological equation 
(3.2) the Fourier coefficients ^nfc,...,nfc g i y e n by (3.3) go to infinity as k —* oo which 
contradicts existence of even an L1 solution to (3.2). • 
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REMARKS. 1. In the Liouvillean case the Fourier series for h constructed above 
is lacunary. In the case of one variable Herman [Hel] showed that if the cohomolog-
ical equation (3.2) with an L2 function h given by a lacunary series has a measurable 
solution, then the solution is actually L2. Thus, in our case with m = 1 for a Liou
villean a there is no measurable solution at all. This can also be shown using the 
methods developed in Section 5.1 below. 

2. Herman also obtained sharp results for the equation (3.2) for Diophantine a 
with functions h of finite regularity. Namely if h is C r , (3.1) is satisfied and r — k 
is not an integer, then there is a Cr~k solution, and if r — k is an integer, there 
is a solution which is Cr~k~e for any e > 0 ([He2], Proposition A.8.1). However, 
typically (for a dense G$ of hfs in the corresponding spaces) there is no Cr~k+e 

solution for any positive e and no Cr~k solution if r — k is an integer ([He2], 
Proposition XIII.4.5). 

3. Theorem 5.6 below contains a generalization of our argument for the Liou
villean case. 

3.2.3 Smooth rigidity and effectiveness. Using the terminology introduced in 
section 3.1 we can reformulate Theorem 3.5 by saying that for a Diophantine A, 
the rotation R\ is both C°° rigid and C°° effective. We do not know any other 
examples of measure-preserving diffeomorphisms which possess these properties. 

CONJECTURE 3.6. Any C°° diffeomorphism of a compact connected manifold 
which is C°° rigid and C°° effective is C°° conjugate to a Diophantine translation 
of a torus. 

There are similar questions concerning rigidity in Cr category for finite r. 

PROPOSITION 3.7. A C°° rigid and C°° effective diffeomorphism f is uniquely 
ergodic and its only invariant measure is a volume with C°° density. 

PROOF. Unique ergodicity immediately follows from Proposition 2.13 and the 
density of C°° functions in the space of continuous functions. For, given two mea
sures \i and v one can always find a C°° function such that its integrals with respect 
to these measures are different. But if a function is cohomologous to a constant 
even via a continuous transfer function this constant must be equal to the integral 
of the function with respect to any invariant measure, a contradiction. 

Now consider a measure \i given by a positive C°° density. We have /*/i = J/x 
where the Radon-Nikodym derivative J (called the Jacobian) is C°° and positive. 
The C°° function log J is by assumption cohomologous to a constant: 

logJ(x) = H(fx)-H(x) + c. 

But then the measure v — expH/i satisfies f*v — expcz/. Since the total measure 
is preserved this implies that c — 0, hence v is invariant. • 

COROLLARY 3.8. A C°° rigid and C°° effective diffeomorphism f is minimal. 

A part of the conjecture is that a C°° rigid and C°° effective diffeomorphism 
have to act on a torus. A possible approach would be to try to prove that as a mea
sure preserving transformation such a map has to have pure point spectrum. It is 
not difficult to show that every ergodic diffeomorphism with pure point spectrum 
and C°° eigenfunctions is conjugate to a translation on a torus. An alternative 
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128 ANATOLE KATOK AND E. A. ROBINSON 

possibility would be a smoothly rigid diffeomorphism with a continuous part in the 
spectrum or one with pure point spectrum but with non-smooth eigenfunctions. 
Even without rigidity the last possibility constitutes an interesting question. Such 
"non-standard" models do exist for R\ with some A which are very well approxi
mated by rational vectors [AK], but their existence even for a single Diophantine 
A is an open question. 

Now consider diffeomorphisms of the torus Tm . We use additive notation now. 
Every such diffeomorphism is homotopic to an automorphism FA, whose lift to Rm 

is the linear map given by A, an m x m matrix with determinant ±1 . 
There are two extreme cases in which our conjecture can be proven. If the 

matrix A has no roots of unity among the eigenvalues then any diffeomorphism 
homotopic to FA has infinitely many periodic points ([KH], Theorem 8.7.1) and 
hence no cocycle rigidity is possible. 

PROPOSITION 3.9. [LSa] A C°° rigid and C°° effective diffeomorphism f of 
T m homotopic to identity is C°° conjugate to a Diophantine translation. 

PROOF. Since / is homotopic to identity its lift F to the universal cover Rm 

has the form Id + H where H is a periodic function, hence it projects to function h 
on the torus. Using rigidity and effectiveness we obtain h = ip o f — ip + c, where ij; 
is a C°° function and c is a constant. Lift if; to the function ^ on W71. Obviously 
H = ^oF-^ + c. Consider the map S = Id - # : Rm -» Rm . We have 

SoF = Id + H-VoF = Id + VoF-y + c-VoF = Id-y + c={Id + c)oS 

Let s be the projection of the map S to the torus. Projecting the last equality 
on the torus we obtain 

(3.4) sof = Tcos 

where Tc = Id + c is the translation by c. 
It remains to show that s is a diffeomorphism. Taking the derivative of (3.4) we 

see that the set of singular points of s is /-invariant and hence dense by Corollary 
3.8. By the Sard Theorem the set of regular points is open and dense hence the set 
of singular points is empty. Thus s is a covering map but since it is homotopic to 
identity it is a diffeomorphism. By Theorem 3.5 c must be a Diophantine vector. 
• 

Using a similar method one can treat the case where the matrix A is unipotent, 
i.e. all of its eigenvalues are equal to one. In this case one can show that C°° 
cocycle rigidity and effectiveness implies that the diffeomorphism is C°° conjugate 
to an affine map. Using the method of Section 3.6 below one can show that such a 
map with a unipotent A ^ Id has infinitely many invariant distributions and hence 
cannot be rigid. 

The remaining difficult case is when A is reducible with eigenvalues of absolute 
value greater than one coexisting with roots of unity. 

3.3 Stability of Holder cocycles for transformations with specifica
tion. In this section we will consider a rather robust situation of cocycle stability 
in the context of topological dynamics. Dynamical conditions which appear in this 
and the next section are abstract versions of hyperbolicity. Thus in these sections 
we essentially describe certain aspects of cocycle stability and effectiveness for dy
namical systems with hyperbolic behavior. 
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Let / be a homeomorphism of a compact metric space X. 

DEFINITION 3.10. We will say that / satisfies the strong specification property 
if for any e > 0 there exists N(e) such that for any collection of orbit segments 

{P{Xj)}j = l,...,L,i=0,...,mj-l 

and for any n i ? . . . , UL > A/"(e), there exists a periodic orbit 

{/Mi=o,...,p-i 

of period 

L 
P = Ylm3 + U3 

such that for j = 1 , . . . , L, 

dist(rx3,f^y)<e 

where 
j ' - i 

£(ij) = z + ^ m / e +n/e. 

The two main examples with this property are: 

(i) A topological Markov chain (subshift of finite type) E^, where A is a zero-one 
matrix such that for some n, An has all positive entries; the latter condition is called 
transitivity (see [KH], Section 1.2.). 

(ii) The restriction of a diffeomorphism of a compact manifold to a locally maximal 
(basic) hyperbolic set A satisfying one of the following equivalent conditions ([KH], 
Section 18.3): 

(a) F | A is topologically mixing, i.e. for every two nonempty open sets U and 
V, there exists N{U, V) such that fnU n V ^ 0 for all n > N(U, V). 

(b) Every power of / has a dense orbit on A. 
(c) At least one stable or unstable manifold for / is dense in A. 
Now assume that the homeomorphism / satisfies the strong specification prop

erty. 

DEFINITION 3.11. We will say that a vector-function h : X —> Rm satisfies a 
dynamical Holder condition if there exist e > 0 and K > 0 such that for any n, if 
x,y e A, 

n-l 
(3.5) dfay) < e then ^ | | / i ( / l x ) - MA/)II < K 

1=0 

The reason for calling this property a Holder condition is that in both examples 
(i) and (ii) above, this property is satisfied by Holder functions with respect to a 
natural metric. In the symbolic case (i) the metric in the space 

ttA = {UJ = (. . .CJ-ICJOCJI, . . . ) :o;n G {0, . . . , i V - 1}, Ai0n_lUJn = 1, n e Z} 
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130 ANATOLE KATOK AND E. A. ROBINSON 

can be chosen as dist(u;,a/) = ^ \\^°\ f° r anY A > 1. In the smooth case (ii) 
n= —oo 

any metric on A induced by a smooth Riemannian metric on the ambient manifold 
can be chosen. 

All vector-valued functions on X satisfying (3.5) with a fixed e form a Banach 
space H( with respect to the norm 

n-l 
||/i||f = m^| | / i(ar) | |+sup sup ] T | | M / ^ ) - h{fy)\\. 

The spaces H( will serve as H in our study of stability of cocycles. 

PROPOSITION 3.12. / / / satisfies the strong specification property and h : X —• 
Rm satisfies the dynamical Holder condition then the following two properties are 
equivalent 

n-l 
0) X) h(flx) — 0 for every periodic point x G X such that fnx = x. 

2 = 0 

(ii) There exists a bounded Borel function ip : X —» Rm such that 

h(x) =ip(fx) -ip(x). 

This proposition immediately implies the following stability result. 

COROLLARY 3.13. Let f be a homeomorphism of a compact metric space X 
satisfying the strong specification property and \£ be the set of all bounded Borel 
maps from X to Rm . Then the spaces H{ are ty-stable. 

P R O O F OF COROLLARY 3.13. By Proposition 3.12 two Rm cocycles hi,h2 G 
Hi are equivalent with the transfer function from \P if and only if the sums of their 
values along each periodic orbit are equal. Those conditions define a closed affine 
subspace of H(. 

P R O O F OF PROPOSITION 3.12. Condition (ii) implies (i) because if fnx = x 
n-l 

then ]T h(flx) = ip(fnx) — ip(x) — 0. The converse follows easily from Lemma 

3.14 and 3.15 which are formulated and proved below. 
LEMMA 3.14. Under the assumptions of Proposition 3.12, if (i) is satisfied 

then there exists a constant L > 0 such that for every x G X and every positive 
integer n 

n-l 

X>(f*) 
i=0 

<L. 

PROOF. We apply the specification property to the orbit segment {px} i — 
0 , . . . , n — 1, with 6 > 0 small enough to use the dynamical Holder condition for h. 
This gives us a periodic point y of period, say, n -f N(e) such that d£(x, y) < e. We 
have 

n- l n+iV(e)-l 
J2h(fx)= ] T h(fy) + 
2 = 0 2=0 

n-l n+JV(e)-l 
+J2(h(fx)-h(fy))- Yl h^y)-
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The first sum is equal to zero by (i); the second is uniformly bounded by the 
dynamical Holder property; the third contains a bounded number of terms each of 
them bounded by the sup \\h\\. This proves the lemma. • 

LEMMA 3.15. (D. Rudolph). If {an}nez is a sequence of real numbers such 
that for any integers n,myn < m, 

H a * <L 

then 

where 

and 

(in — bn-\-i — bn 

bn = - supS^ 
Nez 

( 7V-1 

,N 

^ a n + 2 , 7V>0 
2 = 0 

0, 7V = 0 
-N 

- ^ a n _ 2 , N < 0 

so that bn is uniformly bounded. 

PROOF. One can easily see that 

3N-I ?N 

so that 
bn+i ~ bn = - sup S„+i + sup S^ = an.U 

Nez Nez 

In order to finish the proof of Proposition 3.12, we first use Lemma 3.14 and 
then apply Lemma 3.15 to every coordinate of h along every orbit of / . This gives 
us the solution TJJ = ( ^ i , . . . , V;m) of the cohomological equation where 

(3.6) ipi(x) -sup < 

r N-\ 

n=0 
0, N = 0 

N 
-J2hi(fnx), N<0 

n=-l 
These functions are obviously Borel, and by Lemma 3.14 they are bounded. • 

The proof above demonstrates in the simplest possible form a general and fruit
ful method of establishing triviality of real- or vector-valued cocycles over group 
actions. If we denote the cocycle h(x,n) defined by a given function h then for
mula (3.6) gives the value of the ith coordinate of the transfer function simply as 
— supnhi(x,ri). Of course, such a definition is only possible if the values of the 
cocycle at every point are bounded. They do not have to be uniformly bounded 
though; the resulting transfer function would then be unbounded. 
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Moreover, there are situations when the set of values of the cocycle at a partic
ular point is unbounded but the cocycle at the that point as a function of n (i.e. a 
function on Z, or, for a more general action, function of the acting group), has some 
equivariant characteristics. Here are examples of such characteristics which are ac
tually useful in ergodic theory and topological dynamics. We restrict ourselves to 
K. valued cocycles over Z actions. 

(i) Suppose the set of values of the cocycle at x has a Cesaro average or, more 
generally, can be averaged using some algorithmic procedure. If A{x) is the value 
of such an average, then —A(x) can be used as the solution of the coboundary 
equation. This construction can also be used for actions of amenable groups. Aside 
from an obvious generalization to vector valued cocycles it extends to situations 
where a natural notion of center of gravity can be introduced in the range of the 
cocycle. 

(ii) Suppose there is a set of of values on n of positive lower density, say d(x), for 
which the values of the cocycle are bounded from above and below. In this case 
one can define the distribution function Fx(t) of the values of cocycle at x, namely, 
the lower density of a set for which the values of the cocycle are < t. This function 
is monotone non-decreasing and has asymptotic values 0 < Fx( —oo) < Fx(oo) < 1. 
Now let 

+( \ def u T? u\ / Fx(-oc) + Fx(oo) t(x) = sup{t : Fx{t) < }. 

By assumption t(x) is a finite number and t(f(x)) = t(x) + h(x) thus producing a 
solution of the coboundary equation. 

In the next section we will show that in certain cases, including topological 
Markov chains (subshifts of finite type) and hyperbolic sets for diffeomorphisms, 
one can prove that the transfer function ip is continuous and even Holder. In 
general, however, this is not true. We will now describe a counterexample due to 
B. Marcus. 

EXAMPLE. The space X will be a shift-invariant closed subset of the set of 
doubly infinite (+1 , -1 ) sequences, containing all sequences u = {cjn}, n G Z, such 
that for all ra, n G Z, in < n, 

(3.7) 
1 
UJi ^ < K 

for a fixed positive integer K > 2. Naturally, the transformation will be the shift 
on two symbols 02. We will consider the zero coordinate UJQ as a function on X, so 
that ^0(^2^) ~ ^n-

PROPOSITION 3.16. The shift 02 restricted to the space X satisfies the strong 
specification property, the function UOQ satisfies dynamical Holder condition, and UOQ 
is not a coboundary with a continuous transfer function. 

P R O O F . If UJ G X is periodic, i.e. if un+k — un for some k and for all n 
k-i 

then ^2 UJi = 0, since otherwise (3.7) cannot be true. The function UJQ satisfies the 

dynamical Holder condition because, as we mentioned before, this is true for the 
full shift space. The specification property can be established directly, but it is 
easier to deduce it from a general argument. 
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The map we are considering is a so fie system, i.e. a symbolic system which is 
continuous factor of a subshift of finite type. To see this, we take the shift o n K + 1 
symbols { 0 , l , . . . , i ^ } , and define the transition matrix A = (a^) where 

Q>ij = 1 if \i - j \ = 1. 

and is zero otherwise. Denote by a A the restriction of the shift to ft A- Every 
element a G ft A determines a sequence u{a) of +1 and — 1, namely 

(3.8) Ui(a) = a 2 + i - at. 

Obviously any uo(a) satisfies (3.7) and conversely, for any sequence uo satisfying 
(3.7) we can find a G ft A such that uo = UJ{Q). Finally, it follows from the definition 
that any factor of a system with specification satisfies the specification property. 
Thus our system has specification. 

We will now show that the function ip defined by (3.6) for h(uj) = UJ$ is not 
continuous. For, if CJQ is cohomologous to zero with a continuous transfer function 
ip, then the cohomological equation can be lifted to a cohomological equation on 
ft A, so that the lift ip of ip is constant on preimages of points and is still continuous. 
But from (3.8), we see that ujo(a) = ct\ — ao = ^ ( ^ a ) — ao(a). Since we assume 
that (jJo(a) = ip(aACv) — '^(a), then by the uniqueness, up to a constant c of a 
continuous (but not a bounded Borel!) transfer function, we have ip{a) = ao + c. 
This implies that ao is the same for any a projected to a given uo. 

n 
If sup | J2 oJi | < K then there exist more than one such a with different 0 

m<n i=m 
coordinates. This shows that ip cannot be continuous. • 

3.4 Livshitz* theory. 
3.4-1 Closing lemma and continuous solutions. Let us now show how a con

dition slightly different from the specification property, enables us to insure the 
continuity of the transfer function, and also to generalize the results of the previous 
section to cocycles with values in more general groups. Proposition 3.18 below is 
an abstract and somewhat diluted version of an extract from Livshitz's work [LI]. 

DEFINITION 3.17. A homeomorphism / of a compact metric space X satisfies 
the closing lemma if there exists an eo > 0 such that for any e, 0 < e < eo, there 
is a 8 > 0 such that for any orbit segment {fl{x)}i=o m with dis t( /mx,x) < 5, 
there exists a periodic orbit {/z(y)}i=o,...,m-i5 fm{y) = Vi such that d^x.y) < e. 

The closing lemma is satisfied for subshifts of finite type and for locally maximal 
hyperbolic sets. 

We will consider a (7-cocycle /i, where G is an arbitrary locally compact abelian 
group, and we will need a slightly stronger assumption on h than the equivalent of 
the dynamical Holder condition. Namely, we will assume that for any neighborhood 
U of the identity in G there exists e > 0 such that if d^n{x, y) < e then 

(3.9) h(x)... h{r-lx)h{p-ly)~l... Hy)-1 e U. 

*We use a natural English spelling of the name as in [KH] instead of the phonetic spelling 
Livsic which appears in English translations of [LI] and [L2] 
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PROPOSITION 3.18. Suppose that f is topologically transitive * and satisfies the 
closing lemma. A G-cocycle h satisfying (3.9) can be represented as ij)(fx)%l)~l(x), 
where ip is continuous, if and only if the product of the values of h along every 
periodic orbit is equal to the identity. 

PROOF. Again as in Proposition 3.12, the statement is obvious in one direction, 
i.e. the cohomology condition implies the statement about periodic orbits. 

Let x G X be a point with a dense orbit. We define ijj along this orbit by 

{ id, n = 0 

h(fn'1x)...h(x), n>0 

hiPx)'1 • / i ( / n + 1 x ) - 1 • . . . • h(f-lx)~\ n < 0. 
we will show that the ip defined in this way is uniformly continuous on the orbit. 
Then it can be extended to be a continuous function on X. Since (^ o / ) • / 0 _ 1 

coincides with h along the orbit, the continuity of h implies the desired result. 
In order to show uniform continuity, we assume that the points fnx and / m x , 

n < m are sufficiently close. Then by the closing lemma, we can approximate the 
segment {fn+kx}k=0,...ym-n by a periodic orbit {fky}k=o,...,m-n-i-

We have 
= h(px)h(r+ix)...(h(r~ix) 

= (h(fnx)... h(fm-lx))(h(y) • • • Kr+n-ly)r\Ky))... nr+^y)) 

= (h(Px)... hir-'x)) • ( / l ( / m + n - 1 j / ) - 1 . . . h(yy
l) • (h(y))... hir+^y)) 

The third product is the identity and if drn_n(f
nx, y) is small enough, then by (3.9) 

the product of the first and second products belong to a given small neighborhood 
of the identity. But by the closing lemma, we can guarantee that dfn_n(f

nx,y) is 
small by making dist( /nx, fmx) small. • 

3.4-2 Holder regularity. The core results of the Livshitz theory establishing 
both stability and effectiveness of cocycles in the primary hyperbolic situations can 
be summarized as follows. 

THEOREM 3.19. [LI] [L2] [LS] [KH, Section 19.2] Suppose that the group G 
has equivalent left and right invariant metrics and let f be any topological Markov 
chain or a restriction of a C2 diffeomorphism to a locally maximal hyperbolic set. 
In both cases we assume that all points are nonwandering (see [KH, Section 18.3]. 
Let furthermore h be an a-Holder cocycle over f, 0 < a < 1. Then the following 
conditions are equivalent 

(i) If fnx = x then h(x,n) = Ida, i.e. the product of the values of h along 
every periodic orbit is equal to the identity. 

(ii) h(x) = ip(fx)ip~1(x)7 where i\) is an a-Holder function 
(hi) h(x) = i/j(fx)i/j~1(x), where ip is a measurable function with respect to the 

Gibbs measure (or the equilibrium state, see [KH, Chapter 20]^ \i§ for a 
Holder function <f>. 

*Topological transitivity follows from the specification property. 
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REMARK. Notice that by Corollary 2.11 the continuity of h is not sufficient 
to make any conclusion about existence of transfer functions. However for cocy-
cles satisfying the Dini condition which is weaker than Holder the assumptions of 
Proposition 3.18 can be verified. 

Obviously (ii) implies both (i) and (hi). To deduce (ii) from (i) one uses the 
same argument as in the proof of Proposition 3.18 but employs a stronger version 
of the closing lemma which gives the necessary estimates ([KH, Section 6.4c]). 
The deduction (ii) from (iii) uses the key a priori regularity argument which is also 
the basis of all higher regularity results. In order to avoid cumbersome notations 
we will only discuss cocycles with values in abelian groups. 

Consider the stable and unstable manifolds Ws(x) and Wu(x) of a point x (see 
[KH, Sections 6.2, 6.4]). In the symbolic case these are simply the sets of points 
with the same nonnegative (corr. nonpositive) coordinates as x. 

If (j) is a solution of cohomological equation then for any y G Ws (x) one has for 
any n > 0, 

n- l 
1>(y) = V(s) • 1>~\rv) • W 1 * ) • Y[h(fx) • h-\py). 

2 = 0 

Since the distance between fnx and fny exponentially decreases the product con
verges exponentially as n —>• oo. If ip is uniformly continuous then xp~~1(fny)-ip(fnx) 
converges to Ida so that 

n- l 
(3.10) V(J/) = 1>{x) • lim T[h(fx) • h'\fly). 

2=0 

If ip is only measurable a justification for taking is limit is needed. 
One can write a similar expression for the values of the transfer function along 

the unstable manifold Wu{x) using the negative iterates of / , namely for y G 
Wu(x), 

n 

(3.11) </>(</) = 1>(x) • lim TTM/" '*) • h-^f-'y). 
n—»oox •L-

z=l 

Legitimacy of these procedures in the case of a measurable transfer function ip 
requires an argument which is based on the product structure for the measures \i$. 

Notice also that these expressions allow to obtain Holder regularity of ijj as long 
as existence of a solution is known. 

Theorem 3.19 has a natural extension for flows 
3.4-3 Differentiable stability. In order to discuss further regularity let us as

sume that / is an Anosov diffeomorphism of a compact manifold. If the cocycle h 
is differentiable one can differentiate expressions (3.10) and (3.11) with respect to y. 
Since individual stable and unstable manifolds have the same degree of differentia
bility as the map, one can show using the chain rule that for a C°° diffeomorphism 
the solution ip has as many derivatives along the stable and unstable directions as 
the map / , and that those derivatives are continuous This is sufficient to deduce 
that if h is C1 then ip is also C1. 

Higher regularity follows from the remarkable general result by Journe [Jo]: 
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136 ANATOLE KATOK AND E. A. ROBINSON 

JOURNE'S THEOREM. Assume F and E are two transverse Holder foliations 
with C°° leaves such all derivatives of all orders along the leaves are uniformly 
continuous. Let h be a function which has all derivatives of order up to r along the 
leaves of both foliations and theses derivatives are a Holder. Then h is Cr and rth 
derivatives are [5 Holder for some (3 > 0. 

This, in particular, implies Cr stability for Cr+1 cocycles and hence C°° stabil
ity for C°° cocycles. The latter together with other regularity results was originally 
proved in [dLMM] using elliptic regularity theory. Another proof based on the 
Fourier transform is in [HK2]. Analytic stability was proved in [dL] based on 
some ideas from [HK2]. 

Thus in the hyperbolic case for cocycles with values in abelian groups the 
understanding of stability issues is virtually complete. 

Without going into details we would like alert the reader to the fact that the 
picture becomes more complicated and less clear-cut for cocycles with values in 
nonabelian groups. The main issue here is that the exponential convergence of 
some orbits within the system, on which stability results are based, has to overcome 
possible exponential divergence within the group. Thus if the group G itself has 
a subexponential growth (e.g. if it is a nilpotent Lie group) or if the cocycle is 
sufficiently small (i.e. its values are close enough to the identity) this divergence 
can be overcome and stability results hold. The basic source here is the seminal 
paper by Livshitz [L2], where in addition to the correct results along the above lines 
a wrong claim for the general case is made. The paper by V. Ni^ica and A. Tor ok 
[NT] reflects the present state of the subject including both optimal regularity 
results and examples showing that in general even the transfer functions between 
analytic cocycles may have only limited regularity. 

3.5 Invariant distributions and stability of partially hyperbolic sys
tems. 

3.5.1 Invariant distributions and periodic orbits. In all cases of stability which 
we have discussed, from toral rotations to Anosov systems, the cohomology classes 
of cocycles were determined by the values of integrals with respect to the invariant 
measures. Invariant measures can be viewed as linear functionals on the space 
of continuous functions, but as we have seen, stability can only occur in smaller 
spaces. It is natural to wonder whether there are other invariant functionals defined 
on these spaces which cannot be extended to the space of all continuous functions, 
in particular whether there are any invariant distributions of positive order, i.e. 
invariant linear functionals defined on the spaces of smooth functions. 

In fact, invariant distributions represent the most general possible source of 
stability of spaces of smooth vector-valued cocycles. For, let / be a Cr or C°° 
diffeomorphism of a compact manifold X and H be the space of Cr on C°° functions 
on X. Stability in H means that the operator Uf — Id : H —» H has closed image, 
say HQ. But then by the duality Ho corresponds to the kernel of the dual operator 
in the space of all continuous linear functionals on if, i.e. Ho is the common zero 
level for all /-invariant distributions (cf. Proposition 2.13)). For the flow case we 
consider instead of Uf — Id the differential operator generated by the flow. 

Since in all cases mentioned in Sections 3.3 and 3.4 the space Ho was determined 
by invariant measures the stability implies that in those cases invariant measures are 
dense in the weak topology in the corresponding spaces of invariant distributions. 
On the other hand, specification property implies that invariant measures carried 
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by individual periodic orbits are dense in weak topology in the space of invariant 
measures. These remarks together with the results discussed in subsection 3.4.3 
prove the following fact. 

COROLLARY 3.20. For any transitive Anosov diffeomorphism invariant mea
sures carried by individual periodic orbits are dense in the weak topology in the space 
of all invariant distributions of all orders. 

REMARK. In [V3] W. Veech proved a similar statement for an arbitrary (not 
necessarily hyperbolic) automorphism FA of the torus T m which is ergodic with 
respect to Lebesgue measure. Equivalently, the matrix A has no roots of unity 
among its eigenvalues. Such an automorphism is necessarily partially hyperbolic 
which in this case means that there are eigenvalues both inside and outside of 
the unit circle. Each orbit O of the dual automorphism A* of the lattice Z m 

produces an invariant distribution So of correlation type similarly to the special 
case discussed in subsection 3.6.1 below. The system So generates the space of 
invariant distributions. Although periodic orbits for an ergodic toral automorphism 
are dense, specification property does not hold. This is the reason why in order to 
show that those distributions can be weakly approximated by linear combinations 
of invariant measures on periodic orbits, Veech has to use arithmetic techniques 
which are much more subtle and specialized than the arguments in the hyperbolic 
case. 

In the next two subsections we will describe two different types of general con
structions of invariant distributions which are not measures. These constructions 
produce interesting examples even in the hyperbolic case. 

3.5.2 Periodic cycle distributions for partially hyperbolic systems. We discuss 
some of the constructions and results from [KK]. 

A diffeomorphism g of a manifold M with a Riemannian norm 11 • 11 is called 
partially hyperbolic if there exist real numbers Ai > ji\ > 0, i = 1, 2, K, K' > 0 and 
a continuous splitting of the tangent bundle 

TM = E+ © E° © E~ 

such that for all x G M, for all v G E+(x) (v G E+(x) respectively) and n > 0 
(n < 0 respectively) we have for the differential g* : TM —• TM 

\\g,(v)\\ < Ke-^n\\v\\, 

and, respectively 

I M ^ ) l l < ^ e - A 2 | n | I M I , 

and for all n G Z and v G E°(x) we have 

\\9*(v)\\ > K'e-^n\\v\l n > Oand ||<?*(?;)|| > # V 2 | n | | M | , n < 0. 

This property does not depend on the choice of Riemannian metric if the manifold 
M is compact. 

We will call E+ and E~~ the stable and unstable distributions respectively. They 
are uniquely integrable to foliations with smooth leaves which we will denote Ws 

and Wu. 
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138 ANATOLE KATOK AND E. A. ROBINSON 

For any x,y such that y G Ws(x) the distance dM(ft(x)1 fl(y)) decreases ex
ponentially, thus (j)(fl(x)) — (ft(fl(y)) also decreases exponentially. Therefore, for 
any Holder function (ft the series 

oo 

P+(x, y ) (^) = ^ ( 0 ( r ( x ) ) - ^ ( / i ( y ) ) ) 
i=0 

converges absolutely, (cf. (3.10)). Similarly for any x,y such that y G Wu(x) the 
series 

— oo 

P-(x,y)(4>) = - £ (4>(f(x)) - <j>(f(y)) 

also converges absolutely (cf. (3.11)). 
We will call a set S(x1 y) of points x\ — x, X2,... ,Xk — y G M a broken path 

from x to 2/, if £i+i G Wa(xi), 2 = 1 , . . . , fc — 1, where a = s or u. A closed broken 
path, i.e a set C of points x i , ^ 2 , . . . , #2n,^2n+i — £i G M if #2/c G Ws(x2k-i) and 
^2fc+i £ ^u(^2fc)7 for fc = 1 , . . . , n. will be called a periodic cycle. 

For an Anosov system there are many periodic cycles of length four; however 
in the general partially hyperbolic case periodic cycles must be longer. 

DEFINITION 3.21. For a periodic cycle C, we will denote by F(C) the following 
continuous functional on the space L of Holder functions: 

F{C){<j>) = P + (x! ,x 2 ) (0) 4- P-(z2,x3)(</>) -f • • • 

+^+(^2n-l ,^2n)(0) + P~~ (%2n , ^l) {<P) • 
We will call this functional a periodic cycle functional 

The periodic cycle functionals are invariant distributions. Thus any such func
tional must vanish on the space of coboundaries. 

If -0 is a solution of the cohomological equation 

(j)(x) = ^(fx) -ip(x), 

then the values of ijj along every broken path are uniquely determined by its value 
at the beginning and are obtained by adding the value of P + or P~ depending 
on whether consecutive points on the path belong to the same stable or unstable 
manifold. In particular, the periodic cycle functionals represent obstructions to this 
process which must vanish to ensure uniqueness of the result. 

One can reverse the argument and try to construct the solution for a given (ft 
for which the periodic cycle functionals vanish. The best chances of success appear 
if any two points can be connected by a broken path. This is not always true; 
counterexamples are time t maps for suspensions of Anosov diffeomorphisms, and, 
more interestingly, ergodic but not hyperbolic automorphisms of a torus. However 
those cases are rather special. There are many partially hyperbolic systems for 
which not only connection is possible but the length of a minimal broken path 
connecting two points can be estimated from above by a positive power a of the 
distance. Such systems are called locally (a) Holder transitive and in this case for 
any function for which the periodic cycle functionals vanish the construction of a 
solution along broken paths succeeds and produces a Holder function albeit with a 
smaller Holder exponent. To summarize 
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THEOREM 3.22. [KK] If f is a partially hyperbolic diffeomorphism which is 
locally a-Holder transitive, then, for any (3 G (0,1], the space of f3-Holder cocycles is 
a[3-Hdlder stable and C° -effective. The space of Holder coboundaries is the common 
kernel of periodic cycle functionals. 

Coming back to the hyperbolic case one can use the periodic cycle functionals 
coming from the quadrangles, i.e. the cycles of period four. Moreover, due to the 
local product structure this construction works not only for Anosov diffeomorphisms 
but for the locally maximal hyperbolic sets as well. It this case the pair of foliations 
is locally Lipschitz transitive (i.e. locally 1-H61der transitive) so that no loss in 
the Holder exponent appears in agreement with Theorem 3.19(h). It would be 
interesting to find a reasonably explicit procedure to recover the sums of a function 
along periodic orbits through the periodic cycle functionals. 

3.5.3 Correlation functions. Let / : (X, ji) —» (X, //) be a measure preserving 
transformation, (f) and if; be L2 functions. The inner products 

[<l)-i)o f~ndfi = j(j> o fn • $d\i 

X 
are called the correlation coefficients of <fi and ip. The map / is mixing if the 
correlation coefficients of any two functions with zero average go to zero as n —> oo. 
It may happen that for a given <fi and dense set of functions ij) with zero average 
the series 

(3.12) J2 J^°fn ipdfi 

x 
converge. Obviously exponential decay of correlation is sufficient for convergence. 
If this happens for all zero average C°° functions, (3.12) defines an invariant dis
tribution. 

THEOREM 3.23. Let f be a transitive topological Markov chain or a restriction 
of a C2 diffeomorphism to a topologically mixing locally maximal hyperbolic set and 
let fig be the Gibbs measure for a Holder function 0. For any two Holder functions 
the correlation coefficients 

I 
(f) • i); o f~ndji 

decay exponentially. 

Correlation decay provides yet another way to characterize cohomological be
havior of Holder functions for hyperbolic dynamical systems. 

THEOREM 3.24. Let f be a transitive topological Markov chain or a restriction 
of a C2 diffeomorphism to a topologically mixing locally maximal hyperbolic set and 
let fie be the Gibbs measure for a Holder function 6. For an a-Holder function <\> 
the following conditions are equivalent 

(i) (f)(x) — h(fx) — h(x), where h is an a-Holder function, 
(ii) For any Holder function ip, 

oo „ 

71= OO y 
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SKETCH OF PROOF. Assume (i). Then 

OO p OO n. 

n= — oo v. n— — oo ^ 
oo « 

= E J(hof~h)-W^7^dM 

n= —oo JX 
n — 1 p 

= lim y {h o f — h) • ip o f~kd[i0 
n—>oo -̂—' / 

lim I {ho 
n—>ooj 

f"-hof-n)-il,dn9=0. 

x 

Now assume (ii). By Theorem 3.19 it is sufficient to proof that the sum of 
values of (j) along any periodic orbit is equal to zero. Assume the opposite. Then 
there exists a periodic orbit with nonzero, say, positive sum. One can assume then 
that (j) is actually positive at all points of the orbit. Using certain care one can 
find a function ip with zero average and with very large positive values at the orbit 
for which sufficiently many correlation coefficients will be positive and fairly large 
which prevents vanishing of (3.12) 

3.6 Stability determined by invariant distributions in parabolic sys
tems. 

3.6.1 A simple example: an affine map of the torus. Now we are going to discuss 
in detail an example of a different sort, namely a uniquely ergodic transformation 
where invariant distributions provide a complete system of invariants for the coho-
mology, but the single invariant measure does not give enough information for this 
purpose. Invariant distributions which we will encounter will be of the correlation 
type (3.12). 

Consider the affine A map of T2 given by 

A{z,w) = {Xz,zw). 

We will consider only real or complex valued cocycles. 
If we assume that A is Diophantine (3.1), i.e for some positive A: and c, and for 

every positive integer q, 

(3.13) | A 9 - 1 | >c/qk. 

then by Theorem 3.5 functions depending only on z are C°° rigid and in the case of 
finite regularity there is a fixed loss of regularity (see remarks in subsection 3.2.2). 
Since the decomposition into functions depending only on z and their orthogonal 
complement is invariant it is sufficient to consider functions in that complement. 

Let us define a family of first order yl-invariant distributions Jm,n7 for 0 < m < 
|n|, n ^ 0, by their Fourier expansions: 

oo 

k= — oo 
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Equivalents for / G C^T 2 ) , let z = e277^ and w = e2nie and let as before 
Xm.n = zmwn. Then 

K 
-m-\-kn7—n Sm,n(f)= lim / f(z,w) V \-km-^-zm+«nwn dcPdt 

r K 

.lim / f(z, w) y Xm,n ° Akd(pdO 

k=-K 
K 

lim V f{Ak(z,w))zmwn dcf)d6. 
K-^oo *—^ k=-K 

Obviously every distribution (5mn is a derivative of an L2-function. 
Let IT, r > 0, be the space of functions ip on T2 such that ip is r times 

differentiate and all of its r t h derivatives have absolutely convergent Fourier series. 

THEOREM 3.25. Let f,g G Cr+e, r > 3 and e > 0. Assume that both functions 
are orthogonal to the functions depending only on z. Then there exists ip G IF~3 

such that 

(3.14) f = g + iPoA-iP 

if and only if 

$m,n(f) = 5rn,n(g) 
for all n G Z, 0 < m < \n\. In particular, if f and g are C°°, then I/J is C°°. In 
addition, if f and g are real analytic then so is ip. Furthermore, for f,g G C1 if 
equation (3.14) has an L1 solution then £m5n(/) = £m?n(g) for all 0 < m < \n\, so 
that the solution actually belongs to IF'3. 

Our estimate of the loss of regularity for the solution of the cohomological 
equation is not sharp but it is sufficient to establish C°° stability. 

PROOF. It is enough to consider only the case g — 0. We look for the Fourier 
coefficients iprn,n f° r the transfer function ip. By our assumption /m5o = 0 for all 
m G Z hence we need only consider the case n ^ O . Since UAXm.n — ^Xm+n^n for 
n / 0 equation (3.14) implies the following infinite system of algebraic equations. 

(3.15). 

so that 

Proceeding 

(3.16) 

by 

Jm,n 

Ym,n ~ 
induction, 

Ym,n = 

= -

Jm,n 
N-l 

fc=0 

= Am ~ntb 
Ym — n 

- f _|_ \m 

~ J m,n i ^ 

_Xm-

k(m,n) 

n £ 
J m — n,n 

Jm — kn,n 

,n Ym ,n 

~nib 
Ym — n,n-

+ A2m-

+ Aew(' 

'3nib Ym-

Ym 

-2n,n 

— Nn,' 

for all N > 0, wrhere 
ek(m, n) = e^-i(m, n) + m — kn 

and 
eo(m,n) = 0 
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so that 

e&(m, n) — km — -k(k -f l)n. 

Similarly, using (3.15) again, and repeating the steps above 

tym,n ^ \Jm-\-n,n i tym-\-n,n) 

(3 17) N 

' — X^ \-e'k(m,n) f , y-e'N{m,n) i 
— / ^ Jm+kn,n i ^ lFm-\-Nn,n 

k=l 
for all iV > 1, where 

e'k(m, n) — km -f -fc(fc — l)n. 

Assuming that ipm+Nn,n —> 0 as Â  —* ±oo, which is true even if ip £ L1, we 
obtain from (3.16) and (3.17) two expressions for ipm,n' 

oo 

(3.18) ^ m , „ = -^A f c m -5 f c ( f c + 1 )" / m _ f c „, n 

fc=0 

and 
oo 

(3.19) ^ n = YlX'km~l2Hk'1)nfm+kn,n 
fc=l 

If the solution exists, these two expressions must coincide, so that 

oo 

(3.20) Yl ^km~hHk'l)nfm+kn,n = 0. 
k= — oo 

For 0 < m < |n|, the left hand side of (3.20) is exactly what we call £m ,n(/)- It 
is easy to see that if equation (3.20) is satisfied for some (ra,n), it is also satisfied 
for (m + kn,n) for every k. This gives the last statement in the Theorem. 

Assuming (3.20), we can estimate ipm,n- For mn < 0 we will use (3.18) and for 
mn > 0 we will use (3.19). We have respectively 

\Wm,n\ _ / ^\Jm — kn,n\ 
fc=0 
oo 

-\-kn,n\ -
fc=l 

life C r + e , then 

for some S > 0, and so 

\fn 
~ ( |m | + InD'+s 

\*Prn,n\ < (|ra| + |n|)'-1+*/2" 

This implies that ipm,n G IF 3. 
If / is real analytic, then 

\fm,n\ < c exp(-a( | ra | 4- |n|)) 
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for a, c > 0. It follows that 

00 
|^m,n| < J ^ c exp(-a( | ra | 4- k\n\ + \n\) < cf exp -a(\m\ + \n\) . 

D 

Thus, we have shown that various spaces of smooth cocycles over A are stable 
and "almost" effective with a certain loss of regularity which is natural to expect. 
The C°° cocycles are both C°° stable and C°° effective. We do not know whether 
the existence of a measurable solution to (3.14), for sufficiently smooth / and 
g implies that the solution is L1, which is then smooth by the theorem. The 
difficulty here is that non-integrable measurable functions are not distributions so 
that Fourier analysis can not be applied in this case. Probably, in order to solve 
this problem one needs to develop a more geometric approach to the solution of 
(3.14). This comment applies also to the cocycles with values in groups which are 
not linear spaces. 

It is interesting to notice that if functions / and g have absolutely convergent 
Fourier series and equal averages then equation (3.14) has solutions ip which are 
distributions of order 1. Either of the two formulas (3.18) and (3.19) gives Fourier 
coefficients for such a solution. 

The method of Theorem 3.25 applies to arbitrary ergodic automorphisms and 
affine maps on a torus of any dimension. The only restriction is the Diophantine 
condition for the rotational part of the affine map. In all those cases there is a 
natural one-to-one correspondence between invariant distributions which determine 
stability and infinite orbit of the lattice automorphism dual to the automorphism 
part of the considered map. 

3.6.2 Horocycle flows. Another and even more interesting example of C°° sta
bility and C°° effectiveness determined by invariant distributions is given by the 
horocycle flow on a compact surface of constant negative curvature. This flow can 
be equivalently described as the action of the one-parameter subgroup 

»>-(l ! ) 

by right multiplications on the left factor space B = PSX(2,R)/ r , where T is a 
discrete cocompact subgroup of PSX(2,R). 

The horocycle flow is a part of the right action of P5L(2,R) on B. This 
action generates a unitary representation of P5L(2, R) in L2(B, \) where \ ls Haar 
measure. This representation decomposes into a direct sum of countably many 
irreducible ones. Obviously every representation space is invariant with respect to 
the operators corresponding to the horocycle flow. The space of each irreducible 
representation carries certain invariant distributions for the horocycle flow. Namely, 

(i) for a representation from the principal series there are two invariant distri
butions of order less than one similar to 5m,n for the affine map on T2; 

(ii) for a representation from the discrete series there is one invariant distribu
tion of order less than one; 

(iii) for a representation form the complementary series there are infinitely many 
representations of growing order. 
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In every representation space there is an intrinsic notion of a C°° function which 
agrees with the geometric notion coming from B. More precisely, let / £ C°°(B); 
and for any irreducible representation 6 of PSL(2,M), let PQ be the orthogonal 
projection of L2(B) to the representation space. Then Pof is a C°° vector in the 
sense of the representation and the norms HP0/H decrease faster than any power 
of a parameter naturally ascribed to the irreducible representations. Furthermore, 
this condition is necessary and sufficient for / to be a C°° function. These remarks 
show that the problem can be treated in a way very similar to the way affine maps 
of T2 were treated; using certain (not always elementary) facts about irreducible 
unitary representations of PSX(2,R) instead of the elementary Fourier analysis of 
the previous proof. See [FIFo] for detailed rigorous arguments in this case. 

3.6.3 Flows on surfaces. Without trying to explain the substance of the situ
ation we have to mention for the sake of completeness another remarkable instance 
of stability determined by invariant distributions. 

Consider a compact orientable surface S of genus g > 1 with a smooth positive 
area form Q. Since the Euler characteristic x — 2 — 2g of S is negative any vector 
field on S has to have zeroes. The case which is the most interesting from the 
dynamical point of view is those of area preserving topologically transitive flows 
with finitely many fixed points. These fixed points have to be of saddle type, 
either simple, or multiple saddles. A topologically transitive area preserving flow 
with finitely many saddle points exhibit parabolic behavior since its derivative has 
triangular form outside of the fixed points. However this behavior is less uniform 
than that of affine maps or horocycle flows. Aside from point masses at each 
saddle there are no more than g ergodic probability measures [KH, Theorem 
14.7.6].The transverse behavior of area preserving flows on surfaces is defined by a 
finite set of parameters [KH, Theorem 14.7.4] and is closely related to the interval 
exchange transformations discussed in Section 4.4. For the set of parameters of 
full measure there is only one nontrivial probability ergodic invariant measure. 
There are invariant distributions defined by the jets at the fixed points; they are 
invariants of the normal form of the vector field near these points. Forni [Fo] 
discovered additional invariant distributions which are supported outside of fixed 
points and give a complete description of these distributions. The picture is quite 
different from the cases we discussed before. There is only a finite dimensional 
space of invariant distributions for any given order r but the dimension grows to 
infinity with r. For certain conditions which can be interpreted as counterparts of 
Diophantine conditions Forni showed C°° stability of C°° cocycles. 

4. Wild cochains with tame coboundaries 

In this and the next chapter we will discuss the situations where correspondingly 
effectiveness and stability break down. 

Thus, we will presently consider "regular" (e.g. continuous, smooth or piecewise 
constant) cocycles which are coboundaries in measure-theoretic sense but such that 
the transfer functions behave very wildly from the topological point of view. This 
phenomenon is often connected with abnormally good periodic approximation. It 
was known to Kolmogorov [Ko] who used it to construct an example of a time 
change for a linear flow of the two-torus with pure point spectrum but discontinuous 
eigenfunctions. Furstenberg [F] used it for his construction of minimal but not 
uniquely ergodic diffeomorphisms of T2. Anosov [A] studied the case of circular 
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rotation thoroughly and systematically and in particular found examples of analytic 
coboundaries with wild transfer functions. 

Cocycles of this sort are used to construct various examples of dynamical sys
tems whose topological and ergodic properties differ wildly. They can also be used 
for more positive tasks, e.g. for producing realizations of measure-preserving trans
formations by volume preserving homeomorphisms of various manifolds. 

We will illustrate this phenomenon with four examples. The first one deals with 
continuous cocycles over a topologically transitive homeomorphism of a compact 
metric space preserving a Borel measure positive on open sets. As we noticed in 
Section 2.2 if the homeomorphism is not uniquely ergodic then the existence of 
cohomologous continuous cocycles equivalent via discontinuous transfer functions 
follows from Corollary 2.11 and Proposition 2.13. The construction of Theorem 4.2 
shows a specific mechanism for the occurrence of wild transfer functions between 
continuous cocycles. This mechanism is universal and in particular is independent 
of the existence of more than one ergodic invariant measure. 

The results of Chapter 3 show that in general such mechanism cannot be ex
tended to smooth cocycles. However, an extension of that sort is possible if the 
difFeomorphism allows a very good periodic approximation in C°° sense (Theorem 
4.5). We will also indicate how a similar construction works for real analytic co-
cycles over a rotation of the circle with exceptionally well approximable rotation 
number (Theorem 4.7). 

Our last example deals with even smaller, actually a finite-dimensional space 
of cocycles, namely some piecewise constant cocycles over interval exchange trans
formations (Theorem 4.9). 

The method of proof in all four cases is rather uniform. The desired cocycle 
together with the transfer function will be constructed by a converging iterative (or 
inductive) procedure. On every step of the construction we will have a cocycle which 
is a coboundary within the given category. In other words, the transfer function will 
be correspondingly continuous, smooth, real-analytic or piecewise constant. The 
sequence of cocycles will converge within the category while the sequence of transfer 
functions will converge only in probability or in L1 and will diverge in a certain 
prescribed fashion in the uniform topology. The control over the convergence will by 
provided by making the modifications on any step insignificant enough in measure-
theoretic sense in comparison with the previous steps. On the other hand, the 
divergence of the sequence of transfer functions is controlled by making subsequent 
additions sufficiently uniformly distributed. 

4.1 Continuous cocycles over measure-preserving homeomorphisms. 
Let X, Y be two topological spaces and v be a Borel measure on X positive on open 
sets. 

DEFINITION 4.1. We will say that a Borel map I/J : X —> Y is metrically dense 
with respect to v if for any pair of non-empty open sets V C X and W C Y1 

v(vnip-l(w)) > o . 

Equivalently, this property means that the lift of the measure v to graph ip C 
X x Y is a measure positive on open sets. 
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THEOREM 4.2. Let X be a compact metric space and U be an open subset of 
X. Suppose f : X —> X is a topologically transitive homeomorphism preserving 
a Borel probability measure /i which is positive on open sets. Let G be a path 
connected separable locally compact abelian group. Then there exists a continuous 
map <fi : X —• G such that 

(i) Outside of U, <f> = e, the identity in G. 
(ii) (j)(x) = ip(f(x))ip~1(x) = lim il)n(f(x))ip~1(x) where the functions ^n are 

n—yoo 
continuous and ip is measurable. 

(iii) ip is metrically dense with respect to \i. 
This theorem can be used to prove that every abstract measure-preserving 

transformation with finite entropy can be realized as a volume-preserving homeo
morphism of any compact Riemannian manifold of dimension greater than one. 

P R O O F . Step 1. The desired function <j) will be constructed as a uniform lim (\>n 

n—>oo 

where inductively 

(4.1) 0n+lO*O = (/)n{x)r]n(x) 

such that outside of [/, r\n — e and 

(4.2) iln{x) = enu{x))e-l(x). 

In other words 

4>n(x) = ipn(f(Kx))7p~1(x) 

where 
n 

(4.3) Mx) = Y[Wx)-

We will ensure that the sequence ijjn converges in probability so that (ii) will be 
satisfied. On the other hand, we will make the sequence ijjn wildly divergent in the 
uniform topology so that on the n'th step, the function ipn will satisfy the property 
(iiin), stated below, which can be considered as an approximate version of (iii). In 
order to formulate this property let us fix a translation invariant metric do on G 
and denote by D(r,g) the ball of radius r around g G G. Let gn, n = 1, 2 , . . . be 
a dense sequence of elements of G. We will assume that there exists a sequence of 
positive numbers 8ni Sn < £n_i/2, such that for every k — 1 , . . . ,n and for every 
disc D of radius 2~k in X, 
(iiin) fi(Dnij-1D(2-\gk)) > Sk (\ + 2 ^ n ) • 

In order to ensure that subsequent steps do not destroy this condition we will 
assume 

(an) fi{x e X; 0n(x) ^ e} < <Sn-i/10. 
It is clear that the sequence ipn defined by (4.3), and satisfying (iiin) and (an) 

converges in probability and that the limit function ip satisfies (iii). 

Step 2. We will show how to construct 0n and Sn inductively. The base of the 
induction is trivial. Now let us assume that #n_i and <5n_i have been constructed. 
This allowed us to construct ^ n - i , and by the uniform continuity of this function, 
we can find a positive number 5'n such that if dx{x\,X2) < b~'n where dx is the 
distance in X then 

(4.4) dG{lpn-l{x{),ll>n-l{X2)) < 2 
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Let 
H = {geG:gg-1e^n-i(X))-1}. 

This set is compact, so that we can cover it by a finite set of balls of radius 2 _ n ~ 5 

and pick an element g in each of the balls. S will denote the set of all such g. For 
each g G S we are going to construct a function 09

n. The supports of 09
n will be 

disjoint for different g and 6% will be supported by a very small neighborhood of a 
segment of a single orbit in such a way as to make 09

n reach the value g inside every 
ball of radius 8'n in X. Furthermore the function 

(4.5) rfn{x) = ei(f{x)Wn{x))~l 

will be equal to the identity outside the set U and will be uniformly within l / 2 n of 
the identity everywhere. Then we will put 

On = U0n 
ges 

so that the function ipn — ?pn-i0n will reach a value within 2 ~ n - 4 of gn inside every 
5'n ball in X. This follows from the choice of 5'n. On the other hand, /i(supp(#jv)) 
will be chosen so small that the values near #&, fc = 1 , . . . , n — 1 achieved on the 
previous stages of the construction will persist. 

Step 3. We will now show how to construct the functions 0^ and insure (an) and 
(iiin). Let us connect every g G S by a path 7^ to the identity e G G. This path 
may be divided into intervals such that each interval lies within a ball of radius 
2~n. Let Kn be the maximal number of such intervals for any g G S. 

For every g G S let us take a sufficiently long segment of a dense orbit, say 
Tg = {xg, f(xg)... fN(xg)} such that all Tg are disjoint for different g and in 
addition each segment consists of three consecutive parts so that the first and the 
last parts contain at least Kn points from U, and the middle part intersects every 
ball in X of radius S'n/10. Take the segment Tg and mark the first Kn iterates 
where f^xg G U. Call these times t i ( # ) , . . . , tKn(g)- Do the same for the last 
Kn visits calling them SKn{g) •. • si(#), where s\(g) is the last visit to U. The 
function 0% will be different from the identity only in very small neighborhoods of 
the points ft%<K9\xg) and fSi^9\xg), i = 1 , . . . , Kn. The range of this function will 
be a neighborhood of the path j g . Pick points e = hi,..., / i^n = g so that each 
interval [hj, hj+i] C 7^ lies within a ball of radius 2 _ n , and construct the function 
Q9

n by induction in j — 1 , . . . ,Kn. Suppose that it has been constructed through 
time tj. We multiply it by a continuous function 7/̂  whose support U(g, j) C U is & 
small neighborhood of ftj+1^n(xg), whose range is hj1([hj, /ij+i]), and such that 

ti(fti+lig)(Xg)) = hJ% + i 

so that 

W ' + l ( 9 ) ( * 9 ) ) = V n . 
We continue this procedure until tKn{g) has been reached so that Og

l(f
tKn^9\xg)) — 

g, stop for the middle section of Yg, and then "undo" the function 0% along the last 
section of Tg by putting 0% in a neighborhood of fSj(<9\xg) equal to 

9^x) = {6lUti(9)-'i{9\x)))-\ 
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Thus, if the neighborhoods U(g,j), j = 1 . . . Kn are chosen sufficiently small then 
for any integer t, tKn(g) < t < sKn(g) 

09
n(f

t(x9)) = g. 

By the choice of the interval Fg the function 0n reaches value g inside any disc of 
radius Sn/IQ in X. By the choice of U(g1j) one can also guarantee, that the total 
measure of the support of each 6n (and consequently of 0n) can be made arbitrary 
small and the supports of 0^, g (E 5, disjoint. In particular, the condition (an) will 
be satisfied. That ensures that the condition (iiin) is satisfied for k = 1 , . . . , n — 1. 
Let us show that if 5n is chosen sufficiently small then (iiin) is also satisfied for 
k = n. 

Let x G l and g G S be such that 

(4.6) c2G(<?</>n-i(*),3n)<2-n-5 

By the choice of the orbit segments Tg the ball of radius -jg about x contains a 
point from the middle segment of Tg, say y, so that 0n(y) = 0n(y) — g. So that by 
(4.4) and (4.6) 

dG^n(y),gn)<2-n-\ 

Since 5n < 2~n this implies that for the ball D(x) about x of radius 2~n 

^ ) = ^ W n ^ - 1 ( D G ( 2 - " l 9 n ) ) > o 

and by the compactness of X the measure ji(x) is bounded away from 0 for all x. 
Any positive lower bound for fi(x) may serve as 8n. Obviously this choice of 5n 

insures (iiin) for k — n. D 

Let us consider the following continuous G extension f^ of / acting in the space 
X xG: 

f*(x,g) = (f(x),g0(x)) 

and let v = (id x /0)*M-

COROLLARY 4.3. 

(i) The measure v is positive on open sets in X x G. 
(ii) The extension f^ preserves v. 

(hi) (/^,i/) 25 metrically isomorphic to (/, /x). 

PROOF. By Theorem 4.2, (ii), the map R = idxtjj:X-*XxG satisfies 
Ro f^ o R~x = / . This proves (ii) and (hi). By Theorem 4.2, (hi), the measure z/ 
is positive on open sets, since for V C X, W C (7, i/(F x W) = / i ( F f l ' 0 _ 1 ( ^ ) ) . • 

4.2 Fast approximation and C°° cocycles. A construction similar to that 
of Theorem 4.2 works in C°° category if the transformation in consideration pos
sesses a C°° equivalent of periodic homogeneous approximation with a speed which 
is faster than any negative power of the characteristic parameter. While we do 
not need the above notions in our presentation a proper discussion can be found in 
[Kl]. To simplify notations we will consider only real-valued cocycles. Let M be a 
compact connected m-dimensional C°° manifold, Cr(M) be the Banach space of r 
times continuously different iable real-valued functions on M provided with a norm 
|| • || r. We will use the same notation for the associated operator norm. 
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DEFINITION 4.4. A C°° diffeomorphism / : M —> M admits fast C°° periodic 
approximation if there exists a sequence qn —» oc such that for every pair of positive 
integers fc, r there exists a constant c(k, r) such that 

(4.7) Wfqn.Id\\r<
cMbll 

Equivalently, for every h G C°°(M), h ^ 0, 

(4.8) \\hof-*.-h\\r<^>-f>r\ 

EXAMPLE. For the rotation of the circle R\ : z —> Az fast C°° periodic approx
imation is equivalent to A being Liouvillean (cf. Section 3.2). 

THEOREM 4.5. Suppose that a C°° diffeomorphism f : M —± M preserves a 
measure /J, given by a density bounded between two positive constants, is topologically 
transitive and admits fast C°° periodic approximation. Let U be any open non
empty subset of M. Then there exists a C°° cocycle h equal to 0 outside U and 
such that 

h = ip o / - ^ = lim ijjn o / - i/jn 

n—>oo 
where the functions i/jn are C°° and the function ip is measurable, discontinuous at 
every point and for every A G K\{0} the function expzA^ : M —» S1 is metrically 
dense with respect to fi (cf. Definition 4-1)- In addition, h can be chosen in such a 
way that ip either belongs to L1 or not. 

PROOF. Let xo G U be a point whose semi-orbit {fnxo} n — 0 ,1 ,2 , . . . is 
dense in M. Let t\,... ,tm be C°° local coordinates in a neighborhood V C U of 
the point xo such that U(XQ) — 0, i — 1 , . . . , m. Obviously, every C°° function of 
the local coordinates equal to zero near dV can be extended to a C°° function on 
M by making it equal to zero outside V. Let 0 : R —> R be a standard C°° bump 
function such that 8(0) = 1, 9(t) = 0 for \t\ > 1 and 6 is non-increasing for positive 
values of t and non-decreasing for the negative ones. Then for any sufficiently large 
positive q the function hq defined by 

(4..) M . > - r v « w ( i v J " x e v 

0 otherwise 

is a C°° function on M. 
For two versions of the statement (I/J is integrable or not) the function h is 

defined by 

oo 

(4-10) h = Y.ink(h<°rqn*-hqlk) 
k=l 

and 
oo 

fc=l 
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correspondingly, where qn is a sequence which appears in (4.8) and the sequence 
rik —» oo will be chosen later. To verify all the assertions of the theorem except for 
the metric density of the function exp i\ip it is enough to observe that qUk > k. 

First let us show that the series in the right hand part of (4.10) and (4.11) 
converge in the C°° topology. 

By applying the chain rule in (4.9) we obtain 

(4.12) \\hq\\r < Cl(r)q6r 

where c\{r) depends on 0 but not on q. Let us put in (4.8) k = 6r -f 3ra + 10. We 
obtain from (4.8) and (4.12) 

oo 

| | / i | ! , < C l ( r ) . c ( f c , r ) ^ - 1 0 . 
71=1 

Let us show that the cocycle h is a measurable coboundary. Define 

£=1 

It follows immediately from the definition that 

V °f~q - V = ^ < r / - Vv 

Since /x(supp hq) < c2 • q~3m we have 

(4.13) M(supp \l)q) < g/i(supp hq) < c2q
1~3rn < c2q~2 

so that ^//(supp^q) < oo. 
Q 

Consequently for every sequence of constants aq the series sjTJ
aqi\)q converges in 

probability. This implies that h — i\) o / — ijj where for h defined by (4.10) 

oo 

(4-14) ^ = ^ n - f c K f c 

and for h defined by (4.11) 

(4-15) tf = E 3 ^ W 

We have from (4.9) crq~3m < \\hq\\Li < c^q~3m and consequently 

I I^ I ILI < q\\hq\\Li < esq1"3™ 

so that it follows that I/J defined by (4.14) is an L1 function. On the other hand, 
since hq is non-negative and 

IWILX > crq
l-*m 

the function defined by (4.15) is not integrable. The discontinuity of ip at every 
point follows from the fact that for every positive m ipqn (fmxo) —> — oo so that 
since all /0Qn are non-positive functions 

lim %l){x) — —oo 
x—>fmx0 

Since the semi-orbit of XQ is dense this proves discontinuity. 
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It remains to show how an appropriate choice of the sequence qnk provides 
the metric density of the function expikip. This can be achieved by an inductive 
argument very similar to the one used in the corresponding part of the proof of 
Theorem 4.2. Since i/jq is a non-positive continuous function, /x(supp ipq) —» 0 as 
q —> oc and i/jq(f

£xo) < — 1 for £ — 1 , . . . , g, it follows that for every e > 0 there 
exists Q(e) such that for every q > Q(e) the functions expi\2t/jq and expi\q3rnipq 

map every disc of radius e onto the circle. Moreover, this remains true for every 
function x of the form exp i\(q2ip2 + 4>) o r e x P iX(q3mipq + (f>) where <fi is continuous 
and the oscillation of 0 on any disc of radius e does not exceed 1/A. If 0 is fixed 
this implies that for any fixed S > 0, any e-disc D in X and any ^-interval A c S 1 , 

/ i ( X - 1 ( A ) n D ) > a ( 6 , ( 5 , g ) > 0 . 

fc-i 
We can think now of 0 as Yl QnT^Qe • Fixing en such that the oscillation of 4> in 

£=1 
every e-disc is less than 1/A, we can find k such that qn-k > Q(^n) a n ( i aPPly the 
construction described above. In order to keep the approximate density achieved 
on the previous steps intact, we assume in addition that qnk grow so fast that 

^(supp fiqn£) < . 
e=k+i 

This implies that for any interval A of length 2~k and any e^-disc D e l 

/ x ( ^ 1 ( A ) n D ) > i a ( e f e , 2 - f c , g „ J . n 

COROLLARY 4.6. If a diffeomorphism f satisfies all the assumptions of The
orem 4-5 and is ergodic with respect to the measure \i then there exists a C°° S1 

extension of f which is topologically transitive on M x S1 but not ergodic with 
respect to the product measure. 

PROOF. We define the extension via the cocycle exp ih where h is given by The
orem 4.5. Since this cocycle is a coboundary the extension is measure-theoretically 
isomorphic to the trivial extension and thus is not ergodic. On the other hand, the 
measure (id xi/j)*fiis invariant and ergodic with respect to the extension and since 
ijj is metrically dense this measure is positive on open subsets of M x S1. This 
implies topological transitivity. • 

4.3 Minimal nonergodic diffeomorphisms of T2. In certain cases, the 
construction of a wild coboundary can be made more global and uniform. Here is 
an example of how such a construction works for rotations of the circle allowing 
good periodic approximation. Since the result is not new (cf. [F], [A]), we give 
only a very brief sketch of the argument. See [KH], Sections 2.9 and 12.6 for a 
more detailed argument. 

THEOREM 4.7. There exists a A and an analytic function (p such that 

(4.16) (t>{x) = ip{\z) - ip{z) 

where ip is measurable, metrically dense with respect to Lebesgue measure (cf Def
inition 4-1), and ip can be made either integrable or not integrable. 
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COROLLARY 4.8. For every r > 0; the S1 extension 

it^xp (z,t(;) = (\z,wexpir(f)(z)) 

is minimal but not strictly ergodic. 

One can deduce the corollary directly from the statement of the theorem, how
ever, it is easier to apply the general result of Gottshalk and Hedlund, (cf. [Pa], 
where Furstenberg's construction can also be found, or [KH], Section 2.9), which 
asserts that if the extension jRexp %r(^ is not minimal then for some positive integer 
n, the cocycle exp(irn0) is a coboundary with a continuous transfer function. 

Let us outline one of the constructions which leads to a proof of Theorem 4.7. 
This construction is very close in spirit to the general constructions in sections 4.1 
and 4.2. We will use Dirichlet kernels 

n- l 

Dg,n(z)= E zJq + Z~3q 

j=—n+l 

to produce an analytic counterpart of the bump functions used in those arguments. 
The transfer function is build as 

oo 

(4-17) ^ y n D g „ , m „ ( 2 ) 
71=1 

where by making qn, mn —• oc fast enough, we guarantee convergence in probability, 
since most of the mass of the Dirichlet kernel Dq>n is concentrated around the qth 
roots of unity, and by controlling Wn, we can make the function (4.17) either 
integrable or not. The number A = exp27ria is built inductively as the limit of very 
good approximations 

a = lim pn/qn. 
n—>oo 

The inductive step works as follows. Having constructed p n , gn, mn and Wn, 
we consider the function 

n 

j = l 

as given, and assume that we have a good estimate in some complex neighborhood 
of S1 for 
where An = exp 2iripn/qn. That estimate will persist if we replace An by any number 
sufficiently close to it, in particular by exp27ri(pn/qn -f 1/Lqn) for any sufficiently 
large L. We can choose L = Ln and mn+1 in such a way that the Dirichlet kernel 

-^Lnqn,mn+i 

is on the one hand, sufficiently close to zero in probability, and on the other hand 
sufficiently close to being metrically dense. The first property guarantees conver
gence in probability, and also guarantees the persistence of the degree of metric 
density achieved in the previous step. The last property guarantees a better degree 
of metric density for 

^n+l = ^n + Wn+iDLnqnim , 
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so that we put Qn-\-i — Lnqn. Since the Dirichlet kernel has period 2ir/qn+i, 

and as we have seen the expression on the right hand side can be controlled in a 
complex neighborhood of S1. 

The arguments in section 5.4 below follow a very similar pattern with cosines 
instead of Dirichlet kernels. However, those arguments are generic, whereas the 
property we are discussing now can be carried out only by a construction where 
the next step depends thoroughly on the previous ones. Similar phenomena appear 
in the conjugation-approximation construction [AK], [HaK] which is the most 
powerful general method of constructing diffeomorphisms with prescribed, often 
exotic properties based on fast periodic approximation. 

REMARK. Herman [Hel] pointed out that for rotations of the circle, cohomol-
ogy with nonintegrable transfer functions can not be effected by a lacunary Fourier 
series. This conforms well with the highly non-lacunary nature of the Dirichlet 
kernels and also underlines the difference between the above construction and that 
of section 5.4. 

4.4 Minimal nonergodic interval exchange transformations. An in
terval exchange transformation (i.e.t.) is a map T of an interval A onto itself which 
preserves Lebesgue measure A and has only a finite number of discontinuities. It 
owes its name to an equivalent description as a rearrangement in some fixed new or
der of subintervals A i , . . . , A m , which form a partition of A, with a possible change 
of orientation on some of the subintervals. If the orientation does not change we will 
call T on oriented interval exchange transformation. There is a certain ambiguity 
in the definition of i.e.t. at the points of discontinuity but we fix this ambiguity 
for an oriented i.e.t. by assuming that the interval A is right half-open and that T 
is continuous from the right. Interval exchange transformations appear as natural 
section maps for area preserving flows on the surfaces of higher genus. 

If an i.e.t. T has a dense orbit then every other orbit, except possibly the orbits 
of the points of discontinuity, is also dense [Ke], see also [KH], Section 14.5. We 
will call such an i.e.t. quasi-minimal. If T is an oriented i.e.t. and all its semi-
orbits are dense we will call it a minimal i.e.t. If we fix m and the order in which 
the subintervals A i . . . A m are permuted then an oriented i.e.t. is determined by a 
probability vector 

A(A1),...,A(ATO) 

i.e. by a point of an (m — l)-dimensional simplex <7m-i- Under some natural 
combinatorial assumptions all elements of the simplexes except for those belonging 
to a count ably many linear submanifolds determine minimal i.e.t. 

The total number of ergodic probability invariant measures for a quasi-minimal 
i.e.t. is always finite ([Vel], [KH], section 14.5). If there is only one such measure 
we will call T strictly ergodic. Since Lebesgue measure is always invariant this 
unique measure must be Lebesgue. The central result in the theory of interval 
exchange transformations is that under the same natural combinatorial assumptions 
which yield minimality, almost every point of the simplex crm_i with respect to 
Lebesgue measure determines a strictly ergodic i.e.t. This was proved independently 
and simultaneously by W. Veech [V2] and H. Masur [M]. 
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We are going to show that the minimal but not strictly ergodic i.e.t., although 
nongeneric, are fairly common.* 

We will deal with two-point extension of a minimal oriented i.e.t. Let us call 
a function n : A —> Z/2 = {0,1} a k-step function if it has exactly k points of 
discontinuity. We associate to any n : A —> Z/2 a Z/2 extension Tn^ of T. 

(4.18) Tn^(xJ) = (TxJ + n(x)). 

If T is an exchange transformation of m intervals and n is a /c-step function then 
Tn(') can be easily interpreted as an i.e.t. exchanging not more than 2m + 2k 
intervals. 

THEOREM 4.9. Let T be a minimal oriented interval exchange transformation. 
There exists a 3-step function n : A —• Z/2 such that 

(i) n(x) = h(Tx) - h(x) 
where h : A —> Z/2 is a measurable function and 

(ii) For each subinterval I C A, 

X(h-l({Q})nl) > 0 and 

A(/ i - 1 ({ i})n/ ) > o . 

Before proving this theorem we will show how it allows us to construct minimal 
but not strictly ergodic i.e.t.'s. 

COROLLARY 4.10. The two-point extension Tn^ (cf. (J^.18)) is minimal but 
not uniquely ergodic. 

The proof of the corollary is essentially the same as that of Corollary 4.3. By 
Theorem 4.9 (i) n(x) is a coboundary so that Tn(') is metrically isomorphic to 
T x Id via R{x,j) = (x,j -f h(x)). Therefore Tn^ preserves two sets of positive 
product measure: graph (h) and graph (1 — h). By Theorem 4.9 (ii) and by the 
minimality of T every orbit of Tn^ visits every open subset of A x Z/2. 

P R O O F OF THEOREM 4.9. Since T~l is also an i.e.t. with the same number 
of points of discontinuity we can replace (i) by 

,(i') n{x) = h{T~1x)-h(x), 
then apply the result to T _ 1 and obtain the statement of the theorem. 

In all the subsequent arguments we omit the minus sign because we are working 
in Z/2. 

Let us call an interval I C A k- clear if Tl is continuous on the interior of / 
for \i\ = < k. Let a be the left endpoint of A and an = Tna. By the minimality 
of T the sequence {an}, n = 0 , 1 , . . . is dense in A. If an < am we will denote by 
Xm,n '• A —•>• Z/2 the characteristic function of the interval [an,am). 

As in the proof of Theorem 4.2 the function n(x) is constructed inductively 
with very similar methods of control over convergence and divergence. However, 
the whole construction is much more explicit. Let fco = 0 and k\ > 0 be chosen 
in such a way that the interval [0,0^] is disjoint from its image [ai,a^1 +i]. The 
inductive construction is determined by an increasing sequence of natural numbers 

*The rest of this section appeared with minor modifications in [KH] as subsection 14.5e 
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km, m — 0,1, In order to formulate the conditions on km we need another 
sequence ^m defined by 

(4.19) 

so that 

4, = M i =fci + l 

^ra+1 — ^ra+1 f^m i ^m — 1 

771 — 1 
l + ^ / c m _ 2 ( - l ) \ 

We will assume that 
(/i) a < afcl < afc2 < • • • < akm < ax < a&2 < • • • < qe 

<a£l <a£s < ••• < ^ r z ^ j _ i 

(J2) The interval [ofcm,afem+1] is 2fcm- clear 

(h) CLkm+1 - akrn < 3/Cm
m • 

Let us now show how conditions (i"i), {I2) and (13) can be satisfied inductively. 
Let us assume that they are already satisfied up to m. Then by (ii) we can find e, 

def J def I ^ m , rn even afcm < e < cm = ^ 

such that [akm, e) is a &m-clear interval. By the minimality of T, we can find 
fcm+i > A:m such that afcm+1 belongs to the left half of the interval [a/Cm,e). This 
implies (I2) for ra + 1. From the definition of £m, cm + i cannot be more to the left 
of cm than a/em+1 is to the right of ajfem. This implies (h). Finally, (Is) can be 
achieved by simply choosing akrn+1 each time very close to akrn. 

Now we are prepared to construct inductively the cocycle n(x) and the transfer 
function h(x). We begin with a 3-step function 

m W = XOM(X) + xi,fei+iW 

= Xo,fc1(a;) -Xo.feiCr"1^) 

and proceed by induction 

nm+i(x) = nm(x) + Xkm,km+i(x) + X£m - i ,WiO) 

(4.2Q) = nm(x) + x*m,fcm+1(*) " Xkm,km+1 (T^~k^x) 

= nrn(x) + #m+i(:r) - ^ m + 1 ( T ~ 1 x ) 

where 
™m *-m— 1 J-

gm+1(x)= ] P Xkm+j,km+1+j(x). 
2 = 0 

We will represent nrn(x) on one hand as a 3-step function and on the other hand 
as a coboundary. 

To show that it is a 3-step function we have from (4.20) and (ii), 

2=1 2=1 
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Thus nm(x) converges pointwise to 

n(x) = X[a,b)(x) + X[c,d)(x) 

where 

b = lim dk , c = lim ag0 , d = lim a 9̂ , , . 
ra—>oo  ra—•oo  m—>oo 

To represent Ttjji as a coboundary, we use (4.20) to obtain 

nm(x) = hm(x) - hmiT^x) 

where 

(4.21) 

hm(x) = XOM(X) + ^2di(x) 
i=2 
m ki-i—£i-2 — l 

i=2 j=0 

Since ft,m+i(x) = hm(x) + gm+i(x) we have from (4.20) and (I3), 

\({x e A : gm+i{x) = 1} 

< (fcm - im-i){dkm+i - akm) < —— 

so that the sequence /im converges in L1 to a function h which obviously satisfies 
(i'). Thus, it remains to prove (ii). Again the argument resembles very much those 
from section 4.1, being only simpler and more explicit. 

Let us call an interval [afcm_1+j, a,km+j)j = 0 , 1 , . . . , km-i — £ra-2 — I of rank m. 
It follows from (I3) that all intervals of a given rank are pairwise disjoint. Moreover 
for £ < m any interval of rank m is either disjoint with an interval of rank £ or is 
contained inside such an interval. To prove that let us assume that the opposite is 
true so that for some 

j e { 0 , 1 , . . . , fem_i - £m-2 - 1} 

and 

s e { 0 , 1 , . . . , A * _ i - ^ _ 2 - l } 

Since ki-\ -f s < 2ke-i < 2&m_i we can apply 7^-(^-i+5) a n c[ obtain from (1.2) 
that the point a$ lies between 

akm-i + U ~ ke-i - s) 

and 

But this is impossible because a is the left end of A. 
It follows from the last statement and from (4.21) that the function hm is 

constant on every interval of rank m. 
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Let us fix an interval I C A. By the minimality of T every orbit segment of 
length N for sufficiently large N intersects / , in particular / contains an interval I1 

of rank m for a sufficiently large m . /im is constant on V and from (Is) for n > m 

\({x e I' ; hn(x) = hm(x)}) > 
n — m 

A ( / ' ) - E A ( A ( l ) ) > 

1 1 1 

(4.22 ) • — £- j 

\(I') 1 
3 9 3 m ~ n 

so that 

\{xel' :h(x) = hm(x)}>^p. 

Let us now take the smallest m! > m such that I' contains an interval I" of rank 
m'. Then the value of hmf on I" is different from that of /im on I' so that applying 
the same argument to I" we obtain 

\{x € / " : h(x) = hm,(x)} > ^p-. 

Inequalities (4.22) and (4.23) imply (ii). • 

REMARK. A slight modification of the argument allows us to replace minimality 
by quasi-minimality in the assumption with the outcome being a 4-step function 
instead of a 3-step function. 

5. Non-trivial cocycles 

In this chapter we discuss methods of proving that a certain cocycle is not a 
coboundary or an almost coboundary, and various applications of those methods. In 
contrast with situations considered in Chapter 3 where the non-triviality of cocyles 
was derived from non-vanishing of certain invariant distributions we will concentrate 
now on the non-stable case, i.e. we will look for non-trivial cocycles which are 
the limits of coboundaries in various topologies. The subtlety of this problem 
is that there are very few means to disprove the existence of a transfer function 
which is assumed to be only measurable with no assumptions about continuity or 
integrability. 

5.1 Two general cri teria. The following propositions summarize the two 
main approaches to the problem. In both cases G is an arbitrary second countable 
topological group. 

PROPOSITION 5.1. Let (j) be a G-valued cocycle over a measure-preserving trans
formation T : (X, /i) —> (x,/i). 

(i) If for a sequence of integers qn, Tqn —> Id in the weak topology* and (j) is a 
coboundary then the product (j){x)(j)(Tx)... 4>(Tqn~1x) —> Ida in probability. 

(ii) If for any qn —> oo; any a > 0; and for every measurable set A 

fi(TqnAnA) >afj,(A), 

*A transformations T for which such a sequence exists is called rigid [HaK], [Kl]. 
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then for every coboundary (f) and every neighborhood U of e G G, 

lim fi{x : </>(x)<t>(Tx)... ^(T^^x) e U} > a. 
n—>oo 

PROOF, (i) If <j>(x) = ^{x)~ V(Tx) then 

(f)(x)(f)(Tx). ..<t){Tq"-lx) = i)~l(x)^{Tq^x) 

and since i/j(Tqnx) converges in probability to ip(x) so that the product converges 
to identity. 

ii) Let us take a countable partition r\ of G such that for every element c G rj 
and #i,#2 £ c, ^ I ^ 1 and g^192^ belong to [/. Let 4̂ = ^ _ 1 ( c ) , for all c G 77 and 
apply a diagonal argument. D 

PROPOSITION 5.2. Let G be provided with a metric compatible with the uniform 
structure. If a G-valued cocycle over T is a coboundary then for every e > 0 there 
exists R such that for all n 

H{x G X; dist{(f){x)(j){Tx)... ^{Tn~lx), e) < R} > 1 - e 

P R O O F . Again if 0 is a coboundary 

(j){x)(t){Tx)... (j){Tn-lx) = (i/>(x))- 1^{Tnx). 

Since ip and ^~l have the property in question, Tn preserves the measure so that 
ip - Tn also has that property. Finally, since the product is continuous for every R 
there is R\ = R\(R) such that if dist(a^, e) < R i = 1, 2 then dist(zi#2, e) < R\. • 

Since we will be interested in finding cocycles which are not almost coboundaries 
we will formulate explicitly the contrapositives of Proposition 5.1(i) and 5.2 for that 
case. 

COROLLARY 5.3. Under the same conditions as Proposition 5.1, if there exits 
a neighborhood U of the identity e G G, a sequence qn —> 00? sequences of closed 
subsets Vn and Wn of G, and e > 0 such that 

(i) Tqn —* Id in the weak topology 
(ii) vnw^nu = <i> 

(hi) ii{x : <£(x)0(Tx)... (piT^^x) G Vn} > e 
(iv) n{x : </>{x)</>{Tx)... (piT^^x) G Wn} > e. 

Then <\> is not cohomologous to any constant. 

COROLLARY 5.4. Under the same conditions as Proposition 5.2, let Uk be an 
00 

increasing sequence of neighborhoods of the identity in G such that U Uk = G. If 
k=l 

there exists a sequence nk —» 00, sequences of closed subsets Vk and Wk of G, and 
e > 0 such that 

(i) VfeWfc-1 n c/fe = # 
(ii) ii{{x : 4>(x)4>(Tx)... 4>(Tn^x) G Vk}) > e 

(iii) fi({x : <j){x)4>{Tx). ..4>(Tn"-1x) € Wk}) > e 

Licensed to Univ of Wisconsin, Madison.  Prepared on Fri May 29 15:01:40 EDT 2020for download from IP 128.104.46.196.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



COCYCLES, COHOMOLOGY AND COMBINATORIAL CONSTRUCTIONS 159 

Then (j) is not cohomologous to any constant. 

The method based on Corollary 5.3 applies to cocycles with values in arbitrary 
groups including compact ones, but it requires the transformation to be rigid. The 
second method is free of that restriction but it works only for cocycles with values 
in some non-compact (e.g. compactly generated) groups. 

In sections 5.2-5.5 we will explore various situations where a cocycle <f> — Ihn (j)n 

fails to be an almost coboundary, although </>n's are coboundaries and Ll conver
gence of (f)n to (j) is very fast. Our strategy will be as follows. Although </>n is a 
coboundary, for large values of n the corresponding transfer function tyn will be 
huge so that (j)n will satisfy the condition (ii)-(iv) of Corollaries 5.3 or 5.4 for a 
finite but growing with n number of iterates. 

Due to fast convergence all the alterations on the subsequent steps will be 
small enough to keep the properties for the limit cocycle for the given iterates and, 
naturally, they will produce similar properties for higher iterates. 

In addition to Corollary 5.4 the following observation is useful in this situation. 
Let T : (X, /i) —• (X, /i) be an ergodic measure-preserving transformation and let 
U and V be two disjoint closed subsets of G. Let <f){x) — (i/j(x))~1ip(Tx) and let 

LEMMA 5.5. Suppose that 

(5.1) e0 = u(l - u) - 1 + u + v > 0. 

Then there exists an arbitrarily large k such that for every 5 > 0 

fj,({x : <t>{x)<l>(Tx)... ^(T^x) e V^U}) > e0 - 5 

and 

H{{x : (j)(x)(f>{Tx)... (j){Tk-lx) G U^V}) > e0 - 5. 

REMARK. Condition (5.1) is satisfied if u + v is sufficiently close to one and 
neither u or v is very small. 

PROOF. We write as usual 

<j)(x)<P(Tx)... (j)(Tk-1x) = <4){x)-lil)(Tkx) 

and take sets A — I(J~1(U) and B = if;~1(V). From the ergodic theorem, 

N-l 
(5.2) J i r n ^ - £ » ( A H T~kA) = ^(A)2 = u\ 

In particular we can find an arbitrarily large k such that / i ( i f l T~kA) < u2 + 5 
so that fJL{{X\A) H T-kA) > 1 - u{\ - u) - 5 and by (5.1), fi(B n T~kA) > 
V((X\A) H TkA) - fi(X\(A U B)) > u(l - u) - S - 1 -f u -h v = e0 - 5. If x G B and 
Tkx G A then 

</>(x)<l>(Tx)... ())(Tk-lx) G V-XU 
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Similarly, we show that }i(A D T~kB) > 

H(A H T~k(X\A)) - v(X\(A U B)) 

= fi(TkA n (X\A)) - 1 + u + v 

= /i(Tfc A) - fi(ThA nA)-l + u + v 

= n{A) - n(A n T"fcA) - 1 + u + v 

> u(l — u) — I + U + V — 5 = €Q — S. 

• 

This lemma can be used to verify the conditions of Corollary 5.4 if, e.g. G is an 
abelian group provided with a translation invariant metric and U, V are such that 

dist([/-1y, v~lu) 

is sufficiently large. (Cf. the proof of Theorem 5.6 below). 

5.2 The case of fast C°° approximation. We now return to the situation 
discussed in section 4.2. 

THEOREM 5.6. Suppose that f is a C°° diffeomorphism of a compact connected 
m-dimensional manifold M which preserves a measure /i given by a density bounded 
between two positive constants, and is ergodic with respect to \i. If f admits a 
fast C°° periodic approximation then there exists a real valued C°° cocycle h = 
lim (ipn o / — i/jn), where ipn is C°°, which is not cohomologous to any constant. 

n—>oo 
P R O O F . We begin with a "cubic triangulation" of M; in other words we form 

a mod 0 partition of M into diffeomorphic images of the standard m-dimensional 
cube Im = { ( t i , . . . tm) : 0 < U < 1, i — 1 . . . m}. Then for a given number n we 
can subdivide the standard cube by nm equal cubes by dividing the value of each 
coordinate into n equal intervals. The images of this subdivision form a partition of 
M which we will denote by £n. We associate with every element c G ( n a function 
ac which is somewhat similar to the function defined by (4.9). 

The element c is an image under a fixed (independent on n) diffeomorphism 
of a cube in lRm with a center at a point (t\ .. . t^J and with sides parallel to 
the coordinate axes. We define ac as the image under that diffeomorphism of the 

m 
function n J"] 6n(ti — t®) extended by zero outside of the image of Im. Here 6n(t) is 

2=1 
a C°° bump function equal to 1 for \t\ < ^ , to 0 for \t\ > ^ -f 2̂ 10 and such that 
its r-th derivative does not exceed C(r)n100 for r = 1, 2, 

Due to the fast periodic approximation for c G £,qn the function ac o fqn — ac 

allows the Cr estimate 
(5.3) I K o / « » - a c | | r < c i ( f c , r ) g - f c 

(cf. (4.8)). Details of this estimate are the same as in the proof of Theorem 4.5. 
We have 

ac o fq™ - ac = i)c o / - ^ c 

where 

qn-l 

k=0 

Licensed to Univ of Wisconsin, Madison.  Prepared on Fri May 29 15:01:40 EDT 2020for download from IP 128.104.46.196.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



COCYCLES, COHOMOLOGY AND COMBINATORIAL CONSTRUCTIONS 161 

We are going to show that one can choose a collection of elements of £gn, 

c\,..., C£ so that the function ip = Y2 ^ci has the following property 
i=i 

2 
M(^_1(kn,00))) > -

(5-4) I 
M ^ - 1 ( { o } ) ) > g . 

Then we can apply Lemma 5.5 and obtain a number k = kn such that for the 
function 

£ 
(5.5) <j> = ^ ] a C t o / - ac% = ^ o / - ^ , 

i=l 

ix{{x : ] T <t>{T*x) < -qn}) > ^ 
3=0 

(5.6) and 

/ , ({* : ^ 0 ( T ^ ) > g n } ) > ^ . 

To verify (5.4) we order the elements of £qn and consider successively the functions 

k 
We denote I/JW = J Z ^ -

z=l 
Let us look at the distribution of the values of two successive functions T/^) 

and ^k+1\ Both functions are non-negative and ^( /c+1) — >̂(fc) = ipCk. the support 
of ^Ck is the union of qn successive iterates of c^ with its neighborhood. We will 
disregard all the neighborhoods and their images since the total measure of their 
union does not exceed a constant multiple of g~9. 

By neglecting this small set we can reduce the question to considering distri
butions of iterates for characteristic functions of the elements c^ £ £qn multiplied 
by the constant qn. These iterates cover increasingly large fractions of the total 
measure. The distribution of a sum is the sum of the distributions. Adding the 
sum of the iterates of qnXck 3 we change the value by at least qn on a set of measure 
between fi(ck) and qn/J,(ck). 

The last number is small since by our assumptions /i(cn) < q~m'd for a constant 
d. Eventually the value on a set of measure close to 1 becomes greater than qn. 
Since we start from zero, that means that for some k the measure of support is 
within dq~m+1 of 1/2. By making n large enough we obtain (5.4). 

Let us point out that 

U\\r < diq™"1 max ||ac o / - ac | | r 

for another constant d\ and thus | |0| | r decreases faster than any power of qn as 
n —> oo by (4.8). 

Now we proceed to build the cocycle h inductively as a sum of <j)^ where 
each (j)^ is defined by (5.5) for a certain recurrence time qnk. By choosing the 
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numbers qnk sufficiently quickly increasing we guarantee the convergence of the 

series h = ^ (p(k\ On the other hand we want to insure that for every k 
k=i 

(5.7) 

Qnk-l 

»({x: X > ( ^ ) < - ^ } ) > ^ 
3=0 

and 

50 

«nk-l 
M{x: Yjh{T^x)>q-f})>^ 

3=0 

By Corollary 5.4 these inequalities imply that h is not cohomologous to a constant. 
We have 

k—1 oo 
ft = j y o + 0<*> + E 4>{i)-

Since <j>& = ^W o / - ^ (cf. (5.5)) for every £ 

(5.8) 
t-l k-l 

E E * ( 0 < T i a o 
j=0 i=0 

fc-1 
< 2 ] T m a x | ^ w 

2 = 1 

and the expression in the right hand part of the last inequality is known by the 
time we make the choice of qnk so that we can choose 

fc-i 
qnk > 2 0 ] T m a x | ^ w | . 

On the other hand by choosing the subsequent return times far away we can insure 
that for i > k 

\^\<2~1-k-lK 

so that 

(5.9) 

Since 

E E <t>{i)(Tjx) 
j=0 i=k+l 

< 1. 

fc„fc-l 

E h&x) 
3=0 

fcnfc-l k-l 

E E ^ ( 

j=0 i=0 

> 

0(7 

E < 
j=0 

ljx) - E E ^ W * ) ) 
j=0 i = fc + l 

inequalities (5.6), (5.8) and (12.9) imply (5.7). • 
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5.3 Weakly mixing flows on T2. Kolmo gorov's Theorem 3.5 implies that 
for any Diophantine (in other words, not exceptionally well rationally approx
imate) number a every C°° special flow build over the rotation R\, A = exp27ria 
has discrete spectrum (cf. (1.22)). Now we are going to show that for very well ap
proximate rotation numbers there exist not only C°° but even real-analytic special 
flows which have continuous spectrum. To that end we will find a criterion which 
guarantees that for a real-valued function h on the circle the function exp irh for 
every real r is not a coboundary. We will use the approach suggested by Corollary 
5.3. Let us consider the special flow over R\ build under a function ho + h(z) where 
ho is a constant and h(z) is a function with zero average 

h(z) = J2hnZn-

We consider a sequence of iterates, say qn, n = 1,2,... of the rotation R\ 
corresponding to a very good rational approximation pn/qn, 0 < pn < qn of a. To 
make the notation lighter we omit the index n in the subsequent computation. 

We have 

9-1 
We approximate A by Ao = exp27ri- and write the expression for ^ /I(AQZ) corre-

q k=o 
sponding (5.10). The sum over m not divisible by q vanishes and the second sum 
becomes 

oo 

^ = - 0 0 

oo 

We denote by aq the L2 norm of this power series, by bq the expression q ^2 \^£q\ 
k— — oo 

and by eq = \a — - | . Obviously aq < b\. We will assume a certain regularity 
condition on the decrease of Fourier coefficients h£qj namely 

(5.11) J ^ > c > o 

E\heg\ 
£=1 

where the constant c is independent of q. Since \hq\ < aq (5.11) implies that 

(5.12) bx < V ^ c " 1 ^ 

Obviously for every integer m 

| A m - A ^ | < | m | - | A - A 0 | < | m | - e g 
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so that if hi is absolutely summable 

(5.13) 

9-1 
$> (A*z ) - h{\%z) 
k=0 

9-1 
< £ hn \km \km i 

< eq 
q(q-V 

E 
fc=0 

^ m | / i m | < c'eq q2 

where c' is a constant which depends on h but not on q. 
Now we make an assumption on the relationship between the speed of approx

imation for a and the decrease of Fourier coefficients for h. Namely we assume 

(5.14) 
n—>oo 0a 

0. 

By (5.14) and (5.12) we see that for the function 

q-l 

fc=0 

which has zero average both the maximum and the L2-norm are of order bq. Thus 
it has to have both positive and negative values of that order on sets of measure 
bounded away from zero by a constant independent of q. Up to an error of order 
eqq

2 the function h^ coincides with the function 

oo 

/>(?) = q J2 heqz
e". 

where eo is a sufficiently small constant and Let us now take L = eo 

consider 

k=0 j=0 k=0 j=0 

Replacing in the last expression h^ by h^ we allow an error of order ê  • q2 • L = 
0(1). 

On the other hand, we have 

(5.15) 
L-l oo L-l 

^ ( , ) ( A ^ ) = ? $ : ^ E A , V ^ 
j'=0 £=-oo j=0 

We want again to compare uniform and L2 norms for a function, this time for 
the one given by (5.15). 

The uniform norm does not exceed Lbq. The L2 norm is greater than 

L-l 
q\hq\J2^2-

i=0 
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We have by (5.12) and (5.14) for 0 < j < L - 1 

\\jq2 -l\<jq2\\-\o\<Lq2eq = o(l). 

Thus if q is sufficiently large, 
L-l 
£ A - 2 

3=0 

L 
>2 

so that by (5.11) and the definition of L the L2 norm of our function is greater 
than a certain constant which depends on h and eo and can be arbitrary small by 
the choice of eo- What is important is that the ratio of the above estimate of the 
uniform norm and the below estimate for the L2 norm is a constant independent 
of q €Q. Since the average of the function (5.15) is zero it reaches both positive 
and negative values of order eo on sets of the measure separated from zero. Taking 
into account the remark about the error we conclude that the same is true for the 
function 

Lq-l 
£ M A f c ) 
k=0 

But by our choice of L and by (5.14) XLq —> 1 as q —> oo so that the function 
Lq-l 

J2 ho + h(Xkz) 
k=0 

is not close in probability to any constant. However the variation of that function is 
estimated from above by a multiple of eo. When we pass to the function exp ir(/io + 
h(z)) we see that the spread of values for 

Lq-l 
Y[ exp ir(h0 + h(Xkz)) 
k=0 

persists if eo is chosen small enough. Applying Corollary 5.3 we see that the special 
flow over R\ build under ho + h is weakly mixing. Let us summarize the discussion. 

THEOREM 5.7. Let h(z) = J2 hnz
n be a C2 real valued function on S1 with 

zero average. Let R\ be a rotation on S1 X = exp 2^ia. Suppose for a certain 
sequence of rational numbers pn/qn, 

(5.16) Qn\a-Pn/qn\ ^ „ 

T,\hkqn\ 
fe=l 

and 

(5.17) J V I > c > 0 . 

T,\hkqn\ fc=l 

Then for any ho and r the cocycle exp ir(ho + h(z)) is not a coboundary and con
sequently the special flow over R\ build under the function ho + h(z) is weakly 

mixing. 
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REMARK. Since conditions (5.16) and (5.17) remain true if we multiply h by 
a constant, those conditions also guarantee that S1 extension of R\ determined by 
the function exp ih has no eigenfunctions except for those lifted from the base (cf. 
(1.15)). 

It is interesting to notice that for real analytic functions with a regular decrease 
of Fourier coefficients the sufficient condition for weak mixing given by (5.16) is very 
close in terms of the speed of approximation for A to the negation of the sufficient 
condition for the discrete spectrum namely 

hn\ (5.18) F r ^ T v ; ^ A n - 1 n ' 

(cf. Theorem 3.5). 
Let us consider for example the function 

< oo 

2 cos 6 — 2 
h(z) = Y2~Wzr> -v ^ 5 - 2 cos ( 

where z — exp 2ni(fi. This function obviously satisfies (5.17) and (5.16) becomes 
for it 

which is sufficient for weak mixing for the special flow. On the other hand (5.18) 
converges if for some c > 0 and for all n > 0 

2Qnqn 0 

| A n - l | n 
< — or, equivalently, 2q P a 

Q 
> c 

for all p and q. 
Let us conclude with several comments. 
Weak mixing is typical in the category sense for the special flows over circle 

rotations and hence for time changes in linear flows on the torus [Fal]. 
Mixed spectrum can appear even for an analytic roof function (A. Katok; un

published) while it is not known whether for an analytic of smooth roof function an 
exotic pure point spectrum can appear, i.e. whether it is possible that the special 
flow has a pure point spectrum, but the roof function is not additively cohomologous 
to a constant. 

It is possible that for the roof functions with a sufficiently regular decay of 
Fourier coefficients there is a dichotomy between the solvability of the additive 
cohomological equation and weak mixing. 

Finally mixing is possible for a smooth time change in a linear flow on a torus 
of dimension greater than two [Fa2]. 

5.4 Ergodicity of analytic cylindrical cascades. A problem closely con
nected with that discussed in section 5.3 concerns the R extension of the rotation 
R\ 

(5.19) R\(z,t) = {\z,t + h(z)). 

This transformation, which is sometimes called a cylindrical cascade, preserves 
infinite Lebesgue measure. We are going to discuss the possibility of T being 
ergodic. It is obviously necessary that h have zero average. On the other hand, if 
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the cocycle h is a coboundary, then R% is isomorphic to the direct product R\ x Id, 
and thus not ergodic. Furthermore, if 

exp irh(z) — rtp(z)~1ip(\z) 

then the function 
^ ( z ) _ 1 exp irt 

is R^ invariant. Thus the ergodicity on R\ implies that the special flow over R\ 
build under the function h(z) + 2nak -f 2TT£ is weakly mixing for any integers k 
and £, where A = exp 2iria. It looks as though the ergodicity of R% is a stronger 
property than the weak mixing of the special flows; however, no counterexamples 
are known. 

Krygin [Kr] proved the existence of an analytic cocycle over an irrational ro
tation such that the extension (5.19) is ergodic. This result was generalized by 
Herman [He3] to cocycles with values in more general groups. Herman's proof is 
essentially categorical. Another interesting feature of that proof is that it interprets 
the approximation of the cocycle by coboundaries with diverging transfer functions 
as the approximation of a diffeomorphism by elements of the actions of a compact 
group via diverging conjugations as in [AK]. 

We will now formulate and sketch a proof of a categorical version of Krygin's 
theorem. Let us fix a complex annular neighborhood U of the circle S1 and consider 
the space of all functions analytic in U and continuous on the boundary, with the 
topology of uniform convergence. Let A be the product of this space with circle, 
with the product topology. 

THEOREM 5.8. The set of pairs (/i,A) G A such that the extension (5.19) is 
ergodic is a residual set in A. 

We follow the same course as in the categorical theorems in [Kl]. First, the 
ergodicity of R1^ on the cylinder follows from the ergodicity of the induced map 
{R\)BM

 o n e v e r y band BM = [—M,M] x S1. The categorical argument rests on 
the following observation which is an almost immediate corollary of the ergodic 
theorem. 

PROPOSITION 5.9. Let T : (X, /x) —• (X, /z) be a measure-preserving transfor
mation of a Lebesgue probability space and let {0 i ,02- . . } be a countable dense 
subset of L1(X,//). Suppose for any positive integers K and N and any e > 0, 
there exists a set AK,N,G C X of measure greater than 1 — e such that for every 
x G AK,N,C there exists n(x) > N such that for k = 1 , . . . , K 

-, n(x)-l 

5>X>(^)-/, (5.20) l ^ y ^ Y MTJx) - I fadul < e. 

Then T is ergodic. 

To set up the categorical argument, we fix a band BM, a natural number N, 
an e > 0, a continuous function cj> on BM, and a neighborhood A in A. We will 
construct below a pair (ft, A) = (hSA\\W) e A such that if for T = (R^)BM and 
for the given function (5.20) holds, then (5.20) remains true for T(R\,)BM for any 
other (h',\') from a sufficiently small neighborhood of (h,X). Let us denote this 
neighborhood by 

P(/i ,A,0,N,e). 
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Let Ai, 
dense set in 

The set 

A2,A3,. 
C(BM). 

B = 

.. 1 

OO 
n 

be a base of neighborhoods in A and let <fii, 02, • •. be a 

N=l fc=l £=1 V ^ ' 

According to Proposition 5.9, for every (ft, A ) G 6 (R\)BM is ergodic. Taking 
is a dense G<5 set in A 

the intersection over all integers M, we obtain the result. 
It remains to prove the approximation step. 
We can think of A as a neighborhood of a pair (ft, A) where ft is a coboundary 

and A is rational. This is because for every irrational A, the trigonometric polynomi
als are all coboundaries with real analytic transfer functions, and thus coboundaries 
are dense for the given A. Keeping the transfer function fixed, we approximate A by 
a rational number. Thus we can think of A as a neighborhood of (ft, exp 2ni Po/qo) 
where h(z) — ip(z exp 2m po/qo) ~ ^{z). 

Let us note that if g is a coboundary, g(z) = (j){\z) — (f){z), then the correspond
ing cylindrical cascade Rg

x satisfies 

R9
x = $o(Rxx Id) o $~ 1 

where 
$(z,t) = {z,t + <l>(z)). 

The map Rg
x is embedded into the periodic flow 

Sa = $o(RxxId)o<S>-\ 

s G R, whose orbits are graphs of the functions (\> -f const. In particular, for any 
sufficiently large q and p such that (p,q) — 1, the orbits of Sp/q fill those graphs 
with high uniform density. Both of these remarks remain true when we pass from 
the flow Ss to the flow induced by Ss on any band BM> 

For any e > 0, any M and any given function -0, one can find Q and W such 
that for any q> Q and w > W the function 

il>w1q(z)='&(z) + w(zq + z~q) 

has the property that all but a set of measure of less than e of the points in BM 
belong to graphs of the functions ipw,q + const, whose intersections with BM are e 
uniformly distributed. The last property means that for any intervals A C S 1 and 
E C [-M,M], 

A ( { , E A : ^ ( z ) + c e E } ) - A ( A ) A ( E ) 

2M < e. 

We first perturb po/qo, replacing it with pi/q± for qi sufficiently large and then 
replace ft by 

fti(z) = \j)(z exp 2ni Pi/qi) — i^(z) 

= ip(z exp 2ni Pi/qi) + w((z exp 2ni pi/qi)qi 

-f [z exp 2-Kip\lq\)~qi) 

-ip(z) -w(zqi +z~qi) 

= ip(z exp 2ni Pi/qi) — ip(z) 
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where 

ij;(z) =ip(z)+w(zqi +z~qi) 

and we choose q\ and w according to the previous remark. Then we choose a very 
large (actually arbitrarily large) L, and replace hi by 

h(z) =i)lz exp 2TTZ ( — + — J J -ip(z). 

Now the pair (h^A\ X^), needed for the category argument, can be taken as (h, A) 

where A = exp 2ni ( — + -̂ — J. Due to the remark about graphs, the map induced 

by B% on BM satisfies the assumptions of Proposition 5.9 with good precision. • 
Let us note that in a constructive version of this argument, the cocycle may be 

built as a lacunary Fourier series. 

5.5 Weak mixing of special flows over interval exchange transfor
mations. Let T : A —> A be an interval exchange transformation (cf. 4.4). We 
will consider a special flow built over T under a function h which we assume to be 
piecewise continuously differentiable; so that at every point of nondifferentiability, 
h'{x) has limits from the left and right, let us identify the ends of the interval A 
and fix an orientation on the circle obtained this way. We denote 

j(h) = j2f(x+Q)-f(x-Q) 

where the summation is taken over the finite set of all points of discontinuity. 
Let us remark that the first examples of measure-preserving transformations 

and flows with continuous spectrum were constructed by J. Von Neumann in his 
celebrated paper [N] which established the foundation of modern ergodic theory. He 
proved that the special flow built over an irrational rotation under a piecewise C1 

function h such that J{h) ^ 0 is weakly mixing. In his proof, von Neumann used the 
rigidity of the base transformation (i.e. the rotation). Although not every interval 
exchange transformation is rigid*, they always possess a recurrence property which 
is strong enough to carry through an argument similar to von Neumann's. Namely, 
we will use the following property [K4]. 

PROPOSITION 5.10. There exists a positive a and a sequence of positive inte
gers rik —> oo such that for every measurable set ACS1 

/ i ( i n r f c i ) >afj,(A) 

We can now formulate the generalization of von Neumann's result. 

THEOREM 5.11. IfT:A^Aisan interval exchange transformation ergodic 
with respect to Lebesgue measure and h is a piecewise C1 function such that J{h) ^ 
0, then the special flow over T build under h is weakly mixing but not mixing. 

*cf. Del Junco [J], who proved that some exchanges of 3 intervals have minimal self-joinings 
and consequently their centralizers consist only of powers. On the other hand, a rigid transfor
mation always has an uncountable centralizer. 
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PROOF. Since h is a function of bounded variation, the absence of mixing 
follows from [K4]. 

To prove weak mixing, we show as usual that for every r ^ 0 the function 
exp irh(x) is not cohomologous to any constant. We will use Proposition 5.1, ii), 
whose assumption in this case, is satisfied due to Proposition 5.10. Let 0n(x) = 

n-l 
exp irY2h(Tkx). We will show that any weak limit point of the sequence of 

fc=0 
measures 

is a nonatomic measure, where A denotes Lebesgue measure on A. 
Let C be the partition of A into subintervals formed by all points of discontinuity 

of T and all points where the derivative h'{x) is discontinuous and let £n = £ V 
T _ 1 £ V . . . T~ n + 1£. Let u){e) be a common modulus of continuity for hi on all its 
intervals of continuity. If c G Cn then all functions h o Tl; i = 0 , . . . ,n — 1 are 
differentiate on c and since Tl\ has derivative ±1 we have for x,y G c 

\ti{Tix)-ti{Tiy)\<Lo(\x-y\) 

and consequently 

(5.21) 

We have 

(5.22) 

^ ' ( T ^ H ^ f e ' C P y ) 
2 = 0 2 = 0 

< nuj(\x-y\). 

[ ti{x)dx = -J(h). 
J A 

Let us denote for an integer n and e > 0 

(5.23) An,€ = < x G A : 
1 n—1 
-Y^h(Tlx) + J(h) 

i=0 

< € 

By the ergodicity of T we have for any e > 0 

A(An,c) - 1 or 

Let us now fix /? > 0 and consider all elements of the partition £n of length > ^. 
Let R = card £. Since the total number of elements in £ does not exceecl Rn (every 
iterate of T adds as many new elements as the number of points of discontinuity 
of T), the total measure of these elements is greater than 1 — R(5. Let us divide 
now every element into intervals of length between ^ and ^ and call those of the 
intervals, which intersect the set An?e, (n, e, /3)-admissible ones. The total measure 
of (n, e,/3)-admissible intervals is clearly greater than A(An5€) — (3R. For every 
(n, e, /3)-admissible interval a we have by (5.21) and (5.22) 

(5.24 ) 
-J(h) 

2P\ 
n J 

n- l n—1 
< m i n V h \ T l x ) < m a x V / ^ r x ) < 

2 = 0 =0 

-J{h) + e + oj 
2£ 
n 
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If e is chosen small enough and n is big enough then in particular (5.24) implies 
that 

(5.25) m a x V / i ^ r x ) < 2\J{h)\ 

so that by choosing (3 < 4r\j(h)\ (recall that the length of a is less than ^ ) we can 
guarantee that the function 6n is injective on every (n, e, f3)-admissible interval. 

On the other hand, the length of the image 0n(cr) is bigger than ^(3J(h)\ if we 
guarantee by our choice of n, e that 

n —1 1 

(5.26) m.m")Tti(Tlx) > -\J{h)\n 
a ^—' 2 

It follows from (5.25) and (5.26) that the density of the measure (On)*(M<r) = 

\in^ can oscillate on the interval 0n(a) ratio of at most 4, so that for every interval 
5 eAof length £ 

^n^d)< 0n{a)< rf3\J{h)[ 
This means in particular that 

\({x e A : 0n(x) e 6}) < 

\({x G A : 9n(x) G 5 , x belongs to an (n, e, /3)-admissible 

(5.27) (interval)}) + fi({x G A , x does not belong to an 

(n, e, /?)-admissible interval}) < -f i?/? + 1 — \{An,e). 
rp\j \(i)\ 

Fixing first a sufficiently small e and a sufficiently big n, and then sufficiently 
small (3 we can always find £ such that the right hand part of (5.27) is less than 
any given positive number. This shows that any weak limit power of the sequence 
of measures (#n)*A cannot contain an atom. • 
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