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ABSTRACT. We prove that any smooth action of Zm−1, m ≥ 3, on an m-dimen-
sional manifold that preserves a measure such that all non-identity elements
of the suspension have positive entropy is essentially algebraic, i.e., isomor-
phic up to a finite permutation to an affine action on the torus or on its
factor by ±Id. Furthermore this isomorphism has nice geometric properties;
in particular, it is smooth in the sense of Whitney on a set whose complement
has arbitrarily small measure. We further derive restrictions on topology of
manifolds that may admit such actions, for example, excluding spheres and
obtaining lower estimate on the first Betti number in the odd-dimensional
case.

INTRODUCTION

Let α be a smooth action of Zm−1, m ≥ 3, on an m-dimensional manifold M ,
not necessarily compact. We assume that α is uniformly C 1+θ, θ > 0, with re-
spect to a certain smooth Riemanninan metric on M , i.e., the generators of the
action and their inverses have uniformly bounded derivatives satisfying Hölder
condition with exponent θ and a fixed Hölder constant. Naturally, if M is com-
pact this condition does not depend on the choice of the Riemannian metric.
This regularity assumption allows us to apply standard results of smooth ergodic
theory to any invariant measure of the action.

Following [14] we assume that α has an invariant probability ergodic measure
µ such that

(1) Lyapunov characteristic exponents are non-zero and are in general posi-
tion, i.e., the dimension of the intersection of any l of their kernels is the
minimal possible, i.e., is equal to max{k − l ,0},

(2) at least one element in Zm−1 has positive entropy with respect to µ.

We will call such a pair (α,µ) a maximal rank positive entropy action.
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Let us notice that there is an equivalent definition of a maximal rank posi-
tive entropy action that only uses notions invariant under measure-theoretic
isomorphism.

Proposition A. A smooth action α of Zm−1, m ≥ 3, on an m-dimensional mani-
fold M is a maximal rank positive entropy action if and only if every non-identity
element of the suspension of the action has positive entropy with respect to µ.

Proof. In one direction this is proven in [14, Section 3.1]. Namely, it is shown
there that is α is a maximal rank positive entropy action then any non-identity
element of the suspension has positive entropy.

In the opposite direction the argument is given in [16, Proposition 3.1]. Since
the statement of that proposition looks different we repeat the argument here.

We argue by contradiction. Assume that Lyapunov exponents are not in gen-
eral position. Let k be the maximal number of Lyapunov hyperplanes whose
intersection has dimension greater than minimal, i.e., greater than m − 1− k.
Consider the restriction of the action to the intersection of those k Lyapunov
hyperplanes that we denote by L. Intersections of remaining m−k hyperplanes
with L are in general position; hence they divide L into 2m−k domains where
the exponents have all possible combinations of signs. In particular there is a
domain D where all m −k exponents are negative. Since the remaining expo-
nents vanish on L all suspension action elements from D have zero entropy,
contradicting the assumption that all non-identity elements of the suspension
have positive entropy.

The main result of [14] is absolute continuity of the measure µ for a maximal
rank positive entropy action. In [14, Sections 8.1 and 8.2] a program of further
study of such actions has been formulated.

In the present paper we mostly complete this program. Firstly we extend
the description of maximal rank actions on the torus with Cartan homotopy
data from [20], where a positive entropy hyperbolic measure always exists, to
maximal rank positive entropy actions on arbitrary manifolds. Secondly we
obtain substantial information on topology of manifolds that may admit such
actions, in particularly excluding spheres and many other standard manifolds.

Let us call an infratorus a factor of Rm by a group E of affine transformations
that contains a lattice L of translations as a finite index subgroup. Thus an
infratorus is the factor of the torus Rm/L by a finite group G of affine transfor-
mations. In this definition infratorus is a varifold and not necessarily a smooth
manifold since the group G may not act freely; in particular it may have fixed
points. In fact, the only examples of infratori that admit maximal rank abelian
actions by affine transformations and that are not tori are of that kind: such an
infratorus is obtained by factorizing Tm by the involution I x =−x that has 2m

fixed points. Let us denote such an infratorus by Tm
± .

REMARK 1. By blowing up the singular points and glueing in copies of the pro-
jective space of codimension one, one constructs a smooth action on a manifold
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that is diffeomorphic to the affine action on the infratorus outside of the singu-
lar points, see [18]. This can be considered as the “standard smooth model” of
the infratorus action. Examples of infratori that are smooth manifolds can be
found in [19, Section 2.1.4].

We formulate and present our results in two parts. The reason is that the first
part is likely to hold with proper modifications (in particular, allowing more gen-
eral infratori) in greater generality, namely, in the setting similar to that of [21]
where no connection is assumed between the rank k ≥ 2 of the action and the
dimension of the ambient manifold. Most steps in the proof work in that gener-
ality and remaining difficulties, while substantial, are of technical nature. The
second part heavily relies on existence of codimension-one stable manifolds
and hence is specific for the maximal rank setting.

The first part (Theorem 1) states in particular that modulo a finite permu-
tation any such action is “arithmetic”, i.e., there is a measurable isomorphism
between the restriction of the action to each ergodic component of a certain
finite index subgroup Γ ⊂ Zm−1 and a Cartan action by affine automorphisms
of the torus Tm or its factor Tm

± . This isomorphism has nice topological and
geometric properties that are described in detail below. This provides solutions
of most conjectures and problems from [14, Section 8.1].

The second part asserts that the restriction of the above mentioned isomor-
phism to each ergodic component of the group Γ extends to a continuous map
between an open set in M and the complement to a finite set on Tm or Tm

± that
is a topological semi-conjugacy (a factor-map) between α and α0 (Theorem 2).
Furthermore, this map can be modified on a set of arbitrarily small measure
and then extended to a homeomorphism between an open set in M and the
complement to a finite set on Tm or Tm

± . This has implications for the topology
of M , in particular disproving Conjecture 4 from [14].

Technically the present paper builds upon the results of [14, 21]. We use
background information from those papers without special references.

1. FORMULATION OF RESULTS

1.1. The arithmeticity theorem.

THEOREM 1. For r = 1+θ, 0 < θ < 1, or r ≥ 2 an integer, let α be a C r maximal
rank positive entropy action on a smooth manifold M of dimension m ≥ 3.

Then there exist

• disjoint measurable sets of equal measure R1, . . . ,Rn ⊂ M such that R =⋃n
i=1 Ri has full measure and the action α cyclically interchanges those sets.

Let Γ⊂Zm−1 be the stationary subgroup of any of the sets Ri (Γ is of course
isomorphic to Zm−1);

• a Cartan action α0 of Γ by affine transformations of either the torus Tm or
the infratorus Tm

± that we will call the algebraic model;
• measurable maps hi : Ri →Tm or hi : Ri →Tm

± , i = 1, . . . ,n;

such that
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(1) hi is bijective almost everywhere and (hi )∗µ=λ, the Lebesgue (Haar) mea-
sure on Tm (correspondingly Tm

± );
(2) α0 ◦hi = hi ◦α �Γ;
(3) for almost every x ∈ M and every n ∈Zm−1 the restriction of hi to the stable

manifold W s
x of x with respect to α(n) is a C r diffeomorphism;

(4) hi is C r−ε in the sense of Whitney on a set whose complement to Ri has
arbitrarily small measure; those sets will be described in the course of proof;
in particular, they are saturated by local stable manifolds.

Sometimes, when this cannot cause confusion, we will call the actions satis-
fying assumptions of Theorem 1 simply maximal rank actions.

REMARK 2. Statement (4) implies that the measure µ is absolutely continuous.
However, as we mentioned before, this fact is the principal result of [14] and it
forms a basis of the proof of Theorem 1.

REMARK 3. Statements (1) and (2) imply that hi is a measurable isomorphism
between (α,µ), restricted to the set Ri and subgroup Γ, and the algebraic model
(α0,λ).

REMARK 4. It follows from (1) and (2) that for n = 1 the action α is weakly
mixing (and, in fact, mixing); for n > 1 or equivalently, if Γ 6= Zm−1, Γ action
is not ergodic but its restriction to any of its n ergodic components is weakly
mixing (and mixing).

REMARK 5. Statement (3) immediately implies that Jacobians along Lyapunov
foliations are measurably cohomologous to constants (exponents for the alge-
braic model), thus solving Conjecture 1 from [14]. Furthermore, the transfer
function is smooth along the Lyapunov foliations.

1.2. Corollaries from arithmeticity.

1.2.1. Entropy and Lyapunov exponents. Theorem 1 immediately implies the
solution of Problem 1 and Conjecture 2 from [14]. In fact, description of Cartan
(maximal rank) actions on the torus via units in the algebraic number fields
given in [17] provides more precise information. We consider the weakly mixing
case first.

COROLLARY 1. Let α be a C 1+θ,θ > 0 weakly mixing maximal rank positive
entropy Zm−1 action. There exists a totally real algebraic number field K of de-
gree m, that is a simple extension of Q uniquely determined by α, and, for any
system of generators of α, an (m −1)-tuple of multiplicatively independent units
λ1, . . . ,λm−1 in K such that the Lyapunov characteristics exponents for those gen-
erators of α are

log |φ1(λi )|, . . . , | logφm(λi )|, i = 1, . . . ,m −1,

where φ1, . . . ,φm are different embeddings of K into R.
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In the general case one applies Corollary 1 to the restriction of the action
to the stationary subgroup Γ for each of the sets Ri . Those restrictions for
i = 1, . . . ,n are isomorphic and hence have the same entropy that is also equal to
the entropy of α(γ) for any γ ∈ Γ with respect to the non-ergodic measure µ. Let
k be the index of Γ. Since the k-th power of any element of Zm−1 lies in Γ and
every element is a power of a generator one immediately obtains a description
of exponents in the general case.

COROLLARY 2. Lyapunov exponents of any element of a maximal rank action α

have the form
| logφi (λ)|

k
, . . . ,

| logφm(λ)|
k

,

where λ is a unit in a totally real algebraic number field of degree m and k is a
positive integer that depends only on α but not on the element. Here as before
φ1, . . . ,φm are different embeddings of the field into R.

Since entropy of an action element is equal to the Mahler measure of the cor-
responding unit we can use exponential lower estimate for the Mahler measure
for totally real fields [33, 8] to obtain a lower bound on entropy.

COROLLARY 3. The entropy of any element of a weakly mixing maximal entropy
action on an m-dimensional manifold is bounded from below by cm, where c is
a universal constant.

1.2.2. Entropy and isomorphism rigidity. Eigenvalues of an integer matrix A,
when simple and real, determine its conjugacy class over R and hence over Q.
Assume that det A =±1. That in turn determines a conjugacy class of the auto-
morphism of the torus FA up to a common finite factor or finite extension. By
[17, Theorem 5.2] for a broad class of Zk , k ≥ 2, actions by automorphisms of
a torus, that includes all Cartan actions, measure theoretic isomorphism (with
respect to Lebesgue measure) implies algebraic isomorphism.

Notice that passing to a finite factor or finite extension does not change en-
tropy. Likewise the entropy for affine actions with the same linear parts are the
same. By symmetry the entropy does not change if all generators of an action
are replaced by their inverses.

Theorem 1 allows us to show that the entropy function determines a maximal
rank action action on a finite index subgroup up to a measurable isomorphism
with above mentioned trivial modifications. We call the next statement a corol-
lary, despite the length of the argument needed to deduce it from Theorem 1.
The point is that the argument is purely algebraic and deals only with linear
actions, modulo choosing appropriate finite index subgroups.

COROLLARY 4. Let α and α′ be two maximal rank actions. Assume that they are
both weakly mixing and their entropy functions coincide. Then restrictions of α
and α′ to a certain subgroup Γ⊂Zm−1 of finite index are finite factors of measur-
ably isomorphic actions, possibly with replacing all generators of one action by
their inverses.
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Proof. Let α0 and α′
0 be the algebraic models for α and α′. Weak mixing implies

that for both of them n = 1. Now take finite covers α̃0 and α̃′
0 (if necessary)

that are actions by affine transformations of Tm . Take finite index subgroups
of Zm−1 for which α̃0 and α̃′

0 act by automorphisms. Taking the intersection
of those subgroups obtain a finite index subgroup Γ1 for which both α̃0 and
α̃′

0 act by automorphisms. Those restrictions still have identical entropy func-
tions. Now there is a subgroup Γ2 of finite index such that eigenvalues for all
generators of both actions are positive. Let Γ = Γ1 ∩Γ2. Since eigenvalues are
simple they are thus determined for the Γ action by Lyapunov exponents. But
by [17, Proposition 3.8] irreducible (in particular, Cartan) actions by automor-
phisms with the same eigenvalues of their generators are algebraically conjugate
to finite factors of the same action.

Let us show that Lyapunov exponents are in turn determined by the entropy
function, possibly with replacing all generators by their inverses. To see that,
notice first that entropy function is not differentiable exactly at the union of
the kernels of the Lyapunov exponents, the Lyapunov hyperplanes. Thus it
determines every Lyapunov exponent up to a scalar multiple.

In the Cartan case for each Lyapunov exponent χ there is exactly one Weyl
chamber Cχ where this exponent is positive and all other negative. Inside this
Weyl chamber entropy is equal to χ. This Weyl chamber and its opposite −Cχ

are determined from the configuration of Lyapunov hyperplanes as the only two
whose boundaries intersect all Lyapunov hyperplanes except for kerχ. Thus for
every Lyapunov exponents χ of α there is en exponent χ′ of α′ such that is
equal to either α or −α. Let us show that for all exponents the sign is the same.
Suppose that for two exponents χ1 and χ2 of α there are exponents χ1 and −χ2

of α′. Then in the Weyl chamber Cχ1 χ2 is negative, hence in this Weyl chamber
the entropy of α′ is at least χ1 −χ2, i.e., greater than the entropy of α. Thus all
exponents of α and α′ are either equal or have opposite signs. In the latter case
we can change generators of α′ to their inverses and obtain actions with equal
exponents.

In the case of maximal rank actions that are not weakly mixing one restricts
the action to the stationary subgroup Γ for each of the sets Ri and applies Corol-
lary 4 to each of those sets. An obvious additional invariant is the index of Γ.
It can be determined, for example, from the discrete spectrum of the action.
This spectrum determines how different elements of the action interchange the
sets Ri . A conjugacy between restrictions of the action of γ to different sets Ri

can be effected by using the action of elements from corresponding cosets of Γ.
Hence Corollary 4 can be simultaneously applied to those sets.

COROLLARY 5. Let α and α′ be two maximal rank actions. Assume that they
have the same discrete spectrum and their entropy functions coincide. Then re-
strictions of α and α′ to a certain subgroup Γ ⊂ Zm−1 of finite index are finite
factors of measurably isomorphic actions, possibly with replacing all generators
of one action by their inverses.
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1.2.3. Cocycle rigidity. Proper classes of cocycles over actions that we consider
are Lyapunov Hölder and Lyapunov smooth, i.e., measurable cocycles that are
Hölder or smooth correspondingly along Lyapunov foliations almost everywhere;
see [21, Definition 8.1] for precise definition. Any such cocycle over a C∞ max-
imal rank action can be transferred to a cocycle over a finite extension of the
linear model the same way as is described in the proof of [21, Theorem 2.8].
This proof works verbatim in our case and produces cocycle rigidity.

COROLLARY 6. Any Lyapunov Hölder (corr. Lyapunov smooth) real valued cocycle
over a C r , 1+θ ≤ r ≤ ∞, maximal rank action is cohomologous to a constant
cocycle via a Lyapunov Holder (corr. Lyapunov smooth) transfer function (with
the obvious proviso that the Lyapunov regularity of the transfer function is less
that regularity of the action).

REMARK 6. Notice that in the proof of [14, Theorem 4.1] we use a special time
change for the suspension action and for this time change the expansion co-
efficient of the original suspension action in the Lyapunov direction is indeed
cohomologous to a constant. This however does not imply that expansion coef-
ficient for the original action or its suspension is cohomologous to a constant.
For example this is not the case for hyperbolic flows where W. Parry constructed
synchronization time change that inspired our construction [28].

1.3. The topology theorem. Let L denote either a torus Tm or infratorus Tm
± .

THEOREM 2. Let α be a C r , r > 1, maximal rank positive entropy action, then

(1) the sets R1, . . . ,Rn in Theorem 1 can be chosen inside open Γ-invariant
subsets O1, . . . ,On that are also interchanged by α;

(2) each map hi extends to a continuous map h̃i : Oi → L àF , where F is a
finite α0-invariant set;

(3) if L is a torus or if x ∈ L is a regular point in the infratorus then there
exists an arbitrarily small parallelepiped Px (in some linear coordinates)
containing x such that on the boundary of Px the map hi is invertible and
the inverse is a diffeomorphism on every face of Px ;

(4) if x ∈ F is a singular point in the infratorus Tm
± then there exists an arbitrar-

ily small projective parallelepiped Px (the factor of a centrally symmetric
parallelepiped in some linear coordinates by the involution t →−t ) con-
taining x such that on the boundary of Px the map hi is invertible and the
inverse is a diffeomorphism on every face of Px ;

(5) if R = L à⋃
x∈F IntPx then h̃−1

i R is homeomorphic to R via a homeo-
morphism H that coincides with hi on ∂Px .

REMARK 7. Notice that any singular point in L must be in the exceptional set
F because the topology of a small neighborhood of a singular point is different
from that of points in a manifold.

1.4. Topological corollaries. Theorem 2 allows us to make conclusions about
topology of manifolds that admit maximal rank positive entropy actions. Right
now we list only some of those properties that can be derived quickly. More
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detailed discussion of the consequences of Theorem 2 will appear in a separate
paper.

COROLLARY 7. Let M be a connected manifold of odd dimension m ≥ 3 that
admits a maximal rank positive entropy action of Zm−1. Then the following
hold.

If M is orientable, it is homeomorphic to the connected sum of the torus Tm

with another manifold.
If M is non-orientable, its orientable double cover is homeomorphic to the

connected sum of the torus Tm with another manifold.
In particular, in both cases the fundamental group π1(M) contains a subgroup

isomorphic to Zm .

Proof. Consider the orientable case first. In odd dimension the infratorus Tm
± is

not orientable and the same is true of its complement to a finite set or, equiv-
alently, of the complement to the union of finitely many small balls. Since
an open subset of an orientable manifold is orientable the open subset S =
Int h̃−1

i R ⊂ M is orientable and hence L is the torus. Now take a disc D ⊂ Tm

that contains the set F and consider closed set H−1(TmàD), where the map H is
defined in Theorem 2 (5). Its boundary is a sphere and thus M is the connected
sum of Tm and a manifold that is obtained by glueing a disc to the boundary of
M àH−1(Tm àD).

Now assume that M is non-orientable and take the orientable double cover
M̃ of M . Let I : M̃ → M̃ be the deck transformation. Consider lifts of the ele-
ments of the maximal rank action α to M̃ . Each element f has two lifts f1 and
f2 = f1I . The involution I commutes with all lifts. Either the group Γ consisting
of all lifts is abelian or its commutator is the group of two elements generated
by I .

Let us show that Γ has a finite index abelian subgroup isomorphic to Zm−1.
If Γ is already abelian then it is isomorphic to the direct product Zm−1 ×Z/2Z.
Otherwise consider generators of the action α and let f1, . . . , fm−1 be their lifts
to M̃ . The centralizer Z ( fi ) of each of those elements in Γ is either the whole of
Γ or an index two subgroup. This follows from the fact I 2 = Id and that I is in
the center of Γ since this implies that the product of any two elements not in
Z ( fi ) belongs to Z ( fi ). Thus Z =⋂m−1

i=1 Z ( fi ) is a finite index abelian subgroup
of Γ that belongs to its center. Notice that the index of Z in Γ is at most 2m−1.
Since the only finite order element of Γ is I , Z is isomorphic to Zm−1 ×Z/2Z.

Thus Zm−1 acts on M̃ by lifts of elements of α. This is obviously a maximal
rank positive entropy action so that from the argument for the orientable case
M̃ is the connected sum of torus with another manifold. Since π1(M̃) embeds
into π1(M) the former is a subgroup isomorphic to Zm .

A very similar argument allows us to partially extend Corollary 3 to actions
that are not weakly mixing.

COROLLARY 8. The entropy of any element of a maximal rank action on an m-

dimensional manifold M is bounded from below by cm2

β1(M) for orientable M and
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by cm2

β1(M)+βm−1(M) for non-orientable M, where c is a universal constant and β1 is
the first Betti number.

Proof. As before, let us consider the orientable case first. The obvious lower
estimate is the entropy for the elements of the action of Γ on each ergodic com-
ponent, divided by the number n of ergodic components that is equal to the
index of Γ. Hence this number needs to be estimated from above. Repeating
the argument about connected sums from the proof of Corollary 7 we deduce
that M is homeomorphic to the connected sum of n copies of the torus Tm and

another manifold. Hence by Mayer-Vietoris theorem β1(M) ≥ mn or n ≤ β1(M)
m .

Now Corollary 3 implies the needed estimate.
In the non-orientable case we consider the orientable double cover, lift the

action as in the proof of Corollary 7, notice that entropy does not change, and
use the estimate in the orientable case. Since the first Betti number of the
orientable double cover of the non-orientable manifold is β1(M)+βm−1(M),
the inequality follows.

REMARK 8. Notice that there is no estimate from below that depends on dimen-
sion only as in the weak mixing case. To produce examples in a fixed dimension
with an arbitrarily small entropy one modifies appropriately the suspension con-
struction over a weakly mixing action on the torus by making holes around fixed
points similarly to [18] and connecting them by cylinders, similarly to the filling
of holes descried in [20], produces examples with arbitrarily low entropy.

The even-dimensional case is more complicated. While the case L = Tm of
course works the same way, if L =Tm

± the manifold M may not be a connected
sum with the infratorus as one of the components. Since in this case the in-
fratorus is orientable the double cover trick does not work. Indeed, there are
some simply-connected manifolds (for example, some K 3 surfaces) that admit
maximal rank actions. Still some conclusions can be drawn. Here is a simple
example.

COROLLARY 9. Maximal rank positive entropy actions to not exist on any sphere.

Proof. Only the case L =Tm
± needs to be considered. In this case by Theorem 2

(4) there exists a smooth embedding of RP (m −1) to M . If M = Sm this would
imply existence of an embedding into Rm , which is impossible [9].

1.5. Structure and general remarks on the proof. We conclude the introduc-
tion with a roadmap to the proof of Theorem 1.

1. We begin with [21, Theorem 2.11] (based on the main technical Theo-
rem 4.1 from [14])1, which states that in our setting conditional measures
of the leaves on each Lyapunov foliation are absolutely continuous. This
implies that the measure µ itself is absolutely continuous, see [21, Theo-
rems 5.2 and 2.4].

1 The proof of the latter theorem is technically the most difficult part in the whole construction
and this is the basis on which everything else rests.
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2. The next step is reduction to the leading weakly mixing case which is
based on the fact that for a hyperbolic absolutely continuous measure
ergodic components have positive measure [29].

3. Furthermore, there is a unique measurable system of smooth affine pa-
rameters on the leaves of a Lyapunov foliation [21, Proposition 3.3]. In
fact, these affine parameters and conditional measures are closely related:
the affine parameter is obtained by integrating the conditional measure.
Naturally, both conditional measures and affine parameters are defined up
to a scalar multiple. Fixing a measurable normalization smooth along the
leaves of the Lyapunov foliation in question produces a cocycle; different
normalizations produce cohomologous cocycles.

4. Affine structure on the (one-dimensional) leaves of the Lyapunov folia-
tions can be uniquely extended to affine structures on leaves of unstable
foliations for any element of the action. Those structures are invariant
with respect to the whole action. Moreover, those affine structures have
additional “diagonal property:” Lyapunov foliations correspond to coordi-
nate lines. Conditional measure of those unstable foliations are equivalent
to the Lebesgue measure defined by the affine structure.2

5. Next comes one of the key new ingredients in the proof: the holonomy be-
tween stable manifolds along the unstable manifolds is an affine diagonal
map. This is proved by induction on the dimension of the stable manifold,
with the case of Lyapunov manifolds (that are stable manifolds for some
Weyl chambers in the maximal rank case) being the base of the induction.

On a typical stable manifold corresponding unstable manifolds exist at
Lebesgue almost every point. A priori, however, one can guarantee only
that on a set of positive measure those manifolds have a certain size and
change regularly. Thus even for nearby stable manifolds the unstable holo-
nomy is only defined on set of positive measure while remaining unstable
manifolds may stray away and never reach the target. We show that the ho-
lonomy is defined almost everywhere (and in fact extends to an affine map
defined everywhere. This implies in particular that all unstable manifolds
are large. The same of course applies to stable manifolds.

6. Fix a regular point x ∈ M and a Weyl chamber. Let s be the dimension of
the stable manifolds for that Weyl chamber. By the previous step, using x
as the origin for the affine structures on its stable and unstable manifolds
we can define a “development map”

hx :Rm →Rs ×Rm−s →W s(x)×W u(x) → M .

This map is absolutely continuous, maps the standard affine structure in
Rm onto the product of affine structures on W s(x) and W u(x), and more-
over maps almost every coordinate line onto a leaf of the corresponding
Lyapunov foliation. The map is however not injective and we explore this

2 All of the above naturally takes place almost everywhere. In particular, not every coordinate
line inside an unstable manifold a priori corresponds to an actual leaf of a Lyapunov foliation.
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at the next step. At this stage we show that locally the map is injective
and that locally properly normalized Lebesgue measure in Rm maps to
our α-invariant measure µ.

7. Development maps with different base points differ by an invertible affine
map of Rm with diagonal linear part. Since images of regular points un-
der the action elements are regular, our action, restricted to a set of full
measure, appears as factor of an affine action in Rm with diagonal linear
parts.

8. The next crucial step is to study the the kernel of the development map
hx , the homoclinic group Γx ⊂ Aff (Rm). It follows from the local product
structure of the Pesin set that the translation subgroup Trx is discrete.
We show that the rank of Trx is maximal, which then implies that it is a
finite index subgroup of the homoclinic group Γx . Thus Rm/Trx is a torus
and Rm/Γx is an infratorus. Maximality of the rank of α implies that the
infratorus is either a torus or Tm

± . This immediately gives the linear model
and the first two statements of Theorem 1.

9. Statement (3) follows from the smoothness of stable and unstable man-
ifolds and from smoothness and invariance of affine structures. Finally
statement (4) follows from some purely analytic results by Journé.

2. WEAK-MIXING REDUCTION

As we mentioned in Section 1.5 statement (1), measure µ is absolutely contin-
uous w.r.t Lebesgue. Let α :Zm−1 → Diff (M m) be a C 1+θ action as in Theorem 1.
Take n ∈Zm−1 such that µ is a hyperbolic measure for α(n). This means that n
does not lie on a Lyapunov hyperplane. By Pesin ergodic decomposition theo-
rem [29] there is k > 0 and a α(kn)-invariant set R1 ⊂ M of positive µ-measure
such that α(kn) �R1 is a Bernoulli automorphism; in particular, it is weakly mix-
ing. Set n1 := kn. By ergodicity of α(n1)|R1 we have that for any m ∈Zm−1 either
µ(α(m)(R1)∩R1) = 0 or α(m)(R1) = R1(mod0).

Since µ is an ergodic invariant measure for the whole action there are n2, . . . ,
nn ∈ Zm−1 such that µ(α(nl )(R1) ∩α(nk )(R1)) = 0 for k, l = 1, . . .n, k 6= l and
µ(M àα(n1)(R1)∪·· ·∪α(nn)(R1) = 0. Set Ri = α(ni )(R1). Let Γ ⊂ Zm−1 be the
finite index subgroup of m ∈Zm−1 such that α(m)(R1)=R1 (mod 0). This is the
decomposition and the finite index subgroup claimed in Theorem 1.

Thus it is enough to prove Theorem 1 for a weakly mixing action α. We will
assume that without restating it explicitly until the final step of the proof of
Theorem 1 at the end of Section 4.

LEMMA 2.1. For any hyperbolic element n ∈Zm−1,

(i) α(n) is Bernoulli and
(ii) there is a set of full measure R such that for any Weyl chamber C if x ∈ R⋃

z∈W u
C

(x)∩R
W s

C (z)

is a set of full measure.
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Proof. Let us show first that α(n) is weakly mixing (and hence Bernoulli) for any
hyperbolic element n ∈Zm−1. Using Pesin ergodic decomposition theorem we
have a k > 0 and a set R̂ ⊂ M of positive µ-measure invariant by α(kn) such
that α(kn)|R̂ is weakly mixing (and Bernoulli). This set is an ergodic component
of α(kn).

Now remember that there is an element of the action that we previously de-
noted by n1 such that α(n1) is weakly mixing. Since it commutes with α(kn), it
interchanges ergodic components of the latter map. If there is more than one
ergodic component for α(kn), α(n1) has a non-constant eigenfunction. Thus
weak mixing of α(n1) implies that µ(M à R̂) = 0 and k = 1, so that α(n) is weakly
mixing and hence Bernoulli. This proves (i).

Let now C be a Weyl chamber and let n ∈C . Observe that if P is a Pesin set
for a hyperbolic measure then for every point x ∈ P there is an open neighbor-
hood Px of a fixed size (a Pesin box) such that for every y ∈ P ∩Px the local
stable manifold of x intersects the local unstable manifold of y transversally
(at a single point). Since α(n) is hyperbolic and weak mixing, by the previ-
ous observation, for a.e. x, y there is a non-negative integer k ≥ 0 such that
W u

C
(α(kn)(y)) intersects transversally W s

C
(x). To see that, take k > 0 such that

α(kn)(y) ∈ P ∩Px . Now let k(x, y) be the minimum of such integers k. It is clear
that k(α(n)(x),α(n)(y)) = k(x, y) for µ×µ-a.e. (x, y) and by the remark about
Pesin boxes k(x, y) = 0 on a set of positive µ×µ measure. Now, since α(n) is
weakly mixing, α(n)×α(n) is ergodic and hence k(x, y) = 0 a.e. This statement
is equivalent to statement (ii) of the lemma.

3. AFFINE STRUCTURES AND HOLONOMIES

3.1. Affine structures.

3.1.1. Affine structures for Lyapunov foliations. Let χ be a Lyapunov exponent
of α and W = W χ be the corresponding Lyapunov foliation defined µ almost
everywhere. Recall that for a maximal rank action all Lyapunov exponents are
simple and hence leaves of all Lyapunov foliations are one-dimensional.

There is a unique α-invariant family of smooth affine parameters defined
on almost every leaf of W . Those affine structures change continuously within
any Pesin set, see [14, Proposition 7.2], and hence they can be defined not only
almost everywhere (at “typical” leaves with respect to recurrence or ergodic
behavior of α) but at other specific important places such as leaves passing
through periodic points that belong in a Pesin set. Those affine parameters are
obtained by integrating telescoping products, see the proof of [13, Lemma 3.2].
But at the same time affine parameters define conditional measures of µ with
respect to W .

By [21, Proposition 4.2] those affine structures are invariant with respect to
the holonomy along leaves of the stable foliation of any generic singular element
α(t), t ∈Rk, for which χ(t) = 0.
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3.1.2. Affine structures for stable foliations. We will now construct the affine
structures along stable manifolds of any Weyl chamber C and prove their coher-
ence. Originally such a structure is anchored at a base point and the structure
constructed with another regular point at the stable foliation as the base point
may a priori be different. Coherence means that all those structures coincide so
that the structure is really associated with a stable manifold and is independent
of the choice of the based point.

Since Lyapunov hyperplanes are in general position any combination of signs
of Lyapunov exponents, except for all positive or all negative, is possible for
elements of the action α, and hence there are no resonances. In particular for
every Lyapunov exponent χ there is a Weyl chamber Cχ such that inside Cχ,
χ is the only positive Lyapunov exponent. Hence the stable manifolds W s

Cχ
(x)

have codimension one. For any Weyl chamber C the manifolds W s
C

(x) are the
intersections of W s

Cχ
(x) over those χ that are negative in C . In particular, leaves

of any Lyapunov foliation are intersections of m − 1 codimension one stable
manifolds.

Moreover, we can take elements of the action such that ratios of negative
Lyapunov exponents are arbitrarily close to one.

Let C be a Weyl chamber and s = s(C ) be the dimension of W s
C

. Given s ≥ 1,
let Ds be the group of invertible diagonal matrices on Rs and let Emb1+ε (Rs , M)
be the space of C 1+ε embeddings of Rs into M with the topology of C 1+ε conver-
gence on compact subsets, observe that in this way Emb1+ε (Rs , M) is a Polish
space. Existence and coherence of affine structures has been known for a while.
Both Proposition 3.1 and Proposition 3.2 are contained in [20, Proposition 2.7]
that in turn refers to [12, Section 6.2]. These sources together provide what
amounts to a sketch of a proof. These statements form a particular case of the
more general theory of non-stationary normal forms and invariant geometric
structures. We choose to formulate existence and coherence of affine structure
in our case that is simpler than the general non-resonance case.

PROPOSITION 3.1. Let α be a C 1+θ, 0 < θ < 1 (respectively C k , k ≥ 2 integer) ac-
tion as in Theorem 1. Then there is a set of full measure R ⊂ M and a measurable
map HC : R → Emb1+θ (Rs , M) (respectively HC : R → Embk (Rs , M)) such that
denoting HC (x) = Hx ,

(1) Hx :Rs →W s
C

(x), i.e., Hx (Rs) =W s
C

(x);
(2) Hx (0) = x;
(3) D0Hx : Rs → E s

C
(x) sends the standard basis into the frame of invariant

spaces Eχi where E s
C

(x) = Eχ1 ⊕·· ·⊕Eχs for some ordering of the Lyapunov
exponents;

(4) there is a cocycle of diagonal maps of Rs , A : Zm−1 × R → Ds such that
Hα(n)(x) ◦ A(n, x) =α(n)◦Hx for every n ∈Zm−1 and x ∈ R.

Such a family is unique modulo composition with a diagonal map D : R → Ds ,
i.e., if Ĥ is another affine structure then for a.e. x, H−1

x ◦ Ĥx ∈Ds .
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Proof of Proposition 3.1. The existence and uniqueness follows from Theorem 4
and its Addendum 1 in the Appendix once we find an element of the action
with the right Lyapunov exponents. Let us find an element n ∈ C such that
(1+θ)χ+(n) <χ−(n) where for n ∈C , χ−(n) = minχχ(n), χ+(n) = maxχ(n)<0χ(n).
By the general position condition on Lyapunov exponents, we can define an
invertible linear map L : Rm−1 → E0 where E0 = {(x1, . . . , xm) ∈ Rm :

∑
i xi = 0} so

that χi (n) = L(n)i . Hence L(C ) corresponds to a choice of +′s and −′s. Without
loss of generality we can assume that L(C ) corresponds to x1, . . . , xs < 0 and
xs+1, . . . , xm > 0. Hence, it is enough to find (x1, . . . , xm) such that

(?)

∑
i xi = 0,

x1, . . . , xs < 0,
xs+1, . . . , xm > 0,
(1+θ)xi < x j for i , j ≤ s.

Take x1 = x2 = ·· · = xs < 0 and xs+1 = xs+1 = ·· · = xm > 0 and such that
sx1 + (m − s)xm = 0. This clearly works but may fail to correspond to L(n) for
some n ∈Zm−1. To solve this problem observe that L(Qm−1) is dense in E0 and
hence we can pick n ∈Zm−1 and q ∈N such that L( n

q ) satisfies condition (?). By
homogeneity of condition (?) we get that L(n) also satisfies condition (?) and
we are done.

Now we prove coherence of the affine structures from Proposition 3.1 along
stable manifolds.

PROPOSITION 3.2. There is a set of full measure R ⊂ M such that if x, y ∈ R and
y ∈W s

C
(x) then H−1

y ◦Hx is an affine map with diagonal linear part.

Proof. Take some n in the Weyl chamber C such that W s
C

(x) is the stable man-
ifold for α(n). Let us number the Lyapunov exponents so that χ1(n) < 0,. . . ,
χs(n) < 0 for n ∈ C . Take L a Luzin set of continuity for z → Hz of µ-measure
close to 1. Then there is a set of full measure Rn ⊂ M such that whenever
x, y ∈ Rn then there are iterates li → +∞ such that α(li n)(x),α(li n)(y) ∈ L for
every i . Such a sequence of iterates can be found using Birkhoff ergodic theo-
rem as long as L has µ-measure larger that 1/2. The set of full measure R we
claim in the proposition is the intersection of Rn’s for finitely many choices of
n ∈C according to some pinching of the Lyapunov spectrum to be determined
later.

Take x, y ∈ Rn with y ∈W s
C

(x). Denote A(l )(x) = A(l n, x) and similarly with y .
We have

H−1
α(l n)(y) ◦Hα(l n)(x) = A(l )(y)H−1

y ◦Hx ◦ (A(l )(x))−1.

By continuity on Luzin sets and convergence d(α(li n)(x),α(li n)(y)) → 0 that
follows from the fact that y ∈W s

C
(x) we obtain

lim
li→+∞

‖H−1
α(li n)(y) ◦Hα(li n)(x) − id‖C 1(B(1)) = 0,(3.1)

where ‖ ·‖C 1(B(1)) stands for the sup C 1 norm on the unit ball.
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Let A(l )(x) =: diag(λ(l )
k (x)). Then

lim
l→±∞

|λ(l )
k (x)|1/l = lim

l→±∞
|λ(l )

k (y)|1/l = exp(χk (n)) =:λk < 1.

Set P = H−1
y ◦Hx . Then it follows from (3.1) that

lim
li→+∞

‖A(li )(y)P ◦ (A(li )(x))−1 − id‖C 1(B(1)) = 0.(3.2)

Let P = (P1, . . . ,Ps), take Pk and let us show that for j 6= k the partial derivative
∂ j Pk vanishes. We have for any given l and j 6= k,

∂ j

(
A(l )(y)P ◦ (A(l )(x))−1 − id

)
k
=
λ(l )

k (y)

λ(l )
j (x)

(∂ j Pk )◦ (A(l )(x))−1.

Applying (3.2) and that
⋃

li
A(li )(x)(B(1)) = Rs , we see that if λk /λi > 1 then

∂ j Pk ≡ 0 on Rs . Hence if we take nk, j ∈ C such that χk (nk, j ) > χi (nk, j ), we
get that ∂ j Pk ≡ 0 on Rs for j 6= k. Existence of such an element nk, j ∈C follows
from the maximal rank condition that implies that all Lyapunov exponents are
in general position.

So, we have that Pk (v) = Pk (vk ) only depends on the k-th variable. Denote
with P ′

k the derivative of Pk . Then again using formula (3.2) and arguing as
before we get that for any R > 0,

lim
li→+∞

sup
t∈B(R)

∣∣∣∣∣λ
(li )
k (y)

λ
(li )
k (x)

P ′
k (t )−1

∣∣∣∣∣= 0.

In particular this implies that

λ
(li )
k (y)

λ
(li )
k (x)

→ 1/P ′
k (t )

for any t ∈R. This gives the claim since the left hand side does not depend on t
and then P ′

k is constant and hence Pk is affine.

The following lemma uses uniqueness of affine structures and absolute con-
tinuity of the invariant measure.

LEMMA 3.3. (i) Given any two Weyl chambers C1 and C2 such that the invariant
foliations W s

C1
⊂ W s

C2
, affine structures on the leaves of W s

C1
are restrictions of

affine structures on W s
C2

.
(ii) If E s

C
= E s

C1
⊕·· ·⊕E s

Cl
we have that affine structures on W s

C
is a product (direct

sum) of affine structures on W s
Ci

, i = 1, . . . , l .

Proof. The main point in the lemma is to prove that for a typical x, W s
C1

(x) is
a coordinate plane in the affine structure of W s

C2
(x). Once we settle this the

lemma follows from uniqueness of affine structures.
For a.e. point x we may assume that (Lebesgue) almost every point y in

W s
C2

(x) is a regular point; moreover, we may assume also that for Lebesgue a.e.
point y ∈W s

C2
(x), (Lebesgue) a.e. point z ∈W s

C1
(y) is a regular point. This follows
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from absolute continuity of invariant foliations and the fact that conditional
measures are equivalent to Lebesgue.

Let us denote with Hz :Rs →W s
C2

(z) the affine structures on W s
C2

(z) =W s
C2

(x)
based at z.

Let x be a point as in the previous paragraph and y a regular point in W s
C2

(x).
By Proposition 3.1(3) we have that there is a coordinate plane V such that
D0Hx (V ) = TxW s

C1
(x)

Let us consider the manifold W = H−1
x (W s

C1
(y)) ⊂Rs and let us show that this

manifold is a plane parallel to V . Let us assume that (Lebesgue) a.e. z ∈W s
C1

(y)
is regular point. We shall show that for Lebesgue a.e. point a ∈W , TaW =V . By
Proposition 3.1(3) D0Hz (V ) = TzW

s
C1

(z), and since W s
C1

(z) =W s
C1

(y) we get that

TzW
s

C1
(y) = D0Hz (V ).

On the other hand, by Proposition 3.2 H−1
x ◦Hz is an affine map with diagonal

linear part, and hence the derivative at 0 of H−1
x ◦ Hz is diagonal. So if a ∈ W

and Hx (a) = z is a regular point then

TaW = Ta H−1
x (W s

C1
(y)) = Dz H−1

x (TzW
s

C1
(y)) = Dz H−1

x (D0Hz (V ))

= D0(H−1
x ◦Hz )(V ).

Since D0(H−1
x ◦Hz ) is diagonal and V is a coordinate plane we get that

D0(H−1
x ◦Hz )(V ) =V

and hence TaW = V for Lebesgue a.e. a ∈ W . Since W is a C 1 manifolds then
we have that TaW =V for every a ∈W and hence W is a plane parallel to V as
wanted.

REMARK 9. Since not every point on a leaf of W s
C

is regular not all coordinate
lines correspond to actual leaves of Lyapunov foliations. But for a typical leaf
this is true for almost every coordinate line. On the other hand, in the setting
of Lemma 3.3, if W s

C1
⊂ W s

C2
, then W s

C1
uniquely extends to a smooth foliation,

indeed an affine foliation in the affine coordinates of W s
C2

(x)

COROLLARY 3.4. Let C1 and C2 be two Weyl chambers and let C3 be the Weyl
chamber such that E s

C1
∩E s

C2
= E s

C3
. Then there is a set of full measure R ⊂ M

such that if x, y, z ∈ R with z ∈W s
C1

(x)∩W s
C2

(y) then W s
C3

(z) ⊂W s
C1

(x)∩W s
C2

(y) is
a linear subspace in the affine structures along W s

C1
(x) and W s

C2
(y) tangent to the

space corresponding to E s
C3

.

3.2. Uniformity of the holonomies. Now we will show that holonomy maps
along unstable manifolds between two stable manifolds are almost everywhere
defined w.r.t. Lebesgue measure on stable manifolds and are affine with respect
to the affine structures defined in the previous section. The following proposi-
tion is a central ingredient in our construction of the global arithmetic structure
on a set of full measure. Unlike the results of the previous section than can be
extended to a general non-resonance case, its assertion depends on the maxi-
mal rank or a similar assumption.
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PROPOSITION 3.5. Let C be a Weyl chamber. There is a set of full measure R :=
RC ⊂ M such that if x, y ∈ R and y ∈W u

C
(x) then the holonomy along unstables

Holu,C
x,y : W s

C
(x) →W s

C
(y) is defined for Lebesgue a.e. z ∈W s

C
(x) and is affine, i.e.,

there is a diagonal linear map B preserving the frame such that for a.e. z ∈W s
C

(x),

there is a point Holu,C
x,y (z) ∈W u

C
(z)∩W s

C
(y) and moreover

Holu,C
x,y ◦HC

x = HC
y ◦B.

Lebesgue a.e.

Proof. The idea of the proof is that by Lemma 3.3 is that a holonomy is globally
defined and affine if it takes place inside a single unstable manifold of a regular
point. We will use induction on dimension s(C ) of the stable manifold W s

C
.

Let as assume first that W s
C

is 1-dimensional. Let C1 and C2 be Weyl cham-
bers such that E u

C1
⊕E u

C2
= E u

C
. By Lemma 3.3 W u

C1
and W u

C2
are a pair of trans-

verse linear sub-foliaitons of W u
C

. Hence there is a set of full measure R0 such if
x ∈ R0 and y ∈ R0 then there are regular points a,b ∈W u

C
(x) such that a ∈W u

C1
(x),

b ∈W u
C1

(y) and a ∈W u
C2

(b). We have that

Holu,C
x,y (z) = Holu,C

b,y ◦Holu,C
a,b ◦Holu,C

x,a (z),

see Figure 1. Since E s
C
⊕E u

C1
= E u

C3
for some Weyl chamber C3 and E s

C
⊕E u

C2
=

E u
C4

for some Weyl chamber C4 we have by Lemma 3.3 that W u
C

and W s
C1

are

transverse linear subfoliations of W u
C3

(x) and hence Holu,C
x,a : W s

C
(x) → W s

C
(a) is

affine holonomy inside W u
C3

(x) which is everywhere defined. Similar argument

applies to Holu,C
b,y and Holu,C

a,b . Thus we proved the statement for the case when

W s
C

is 1-dimensional.
Now let the dimension of W s

C
, be s(C ), and assume by induction that we

have proven the proposition for any Weyl chamber C ′ with s(C ′) < s(C ). There
are Weyl chambers C1 and C2 such that E u

C
= E u

C1
∩E u

C2
and E s

C
= E s

C1
⊕E s

C2
.

Obviously dimensions s(Ci ), i = 1,2 of W s
Ci

are strictly smaller than s(C ).
By the induction hypothesis, we have that for a.e. points x and y ∈W u

C
(x) ⊂

W u
C1

(x), Holu,C1
x,y : W s

C1
(x) →W s

C1
(y) is everywhere defined and is affine.

Taking typical points x, y , we have that Lebesgue a.e. point a ∈ W s
C1

(x) is

regular, and Holu,C1
x,y (a) ∈ W u

C1
(a)∩W s

C1
(y) is also regular, see Figure 2. More-

over, Holu,C1
x,y (a) = Holu,C

x,y (a). Indeed, E u
C
⊕E s

C1
= E u

C3
for some Weyl chamber C3

which gives by Lemma 3.3 that W u
C

and W s
C1

are a pair of transverse affine foli-

ations in W u
C3

(x) =W u
C3

(y) and hence Holu,C1
x,y (a) = Holu,C

x,y (a) ∈W u
C

(a)∩W s
C1

(y) ⊂
W u

C1
(a)∩W s

C1
(y), see Figure 2.

Now, for Lebesgue a.e. z ∈ W s
C

(x), W s
C2

(z)∩W s
C1

(x) intersects in a point a ∈
W s

C1
(x) in the conditions of the previous paragraph. Hence Holu,C

x,y (a) is well
defined and again by induction we have that

Holu,C2

a,Holu,C
x,y (a)

: W s
C2

(a) →W s
C1

(Holu,C
x,y (a))
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C
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FIGURE 1. Proposition 3.5.i

which gives by Lemma 3.3 that W u
C

and W s
C1

are a pair of transverse affine folia-

tions in W u
C3

(x) =W u
C3

(y) and hence Hol u,C1
x,y (a) = Hol u,C

x,y (a) ∈W u
C

(a)∩W s
C1

(y) ⊂
W u
C1

(a)∩W s
C1

(y), see Figure 2.
Now, for Lebesgue a.e. z ∈ W s

C
(x), W s

C2
(z)∩W s

C1
(x) intersects in a point a ∈

W s
C1

(x) in the conditions of the previous paragraph. Hence Hol u,C
x,y (a) is well

defined and again by induction we have that

Hol u,C2

a,Hol u,C
x,y (a)

: W s
C2

(a)→W s
C1

(Hol u,C
x,y (a))

is Lebesgue a.e. defined and is affine and

Hol u,C2

a,Hol u,C
x,y (a)

(z) ∈W u
C2

(z)∩W s
C2

(Hol u,C
x,y (a)).

Moreover, since E u
C

and E s
C2

are jointly integrable, arguing as before, we have
that

Hol u,C2

a,Hol u,C
x,y (a)

(z) = Hol u,C
x,y (z).

Thus the holonomy Hol u,C
x,y is Lebesgue a.e. defined and the Proposition fol-

lows.
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is Lebesgue a.e. defined and is affine and

Holu,C2

a,Holu,C
x,y (a)

(z) ∈W u
C2

(z)∩W s
C2

(Holu,C
x,y (a)).

Moreover, since E u
C

and E s
C2

are jointly integrable, arguing as before, we have
that

Holu,C2

a,Holu,C
x,y (a)

(z) = Holu,C
x,y (z).

Therefore the holonomy Holu,C
x,y is Lebesgue a.e. defined and the proposition

follows.

If a Weyl chamber C is fixed we simplify notations and write Holu
x,y for Holu,C

x,y .

PROPOSITION 3.6. For x, a,b ∈ RC , a ∈W u
C

(x) and b ∈W s
C

(x) we have that

Hols
x,b(a) = Holu

x,a(b).

Proof. The proof of this proposition is very similar to that of the previous one.
Assume without loss of generality that dimension of W s

C
is larger than 1 (oth-

erwise consider W u
C

instead). Even though we will use several different Weyl
chambers in the proof of the proposition, all holonomies here will be w.r.t. in-
variant manifolds of the Weyl chamber C .

Let C1 and C2 be Weyl chambers such that E s
C1

⊕E s
C2

= E s
C

. Then there are
regular points z1, z2 ∈W s

C
(x) such that z̄1 := Holu

x,a(z1), z̄2 := Holu
x,a(z2) are well
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If a Weyl chamber C is fixed we simplify notations and write Hol u
x,y for

Hol u,C
x,y .

PROPOSITION 3.6. For x, a,b ∈ RC , a ∈W u
C

(x) and b ∈W s
C

(x) we have that

Hol s
x,b(a)= Hol u

x,a(b).

Proof. The proof of this Proposition is very similar to that of the previous one.
Assume without loss of generality that dimension of W s

C
is larger than 1 (oth-

erwise consider W u
C

instead). Even though we will use several different Weyl
chambers in the proof of the Proposition, all holonomies here will be w.r.t. in-
variant manifolds of the Weyl chamber C .

Let C1 and C2 be Weyl chambers such that E s
C1

⊕E s
C2

= E s
C

. Then there are
regular points z1, z2 ∈W s

C
(x) such that z̄1 := Hol u

x,a(z1) and z̄2 := Hol u
x,a(z2) are

well defined and regular points and z1 ∈ W s
C1

(x), z2 ∈ W s
C2

(z1) and b ∈ W s
C1

(z2),
see Figure 3. We know on one hand that Hol s

x,b = Hol s
z2,b ◦Hol s

z1,z2
◦Hol s

x,z1
. We

have also that Hol u
x,a = Hol u

z1,z̄1
= Hol u

z2,z̄2
.

Let C3 and C4 be Weyl chambers such that E u
C
⊕E s

C1
= E u

C3
and E u

C
⊕E s

C2
=

E u
C4

. Then we have, using that x, a, z1, z̄1 ∈W u
C3

(x) that

z̄1 = Hol u
x,a(z1) = Hol s

x,z1
(a)
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defined and regular points, z1 ∈ W s
C1

(x), z2 ∈ W s
C2

(z1), and b ∈ W s
C1

(z2), see Fig-
ure 3. We know on the one hand that Hols

x,b = Hols
z2,b ◦Hols

z1,z2
◦Hols

x,z1
. We

have also that Holu
x,a = Holu

z1,z̄1
= Holu

z2,z̄2
.

Let C3 and C4 be Weyl chambers such that E u
C
⊕E s

C1
= E u

C3
and E u

C
⊕E s

C2
= E u

C4
.

Then we have, using that x, a, z1, z̄1 ∈W u
C3

(x) that

z̄1 = Holu
x,a(z1) = Hols

x,z1
(a)

since all these holonomies take place inside W u
C3

(x). Following this argument
we get also that z1, z2, z̄1, z̄2 ∈W u

C4
(z1) and hence

z̄2 = Holu
x,a(z2) = Holu

z1,z̄1
(z2) = Hols

z1,z2
(z̄1).

Finally, since z2, z̄2,b,Holu
z2,z̄2

(b) ∈W u
C3

(z2), we have

Holu
x,a(b) = Holu

z2,z̄2
(b) = Hols

z2,b(z̄2).

Putting all this together we get the proposition.

4. THE ARITHMETIC STRUCTURE

4.1. The development map. Let us fix a Weyl chamber C . Similarly we have
affine parameters along the unstable foliation for points in R−C , where −C is
the opposite Weyl chamber. Let R = RC ∩R−C , be the set of regular point for
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(x)
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(x)
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z̄1
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b

x
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both Weyl chambers. Notice that R intersected with a.e. Lyapunov manifold
has full Lebesgue measure. Also, we may need to reduce R several times to
sets still of full measure satisfying some additional properties. We omit any
reference to C in our notations and denote by H s

x the affine parameters along
stable manifolds W s and by H u

x the affine parameters along unstable manifolds
W u .

Observe that in the affine coordinates the conditional measure is standard
Haar measure with some normalization.

We shall define a kind of covering or development map for M , defined almost
everywhere. Roughly, the idea is as follows: for a given x we define ĥx : W s(x)×
W u(x) → M , ĥx (a,b) = Holu

x,b(a) = Hols
x,a(b) which is a point in W u(a)∩W s(b).

Then we use affine parameters on W s(x) and W u(x) to define hx :Rs ×Ru → M .
Since holonomies are only defined a.e. we need to take certain care, and that is
what we do in the following paragraphs.

Let us fix x ∈ R and assume that W s(x)∩R and W u(x)∩R have full Lebesgue
measure. Let

R s = (H s
x )−1(W s(x)∩R) ⊂Rs

and

Ru = (H u
x )−1(W u(x)∩R) ⊂Ru .
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Given zu ∈ Ru , using Proposition 3.5 we can take Dx
zu ∈Ds such that

Holu
x,H u

x (zu ) ◦H s
x = H s

H u
x (zu ) ◦Dx

zu

(recall that Holu
x,H u

x (zu ) : W s(x) →W s(H u
x (zu))).

Let us define hu
x :Rs ×Ru → M by

hu
x (zs , zu) = H s

H u
x (zu )(Dx

zu (zs)).

Observe that by Proposition 3.5 for a.e. (zs , zu),

hu
x (zs , zu) = Holu

x,H u
x (zu )

(
H s

x (zs)
)

.(4.1)

Similarly, given zs ∈ R s , using Proposition 3.5 we can take Dx
z s ∈Du such that

Hols
x,H s

x (z s ) ◦H u
x = H u

H s
x (z s ) ◦Dx

z s .(4.2)

Let us define hs
x : R s ×Ru → M by

hs
x (zs , zu) = H u

H s
x (z s )(Dx

z s (zu)).

We also have here that for a.e. (zs , zu),

hs
x (zs , zu) = Hols

x,H s
x (z s )

(
H u

x (zu)
)

.(4.3)

LEMMA 4.1. For Lebesgue a.e. (zs , zu), hs
x (zs , zu) = hu

x (zs , zu).

Proof. This is an immediate consequence of Proposition 3.6 and formulas (4.1)
and (4.3).

Let us denote hx = hs
x = hu

x .
Given l ≥ 1, let Dl be the group of invertible diagonal matrices on Rl and let

Al be the group of affine maps on Rl whose linear parts are in Dl . In the sequel,
when we say almost everywhere (a.e.) we mean w.r.t. Lebesgue measure unless
another measure is clearly specified.

LEMMA 4.2. For µ a.e. x and for a.e. (w s , wu) ∈ R s ×Ru there is L ∈Am such that
if we set y = hx (w s , wu) then

(1) L(0,0) = (w s , wu) and
(2) hx ◦L = hy a.e.

Proof. Let a = hx (w s ,0). Let us prove first the proposition for x and a. By Propo-
sition 3.2 there is B ∈ As such that H s

a = H s
x ◦B , B(0) = w s . Hence from the

definition of hs we get that

hs
a(zs , zu) = H u

H s
a (z s )(Da

z s (zu)) = H u
H s

x (B z s )(Da
z s (zu))

= H u
H s

x (B z s )(Dx
B z s (Dzu)) = hs

x (B zs ,Dzu),

where D = (Dx
B z s )−1Da

z s . We need to see that the map D does not depend on zs .
From the definition of Dx

B z s , Proposition 3.5 and formula (4.2) we know that

Hols
x,H s

x (B z s ) ◦H u
x = H u

H s
x (B z s ) ◦Dx

B z s .

Hence
(Dx

B z s )−1 = (H u
x )−1 ◦ (Hols

x,H s
x (B z s ))

−1 ◦H u
H s

x (B z s )
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and similarly
Da

z s = (H u
H s

a (z s ))
−1 ◦Hols

a,H s
a (z s ) ◦H u

a .

Since H s
a(zs) = H s

x (B zs) and for any b, Hols
b,x ◦Hols

a,b = Hols
a,x we get that

D = (Dx
B z s )−1Da

z s = (H u
x )−1 ◦ (Hols

x,H s
x (B z s ))

−1 ◦Hols
a,H s

a (z s ) ◦H u
a

= (H u
x )−1 ◦Hols

H s
a (z s ),x ◦Hols

a,H s
a (z s ) ◦H u

a

= (H u
x )−1 ◦Hols

a,x ◦H u
a = Da,x .

So, take L = (B ,D) ∈Am in this case.
Now the lemma follows from the observation y = hx (w s , wu) = ha(0,D−1wu)

and the previous argument with u and s interchanged.

We have an immediate corollary of the previous lemma:

COROLLARY 4.3. There is a set of full measure R ⊂ Rm such that if (zs , zu) and
(w s , wu) are in R and hx (zs , zu) = hx (w s , wu) then there is L ∈ Am such that
hx ◦L = hx a.e.

4.2. The quotient.

DEFINITION 1. Let Γx be the group of L ∈Am such that

hx (L(zs , zu)) = hx (zs , zu)

for Lebesgue a.e. (zs , zu) ∈ Rs ×Ru = Rm . Γx should be thought as the group
of deck transformations of the “covering” hx . We call Γx the homoclinic group
since there is a correspondence between the points in W u(x)∩W s(x) and Γx .3

We consider Rm with its natural additive group structure and let λ be Haar
(equal to Lebesgue) measure on Rs ×Ru =Rm . It is the product of Haar measure
on Rs and Haar on Ru .

LEMMA 4.4. For Lebesgue a.e. z̄ = (zs , zu) there is cx (z̄) > 0 and for any ε> 0 there
is δ> 0 and a set Kε(z̄) ⊂ Bδ(z̄), such that

(1)
λ(Kε(z̄)∩Bδ(z̄))

λ(Bδ(z̄))
≥ 1−ε;

(2) hx �Kε(z̄) is one-to-one;
(3) µ(hx (A)) = cx (z̄)λ(A) for any measurable set A ⊂ Kε(z̄).

Proof. By Lemma 4.2 and Corollary 4.3, it is enough to prove the lemma when
z̄ = (0,0). Given ε> 0, since x is a regular point it belongs to some Pesin set, and
we may assume it is a density point of a Pesin set. Hence we can take δ small
so that for Kε = h−1

x (P ∪Bδ(0,0)) we have (1) and (2).
To prove (3) notice that the conditional measure of µ along stables and un-

stables is Haar measure (with some normalization). Hence, by holonomy in-
variance of the conditional measures, we have that, locally on Pesin sets, the
measure µ is the product of Haar on stable and Haar on unstable which gives
Haar in affine coordinates hx .

3 It is a nice exercise for the reader to carry out this construction explicitly in the case of a
hyperbolic automorphism of T2

±.
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The next lemma is a direct corollary of Proposition 3.1(4) for both for s and
u, the definition of hx , Oseledets Multiplicative Ergodic Theorem, the definition
of Γx and Corollary 4.3.

LEMMA 4.5. For µ-a..e. point x the following holds:

(1) There is a cocycle α̂x :Zm−1×R →Dm such that hα(n)(x) ◦ α̂x (n) =α(n)◦hx ,
where R ⊂Rm is a set of full Lebesgue measure.

(2) |α̂x (kn)|1/k → D(n) = diag(expχ1(n), . . . ,expχm(n)), as k →±∞.4

(3) For any n ∈Zm−1, α̂x (n)Γx = Γα(n)(x)α̂x (n).

PROPOSITION 4.6. For µ-a.e. point x ∈ M, Γx contains a normal subgroup of
finite index isomorphic to Zm acting by translations on Rm .

Proof. Given x let Trx ⊂ Γx be the normal subgroup of translations in Γx . We
always regard Rm with the standard inner product. Let E(x) ⊂ Rm be the vec-
tor space generated by the translations in Trx . Lemma 4.4 implies that Trx is
discrete and hence the quotient E(x)/Trx is a torus. For, if Trx contains a suffi-
ciently short vector γ this would imply by the statement (1) of the lemma that
the sets Kε and Kε+γ overlap contradicting the statement (2).

Let v(x) be the volume of E(x)/Trx . Notice that y → v(y) is a measurable
map. Indeed, by Lemma 4.2 for a.e. y there is an Lx,y such that hx ◦Lx,y = hy ,
and by the construction one can choose Lx,y in such a way that x → Lx,y is
measurable. Let Dx,y be the linear part of Lx,y . A direct calculation shows that
Dx,y Try = Trx which gives the measurability of y → v(y).

On the other hand, by Lemma 4.5 we have for any n ∈Zm−1 and a.e. x ∈ M ,

α̂x (n)Trx = Trα(n)(x).(4.4)

Let D(n) = diag(expχ1(n), . . . ,expχm(n)).
Let y be a typical point. Let d = dimE(y). It follows from the (4.4) and er-

godicity of α that d does not depend on y . Let us assume by contradiction
that 0 < d < m then, since the Lyapunov exponents of α are in general position
we can chose an element n ∈ Zm−1 such that for l → +∞ the action of the it-
erates D(l n) in the dth exterior product Λd (Rm) expands the volume element
of E(y) exponentially. Since the cocycle α̂y (l n) is asymptotically D(l n) we have
that α̂(l n)y also expands the volume element of E(y) exponentially. Hence for
l →+∞, v(α(l n)(y)) →∞, a contradiction since by recurrence α(l n)(y) has to
return to a region where v(y) is finite.

Hence either d = 0 or d = m.
If d = 0 then Γx has no translation part and by considering the homomor-

phism D0 : Γx →Dm , where D0L is the derivative of L at 0, we deduce that Γx is
abelian. So, Γx is conjugate by a translation to the action of a diagonal subgroup
on Rm .

Let F (x) = Fix(Γx ) be the set of points fixed by all the elements in Γx . Observe
that F (x) is an affine subspace parallel to some coordinate plane. We shall

4 For a diagonal matrix D , |D| is the matrix with entries its absolute values and |D|1/k is its
real positive k-th root.
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show that 0 ∈ F (x) for µ-a.e. x (i.e., F (x) is a linear subspace) and then reach a
contradiction.

From Lemma 4.5 we get that F (α(n)(x)) = α̂x (n)F (x). By ergodicity of α(n) we
get that there is a coordinate plane F , independent of x and a unique vector p(x)
perpendicular to F such that F (x) = p(x)+F for µ-a.e. x. Moreover p(x) is mea-
surable, α̂x (n)F = F and α̂x (n)p(x) = p(α(n)(x)) for every n ∈Zm−1. By Lemma
4.5 the cocycle α̂x (n) is diagonal and D(n) = diag(expχ1(n), . . . ,expχm(n)) asymp-
totically, so we deduce, considering each coordinate of p(x) at a time, that
p(x) = 0.

Thus F (x) = F is a linear subspace independent of x and 0 ∈ F = F (x). In
particular Γx ⊂ Dm . Since hx �Rs×{0} coincides with the affine parameter along
the stable manifold of x and hx is injective on a local stable manifold of x we
deduce that Rs × {0} ⊂ F . Similarly we get that {0}×Ru ⊂ F and hence F = Rm ,
i.e., Γx = {id } is trivial.

In particular, by Corollary 4.3 we get that hx :Rm → M is one-to-one Lebesgue
a.e. Let ν = (hx )∗µ. By Lemma 4.4, ν is a a probability measure equivalent to
Lebesgue measure and invariant by the action α0(n) := h−1

x ◦α(n)◦hx . By Lem-
mas 4.2 and 4.5 we have that α0(n) is affine for every n. But this is a contradic-
tion since affine maps on Rm do not admit positive entropy invariant probability
measures but (α0(νn),ν) is measurably isomorphic through hx to (α(n),µ).

So d = m and hence E(x) = Rm . Recall that from Lemma 4.4 we know that
Trx is discrete. Let us take a linear map and conjugate Trx to Zm and Γx to
Γ. Since Trx is normal in Γx then we have that Zm is normal in Γ. Hence we
have that Γ̂ = Γ/Zm is identified with a subgroup of affine maps on the torus
Tm = Rm/Zm , and Rm/Γx ∼ Rm/Γ = Tm/Γ̂. Again, using Lemma 4.4 we have
that Γ̂ cannot have any recurrence and hence it has to be finite, finishing the
proof.

Thus Rm/Γx is a well defined orbifold. Since Γx acts by volume preserving
transformations hx :Rm/Γx → M is an isomorphism of measure spaces.

Let α0 :Zm−1 → Aff (Rm/Γx ) be the abelian action defined by conjugating α(n)
with hx .

hx ◦α0(n) =α(n)◦hx(4.5)

for any n ∈Zm−1. Let ν= (hx )∗µ be the pullback measure.

COROLLARY 4.7. Γx is isomorphic either to Zm or to Zm n {±id }, ν = λ is Haar
measure (or projected Haar measure) on L :=Rm/Γx and h := hx is a measurable
conjugacy between (α0,λ) and (α,µ).

Proof. The only thing that needs a proof in this corollary is the property on the
group and on ν. We know already that Zm is a finite index normal subgroup of
Γx . Let α̃0 be the lifting of the action α0 to the finite covering Tm and let us lift
also the measure ν to Tm . By the generic position of the Lyapunov exponents for
α we deduce that α̃0 is a restriction of a maximal Cartan action to a finite index
subgroup and hence we get that the lifted measure is absolutely continuous w.r.t.
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Lebesgue and invariant and hence is Haar measure. Hence we get the claim on
the measure. Again using that α̃0 is a maximal Cartan action on Tm we get that
the only possibility for Γx /Zm is to be {±id } and we get the corollary.

4.3. Conclusion of proof of Theorem 1. By the weak-mixing reduction from
Section 2 we obtain a set R1 with µ(R1) > 0 and a finite index subgroup stabiliz-
ing R1. By restricting the action to this finite index subgroup and normalizing
the measure we may assume that the measure is weak-mixing and hence by
Lemma 2.1 we get that there is a set of full measure R2 such that for any x ∈ R2,

R3 :=
⋃

z∈W u
C

(x)∩R
W s

C (z)

is a set of full measure.
As a consequence of the construction of hx we see that the image of hx con-

tains R3 and hence has full measure, and hence hx : (Rm/Γx ,ν) → (M ,µ) is an
isomorphism conjugating α with α0. Corollary 4.7 implies that Rm/Γx is either
a torus or the infratorus Tm

± .
Take some x and define h = h−1

x . This gives the first part and items (1) and
(2) of Theorem 1. Item (3) follows from construction, i.e., h−1 restricted to the
affine spaces parallel to the axes is affine parameters of corresponding stable
manifold.

Finally item (4) is a consequence the Journé Theorem, see [5, Theorem 5.7
and Proposition 5.13] and item (3). More precisely, consider a Pesin set Λ of
large measure and take the set W u

l oc (Λ)∪W s
loc (Λ), where W u

loc (Λ) =⋃
y∈ΛW u

l oc (y).
Restrict h to Σ. Since affine structures and holonomies vary continuously on
Λ we have that h is continuous on Σ. Moreover, since stable foliations are
Hölder continuous along W s(Λ) we have that derivatives of h along the stable
direction are Hölder. Similarly for W u(Λ) and along the unstable foliation. Fi-
nally we get by Journé’s Theorem that h is smooth in the Whitney sense on
W s(Λ)∩W u(Λ) ⊃Λ.

Observe that we can use hx and its restriction to planes parallel to the axes as
new affine parameters. These are still smooth parameters, and with these new
affine parameters holonomies are isometries.

For future use, let us summarize some properties of the measurable conju-
gacy.

LEMMA 4.8. There is an α0-invariant set of full Lebesgue measure R ⊂Rm/Γx in
the infratorus such that for every v ∈ R the measurable conjugacy hx restricted
to any invariant linear subspace v +E ⊂ Rm/Γx through v coincides with the
affine structure on WE (hx (v)) ⊂ M, where WE (y) ⊂ M is the invariant manifold
associated to E through y. In particular, for a.e. y and every Weyl chamber C ,
h−1

x �W u
C

(y) is a diffeomorphism onto h−1
x (y)+E u

C
(the corresponding unstable

plane) and holonomies are isometries in these affine parameters.
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5. ANOSOV ACTIONS

An action α : Zk → Diff (M) is an Anosov action if there is n0 ∈ Zk such that
α(n0) is an Anosov diffeomorphisms.

THEOREM 3. Let (α,µ) be an action as in Theorem 1, i.e., a maximal rank ac-
tion, and assume furthermore that α is an Anosov action. Then α is smoothly
conjugate to α0 and hence M is indeed diffeomorphic to a (standard) torus.

We shall prove that the measurable conjugacy in Theorem 1 is indeed a ho-
meomorphism.

Proof. Let x ∈ M be a regular point and consider hx : Rs ×Ru → M which is
defined almost everywhere with respect to Lebesgue measure on Rs ×Ru . We
consider here the Anosov element and take the Weyl chamber containing this
Anosov element for the definition of hx . First of all observe that by definition
we get that there are ε> 0 and δ> 0 small such that if (zs , zu) is δ close to (0,0)
then

hx (zs , zu) =W s
ε (hx (zs ,0))∩W u

ε (hx (0, zu)).

This implies that hx �Bδ(0,0) is continuous. Now, using Proposition 4.2 we get
that for Lebesgue a.e. (w s , wu) there is an isometry L such that if y = hx (w s , wu)
then L(0,0) = (w s , wu) and hx ◦L = hy a.e. In particular hx restricted to the δ
neighborhood of (w s , wu), Bδ(w s , wu), is also continuous since hy is continu-
ous when restricted to the δ neighborhood Bδ(0,0) of (0,0) and hx = hy ◦L−1

and L is an isometry. Since δ is fixed we get that the union of the δ balls around
Lebesgue a.e. point is Rs ×Ru and hence hx is continuous everywhere.

Following the same reasoning as in the proof of Theorem 1 we get that hx

is indeed a covering map, and taking the quotient by the group of deck trans-
formations we get that hx is a homeomorphisms and a conjugacy between the
affine action α0 on an infratorus and the action α.

Observe that here the infratorus is a manifold. Hence, applying the results in
[31] or [32] on global rigidity of maximal Anosov rank actions, we obtain smooth
conjugacy.

6. PROOF OF THEOREM 2

6.1. Boxes and their iterates. From Theorem 1 we have a decomposition into
weak mixing components, a corresponding finite index subgroup of Zm−1 and
a measurable conjugacy h : (M ,ν) → (L,λ) between α and an affine action α0

when restricted to this finite index subgroup. Here we shall show how h coin-
cides with a continuous onto map from an α-invariant open set O and LàF for
some finite α0-invariant set F satisfying the conclusion of Theorem 2.

The first step is to identify the open set O and the finite set F . Given a Weyl
chamber C and a regular point x we denote by W σ

C
(x), σ= s or u, the global sta-

ble and unstable manifolds through x corresponding to this Weyl chamber. If a
regular Pesin set is fixed we will denote the local invariant manifold by W σ

C ,loc (x).
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Let C1, . . . ,Cm denote the Weyl chambers with only one positive exponent and
hence stable mnanifolds have codimension one.

DEFINITION 2. We say that a closed set B ⊂ M is a box or a cube if it is homeo-
morphic to the unit cube in Rm and its boundary ∂B is in the union of stable
and unstable manifolds for different Weyl chambers, i.e., there are regular points
xi ,±, i = 1, . . . ,m, such that

∂B ⊂
m⋃

i=1

(
W s

Ci
(xi ,−)∪W s

Ci
(xi ,+)

)
.

We shall call each piece

∂±Ci
Bl := ∂Bl ∩W s

Ci
(xi ,±)

a face of the cube B (or of its boundary ∂B). We assume that x+
i and x−

i do not
belong to the same stable manifold; if not, take connected components.

DEFINITION 3. Given a Pesin set P , if we can take xi ,±
l ∈ P close enough to each

other so that

∂B ⊂
m⋃

i=1

(
W s

Ci ,loc (xi ,−)∪W s
Ci ,loc (xi ,+)

)
,

then we say that B is a good box and we get as a consequence that

∂±Ci
B = ∂B ∩W s

Ci ,loc (xi ,±).

LEMMA 6.1. For any given Pesin set P and for ν a.e. point x ∈ P there is a se-
quence of good boxes Bl , l ≥ 1, such that:

(1) x ∈ Bl ⊂ int Bl−1 and
⋂

l≥1 Bl = {x},
(2) Bl is diffeomorphic to the closed unit cube,
(3) Each connected component of W u

Ci ,loc (x)à {x} intersects a corresponding

face of ∂±
Ci

Bl 6= ;,
(4) h is defined a.e. w.r.t. Lebesgue measure on ∂Bl and coincides with a dif-

feomorphism with C r norm bounded by a constant depending only on P
and h(∂Bl ) is the boundary of a linear cube B̂l ,

(5) For i = 1, . . .m, W s
Ci ,loc (x) disconnects Bl into two connected components

named B±
i ,l which are also boxes and h(∂B±

i ,l ) is the boundary of a corre-

sponding linear cube B̂±
i ,l .

Moreover, the points xi ,±
l ∈ P can be further required to belong to a given full

measure set (e.g., has a dense orbit in the support of ν).

Proof. Let x be a density point on the Pesin set P intersected with the set of full
measure in Lemma 4.8. Since W s

Ci ,loc (x) locally separates a neighborhood of x

into two connected components, we can take the points xi ,±
l from the same set

as x and from both sides of W s
Ci ,loc (x), approaching x.

Parts (1), (2) and (3) follow from uniformity of foliations on Pesin sets. Parts
(4) and (5) are a consequence Lemma 4.8 and uniformity on Pesin sets (Luzin
set).
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Given a good box B , for σ= s or u, let

W σ
Ci ,B (x) = B ∩W σ

Ci ,l oc (x).

Let W (u,±)
Ci

(x) be the connected component of W u
Ci

(x)à {x} that intersects ∂±
Ci

B

and for a regular point y ∈ W s
Ci

(x) we define W u,±
Ci

(y) accordingly. Finally, for

r > 0 let W u,±
Ci ,r (y) be the segment inside W u,±

Ci
(y) of length r with respect to the

affine parameters given by h (see Lemma 4.8) with one endpoint y .
Let us fix a point x as in Lemma 6.1, and l ≥ 1. We shall omit the subscript l

in Bl in the sequel. Define

O =
⋃

n∈Γ
α(n)(int B).

The corresponding set
Ô =

⋃
n∈Γ

α0(n)(int B̂),

where the linear cube B̂ is defined in Lemma 6.1(4), is an open nonempty α0-
invariant set. By Berend’s Theorem [2] we get that the set Ô is the complement
to a finite α0-invariant set F . Observe that singular points of the infratorus are
contained in F since points in L àF have a cube neighborhood. We may also
assume that

O =
⋃

n∈Γ
α(n)(B) and Ô = LàF =

⋃
n∈Γ

α0(n)(B̂)

because the faces of the boundary of B (respectively of B̂) are formed by stable
manifolds of different elements of the action passing trough points which can
be taken to have dense orbit on the support of the measure and hence each
face of the boundary is mapped eventually completely inside int B (respectively
int B̂).

For a point x as in Lemma 6.1, let r i ,± be the length of the connected compo-
nent of W u

Ci ,B (x)∩B± =W u
Ci ,B (x)∩W (u,±)

Ci
(x) measured with respect to the affine

parameter in W u
Ci

(x) (i.e., W u
Ci ,B (x)∩B± =W u,±

Ci ,r i ,±(x)).

The following lemma is crucial since it does not use uniformity on Pesin sets
and hence allows us to go from a property valid on a positive measure set to
one valid almost everywhere.

LEMMA 6.2. For 1 ≤ i ≤ m and for ν a.e. x and for any full Lebesgue measure
subset R ⊂W s

Ci ,B (x), ⋃
z∈R

W u,±
Ci ,r i ,±(z) = B± (mod 0)

w.r.t. measure µ. In particular, for µ a.e. point in y ∈ B,

W u
Ci ,B (y)tW s

Ci ,B (x) 6= ;.

Proof. The assertion on the transverse intersection is an immediate consequence
of the first assertion. The first assertion is an immediate consequence of Lemma
4.8, that h is a measurable conjugacy between ν and λ, and that the same asser-
tion for the linear case is trivial.
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Let Eσ
C j

, σ = s or u, j = 1, . . . ,m, be the corresponding stable and unstable

invariant spaces for the linear action. Let us use the same notation for their
projection on the infratorus L. Observe that as long as z +Eσ

C j
⊂ Rm does not

contain a point corresponding to a singular point of the infratorus, the natural
projection p from z+Eσ

C j
into L is one-to-one and onto the corresponding affine

space Eσ
C j

(p(z)).

Given a box B̂ as in Lemma 6.1 and ŷ ∈ B̂ , let Eσ
C j ,B̂

(ŷ) be the connected

component of Eσ
C j

(ŷ)∩ B̂ containing ŷ . Given a regular point y ∈ B recall that

W σ
C i ,B

(y) is the connected component of B ∩W σ
Ci

(y) containing y .

LEMMA 6.3. For µ a.e. point y ∈ B, W s
Ci ,B (y) is a k-dimensional box and

h(W s
Ci ,B (y)) = E s

Ci ,B̂
(h(y)).

Moreover, for ν a.e. y, z ∈ B with z ∈ W u
Ci ,B (y), Hols

y,z : W s
Ci

(y) → W s
Ci

(z) is such
that

Hols
y,z (W s

Ci ,B (y)) =W s
Ci ,B (z).

Finally, W s
Ci ,B (y) separates B in two connected components, homeomorphic to

boxes.

Proof. The first assertion follows from Lemma 4.8 and the constructions of the
boxes in Lemma 6.2. The second is a direct consequence of the first and the
same property for the linear case.

Finally, let us prove the third assertion. From Lemma 6.1 and the first part
we get that h(∂Bl ∪W s

Ci ,B (y)) = ∂B̂ ∪E s
Ci ,B̂

(h(y)) and on this domain h is a diff-

eomorphism by Lemma 4.8.
Taking B small enough so that it is in a neighborhood chart and using Schön-

flies Theorem [1, 4, 26, 27] we deduce that the pair (B ,W s
Ci ,B (y)) is homeomor-

phic to the pair (I m , I m−1 × {1/2}).5

LEMMA 6.4. Given a set R of full measure, for every y ∈ B there is a sequence of
boxes y ∈ Bn+1(y) ⊂ int Bn(y), n = 1,2, . . . , such that

(1) ∂Bn(y) is contained in the union of stable manifolds for different Weyl
chambers through points from R;

(2) for each n ≥ 1, h(∂Bn(y)) is the boundary of a parallelepiped; moreover,
diam(h(∂Bn(y))) → 0 as n →∞.

Proof. This is an immediate consequence of Lemma 6.3 Since we can use stan-
dard binary subdivision of boxes.

5 In our earlier paper [20] we constructed similar boxes in the case of actions on the torus.
Those boxes are also homeomorphic but may be not diffeomorphic to the cube.

JOURNAL OF MODERN DYNAMICS VOLUME 10, 2016, 135–172



164 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

6.2. Conclusion of proof of Theorem 2. From Lemma 6.4 it follows that h ex-
tends uniquely to a continuous map from B onto B̂ . Indeed for y ∈ B take
the nested sequence from Lemma 6.4 and define h(y) to be the limit point
of h(∂Bn(y)). Continuity follows since the preimage of the box bounded by
h(∂Bn(y)) is a neighborhood of y for every n ≥ 0.

From the definition of O and L àF we get that h extends uniquely to a con-
tinuous surjective map h : O → L àF such that α0 ◦h = h ◦α. Moreover, from
Lemma 6.4 it also follows that for any z ∈ LàF , h−1(z) is the nested intersection
of boxes and for λ a.e. z ∈ L this nested intersection is a point by Lemma 6.1.

To complete the the proof of Theorem 2 we shall show that the restriction of
h to a suitable (m −1)-dimensional skeleton is a diffeomorphism and that this
restriction extends to a homeomorphism of O onto LàF .

We have the following topological lemma for the infratorus.

LEMMA 6.5. Given ε> 0 and a box B̂ ⊂ LàF as in Lemma 6.1 there is a bounded
subset K ⊂Zm−1, R > 0 and a partition by rectangles Ci , i = 1, . . . ,r , of the com-
plement of some neighborhood of the singularities Lε :=⋃

1≤i≤r Ci , such that

(1) diam Ci < ε,
(2) Ci ∩C j ⊂ ∂Ci ∩∂C j for i 6= j ,
(3) Ci ⊂α0(n)(B̂) for some n ∈ K ,
(4) ∂Ci ⊂

⋃
n∈K ,a∈±,1≤ j≤m

α0(n)((E s
C j ,R +∂a

C j
(B̂))),

(5) LàLε ⊂
⋃
z∈F

Bε(z),

(6) int Lε is homeomorphic to LàF .

Proof. Consider L à⋃
z∈F Bε(z) and the covering of this compact set by the it-

erates of B̂ , α0(n)(B̂), n ∈ Zm−1. Take a finite subcover, i.e., a finite subset
K ⊂Zm−1 so that α0(n)(B̂), n ∈ K also covers. Now, Lε =

⋃
n∈K α0(n)(B̂) admits a

partition by rectangles Ri as desired.

Let Ŝk =⋃
i ∂Ci be the (m −1)-dimensional skeleton defined by the partition

from Lemma 6.5.

LEMMA 6.6. h−1 restricted to Ŝk is a diffeomorphism onto a (m−1)-dimensional
skeleton Sk. Moreover the diffeomorphism h−1 : Sk → Ŝk extends to a homeo-
morphism gε : Lε→Uε from Lε onto an open subset Uε ⊂O, that is a diffeomor-
phism if m −1 = 2,4,5,11,60, i.e., m = 3,5,6,12,61, see [25].

Observe that for other dimensions m −1 the possible existence of exotic sph-
eres and hence of nonstandard smooth embeddings of Sm−1 into Rm [24, 23]
may preclude the possibility of extending h−1 diffeomorphically to some cell of
the partition.

Proof. It is a consequence of Lemma 4.8 that h−1 restricted to Ŝk is a diffeomor-
phism. Hence we have a well defined skeleton

Sk = h−1(Ŝk) =
⋃

i
h−1(∂Ci ).
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Since Ci ⊂ α0(n)(B̂) for some n ∈ K we have that h−1(∂Ci ) ⊂ α(n)(B) for some
n ∈ K . Hence h−1 : ∂Ci →α(n)(B) is an embedding of the (m −1)-dimensional
sphere into the an m-dimensional cube α(n)(B). Now, Schönflies Theorem and
Alexander trick gives that h−1 extends to a homeomorphism. The differentiabil-
ity part follows from the smooth Schönflies Theorem, valid for m −1 6= 3, plus
the nonexistence of exotic embeddings for the given dimensions.

Lemma 6.6 and the fact that int Lε is diffeomorphic to L àF completes the
proof of Theorem 2.

APPENDIX A. NORMAL FORMS

THEOREM 4. Let f : M → M be a C k diffeomorphism k ≥ 2 preserving a measure
µ. Assume that the negative Lyapunov exponents are between logσµ < logλµ < 0
and that λ2

µ < σµ. Let s be the dimension of the stable space. Then there is a

measurable family of C k embeddings Hx :Rs → M such that for µ a.e. x

(1) Hx (Rs) =W s(x),
(2) Hx (0) = x,
(3) H f (x) ◦Lx = f ◦Hx where Lx = (D0H f (x))

−1 ◦Dx f ◦D0Hx .

Moreover, such a measurable family is essentially unique in the sense that if
Ĥx :Rs → M is another family of embeddings with properties (1), (2) and (3) then
(Hx )−1 ◦ Ĥx ∈GL(s,R).

ADDENDUM 1. In the case k = 1+α with 0 < α < 1, Theorem 4 holds with the
family of embeddings Hx : Rs → M being C 1+α if we assume instead of λ2

µ < σµ

that λ1+α
µ <σµ.

Theorem 4 follows from Theorem 5 and Proposition A.2 in Section A.1 and
Theorem 6 in Section A.2. For the proof of the Addendum 1 one uses Adden-
dum 2 instead of Theorem 6.

A.1. Reduction. In this section we introduce some general facts from Pesin the-
ory that can be found in [3]. Let f : M → M be a C k diffeomorphism with an
ergodic invariant measure µ. Assume that the negative exponents of f w.r.t. µ
are between logσµ < logλµ < 0. Let B s

r (0) be the ball centered at 0 of radius r in
E s(x).

THEOREM 5 (Stable manifold theorem). For k > 1, k ∈ R, given ε > 0 such that
λµe20ε < 1, there are measurable maps rε : M → (0,∞), Dε : M → (0,∞) and a
measurable family of C k maps γx : B s

r (x)(0) → (E s(x))⊥ such that

(1) rε( f ±1(x)) ≥ e−εrε(x) and Dε( f ±1(x)) ≤ eεDε(x),
(2) exp(t +γx (t )) ∈W s(x) for t ∈ B s

r (x)(0),
(3) γx (0) = 0,
(4) ‖γx‖C k (B s

r (x)(x)) ≤ Dε(x).

Moreover, if we define W s
r (x) = {exp(t +γx (t )) : t ∈ B s

r (x)} then

(5) f (W s
r (x)) ⊂W s

rλµe ε( f (x)) ⊂W s
r ( f (x))( f (x)) for 0 < r < r (x).
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Given a linear map A between normed vector spaces we define

m(A) = min
‖v‖=1

‖Av‖.

The existence of Lyapunov adapted norms gives the following lemma. Here
we also denote by B s

r (0) ⊂ Rs the ball centered at 0 of radius r and by s the
dimension of the stable space for f .

LEMMA A.1. There is a measurable family of linear maps Ax : Rs → E s(x) such
that if we define Lx = A−1

f (x) ◦Dx f ◦ Ax then

(1) σµe−ε ≤ m(Lx ) ≤ ‖Lx‖ ≤λµe ε,
(2) Ax (B s

2(0)) = B s
r (x)(0),

(3) 1
Dε(x) ≤ m(Ax ) ≤ ‖Ax‖ ≤ Dε(x).

Let us define the measurable family of embeddings Ĥx : B s
2(0) →W s(x) ⊂ M

by
Ĥx (t ) = exp

(
Ax (t )+γx (Ax (t ))

)
and define F̂x : B s

2(0) → B s
2(0) by F̂x = Ĥ−1

f (x) ◦ f ◦ Ĥx . Observe that Lx = D0F̂x

and let us extend F̂x to a diffeomorphism Fx : Rs → Rs in such a way that
Fx �B1(0)= F̂x and Fx �(B2(0))c= Lx . It is not hard to see that one can do it in a
measurable way and without distorting too much the C k norm of F̂x . Moreover,
after conjugating with an appropriate family of homotheties measurable on x
we can deduce the following:

PROPOSITION A.2. There is a measurable map Cε : M → (0,∞) such that for a.e. x

(1) Cε( f ±1(x)) ≤ e10εCε(x),
(2) Fx (0) = 0,
(3) Fx (t ) = Lx +Rx where Rx :Rs →Rs has Rx (0) = D0Rx = 0,
(4) σµe−ε ≤ m(Lx ) ≤ ‖Lx‖ ≤ ‖Fx‖1 ≤λµe ε,
(5) ‖Rx‖k ≤Cε(x) for a.e. x.

It is to obtain the last inequality in item (4) that we use the homotheties.

A.2. Main technical result on normal forms. Let f :Ω→Ω preserve a measure
µ and let F :Ω→ Diff k (Rs ,0) be a measurable map. Let us denote Fx = F (x) and
assume that Fx (t ) = Lx (t )+Rx (t ), where Rx (0) = D0Rx = 0 and Lx ∈GL(d ,R).

THEOREM 6 (Normal form). Let f and F be as in the previous paragraph. Assume
k ≥ 2 and ε > 0 is small enough. Assume that there is a measurable function
Cε :Ω→ (0,∞) such that Cε( f ±1(x)) ≤ e εCε(x) for µ-a.e. x and that for µ-a.e. x,

(1) 0 <σ≤ m(Lx ) ≤ ‖Lx‖ ≤ ‖Fx‖1 ≤λ< 1,
(2) ‖Rx‖k ≤Cε(x),
(3) supp(Rx ) ⊂ B1(0),
(4) λ2 <σ.

Then there is a measurable family Hx :Rs →Rs of C k diffeomorphisms such that

(i) Hx (0) = 0 and D Hx (0) = id for a.e. x,
(ii) H f (x) ◦Fx = Lx ◦Hx .
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Moreover, Hx is unique with properties (i) and (ii).

ADDENDUM 2. In case k = 1+α, 0 <α< 1 in Theorem 6 then the result still holds
with Hx ∈C 1+α, if we assume instead of (4) that λ1+α <σ.

Proof of Theorem 6. Let F (n)
x = F f n−1(x) ◦ · · · ◦Fx ,

F (n)
x (t ) = L(n)

x (t )+R(n)
x (t ).

Then L(n)
x = L f n−1(x) ◦ · · · ◦Lx and

R(n+1)
x =

n∑
k=0

L(n−k)
f k+1(x)

◦R f k (x) ◦F (k)
x .

We shall prove that for a.e. x the sequence (L(n)
x )−1 ◦F (n)

x is a Cauchy sequence
in C k -topology. Note that

(L(n)
x )−1 ◦F (n)

x − (L(n+1)
x )−1 ◦F (n+1)

x = (L(n+1)
x )−1 ◦ [R(n+1)

x −L f n (x) ◦R(n)
x ]

= (L(n+1)
x )−1 ◦R f n (x) ◦F (n)

x

= (L(n)
x )−1 ◦ (

(L f n (x))
−1R f n (x)

)◦F (n)
x .

Hence, applying Proposition A.3 below with r = 2, Ln = L f n (x),En = R f n (x) and
Sn = L−1

n En we obtain, since ‖Sn‖k ≤λCε(x)eεn , that

‖(L(n)
x )−1 ◦F (n)

x − (L(n+1)
x )−1 ◦F (n+1)

x ‖k = ‖(L(n)
x )−1 ◦Sn ◦F (n)

x ‖k

≤ Kd ,r,k B rQ
ε nrQ

(
(λeQε)2

σ

)n

‖Sn‖k

≤ Kx

(
(λe(Q+2)ε)2

σ

)n

.

Taking ε small enough we get that (λe(Q+2)ε)2

σ < 1 and hence the sequence is
Cauchy.

Since the space of C k functions is complete, we obtain that the sequence is
convergent. Measurability survives pointwise convergence hence

Hx = lim
n→+∞(L(n)

x )−1 ◦F (n)
x

is a measurable family of C k maps. That it satisfies properties (i) and (ii) is
straightforward, and uniqueness is routine.

Proof of Addendum 2. Instead of using Proposition A.3 in the previous proof,
we use Addendum 3 and we get this case as well.

A.3. Proposition A.3. Given a sequence of diffeomorphisms φn , n ≥ 0, we de-
note by φ(n) their composition

φ(n) =φn−1 ◦ · · · ◦φ0.

We use the notation m(L) = ‖L−1‖−1 for a linear operator.
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PROPOSITION A.3. Let 1 ≤ r ≤ k, k ≥ 2 and let Ln ∈GL(d ,R), En :Rd →Rd be C k ,
φn :Rd →Rd given by φn = Ln +En be diffeomorphisms and Sn :Rd →Rd , C k be
such that

1. 0 <σ≤ m(Ln) ≤ ‖Ln‖ ≤ ‖φn‖1 ≤λ< 1,
2. Sn(0) = D0Sn = D i

0Sn = 0 for every 0 ≤ i ≤ r −1,
3. ‖En‖k ≤ Bεeεn where Bε ≥ 1 and λeQε < 1, Q from Lemma A.4.

Then there is a constant Kd ,r,k depending on d, r , and k such that

‖(L(n))−1 ◦Sn ◦φ(n)‖C k ≤ Kd ,r,k B rQ
ε nrQ

(
(λeQε)r

σ

)n

‖Sn‖k .

ADDENDUM 3. If in Proposition A.3 we assume k = 1+α, 0 < α < 1 and r = 2,
then we get that there are constant Q > 0 and Kd ,k > 0 such that

‖(L(n))−1 ◦Sn ◦φ(n)‖C k ≤ Kd ,k B (1+α)Q
ε nrQ

(
(λeQε)1+α

σ

)n

‖Sn‖k .

We will use the following Lemma 6.4 from [7]. Given a sequence of C k diffeo-
morphisms of Rd , φi , 0 ≤ i ≤ n −1, let Nl = max0≤i≤n−1 ‖φi‖l , l = 1,k.

The way the lemma is stated in [7] is not accurate, so we are rewriting it
with the appropriate correction. The issue is that what appears in [7] is as if
N1 ≥ 1 (in which case their statement is perfectly correct), but in case N1 < 1
then one needs to change the N k

1 by a max{N1, N k
1 }. We are also majorizing

their polynomial by their highest order term times a large constant.

LEMMA A.4 (Lemma 6.4 in [7]). Given k ≥ 1 and d ≥ 1 there are constants C > 0
and Q ≥ 0 such that if φ0, . . .φn−1 are in C k (Rd ) then

‖φ(n)‖k = ‖φn−1 ◦ · · · ◦φ0‖C k ≤C (max{N1, N k
1 })n(nNk )Q .

For k = 1, Q = 0.

ADDENDUM 4. If in Lemma A.4 we assume k = 1+α, 0 < α < 1 then there is a
constant C > 0 such that for n large enough,

‖φ(n)‖k = ‖φn−1 ◦ · · · ◦φ0‖C k ≤C (max{N1, N k
1 })nnNk .

Proof of Addendum 4. We will estimate by using induction on n

‖φ(n)‖k = max{‖φ(n)‖1, [Dφ(n)]α},

where [u]α = maxx 6=y
|u(x)−u(y)|

|x−y |α . The ‖φ(n)‖1 term is trivial from chain rule. For
the other term, assume by induction that we can control it for n −1 and let us
see it for n.
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We shall use that [u ·v]α ≤ Ĉ ([u]α‖v‖0+[v]α‖u‖0) for any α-Hölder functions
u and v and that [u ◦ v]α ≤ [u]α‖Dv‖α0 .

[Dφ(n)]α = [(Dφn−1)◦φ(n−1)Dφ(n−1)]α

≤ Ĉ ([(Dφn−1)◦φ(n−1)]α‖Dφ(n−1)‖0+[Dφ(n−1)]α‖(Dφn−1)◦φ(n−1)‖0)

≤ Ĉ (Nk‖φ(n−1)‖α1 ‖φ(n−1)‖1)+ [Dφ(n−1)]αN1

≤ Ĉ (Nk N (1+α)(n−1)
1 )+ [Dφ(n−1)]αN1

= Ĉ (Nk N k(n−1)
1 )+ [Dφ(n−1)]αN1.

Considering the sequence Bn = [Dφ(n)]α
N kn

1
we get that

Bn ≤ 1

N k−1
1

Bn−1 + Ĉ
Nk

N k
1

,

where we can assume that B0 = 0. If N1 ≤ 1, then we have that

Bn ≤C
Nk

N k
1

n

N (k−1)n
1

and hence if n is large enough,

[Dφ(n)]α ≤C nNk N n
1 .

If N1 ≥ 1, then

Bn ≤C
Nk

N k
1

n

and hence if n is large enough

[Dφ(n)]α ≤C nNk N kn
1 . �

LEMMA A.5. Given k ≥ 1 let u :Rd →Rd be a C k function and let φ :Rd →Rd be a
C k diffeomorphism with φ(B1) ⊂ B1. Then there is a constant Cd ,k ≥ 1, depending
only on d and k such that

‖u ◦φ‖k ≤Cd ,k‖u‖k (max{1,‖φ‖k
k }).

ADDENDUM 5. Lemma A.5 still holds in case k = 1+α, 0 <α< 1.

Proof of Lemma A.5. We argue by induction on k. For k = 1, just use the chain
rule. Let us assume it is known for k −1 and let us prove it for k.

‖u ◦φ‖k = max{‖u ◦φ‖0,‖((Du)◦φ)Dφ‖k−1}

so we need to estimate both terms,

‖u ◦φ‖0 ≤ ‖u‖0 ≤ ‖u‖k
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and

‖((Du)◦φ)Dφ‖k−1 ≤ Ld ,k−1‖(Du)◦φ‖k−1‖Dφ‖k−1

≤ Ld ,k−1Cd ,k−1‖Du‖k−1(max{1,‖φ‖k−1
k−1})‖Dφ‖k−1

≤ Ld ,k−1Cd ,k−1‖u‖k (max{1,‖φ‖k−1
k })‖φ‖k

≤ Ld ,k−1Cd ,k−1‖u‖k (max{1,‖φ‖k
k })

where the Ld ,k−1 ≥ 1 in the first inequality follows from Leibniz rule. In the
second inequality we applied induction and in the last inequality we observe
that max{1, xk−1}x ≤ max{1, xk }. Take Cd ,k = Ld ,k−1Cd ,k−1.

The same proof works for Addendum 5. Here is an improvement on the
previous lemma.

LEMMA A.6. Given 1 ≤ r ≤ k, let u : Rd → Rd be a C k function with all deriva-
tives of order less that or equal to r −1 vanishing at 0. Let φ : Rd → Rd be a C k

diffeomorphism with φ(B1) ⊂ B1, φ(0) = 0. Then there is a constant Cd ,r,k ≥ 1,
depending only on d, r and k such that

‖u ◦φ‖k ≤Cd ,r,k (max{1,‖φ‖k
k })‖φ‖r

k‖u‖k .

ADDENDUM 6. Lemma A.6 still holds in case k = 1+α, 0 <α< 1, r = 2, with the
outcome that there is a constant Cd ,α > 0 such that

‖u ◦φ‖k ≤Cd ,α(max{1,‖φ‖k
k })‖φ‖1+α

k ‖u‖k .

Proof of Lemma A.6. We argue as before and by induction on k. For k = 1 it
follows by chain rule. Assume it holds for k −1 and every 1 ≤ r ≤ k −1 and let us
prove it for k and any 1 ≤ r ≤ k.

‖u ◦φ‖k = max{‖u ◦φ‖0,‖((Du)◦φ)Dφ‖k−1}

so we need to estimate both terms.

‖u ◦φ‖0 ≤ ‖u‖r ‖φ‖r
0 ≤ ‖u‖k‖φ‖r

k ≤ (max{1,‖φ‖k
k })‖φ‖r

k‖u‖k

since all derivatives of u up to order r −1 vanishes at 0.
In case r ≥ 2,

‖((Du)◦φ)Dφ‖k−1 ≤ Ld ,k−1‖(Du)◦φ‖k−1‖Dφ‖k−1

≤ Ld ,k−1Cd ,r−1,k−1‖Du‖k−1(max{1,‖φ‖k−1
k−1})‖φ‖r−1

k−1‖Dφ‖k−1

≤ Ld ,k−1Cd ,r−1,k−1(max{1,‖φ‖k−1
k })‖φ‖r

k‖u‖k

≤ Ld ,k−1Cd ,r−1,k−1(max{1,‖φ‖k
k })‖φ‖r

k‖u‖k .

In the second inequality we applied induction and the fact that Du has all
derivatives vanishing up to order r − 2. In the last inequality we used that
max{1, xk−1} ≤ max{1, xk } for every x.
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When r = 1,

‖((Du)◦φ)Dφ‖k−1 ≤ Ld ,k−1‖(Du)◦φ‖k−1‖Dφ‖k−1

≤ Ld ,k−1Cd ,k−1‖Du‖k−1(max{1,‖φ‖k−1
k−1})‖Dφ‖k−1

≤ Ld ,k−1Cd ,k−1(max{1,‖φ‖k−1
k })‖φ‖k‖u‖k

≤ Ld ,k−1Cd ,k−1(max{1,‖φ‖k
k })‖φ‖k‖u‖k .

We use Lemma A.5 in the second inequality and we use max{1, xk−1} ≤ max{1, xk }
for every x again in the last one.

Taking Cd ,r,k = max{1,Ld ,k−1Cd ,r−1,k−1} for 2 ≤ r ≤ k and then taking Cd ,1,k =
max{1,Ld ,k−1Cd ,k−1} we obtain the lemma.

The same proof works for Addendum 6.

Proof of Proposition A.3. Observe that item (3) of Proposition A.3 implies that
‖φi‖k ≤ Bεeεi for every i . By Lemma A.4,

‖φ(n)‖k ≤Cλn(nBεe
εn)Q =C BQ

ε nQ (λeQε)n < 1

for n large enough.
By Lemma A.6, if n is large enough so that ‖φ(n)‖k < 1, then

‖Sn ◦φ(n)‖k ≤Cd ,r,k‖Sn‖k (max{1,‖φ(n)‖k
k })‖φ(n)‖r

k

=Cd ,r,k‖φ(n)‖r
k‖Sn‖k ≤Cd ,r,k (C BQ

ε nQ (λeQε)n)r ‖Sn‖k

= (Cd ,r,kC r )B rQ
ε nrQ ((λeQε)r )n‖Sn‖k . �

Proof of Addendum 3. The same proof as for Proposition A.3 works, using Ad-
denda 4 and 6 instead of Lemmas A.4 and A.6.
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