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Non-uniform measure rigidity for Zk actions
of symplectic type

Anatole Katok and Federico Rodriguez Hertz

Abstract. We make a modest progress in the nonuniform measure rigidity
program started in 2007 and its applications to the Zimmer program. The
principal innovation is in establishing rigidity of large measures for actions of
Zk, k ≥ 2 with pairs of negatively proportional Lyapunov exponents which
translates to applicability of our results to actions of lattices in higher rank
semisimple Lie groups other than SL(n,R), namely, Sp(2n,Z) and SO(n, n;Z).

1. Introduction

This paper is a part of the non-uniform measure rigidity program that started
in [6] and continued in [8,10,11]. While we refer the reader to those papers for the
motivation and the general outline of the program, several comments are in order.

In the present paper, for the fist time in the non-uniform setting, we are able to
deal with the situation where negatively proportional Lyapunov exponents appear.
Presence of those exponents constitutes a fundamental difficulty in carrying out
the central recurrence argument. In the previous work on the algebraic actions
this was handled either by the methods that essentially rely on non-commutativity
of stable and unstable foliations (first mentioned in [13] and developed in [2] and
in later papers) that are not applicable in the torus situation, or by using specific
Diophantine properties of eigenspaces for algebraic actions on the torus [3] that
do not extend to the non-algebraic situation. In [12] non-uniform measure rigidity
was applied to the study of actions of “large” groups. Specifically, we considered
actions of finite index subgroups of SL(n,Z) on the torus Tn with the standard
homotopy data, i.e. inducing the same action on the first homology group Zn as
the standard action by automorphisms. The nonuniform measure rigidity results
needed for that concerned actions of Cartan (i.e maximal rank semisimple abelian)
subgroups of SL(n,Z) and were taken from [6,10]. The method is to first consider
the restriction of the action to a maximal split Cartan subgroup and to use our
results for that action. However the conditions that appeared in our previous papers
are too restrictive and essentially applicable only to certain actions of SL(n,Z) and
its finite index subgroups. Results of this paper significantly extend applicability
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196 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

of our methods to actions of other lattices in higher rank semisimple Lie groups,
e.g. SO(n, n;Z) and Sp(2n,Z).

We extensively use terminology and notations from [6,8, 11] with proper re-
minders, and refer to various results form those papers. The reader should keep in
mind that some of those results may nominally refer to more restrictive situations
than that of the present paper but if slightest modifications of the arguments are
needed we provide appropriate explanations. Otherwise the arguments we refer to
are directly applicable to the situations at hand.

2. Preliminary results on behavior of semi-conjugacies

2.1. Semi-conjugacies for maps homotopic to infranilmanifold
Anosov diffeomorphisms. For reader’s convenience we recall the setting from
[11, Section 2.2]. Let N be a simply connected nilpotent Lie group and A a group
of affine transformations of N acting freely that contains a finite index subgroup Γ
of translations that is a lattice in N . Then the orbit space M = N/A is a compact
manifold that is called an infranilmanifold. An automorphism of N that maps
orbits of A onto orbits of A generates a diffeomorphism of N/A that is called an
infranilmanifold automorphism. If N is abelian i.e. N = Rm, the infranilmanifold
N/A is called an infratorus.

An action α0 of Zk by automorphisms of an infranilmanifold M is an Anosov
action if induced linear action on the Lie algebraN of N has all Lyapunov exponents
non-zero, or equivalently there is one element of the linear action that is an Anosov
automorphism.

Now let α be an action of Zk by diffeomorphisms of M such that its elements
are homotopic to elements of an Anosov action by automorphisms. We will say
that α has homotopy data α0. There may exist affine actions with homotopy data
α0 that are not isomorphic to α0. This happens when α0 has more than one fixed
point and affine action interchanges those fixed points. Notice any affine action with
homotopy data α0 coincides with α0 on a finite index subgroup A ⊂ Zk. There
exists an affine action α̃ with homotopy data α0 and a continuous map h : M → M
homotopic to identity such that

(2.1) h ◦ α = α̃ ◦ h.
and hence for γ ∈ A

(2.2) h ◦ α(γ) = α0(γ) ◦ h.
See [4, 11]. The map h is customarily called a semi-conjugacy between α and
α̃. There are finitely many semi-conjugacies that differ by some translations by
elements of the fixed point group of α̃.

2.2. Ledrappier-Young entropy formula and its extensions. Let
g : N → N be a C1+Hölder diffeomorphism preserving an ergodic measure ν. Let
χ1 > · · · > χs > 0 be the positive Lyapunov exponents of g w.r.t. ν with associated
Oseledets splitting of the unstable distribution Eu

g = E1 ⊕ · · · ⊕ Es.
For 1 ≤ i ≤ u let us define

V i(x) =
{
y ∈ M : lim sup

n→∞

1

n
log d

(
g−n(x), g−n(y)

)
≤ −χi

}
.

For ν-a.e. x, V i(x) is a smooth manifold tangent to
⊕

j≤i Ej and we thus have the

flag V 1 ⊂ V 2 ⊂ · · · ⊂ V s with V s = Wu, the unstable manifold. In [16, Section 9] a
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NON-UNIFORM MEASURE RIGIDITY 197

class of increasing partitions ξi subordinate to V i is constructed, i.e. ξi(x) ⊂ V i(x)
and ξi(x) is a bounded neighborhood of x in V i(x) for ν-a.e. x. Consider conditional
measures νix associated with those partitions. Let Bi(x, ε) be the ε ball in V i(x)
centered in x with respect to the induced Riemannian metric. Then

δi = δi(g) = lim
ε→0

log νixB
i(x, ε)

log ε

exists a.e. and does not depend on x. Moreover, writing γi = γi(g) = δi − δi−1 we
have the Ledrappier–Young entropy formula (see [16, Theorem C])

(2.3) hν(g) =
∑

1≤j≤s

γjχj .

If hν(g, ξ) denotes the entropy w.r.t. the partition ξ, then [16] also gives the formula

hν(g, ξ
i) =

∑
1≤j≤i

γjχj .

Thus the entropy does not depend of a particular choice of partition as long as it
is increasing and subordinated to V i.

The following corollary of the result by F. Ledrappier and Jian-Sheng Xie [14]
provides the following consequence of the vanishing of the leading coefficient γs.

Proposition 2.1. If γs = 0, i.e. hν(g) = hν(g, ξ
s−1) for some partition ξs−1

subordinated to V s−1, then the conditional measure of ν on almost every leaf of
V s = Wu is supported on a single leaf of V s−1.

2.3. Non-collapsing of Lyapunov directions under semiconjugacies.
Let f : M → M be a C1+Hölder diffeomorphism. Assume that g is a factor of f via
a continuous surjective map h : M → N such that h◦f = g◦h. Let μ be an ergodic
invariant measure for f such that h∗μ = ν. It is important that no assumption on
hyperbolicity of the measures be made since we will apply the results below in the
setting without any a priori information on the measure μ.

Proposition 2.2. If h(Wu
f (x)) ⊂ V s−1

g (h(x)) for μ-a.e. x then γg
s = 0 and

hence the conditional measure νu of ν along Wu
g , is supported on a single leaf of

V s−1
g .

As a corollary we get the following

Corollary 2.3. Let f , g and h be as above. Assume that conditional measures
of ν along Wu

g are absolutely continuous w.r.t. Lebesgue on Wu
g then for μ-a.e. x,

h(Wu
f (x)) is not contained in V s−1

g (h(x)). In particular this holds whenever ν is a
measure absolutely continuous w.r.t. Lebesgue measure.

To prove Proposition 2.2 we will use Proposition 2.1 and the following fact from
abstract ergodic theory. Here for a partition ξ, we denote ξS =

∨
n∈Z

Snξ.

Proposition 2.4. [11, Proposition 6.2] Let T : (X,μ) → (X,μ) and
S : (Y, ν) → (Y, ν), be measure preserving transformations and assume that S is
a factor of T via a measure-preserving map p : (X,μ) → (Y, ν). Let η be a full-
entropy partition for T (i.e. hμ(T ) = hμ(T, η)) and ξ a generating partition for
S, i.e. ξS = ε the partition into points and p−1ξ < η. Then ξ is a full-entropy
partition for S, i.e. hν(S) = hν(S, ξ).
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198 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

Proof of Proposition 2.2. We shall proof that for some partition ξs−1 sub-
ordinated to V s−1, hν(g, ξ

s−1) = hν(g) and then the results will follow from Propo-
sition 2.1. We can build as in [16] an increasing partition ξs−1 subordinated to
V s−1
g . Moreover, we can build again as in [16] a partition η subordinated to Wu

f

such that h−1ξu−1 < η. This can be done since h−1(V u−1(h(x))) ⊃ Wu(x) for
μ-a.e. x and h is continuous. Since ξs−1 is subordinated to V s−1 we have that
ξs−1
g = ε. Since η is an increasing partition subordinated to Wu

f we have that

hμ(f) = hμ(f, η). Hence Proposition 2.4 implies that hν(g) = hν(g, ξ
s−1). �

3. Formulation of results

3.1. Actions of higher rank abelian groups. We consider an action of
Zk, k ≥ 2 by diffeomorphisms of a compact manifold. We say that an action has
simple coarse Lyapunov spectrum if Lyapunov exponents are simple and no pair of
Lyapunov exponents are positively proportional.

Let α0 be an Anosov action of Zk by automorphisms of an infranilmanifold with
simple coarse Lyapunov spectrum and let α be a smooth action with homotopy data
α0.

Let us call an α-invariant Borel probability measure μ large if the push-forward
h∗μ is Haar measure.

Our first result is a generalization of Theorem 2.5 from [11]. Here we assume
the same regularity as in the previous section, i.e. C1+β, β > 0.

Theorem 3.1. Let α0 be a Zk, k ≥ 2, Anosov action on an infranilmanifold M
with simple coarse Lyapunov spectrum. Let μ be an ergodic large invariant measure
for an action α with homotopy data α0. Then

(1) μ is absolutely continuous;
(2) Lyapunov characteristic exponents of the action α with respect to μ are

equal to the Lyapunov characteristic exponents of the action α0.

Recall that a resonance is a relation between different Lyapunov exponents

χ1, . . . , χl of a Zk action of the form χ1 =
∑l

i=2 miχi where m2, . . .ml are positive
integers.

The following theorem generalizes to the case of simple coarse Lyapunov spec-
trum Theorems 2.6 and 2.7 and Proposition 7.2 from [11].

Theorem 3.2. Let α0 be a hyperbolic linear Zk action with simple coarse Lya-
punov spectrum and without resonances on an infratorus N . Let α be a C∞ action
with homotopy data α0. Then

(1) α has a unique large invariant measure μ;
(2) the semiconjugacy p is bijective μ-a.e. and effects a measurable isomor-

phism between (α, μ) and an affine action α̃ with homotopy data α0 with
Haar measure;

(3) the semiconjugacy is smooth and bijective on μ a.e. stable manifold of any
action element;

(4) The semiconjugacy is smooth in Whitney sense on sets of μ measure ar-
bitrary close to one.

Once absolute continuity of μ and smoothness of the semiconjugacy along the
Lyapunov foliations is established, all statements of Theorem 3.2 are deduced ex-
actly as in [11, Section 7]. In particular, in order to get uniqueness of the large
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NON-UNIFORM MEASURE RIGIDITY 199

invariant measure we will use smoothness of the semiconjugacy along stable man-
ifolds. In [11, Section 7.1] smoothness is deduced from the existence of invariant
affine structures and to get those we need to assume high regularity (although not
necessarily C∞) and absence of resonances.

Remark 1. We think that using higher order normal forms it is also possible
to get smoothness of the semiconjugacy and hence allow resonances.

Next we will show existence of proper periodic orbits generalizing to our setting
[10, Theorem 3.1].

Theorem 3.3. Let α be an action as in Theorem 3.2 with μ the large mea-
sure. Then there is a periodic point p ∈ supp(μ) such that the semiconjugacy is a
diffeomorphism when restricted to the stable and unstable manifolds of p for some
element of the action. Moreover, the stable and unstable manifold for that element
of the action are in the support of μ, i.e. Ws(p) ∪Wu(p) ⊂ supp(μ).

Corollary 3.4. Derivative of α at p is conjugate to the linear part of α0.

3.2. Actions of lattices in higher rank Lie groups on the torus. Let G
be a simply connected semisimple Lie group with no compact factors, finite center
of R-rank greater than one, and let Γ be a lattice in G. Let ρ be an action of Γ
on a torus Tm. Induced action ρ∗ on the first homology group can be viewed as an
embedding Γ → GL(n, Z) that determines an action ρ0 by automorphisms of Tm

that, similarly to the abelian case, we call the homotopy data of ρ. By Margulis
Normal Subgroup Theorem [17] either the image of ρ∗ if finite or ρ∗ has finite
kernel.

We will assume that the second alternative takes place. By Margulis Super-
rigidity Theorem [17] the restriction of ρ∗ to a finite index subgroup Γ0 ⊂ Γ can
be extended to a homomorphism ρ̃∗ : G → SL(n,R) with discrete kernel. Recall
that weights of ρ̃∗ are eigenvalues of the restriction of ρ̃ to a maximal split Cartan
subgroup of G. Since there is a maximal split Cartan subgroup of G that inter-
sects ρ∗(Γ0) by a lattice L we may speak about weights of ρ∗ that are essentially
the exponentials of the Lyapunov characteristic exponents of the action ρ0 of L by
automorphisms of the torus Tm. Thus we can define resonances between weights.

Notice that while individual elements of actions ρ0 and ρ are homotopic, the
actions may not be.

Let us call a compact set K ⊂ Tm large if there is no continuous map p on the
torus homotopic to the identity such that p(K) is a point.

Theorem 3.5. Let ρ be a Cω (real-analytic) action of a lattice Γ in a simply
connected semisimple Lie group with no compact factors finite center and of R-rank
greater than one on the torus T2n such that induced action ρ∗ on the first homology
group has finite kernel. Assume that

(1) ρ preserves an ergodic measure μ whose support is large;
(2) ρ∗ has no zero weights, no multiple weights, no positively proportional

weights and no resonances between weights.

Then there is a finite index subgroup Γ′ ⊂ Γ, a finite ρ0-invariant set F and a
bijective real-analytic map

H : Tm \ F → D

where D is a dense subset of suppμ, such that for every γ ∈ Γ′,

H ◦ ρ0(γ) = ρ(γ) ◦H.
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200 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

Here are two cases where Theorem 3.5 applies. Consider the standard inclusion
of Sp(2n,Z) ⊂ SL(2n,Z) and the standard inclusion of SO(n, n;Z) ⊂ SL(2n,Z)
Let Γ be any finite index subgroup of Sp(2n,Z) or SO(n, n;Z) and consider the
standard action ρ0 of Γ on T2n.

Corollary 3.6. Let Γ ⊂ Sp(2n,Z), n ≥ 2 or Γ ⊂ SO(n, n;Z), n ≥ 2 be as
above. Let ρ be a real-analytic action of Γ on T2n with homotopy data ρ0 preserving
an ergodic measure μ whose support is a large set.

Then there is a finite index subgroup Γ′ ⊂ Γ, a finite ρ0-invariant set F and a
bijective real-analytic map

H : Tm \ F → D

where D is a dense subset of suppμ, such that for every γ ∈ Γ′,

H ◦ ρ0(γ) = ρ(γ) ◦H.

Notice that since Weyl groups of Sp(2n) and SO(n, n) contain the central
symmetry, for every finite-dimensional representation of those groups weights come
in pairs of opposite sign. Thus the present extension of nonuniform measure rigidity
results that allows pairs of simple negatively proportional Lyapunov exponents is
crucial for applications to any actions of lattices in those groups. In the standard
cases of Corollary 3.6 the weights are simple, there are no positively proportional
ones but they still appear in pairs of opposite sign. Notice however that those
may be the only new examples compared to the action of finite index subgroups.
SL(n,Z) on Tn with standard homotopy data considered in [12]. For example, no
new examples appear for SL(3,Z) actions.1

The proof of Theorem 3.5 repeats almost verbatim the proof of [12, Theorem
1.1] with Theorem 3.2 replacing [10, Corollary 2.2] and Theorem 3.3 taking place
of [10, Theorem 3.1] (that is restated as Theorem 2.4 in [12]). The only difference
is that in our setting we cannot assert that pre-image of any point under the semi-
conjugacy is the intersection of boxes ([10, Theorem 2.1]). For reader’s convenience
in Section 6 we describe all steps of the proof and explain in detail how the above
minor difference is handled.

The crucial step where analyticity is used is in the application os the Cairns-
Ghys local linearization [1]. For smooth actions we have a weaker result parallel
to Theorem 3.2 that follows from the initial steps of the proof of Theorem 3.5. We
formulate it for the C∞ case.

Theorem 3.7. Let ρ be a C∞ action satisfying the rest of the assumptions of
Theorem 3.5, then there exists a finite index subgroup Γ′ ⊂ Γ and a continuous map
h : suppμ → Tm such that

(1) for γ ∈ Γ′, ρ0(γ) ◦ h = h ◦ ρ(γ);
(2) the map h is bijective μ-a.e. and effects a measurable isomorphism between

(ρ, μ) and ρ0 with Lebesgue measure;
(3) the map h is smooth and bijective on μ a.e. stable manifold of any action

element;
(4) The map h is smooth in Whitney sense on sets of μ measure arbitrary

close to one.

1We thank A. Gorodnik for showing that.

Licensed to Penn St Univ, University Park.  Prepared on Sun Feb 23 21:23:58 EST 2020for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



NON-UNIFORM MEASURE RIGIDITY 201

Remark 2. In [12] we actually prove a stronger statement in the case of an
action of a finite index subgroup Γ of SL(n,Z) on Tn with standard homotopy data.
Namely we show that h above extends to a continuous map Tn → Tn homotopic
to identity; in fact it coincides with a semiconjugacy for restriction of ρ to any any
Cartan subgroup of Γ; see Step 4 in the proof of [12, Proposition 2.1].

Notice that in the proof of Theorems 3.5 and 3.7 we restrict the action of
Γ to a maximal rank semisimple abelian subgroup and apply to this action our
results using only the fact that its homotopy data has simple coarse Lyapunov
spectrum and no resonances. However, the fact that this abelian action appears
as a restriction of a lattice action implies stronger properties that follow from co-
cycle super-rigidity. Systematic use of this additional information allows to obtain
nonuniform measure rigidity for abelian actions that appear as restrictions of lattice
actions under considerably more general assumptions on Lyapunov exponents than
those of Theorem 3.2 and hence to extend the assertions of that theorem for those
situations.

4. Absolute continuity of μ

While we shall follow here the scheme of proof of previous papers c.f. [6,11] this
section contains new arguments that allow us to deal with negatively proportional
Lyapunov exponents.

4.1. Matching of Lyapunov half-spaces. The first step is to prove match-
ing of Lyapunov half-spaces for α and α0.

We need to prove that the semiconjugacy does not collapse the unstable man-
ifold. This a general result that does not need any assumption on the action α0:

Lemma 4.1. [11, Lemma 6.3] If L is a Lyapunov hyperplane (the kernel of a
Lyapunov exponent) for α0 then L is a Lyapunov hyperplane for α and Lyapunov
half-spaces match.

Since the proof of the matching of Lyapunov half-spaces was not completely
written in [11] we will add it here.

Proof. Take L a Lyapunov hyperplane for α0. We have, as proven in [11,
Lemma 6.3], that it is a Lyapunov hyperplane for α also. We will prove that if
χ is a Lyapunov exponent for α0 such that kerχ = L then there is a Lyapunov
exponent for α positively proportional to χ. Assume this is not the case. Then any
Lyapunov exponent χ̃ for α with ker χ̃ = L is negatively proportional to χ.

Assume χ is such that all α0 Lyapunov exponents proportional to χ has rate of
proportionality smaller than one (i.e. χ is the largest Lyapunov exponent among
the positively proportional to it). Take t ∈ L such that t is not in ker χ̂ for any
Lyapunov exponent χ̂ (for α or α0) not proportional to χ. Take n a regular element
for α0 close to t such that χ(n) > 0 but smaller that any other non-proportional
positive α0-Lyapunov exponent. Then χ̃(n) < 0 for any α-Lyapunov exponent χ̃
proportional to χ. Hence we have that Wu

α(n)(x) = Wu
α(t)(x) for μ a.e. x but

Wu
α0(t)

(y) � Wu
α0(n)

(y) for every y. Moreover Wu
α0(t)

is inside the fast expanding

direction of α0(n) (V u−1
α0(n)

in the notation of Section 2) by the choice of n. So we

have that

h(Wu
α(n)(x)) = h(Wu

α(t)(x)) ⊂ Wu
α0(t)

(h(x)) ⊂ V u−1
α0(n)

(h(x))

Licensed to Penn St Univ, University Park.  Prepared on Sun Feb 23 21:23:58 EST 2020for download from IP 132.174.254.159.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/publications/ebooks/terms



202 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

and Corollary 2.3 gives a contradiction with the fact that λ is Lebesgue measure. �
To end with the matching of Lyapunov half-spaces we need to prove the fol-

lowing

Proposition 4.2. If α0 has simple coarse Lyapunov spectrum then dimM ≥
dimN and if dimM = dimN then Lyapunov hyperplanes and half-spaces for α and
α0 coincide. In particular (α, μ) has also simple Lyapunov spectrum.

Proof. The Proposition is true by counting Lyapunov exponents. Since α0

has simple coarse Lyapunov spectrum we can list the Lyapunov exponents of α0

as χ1, . . . , χn, n = dimN , in such a way that for some l ≥ n/2, χl+i is negatively
proportional to χi for i = 1, . . . , n − l (here we use the convention that l > n if
there are no negatively proportional exponents). Lemma 4.1 says that for every
χi there is an α-Lyapunov exponent χ̃i positively proportional to χi, this implies
that dimM ≥ n. If dimension of M is n, then there cannot be other α Lyapunov
exponents and we get the Proposition. �

4.2. A dichotomy for the conditionals along Lyapunov foliations. Let
us fix a Lyapunov hyperplane L = kerχ for α with associated Lyapunov exponent
χ. Take a generic singular element t ∈ kerχ of the action i.e. such that χ(t) = 0
and χj(t) �= 0 for any non-proportional Lyapunov exponent and call f = α(t). Let
W be the Lyapunov foliation associated to χ, put Eχ(x) = TxW(x) and call E the
α0-Lyapunov direction corresponding to the α0-Lyapunov exponent proportional
to χ. In this subsection we shall proof that μW

x is absolutely continuous w.r.t.
Lebesgue for μ-a.e. x.

In the sequel η will denote an element of the ergodic decomposition of μ w.r.t.
f and ηWx its conditional measures w.r.t. to W . The proof of the next proposition
follows, with minor changes, exactly along the lines of section 3 in [6]. Observe
that π-partition argument is used in [6] to get recurrence to the W leaf (i.e. W is
inside an element of the ergodic partition), instead here we use the ergodicity of η
w.r.t. f .

Proposition 4.3. One of the following holds:

(1) ηWx is absolutely continuous w.r.t. Lebesgue for almost every ergodic com-
ponent η and for η-a.e. x or,

(2) ηWx is atomic for almost every ergodic component η and for η-a.e. x.

For the proof of Proposition 4.3 let us recall Proposition 3.1 in [6]. An affine
structure on a manifold is an atlas whose change of variables are affine maps.

Proposition 4.4. [6, Proposition 3.1] There exists a unique measurable family
of C1+ε smooth α-invariant affine structures on the leaves W(x). Moreover, within
a given Pesin set they depend Hölder continuously in the C1+ε topology.

Once we have affine structure we need to freeze the the dynamics along W
when we iterate f (remember that f = α(t) where t is in the Weyl chamber wall
L = kerχ). We will prove as in [6], the following

Lemma 4.5. For μ a.e. ergodic component η, for every Pesin set Λ and for
every ε > 0 there is a set Λε ⊂ Λ and K > 0 such that η(Λ \ Λε) < ε and

K−1 ≤ ‖Dfk|Eχ(x)‖ ≤ K

if both x and fk(x) are in Λε.
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NON-UNIFORM MEASURE RIGIDITY 203

Denote with BW
r (x) the ball inside W(x) centered in x and of radius r and

denote by l(A) the length of an interval in E or any translate of E. To prove
Lemma 4.5 we need to prove first the following:

Lemma 4.6. For μ a.e. ergodic component η, for every Pesin set Λ and for
every ε > 0 and r > 0 there is a set Λε ⊂ Λ and m > 0 such that η(Λ \ Λε) < ε
and l(h(BW

r (x))) ≥ m.

Proof. Let us show first that for μ-a.e. x, length of h(W(x)) is different
from 0, i.e. h(W(x)) �= h(x). By ergodicity of μ w.r.t. α we get that either for
μ-a.e. x, h(W(x)) �= h(x) or for μ-a.e. x, h(W(x)) = h(x). Let us assume by
contradiction this latter is the case. Take an element n close to t ∈ kerχ such
that χ(n) > 0 but it is still the smallest positive Lyapunov exponent. We have
on one hand that Eu

α(n) = Eu
α(t) ⊕ Eχ and Eu

α0(n)
= Eu

α0(t)
⊕ E. On the other

hand, since h(W(x)) = h(x) for μ-a.e. x by our contradiction assumption, and
Wu

α(n)(x) =
⋃

z∈W(x) Wu
α(t)(z) we get that

h(Wu
α(n)(x)) =

⋃
z∈W(x)

h(Wu
α(t)(z)) ⊂

⋃
z∈W(x)

Wu
α0(t)

(h(z)) = Wu
α0(t)

(h(x))

By the choice of n we have that Wu
α0(t)

= V u−1
α0(n)

(recall that V u−1
α0(n)

is the

direction of fast expansion as defined in Section 2). Then Corollary 2.3 gives a
contradiction with the fact that λ is Lebesgue measure.

So we get that for μ-a.e. x, length of h(W(x)) is different from 0. Taking
again n such that χ(n) > 0 we have that the corresponding α0-Lyapunov exponent
for the linear is also positive and hence α0(n) expands the E direction. Hence,
α0-invariance of h(W(x)) implies that ones the length is nontrivial it has to be ∞.
Finally, take r > 0, then if h(BW

r (x)) = h(x) for a set of positive μ-measure then
ergodicity of μ, expansion of W by α(n) and expansion of the E direction by α0(n)
would imply that h(W(x)) = h(x) for μ-a.e. x, which is a contradiction. Then, we
have that for every r > 0, l(h(BW

r (x))) > 0 for μ-a.e. x. Then for μ a.e. ergodic
component η and for η a.e. point x, l(h(BW

r (x))) > 0. So, given η, a Pesin set Λ
and ε > 0, for m small enough, the set, Λε of x ∈ Λ such that l(h(BW

r (x))) ≥ m
has measure η(Λ \ Λε) < ε. �

Once we have that h does not collapse the W ”foliation” the proof of Lemma
4.5 follows as in [6].

Proof of Lemma 4.5. We shall proof the first inequality, the second one fol-
lows taking the inverse. Take r small and Λε as in Lemma 4.6. Take x ∈ Λε and k
such that fk(x) ∈ Λε. Then we have that

l(h(fk(BW
r (x)))) = l(α0(kt)(h(B

W
r (x)))) = l(h(BW

r (x))) ≥ m

since α0(kt) is an isometry along the E direction. Hence, since h is continuous
there is δ > 0 that only depends on m and there is y ∈ fk(BW

r (x)) such that
d(y, fk(x)) ≥ δ, so, if z = f−k(y) we have that d(x, z) < r and d(fk(z), fk(x)) ≥ δ.
Finally, using the affine coordinates and that they vary continuously over Pesin sets
we get that ‖Dfk|Eχ(x)‖ ≥ δC−2/r = K−1, where C is a bound for the derivative
of the affine structure over the Pesin set Λ. �

Finally, to end the proof of Proposition 4.3, let us define for η a.e. x the group

Gx = {L : Eχ(x) → Eχ(x) affine, s.t. L∗ηx = cηx for some c > 0}.
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204 ANATOLE KATOK AND FEDERICO RODRIGUEZ HERTZ

Here we identify Eχ(x) with W(x) using the affine structure. Gx is a closed sub-
group of the affine maps of the line. If Gx is not a discrete group the ηx is abso-
lutely continuous w.r.t. Lebesgue. Using Lemma 4.5 and ergodicity of η we get
that ηx(Gx(x)) > 0 (Gx(x) = {L(x) : L ∈ Gx}). So if ηx is not atomic, then Gx is
not discrete and hence ηx is absolutely continuous w.r.t. Lebesgue.

4.3. Absolute continuity of conditionals along Lyapunov foliations. In
case (1) of Proposition 4.3 we get that μW

x is absolutely continuous w.r.t. Lebesgue
for μ-a.e. x. So let us assume by contradiction that we are in case (2).

Let us take s an element of the action close to t such that χ(s) < 0 but still
χ(s) is the closest to zero among the negative Lyapunov exponents of α(s) and no
other Lyapunov exponent change sign. We have then that Ws

α(t) ⊂ Ws
α(s) and in

fact Es
α(s) = Es

α(t) ⊕Eχ. The next proposition says that conditional measures of η

alongWs
α(s) sits inside Ws

α(t).

Proposition 4.7. ηW
s
α(s) = ηW

s
α(t) for almost every ergodic component η.

Proof. Here we follow the proof of Proposition 4.2. in [11] but instead of
using time change to freeze the dynamics along W we use Lemma 4.5. �

Let us reach to a contradiction then. Recall that λ(=Lebesgue measure) is an
ergodic measure for α0(t), hence, since μ projects into Lebesgue, i.e. h∗μ = λ we
have that almost every measure η in the ergodic decomposition of μ also projects
into Lebesgue, that is h∗η = λ.

Now we shall argue as in Lemma 2.3. in [6]. Let x0 be a point in a
Pesin set and let Λ be a neighborhood of x0 in this Pesin set. Let us consider

R =
⋃

x∈Wu
α(s)

(x0)
Ws

α(t)(x) ∩ Λ. Since ηW
s
α(s) = ηW

s
α(t) , we have that η(R) =

η(
⋃

x∈Wu
α(s)

(x0)
Ws

α(s)(x) ∩ Λ) > 0. Hence, since h∗η = λ we get that λ(h(R)) ≥
η(R) > 0. On the other hand, h(R) ⊂ h(x0)(W

u
α0(s)

⊕ W s
α0(t)

) which has dimen-

sion less than n and hence has zero Lebesgue measure. It has less dimension since
Lyapunov hyperplanes match.

Hence we get a contradiction and μW is absolutely continuous w.r.t. Lebesgue
measure. Once conditional measures of μ along all Lyapunov foliations are abso-
lutely continuous w.r.t. Lebesgue, absolute continuity of μ follows by the following
theorem:

Theorem 4.8. [11, Theorem 5.2]
Let f : M → M be a C1+θ diffeomorphism preserving an
ergodic measure μ. Let TM = Eu ⊕ Ec ⊕ Es be the Oseledets
splitting associated to μ. Let us assume that:

(1) Ec is tangent to a smooth foliation O, Df |Ec is an
isometry with respect to to the standard metric in M , and
conditional measures along O are Lebesgue measure;

(2) Eu = E1 ⊕ · · · ⊕ Eu and Es = Es ⊕ · · · ⊕ Er, where χi < χj if i < j;
(3) each Ei is tangent to an absolutely continuous Lyapunov

foliation W i and the conditional measures along W i are absolutely
continuous with respect to Lebesgue measure for a.e. point.

As a corollary of the proof we get the smoothness of the semiconjugacy along
the one dimensional W and the matching of the Lyapunov exponents.
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Proposition 4.9. For every Lyapunov foliation W, the semiconjugacy h re-
stricted to W(x) is a smooth diffeomorphism for μ-a.e. x and the Lyapunov expo-
nents for the linear and the nonlinear actions match.

Proof. As in [6] we have here that h intertwines the affine structure along W
for α and the one of α0. �

4.4. Uniqueness of large invariant measure. The proof of Theorem 3.2
follows from the proof in Section 7 in [11] which works without any change allowing
existence of negatively proportional exponents.

Remark 3. It is in the use of Lemma 7.5. in [11] (see also Lemma 5.1 in the
next section) where we use that the universal covering of M is contractible, i.e. M
is a K(π, 1) manifold. This Lemma is false without the K(π, 1) assumption and
examples can be constructed along the lines in Section 4 in [10] gluing two or more
tori and presenting more than one large measure.

5. Existence of proper periodic orbits

Proof of Theorem 3.3. The first issue is to get smoothness of h along stable
and unstable manifolds of different elements of the action. To this end we will use
that there are no resonances in the linear action. This follows as in [11, Section 7].

Take a hyperbolic element α(n) of the action. Consider a Pesin set Λ. It
follows from the proof of the Main Lemma in [7] that for a.e. x ∈ Λ there is a
periodic point p for α(n) such that the local stable and unstable manifolds of p
are approached by admissible (w.r.t. Λ) local stable and unstable manifolds of a
sequence of points zk that may be taken in a fixed Pesin set Λ′ ⊃ Λ. Moreover
this points zk lie in the intersection of (global) stable and unstable manifolds of the
orbit of x and hence are in the support of μ since conditional measures of μ along
stable and unstable manifolds are equivalent to Lebesgue measure. Hence taking x
such that the restriction of the semiconjugacy h to Ws

α(n)(x) and Wu
α(n)(x) be affine

w.r.t. the corresponding affine structures and using the fact that affine structures
varies Hölder continuously along Pesin sets we get that the semiconjugacy h is a
local smooth diffeomorphism along the local stable and unstable manifolds of p.
By invariance we get that the semiconjugacy is a smooth diffeomorphism along the
global stable and unstable manifold of p for α(n).

Let us see that p has finite α-orbit. Indeed we will see that α(m)(p) = p if and
only if α0(m)(h(p)) = h(p). Of course one implication is obvious, let us see the
other one. To this end we shall make use of the following Lemma that appeared as
Lemma 7.5 in [11],

Lemma 5.1. Let Ei ⊂ Rn, i = 1, 2 be two subspaces such that E1 ⊕ E2 = Rn.
Let pi : Ei → Rn, i = 1, 2 be two proper embeddings at a bounded distance from
inclusion. Call pi(E

i) = Wi, i = 1, 2. Then W1 ∩W2 �= ∅.
Assume α0(m)(h(p)) = h(p), then α(m)(p) is a periodic point for α(n)

and Ws
α(n)(α(m)(p)) = α(m)(Ws

α(n)(p)). But then, by Lemma 5.1 we have that

Ws
α(n)(α(m)(p)) ∩ Wu

α(n)(p) �= ∅, call z a point in this intersection. Since stable

manifolds are sent into stable manifolds by h and unstable manifolds are sent into
unstable manifolds, it follows that h(z) = h(p) and hence p = z since h restricted
to the unstable manifold of p is a diffeomorphism, but this clearly implies that
α(m)(p) = p. This and the fact that h is a diffeomorphism when restricted to
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Ws
α(n)(p) and Wu

α(n)(p) implies that Dpα(m) is conjugated to α0(m) whenever

α(m)(p) = p. �
Again is in the use of Lemma 5.1 that we need the ambient manifold to be a

K(π, 1) space.

6. Differentiable rigidity of real analytic actions.

For the proof of Theorem 3.5 we will use the following consequence of Zimmer’s
cocycle superrigidity as we did in [12], see also [5,18].

Proposition 6.1. Let M,N,Γ, α, α0, po, p̂ and μ be as above. Then there is
a finite index subgroup Γ′ ⊂ Γ and a measurable map η : M → N defined μ a.e.
such that if we define the μ-a.e. defined map p : M → N , p(x) = η(x)p̂ then
p ◦ α(γ)(x) = α0(γ) ◦ p(x) for μ-a.e. x ∈ M and for every γ ∈ Γ′. Moreover, if α0

is weakly-hyperbolic as defined in [18] (in particular if there is an Anosov element
for α0) then η and hence p extends to a continuous map p : M → N which is a
semiconjugacy on supp(μ) but may fail to be a semiconjugacy for the action outside
supp(μ).

Proof of Theorem 3.5. Take Γ, α, α0 and μ in the hypothesis of Theorem
3.5. By Proposition 6.1 we have a continuous map P : T2n → T2n homotopic to
identity such that P ◦ α(γ)(x) = α0(γ) ◦ P (x) for x ∈ supp(μ) and for γ ∈ Γ′ ⊂ Γ
a finite index subgroup. Hence P (supp(μ)) is compact and α0-invariant and so
equals either T2n or a point. Assuming the support of the measure μ is large,
P (supp(μ)) = T2n. If we take C a Cartan subgroup of Γ′ then this Cartan subgroup
is a full abelian symplectic subgroup. Hence its action on T2n has simple coarse
Lyapunov spectrum and is without resonances and so it is in the hypothesis of
Theorems 3.1 and 3.2. And hence μ is absolutely continuous w.r.t. Lebesgue
measure. Moreover, by Theorem 3.3 there is a periodic point q ∈ supp(μ) for the
restriction to the Cartan action C such that Ws(q) ∪ Wu(q) ⊂ supp(μ) and P
restricted to Ws(q) and Wu(q) is a smooth diffeomorphism onto P (q) + Es and
P (q) + Eu respectively.

Let us prove that q is a periodic point for the complete action of α restricted to
Γ′. P (q) is a rational point since it is a periodic point for the action α0 restricted
to C. Hence P (q) is a periodic orbit for the action α0 restricted to Γ′. Take any
γ ∈ Γ′, then α(γ)(q) is a periodic orbit for α restricted to γCγ−1. Take n ∈ C,
we have that α0(γ)E

s
α0(n)

∩ Eu
α0(n)

= {0} and hence α0(γ)E
s
α0(n)

⊕ Eu
α0(n)

= Rn.

Moreover, Ws
α(γnγ−1)(α(γ)(q)) = α(γ)(Ws

α(n)(q)) and hence P |Ws
α(γnγ−1)(α(γ)(q))

is a diffeomorphism onto α0(γ)E
s
α0(n)

= Es
α0(γnγ−1). Using Lemma 5.1 we have

that
Ws

α(γnγ−1)(α(γ)(q)) ∩Wu
α(n)(q) �= ∅.

Now, P (α(γ)(q)) = α0(γ)(P (q)) = P (q) since γ ∈ Γ′ and P (q) is periodic for
α0 restricted to Γ′. Then we have that

P (Ws
α(γnγ−1)(α(γ)(q)) ∩Wu

α(n)(q)) = P (q).

So, if z is in
Ws

α(γnγ−1)(α(γ)(q)) ∩Wu
α(n)(q)

then P (z) = P (q) and hence z = q since P is injective when restricted to Wu
α(n)(q)

and also z = α(γ)(q) because P is injective when restricted to Ws
α(γ−1nγ)(α(γ)(q)).
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So α(γ)(q) = q for any γ ∈ Γ′ and hence is periodic. Also, by smoothness of P along
the invariant manifolds through q we have that Dqα is conjugated to α0. Hence
the rest of the proof follows as in [12] using local linearization near fix points of
real analytic actions proved by Cairns and Ghys [1]. �
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