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A b s t r a a .  - -  This is the first in a series of papers exploring rigidity properties of hyperbolic actions of Z ~ or R k 
for k /> 2. We show that for all known irreducible examples, the eohomology of smooth cocycles over these actions 
is trivial. We also obtain similar H61der and C 1 results via a generalization of the Livshitz theorem for Anosov flows. 
As a consequence, there are only trivial smooth or H61der time changes for these actions (up to an auto- 
morphism). Furthermore, small perturbations of these actions are H61der conjugate and preserve a smooth volume. 

1. Introduct ion  

The first untwisted smooth or H61der cohomology for a smooth dynamical system 
plays a central role in the structure theory of such systems. For hyperbolic actions of Z 
or R, the H61der cohomology has been described by A. IAvshitz [14]. I t  involves an 
infinite-dimensional moduli space, most conveniently described by periodic data. In  
the smooth case, similar results have been achieved by R. de La Llave, J.  Marco and 
R. Moriyon [15]. 

While there is an abundance of Anosov flows and diffeomorphisms, one knows 
very few examples of Anosov actions of Z k and R ~ which do not arise from products 
and other obvious constructions. These examples exhibit a remarkable array of rigidity 
properties, markedly different from the rank one situation. At the heart  of these phe- 
nomena lies a drastically different behaviour of the first cohomology. This is the central 
issue of this paper. In  particular, we show that in all known examples satisfying suitable 
irreducibility assumptions, the first smooth or Ht lder  cohomology with coffiecients 
in R" trivializes, i.e. every smooth or H61der cocycle is cohomologous to a constant 
cocycle by a smooth or H61der coboundary. We call these actions standard. As immediate 
applications, we see that all time changes of standard actions come from automorphisms 
of Z k or R k. Furthermore, we show that any Cl-perturbation of a standard action pre- 

serves a smooth measure, and is Htlder-conjugate to the original action, up to an auto- 
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morphism of R ~. In  fact, in most cases, we can show that the conjugacy between the original 
and the perturbed action is in fact smooth. Thus the actions are locally differentiably rigid. 
This phenomenon never appears for diffeomorphisms or flows. However, the derivation 
of differentiable rigidity requires a careful study of the transverse smooth structure for 
the action. This is complementary to our investigations of cocycles in this paper, and 
appears in [11]. In  fact, the present paper is the first in a series of papers addressing 
rigidity phenomena of hyperbolic and partially hyperbolic actions of higher rank abelian 
groups. In  [10], we extend the cohomology trivialization results of this paper to certain 
partially hyperbolic actions. In  [12], we establish the smooth local rigidity of the orbit 
foliation of certain Anosov actions, and apply it to prove the smooth local rigidity of 
projective actions of irreducible lattices in higher rank connected semisimple groups of 
the noncompact type. Finally, we show in [13] that invariant measures for higher rank 
abelian actions are scarce, provided that some element has positive entropy. 

The structure of this paper is as follows. In  Section 2.1, we summarize the known 
general theory of Anosov actions. In  Section 2.2, we introduce the standard examples. 
They  are all homogeneous actions. Then we formulate the main result, Theorem 2.9 and 
its corollaries in Section 2.3. In  Section 3, we summarize results about the decay of 
matrix coefficients of  representations of semisimple groups. They are crucial for the 
proof of the main result in the semisimple case. In  Section 4, we prove the main result. 
The proof follows a general scheme, which we describe in Section 4.1. I t  depends on 
specific estimates for various cases. We present these in Sections 4.2, 4.3 and 4.4. 
Finally, we discuss the immediate applications of the main result in Section 5. 

We would like to thank R. J.  Zimmer for alerting us to R. Howe's paper on the 
decay of matrix coefficients and A. N. Starkov for showing us examples of Anosov 
actions we had not been aware of. We are grateful to the Pennsylvania State University 
and the University of Michigan for their hospitality and financial support during several 
visits. Finally we would like to thank the Mathematical Sciences Research Institute at 
Berkeley where we wrote an earlier version of this paper. 

2. The  s tandard  A n o s o v  Rk-actions 

2.1.  A n o s o v  act ions  

D~nition 2 .1 .  - -  Let A be R ~ or Z ~. Suppose A acts C ~ and locally freely on a manifold 
M with a Riemannian norm ][ [l" Call an element g e A regular or normally hyperbolic 
i f  there exist real numbers X > ~ > O, C, C' > 0 and a continuous splitting of  the tangent bundle 

T M = E  + + E  ~  

suck that E ~ is the tangent distribution of  the A-orbits and for  all p ~ M,  for  all v ~ E+(p) 
(v e E [  (p) respectively) and n > 0 (n < 0 respectively) we have for  the differential g, : T M  ~ T M  

]l g,"(v)][ ~< Ce - x ' '  1] v ][. 
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Call an A-action Anosov or normally hyperbolic i f  it contains a normally hyperbolic 

element. We call E + and E-~ the stable and unstable distribution of  g respectively. 
I f  M is compact,  these notions do not depend on the ambient  Riemannian  metric. 

Note that  the splitting and the constants in the definition above depend on the normally 
hyperbolic element. 

Hirsch, Pugh and Shub developed the basic theory of normally hyperbolic 
transformations in [4]. 

Theorem 2 .2 .  - -  Suppose g e A acts normally hyperbolically on a manifold M.  Then there 

are Hglder foliations W~ and W~ tangent to the distributions E + and E2 respectively. We call 

these foliations the stable and unstable foliations of g. The individual leaves of  these foliations 

are C~176 submanifolds of  M.  

Theorem 2 .3 .  - -  Let M be a closed manifold, and e : A  • M -+ M an action with a 

normally hyperbolic element g. I f  ~* : A • M ~ M is a second action of  A suffciently close to 

in the Cl-topology then g is also normally hyperbolic for  ~*. The stable and unstable manifolds of  ~* 
tend to those of  c~ in the Ck-topology as ~* tends to o~ in the Ck-topology. Furthermore, there is a 
Htlder homeomorphism ~ : M -+ M close to id~t such that ~ takes the leaves of  the orbit foliation 

of  ~* to those of  ~. 

Let us call an orbit R k. x of a locally free Rk-action closed if the stationary subgroup 
S of x (and hence of each point of that  orbit) is a lattice in R k. Thus  any closed orbit is 
naturally identified with the k-torus llk/S. In  fact, any orbit of an Anosov R~-action 
whose stationary subgroup contains a regular element a is closed (indeed, a fixes any 
p o i n t y  in the closure of the orbit;  consider the canonical coordinates o fy  with respect 
to a nearby point on the orbit to see that  the orbit is closed). 

Another  s tandard fact about  Anosov Rk-actions is an Anosov-type closing lemma 
which is a straightforward generalization of a similar s tatement for Anosov flows [4]. 

Theorem 2 . 4  (Closing Lemma). - -  Let g ~ R k be a regular element of  an Anosov Rk-action o~ 

on a closed manifold M.  There exist positive constants ~o, C and X depending continuously on o~ 

in the Cl-topology and g such that : 

i f  for some x e M and t e I t  : 

dist(~(tg) x, x) < ~o 

then there exists a closed oc-orbit O, a point y e ~, a differentiable map ,( : [0, t] ~ R ~ such that 

for all s ~ [0, t] we have 

1. dist(~(sg) (x), ~(y ( s ) )y )  <~ Ce -x(mi'~' '- 8,, dist(~(tg) (x), x), 

2. e(y(t)) (y) = e(~) (y) where 11 ~ II < C dist(e(tg) (x), x), 
3. and II V' -- g II < C dist(~(tg) x, x). 



134 ANATOLE K A T O K  AND RALF J.  SPATZIER 

2.2. The standard act ions 

There are four constructions of Anosov actions from known ones: 

1. cartesian products of two Anosov actions, 
2. quotients or covers of an Anosov action by a finite group of automorphisms, 
3. restrictions of  a Zk-Anosov action to a subgroup which contains at least one regular 

element, 
4. suspensions of Anosov Zk-action: Suppose Z ~ acts on N. Embed Z k as a lattice in R ~. 

Let  Z ~ act on R k • N by z(x, rn) = (x - -  z, zrn) and form the quotient 

M = R ~ • N/Z  k. 

Note that the action of R* on R k • N by x ( y ,  n) = (x + y ,  n) commutes with the 
Z*-action and therefore descends to M. This Rk-action is called the suspension of the 
Z~-action. 

Now suppose at least one element g ~ Z k acts by an Anosov diffeomorphism on N. 
Then the suspension is an Rk-Anosov action. Indeed, g, thought of  as an element of R*, 
is a regular element. 

Starting with Anosov flows and diffeomorphisms and taking products, quotients 
and covers, and in the case of diffeomorphisms also restrictions and suspensions, we 
obtain a collection of Anosov actions. They are not rigid, and play a role similar to 
products of rank one manifolds of  non-positive curvature. We will see however that the 

product structure displays certain rigidity properties. 
There is another less obvious construction which leads to more non-rigid examples. 

Start with an Anosov flow % on a compact  manifold B. Consider a compact  fiber bundle 
M -+ B with fiber F. One can sometimes find a lift ~b, o f% on M and a commuting R *- l -  
action which is vertical, i.e. preserves the fibers such that the resultant R*-action is 
Anosov. We will present specific examples of  this type later in Example 2.10. This last cons- 
truction can be combined with the first four to produce more examples of  Anosov actions. 

Now we will describe a class of Anosov actions which cannot be obtained this way. 
These will be called the standard actions. None of them have a finite cover with a smooth 
factor on which the action is not faithful, not transitive and is generated by a rank one 
subgroup. All examples of R~-actions in this class come from the following unified 

algebraic construction. 
Let  G be a connected Lie group, A C G a closed Abelian subgroup which is iso- 

morphic with R k, S a compact subgroup of the centralizer Z(A) of A, and r a cocompact 

lattice in G. Then A acts by left translation on the compact  space M a~f S \ G / I ' .  The 

three specific types of  standard Anosov examples discussed below correspond to: 

a) for suspensions of Anosov automorphisms of  nilmanifolds take G = R* ~>< R '~ or 

G = R * ~< N, the semi-direct product of  R* with R "  or a simply connected nilpotent 

Lie group N; 
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b) for the symmetric space examples take G to be a semisimple Lie group of the non- 
compact type; 

c) for the twisted symmetric space examples take G = H x R '~ or G = H ~ N, a 
semi-direct product  of  a reductive Lie group H with semisimple factor of the non- 
compact type with R '~ or a simply connected nilpotent group N. 

We will now discuss the standard Anosov examples in more detail. 

Example 2.5 (Automorphisms of tori and nilmanifolds and their suspensions). - -  Consider 
a Zk-action by toral automorphisms. Such an action is called irreducible if  no finite cover 
splits as a product. We call an action by toral automorphisms standard if it is Anosov 
and if it contains a Z2-action such that every non-trivial element of Z 2 acts ergodically 
with respect to Haar  measure. Note that any standard action is irreducible. 

There are many examples of standard Anosov actions by toral automorphisms. 
For example, any faithful action of  Z" -1  on T" with Anosov generators is standard. 
In  fact, in this case any non-trivial element of Z" -1  is Anosov. Hence any higher rank 
subgroup of Z "-1 also acts by a standard action. 

These examples directly generalize to Anosov Zk-actions by  automorphisms of 
nilmanifolds. Note that the nilmanifolds always fiber as a torus bundle over a nilmanifold 
of  smaller dimension by factoring out by the commutator  subgroup. Furthermore, actions 
by automorphisms act via bundle maps. In  particular, the fiber over the coset class of 
the identity in the base is mapped to itself. We inductively define such an action to be 
standard if the induced actions on the base and the fiber are standard. Explicit construc- 
tions of  such actions on the k-step free nilpotent group over R" can be found in [19]. 

We will also call any suspension of  a standard Z*-action by toral or more generally 
nilmanifold automorphisms a standard suspension action. Note that the suspensions factor 
over a transitive action of R * on T *, and hence over a transitive rank one action. 

The most important  class of  examples comes from symmetric spaces [7]. 

Example 2.6 (Symmetric space examples). - -  Let G be a semisimple connected real 
Lie group of the noncompact  type and of R-rank at least 2. Let A be the connected 
component of a split Cartan subgroup of G. Suppose F is an irreducible torsion-free 
cocompact lattice in G. Recall that the centralizer Z(A) of  A splits as a product 
Z(A) = MA where M is compact. Since A commutes with M, the action of  A by left 

translations on G / P  descends to an A-action on N ae~ M \ G / P .  We call this action the 

Weyl ckamberflow of A. I t  is an Anosov action. We will call all Weyl chamber flows standard. 
Indeed, let E denote the restricted root system of G. Then the Lie algebra g 

of G decomposes 

g = m q - a +  ]~ g~ 
aEI]  

where g~ is the root space of ~ and m and a are the Lie algebras of M and A. Fix an 
ordering of Y~. I f  X is any element of  the positive Weyl chamber ff~ C a then ~(X) is 
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nonzero and real for all ~ E Z. Hence exp X acts normally hyperbolically on G with 
respect to the foliation given by the MA-orbits. 

As a specific example, let G = SL(n,  R).  Take A to be the diagonal subgroup. For 
any split group, we have M = { 1 }. Thus the action of A on SL(n,  R ) / P  is Anosov for any 

cocompact torsion-free lattice P. 
Let  us note that we only need P to be torsion-free to assure that G/F is a manifold. 

All of our arguments in this paper directly generalize to the orbifold case. 

Example g .7  (Twis ted  symmetric space examples). - -  Assume the notations of the 
Example 2.6. Let  p : P -+ SL(n,  Z) be a representation of P which is irreducible over Q. 
Then P acts on the n-torus T" via p and hence on ( M \ G )  X T" via 

y(x, t) = (xy -1, p(y)(t)) .  

Let N ae~ M \ G  • r T" ae~ (MkG • T " ) / F  be the quotient of this action. As the action 
of A on M \ G  • T" given by a(x, t) = (ax, t) commutes with the P-action, it induces 

an action of A on N. 
Suppose that p(y) for some element y ~ P is an Anosov diffeomorphism on T". 

Note first that the image under p of the center Z of  P is finite by Schur's Lemma. Hence 
we may suppose that P is a lattice in a semisimple group with finite center. By Margulis' 
superrigidity theorem, semisimplicity of the algebraic hull H of p(P) and existence of an 
Anosov element p(-~) the representation p of P extends to a homomorphism G -+ H ~  
where H~a is the adjoint group of H [16, Theor. (2') and (3')]. Note that p(P) has finite 
center Z as follows for example from Margulis' finiteness theorem [16, Theor. (4')]. Thus 
T'~[Z is an orbifold. To see that the A-action on N is Anosov it suffices to see that the 
A-action on ( M \ G )  • r (Tin/Z) is Anosov (with an appropriate notion of  Anosov for 
orbifolds). For this first note that u is a semisimple element in G since P is cocompact. 
Let y = k v sv be the decomposition into the compact and split semisimple parts. Then s v 
is conjugate to an element a' e A. As O extends to G, it follows that p(sv) and hence p(a') 
have no eigenvalues of  modulus 1. We can pick a e A such that p (a) does not have eigen- 
values of  modulus 1, and such that log a lies in an open Weyl chamber of  ft. Then a acts 

normally hyperbolically on M k G / F .  
We will now show that a acts normally hyperbolically on N. Let (x, t) e N. Since P 

is cocompact there is a uniformly bounded sequence of  elements u,(x) e G such that 
x -1  a '~ x = u,(x) y , (x )  for some y,(x) e P. Since the u,(x) are uniformly bounded in x 
and n, the stable tangent vectors for x-1  ax are exponentially contracted by 9('(,) with 
estimates uniform in x. The same applies to unstable vectors. Since 

a"(x, t) = (x(x - 1  a" x),  t) 

= (xu.(x) ,  P(V.) t) 

and since a acts normally hyperbolically on M \ G / F ,  it follows that a is normally hyper- 

bolic with respect to the orbit foliation of A. Thus the A-action is Anosov. 
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The above construction can be generalized considering toral extensions of other 
higher rank actions for which one of the monodromy elements is Anosov. For example, 
using a twisted Weyl chamber flow as above as the base we obtain nilmanifold extensions 
of  the Weyl chamber flow. As A. Starkov pointed out, one can also start with the product 
of  a Weyl chamber flow with a transitive action of some R ~ on a torus and produce a 
toral extension which is Anosov and no finite cover splits as a product. These two 
extension constructions can be combined and iterated. This is our last class of  standard 

examples. 
We do not know whether these examples yield all algebraic Anosov actions under 

the other natural constructions discussed above. 
Let  us emphasize that for all standard actions the splitting T M  = E + + E ~ + E~- 

is smooth. 
Finally let us describe some non-rigid higher rank Anosov actions which are non- 

trivial skew products over rank one actions. 

Example 2 .8 .  ~ a) Denote the standard generators of  Z ~ by al and as. Let a 1 act 
on T s by a hyperbolic toral automorphism ~, and diagonally on T 8 X T s by a • ~. 

Let  a s a c t o n T  n x T 3 b y  

where I is the 3 • 3-identity matrix. Then the flow determined by ta 1 in the suspension 
is a product. Any time change of ta 1 in the second factor still commutes with the action 
of ta2. Note that this action is not a product, and that only one of  the two generators 

is regular. 
b) Another more elaborate example of  this type was constructed by A. Starkov. 

Let  N be the 3-dimensional Heisenberg group. Then N = l ~ S ~  R is a semi-direct 

product of R 9 and R.  The action of 

on R s extends to a flow by  automorphisms of N that acts trivially on the center. Let  

H ---- R ~< N be the corresponding semi-direct product. Let  G ---- H X SL(2, R).  
We can find a cocompact irreducible lattice 1 ~ of G as follows. Let  A ~- Z ~< A' 

be the semidirect product of Z with the integer points A' in the Heisenberg group. Let r '  
be a cocompact lattice in SL(2, R) and h:  r '  -+ R a homomorphism whose image is 

not commensurable with the integers. Interpret  the graph of  h as a subgroup of the 

product of the center R of N with SL(2, R) .  Then set r = A. graph h. 
Finally, R 3 acts on this manifold by an Anosov action as follows. The first generator 

acts via the suspension, the second via the center of  N and the third via the action of  

18 
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the diagonal subgroup of SL(2, R) on SL(2, R) / I "  which in this case coincides with 
the geodesic flow of a certain Riemann surface. 

This action is not locally rigid as we can perturb the action of the diagonal sub- 
group of SL(2, R) to any nearby geodesic flow. Not all elements of R 3 exponentially 
contract or expand at all on this space, and in this sense this is the continuous time 
counterpart of  the non-standard irreducible action on T ~ by toral automorphisms we 
described in part  a). 

Clearly this construction generalizes to other nilpotent and semisimple groups 
with cocompact lattices with non-trivial first Betti number. None of these examples will 
be called standard. 

2.3. The m a i n  results  

Recall that given an action of a group G on a manifold M and another 
group H, a map ~ : G • M -+ H is called a cocyde if it satisfies the cocycle identity 
~(gl g~, m) = ~(gl, g2 m) ~(g2, m) [23]. The simplest cocycles are the constant cocycles, 
i.e. those constant in M. They  correspond to homomorphisms G -+ H. I f H  is a Lie group, 
call two cocycles ~ and ~* C ~ (H61der)-c0h0m010g0us if there exists a Coo (H61der)-function 
P : M ~ H, called a Coo (H61der)-coboundary, such that ~*(a, x) = P ( a x )  - 1  ~(a, x) P(x) 
for all a ~ R * and x ~ M. 

Theorem 2 .9 .  - -  a) Consider a standard Anosov A-action on a manifold M where A is 

isomorphic to R ~ or Z k with k >>. 2. Then any Coo-cocycle ~ : A X M -+ R ~ is Coo-cohomologons 
to a constant cocycle. 

b) Any H6lder cocycle into R z is Hglder cohomologous to a constant cocycle. 

The H61der result is obtained from the &~ using the following straight- 
forward generalization of the Livshitz theorem for Anosov diffeomorphisms and flows [ 14]. 

Theorem 2.10. (Livshitz Theorem for R~-Anosov actions). - -  Let ~ be a volume-preserving 

Anosov action of R k on a compact manifold M and let ~ be a I-[iilder R~-cocycle over o~ such that 

~(a, x) = 0 for all x on any closed orbit of  ~ and a with ax = x. Then 

x) = V ( a x )  - V ( x )  

where P is an Rt-valued Hiilder function on M.  Furthermore, i f  ~ is C a or Coo, then P is cor- 

respondingly C 1 or C ~176 

The assumption that ~ is volume-preserving can be weakened. Since this is irre- 
levant for our purposes we will not go into this matter. 

We will also use the Livshitz theorem to obtain the Coo-cocycle results for semisimple 
groups with SO(n, 1) or SU(n, 1) factors for which we do not have a uniform control 
of  the exponential decay of Coo-vectors for all unitary representations. 
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Another consequence of our Livshitz theorem is the following rigidity result for 
cocycles over products of Anosov actions. 

Corollary 2.11. - -  Let ~1 and ~ be volume preserving Anosov actions of R k and R t on 
closed manifolds M 1 and M2. Then any RO~-valued H6lder (Coo)-cocycle over the product action 
is H6lder ( Coo)-cohomologous to the sum of cocycles constant on the first and the second factor. 

In particular, a cocycle over a product of standard Anosov actions of R ~ and R z with h an 
t >>. 2 is cohomologous to a constant cocycle. 

Let us now describe three applications of the main result. Recall that an action ~' 
of R k is called a time-change of an action ~ of R ~ if all ~'-orbits are ~-orbits. 

Theorem 2.12. - -  a) All C~ changes of a standard Anosov R*-action with k >1 2 
are C~176 to the original action up to an automorphism. 

b) All H6lder time changes of a standard R~-Anosov action with k >1 2 are Hiilder conjugate 
to the original action up to an automorphism. 

Note that one easily obtains more actions by composing a given action with an 
automorphism 0 of the acting group. In  particular, this gives Cl-small perturbations. 
When two actions only differ by composition with an automorphism we say that the 
actions agree up to an automorphism. Call an R*-action locally Coo (H6lder)-rigid if  any 
perturbation of the action which is Cl-close on a generating set is Coo (H61der)-conjugate 
up to an automorphism. 

Theorem 2.13. - -  The standard R~-Anosov actions with k >1 2 are locally Hiilder-rigid 
up to an automorphism. 

Theorem 2.14. - -  Any C~-small Coo-perturbation ~* of a standard R*-Anosov action 
with k >1 2 preserves a C | volume co*. 

Notice that the Livshitz theorem as well as the main result are used in the proof. In  
fact, we can show that any conjugacy with the original action is volume preserving [11]. 

3. P r e l i m i n a r i e s  o n  m a t r i x  c o e f f i c i e n t s  

Estimates on the decay of matrix coefficients of  semisimple Lie groups play an 
essential role in representation theory. These estimates already appear in the work of 
Harish-Chandra. They were recently refined by several people [1, 2, 5, 17, 21]. While 
most estimates concern themselves with the matrix coefficients of so-called K-finite 
vectors (cf. below), both Ratner  and Moore prove exponential decay for H61der vectors 
in the real rank one case. Ratner  manages this for arbitrary H61der vectors for repre- 
sentations of SL(2, R) while Moore needs a H61der exponent bigger than dim K[2 
where K is the maximal compact subgroup. Although their work is not directly appli- 
cable, Moore's arguments can be generalized to the higher rank case. However, we 
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prefer to give a more standard (and probably folklore) treatment for Ca-vectors based 
on the K-finite case. At present, there seem to be no results in the literature about  the 
decay of  H61der vectors with arbitrary exponent for general semisimple groups I. 

Let G be a connected semisimple Lie group with finite center. We will consider 
irreducible unitary representations ~: of  G on a Hilbert  space ~ .  Define the matrix 
coeffcient of v and w e J d  as the function q%, ~ :G- ->  R given by 

g -+(re(g) v , w ) .  

Fix a maximal compact subgroup K of G. Call a vector v e ~ K-finite i f  the K-orbit  
of v spans a finite dimensional vector space. Let K denote the unitary dual of K. One 

can then decompose 

where 9ff~ is n(K)-invariant and the action of K on ~ is equivalent to n~ where n is an 
integer or + ~ ,  called the multiplicity of ~t in ~ .  The K-finite vectors form a dense subset 

of ~r One calls .r the ~-isotypic component of ~. 
Call rc strongly L v if there is a dense subset of Jr ~ such that for v, w in this subspace, 

9~, ~ e Lv(G) �9 Let  A be a maximal split Cartan subgroup of G, and a its Lie algebra. Fix 
an order on the roots and let ff be the positive Weyl chamber. Further let 0 : a -+ R 
be half  the sum of  the positive roots on ~ .  Howe obtained the following estimate for the 

matrix coefficients of v e ~,~ and w e W ,  of  a strongly LV-representation ~ of  G: 

] q%,~(exp tA) ] ~< D 1[ v II II w tl dim ~ d i m v e  -"/s~'pta' 

where A e ~ and D > 0 is a universal constant [5, Corollary 7.2 and w 7]. Cowling [2] 
shows that every irreducible unitary representation of G with discrete kernel is strongly L ~ 
for some p. Furthermore, if g does not have factors isomorphic to ~o(n, 1) or su(n, 1) 

then p can be chosen independently of r~. 
A vector v e ~ is called C | if the map g e G ~ r~(g) v is C~ We will now combine the 

results above with more classical estimates on the size of Fourier coefficients of  C~ 
Let  m--- -d im K and X1, . . . ,  X,~ be an orthonormal basis of L Set 

----- 1 --  ]~,~= ~ X~. Then f~ belongs to the center of  the universal enveloping algebra 

of ~, and acts on the K-finite vectors in ~a since K-finite vectors are smooth. 

Theorem 8.1. - -  Let v and w be C~~ in an irreducible unitary representation ~ of G 
with discrete kernel. Then there # a universal constant E > 0 and an integer p > 0 such that for 

all A e cg and large enough m 

[ ( e x p ( t a )  v, w )]<~ Ee -'*/2v~ ~ l[ f2"(v)]1 I] f2'~(w) I] �9 

In fact, p can be any number for which rc is strongly L% Furthermore, i f  g does not have factors 

isomorphic to ~o(n, 1) or ~u(n, 1), p only depends on G. 

1. After this paper was written, G. A. Margulis outlined an argument for the exponential decay of H61der 
vectors in a private communication with the first author. 
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Proof. - - B y  Schur's lemma, f] acts as a multiple c(~) idae ~ on ~ .  Let v = Y~e~ v~. 
By [22, L e m m a  4 . 4 . 2 . 2 ] ,  we have for all integers m > 0 

II II dim 2 V II 

As in [22, L e m m a  4 . 4 . 2 . 3 ]  one sees that  for m large enough 

Y~  ̂c(~t) -~" dim 6 ~t < oo. 

We have analogous estimates for w = E c~ w..  Pick p > 0 such that  ~ is L ~. 
Then  for m large enough, one sees that  

I(exp(tA) v , w ) l  = l (  Z^exp(tA) v., Y~^w.)l 
p.~K ~K 

<~ D e - , , m . ,  p,A, y~ ^ 11 v~ 11 II w, II d im ~ dim 
Iz, v E K  

~< De-(,/,.)~,a, ( E^ II II ~ d im '  [.~)112 ( ~ II w. 112 d im s v) '/~ 

De-"/2~'~'x' II a (v) I1 II a (w)II Z dim6( t), 
t t~K 

as desired. [] 
Note that  v and w only need to be C k with respect to K for some large k. 

Corollary 3 .2 .  - -  Let G be a semisimple connected Lie group with finite center. Let P be 
an irreducible cocompact lattice in G. Assume that g does not have factors isomorphic to so(n, I) 
or ~u(n, 1). Let f l , f  ~ ~ L2(G/P) be C~176 orthogonal to the constants. Let cg be a positive 

Weyl chamber in a maximal split Cartan a. Then there is an integer p > 0 which only depends 

on G and a constant E > 0 such that for  all A ~ cg 

( ( exp  tA), ( f l ) , A )  ~< Ee-'*/2"' ~ IIA 11~ IIA II~ 

where ]lfIl,~ is the Sobolev norm o f f .  

Proof. - -  Since P is irreducible, there are no L*-functions on G/F orthogonal to 
the constants which are invariant under  any non-compact  element in G by Moore's 
theorem [23]. Hence every non-trivial irreducible component  of L~(G/I ') has discrete 
kernel. By Theorem 3.1 it suffices to see that  any non-trivial [irreducible component  is 
strongly L ~ for a p that  only depends on G. This is exactly Cowling's result as g does 
not have factors isomorphic to so(n, 1) or ~u(n, 1) [2]. [] 

We do not know if the corollary holds for G with factors of g isomorphic to s0 (n, 1) 
or su(n, 1) with a p that  depends on the lattice. 
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4. Cocycles 

4.1. Scheme of  proof of  Theorem 2.9 

Let us start with part  a) of Theorem 2.9. We may and will always assume that 
l = 1. Pick a normally hyperbolic element a e A. We will show that ~ is cohomologous 

to p(b) = fM ~(b, x) dx, or that ~ -- p is cohomologous to 0. Thus we may assume that 

has 0 averages. 
Define the function f by f(x) = ~(a, x) (ff A = R k, we could instead consider 

d ] ~(ta, x); as it turns out this is not necessary). Now we can define formal 
f ( x )  = , = 0  

solutions of the cohomology equation by 

oO - - 1  

P+ = Z a* f and P ~ - = - -  Z a~ f  
k = O  k=--oo 

The first step is to show that P+ and P~- are distributions. For the suspension 
case, Example 2.5, this uses the superexponential decay of Fourier coefficients of smooth 
functions. For the symmetric space case, Examples 2.6, we use estimates on the expo- 
nential decay of matrix coefficients for smooth functions which come from representation 
theory. For the twisted symmetric space examples, Example 2.7, both techniques 

are combined. 
Hyperbolicity implies that the distribution P+ has continuous derivatives of any 

order along the stable manifolds (and by definition in the direction of a in the continuous 
case) while P~- has continuous derivatives of any order along the unstable manifolds. 
Note that for Anosov actions by Z and R, P+ and P~- in general do not coincide even 
if they are distributions. In  the higher rank case however, they do coincide, and thus P+ 
is differentiable along both the stable and unstable manifolds which is the basis for 
proving P+ is a smooth function. 

To show that P+ = P~-, note that P+ -- P~- = ~k~_ _ ~o a~f  is an a-invariant distri- 
bution. The cohomology equation together with the decay of matrix (Fourier) coefficients 
implies that it is also invariant with respect to the whole group. Pick b e A independent 
of a. The exponential decay of matrix coefficients implies that y~ok=_o~ b~( P+ - - P 2 )  
is a distribution. That  forces the vanishing of P+ -- P~-. 

From the definition of P+ and the cocycle identity, it follows that P+ is a distri- 
bution solution for the coboundary equation for all of A. Since P+ is a coboundary, it 
has continuous derivatives of any order in the orbit directions. This gives us differen- 

fiability in a full set of  directions. Then it follows from standard elliptic operator theory 
that P+ is a C~176 

Theorem 2.9 b) for H61der cocycles is established indirectly. First we prove 
Theorem 2.10 which says that a cocycle whose restriction to every closed orbit is a 
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coboundary is in fact a coboundary globally. Thus seemingly there are infinitely many 
independent obstructions to the vanishing of  a cocycle. For R-actions (Anosov flows) 
this is indeed the case. Those obstructions (values of the cocycle over the generators of 
the stationary subgroup on each closed orbit) are continuous in the C~ on 
cocycles. Thus since for standard Anosov actions they vanish for every C~-cocycle with 
zero averages due to Theorem 2 .9  a),  the same is true for any C~ of such cocycles 
over such an action. The proof is completed by showing that every continuous cocycle 

can be approximated by C~176 in the C~ 
We will now discuss the various cases in more detail. 

4.2. Toral automorphlsms and suspensions 

Let us first note a general fact. 

Lemma 4.1.  - -  Let A be an abelian group acting on a measure space X, and let 

: A • X ---> R '~ be a measurable cocycle of  this action. Suppose that for  some a ~ A there is a 

measurable function P : X ---> R m such that ~(a, x) - -  P(ax) + P(x) is constant a.e. on ergodic 

components of  a. Then ~*(b, x) ~ ~(b, x) - -  P(bx) + P(x) is constant a.e. on ergodic components 

o f  a for  every b ~ A.  

Pro@ - -  Indeed we have 

~*(b, x) = ~*(a + b, x) - -  ~*(a, bx) 

= ~*(b, ax) + ~*(a, x) - -  ~*(a, bx) -~ ~*(b, ax). [] 

We will now prove rigidity of cocycles for standard suspensions and standard 

actions by toral automorphisms simultaneously. 
Let e be the suspension of a standard action by Z ~ on T "  on M ---- R k • zk T".  

Let  ~ : R ~ X M ---> R z be a C~~ over Qr The coboundary P is found in two steps. 

We first straighten the cocycle on the fibers of the natural fibration rc : M -+ T ~. 
The rigidity of C~ for standard actions by toral automorphisms is a 

particular case of  the following proposition which is also the main part  of the proof for 

the suspension case. 

Proposition 4 . 2 .  - -  There is a continuous function Q :  M -+ R ~ which is C ~~ along every 

fiber such that the cocycle ~* : R ~ x M --> R ! defined by 

~*(a, x) a a_ ~(a, x) - -  Q(ax )  -+- Q(x) 

is constant along the fibers o f  ~ for  all a ~ R k. In particular, ~" restricted to any fiber defines a 

homomorphism from Z ~ to R ~. 
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Proof. - -  As always we will assume tha t  1 = 1. 

Pick ax and  a s in Z k such tha t  every element a~ a~ acts ergodically except when 
k = l = O. Let  A C Z k be the subgroup generated by a 1 and  az. 

For  x ~ M  s e t f ( x )  = ~(ai, x ). We need to find a C~-function Q :  M - + R  tha t  

solves the difference equations 

f , (x) - f=_,,,, f , (  y)  dy ---- (~Xo, Q )  (x) L ~ Q ( a ,  x) - -  Q ( x ) .  

Then  

~'(a, x) "~ ~(a, x) - Q(ax) + Q(x) 

is constant  along the fiber r~-l(r:(x)) for all a s A, and  ~* restricted to any  fiber defines 

a homomorphism from A to IlL. 
To solve the difference equations above we will use Fourier  series on the cover 

I !  k x T "  of  M. Let  Z k act on R k X T ~ by ~(r, t) a~ (r, at), and  denote by A, the asso- 

ciated difference operators. Le t  fT' denote  the lifts of  the functions f to the covering 

Il~ • T" .  We m a y  assume tha t  f~- l (~, f (Y)  dy ----- 0 and  thus f~_l(~)2(Y) dy = 0 space 

where ~ is the projection onto the first factor of  I !  k • T" .  Also note tha t  

Indeed,  we have 

f~(a i x) + fx (x )  = ~(a i + as, x) = f l ( a 2  x) + f 2 ( x ) .  

Let  

ZT(r, t) = Y~ 4(~) t I 
I 

i be the Fourier  expansion o f f  where the coefficients c I are functions on R k and  the 

I = (il, �9 �9  ira) are multi-indices. Recall  tha t  a ~ Sl(m, Z) acts on the multiindices I via 

the contragredient  representation a ~ of  the na tura l  representation of  Sl(m, Z) on I I" .  

Since ai is ergodic with respect to the Lebesgue measure, the distance of  (alk) ~ (I) f rom 0 

eventually increases exponential ly in k for I # 0. Note tha t  c o = 0. Also recall tha t  i f f  
is C~-then its Fourier  coefficients c I are C~176 in r and  decrease faster than  any  

negative power of  ]ix] + . . .  + ]i,~]. Hence  for any  C~-function f = Y , ~ f ~ t  I, 
the sums of  Fourier  coefficients are absolutely convergent.  In  particular,  the sum 

co O(I)  ( f )  aa Y~k= - ~ f ~  (i) defines an a~-invariant distributions O(I)  on every fiber n - l ( r ) .  

Lemma 4.3 .  - -  For every index set I we have O(I)  ( f l )  = O for every base point r. 

Pro@ - -  Since A,~  3~ = A,~  3~ we get 

l i 1 

Z 1. kZ - -  c ; ~ t + l  m "  - -  = - -  C a k - 1  (I) Cak (1) C~z~(I) 
k =  --1 k =  - - I  = - - I  

In  the limit we get tha t  0 ( I )  ( f l )  = O(a~'(I)) (f~). 
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k a~ are ergodic, no such element fixes an index set I :~ 0. Since all nontrivial a 1 

Hence ~k~_00(I) (f l )  = Eke=00((a~) v (I)) (f l )  ~< E~ [f~ [ ~ c~ converges. Thus we see 

that O(I)  (f~) = 0. [] 
Now we will finish with the proof of Proposition 4.2.  Let  us show that P+ = ~,~= 0 a k f  

is given by a Fourier series whose coefficients decrease faster than any negative power 
of [ i 1 [ + . . .  -{- [ i,~ [. This can be seen as follows: decompose R m into stable and unstable 
subspaces E -  and E + for a~'. Let C + be the set of all elements in Z m whose projection to E + 
has norm greater than or equal to the projection to E- .  Let C -  be the complement of C + 
in Z ~. For I ~ C + we estimate the Fourier coefficient of the solution given by P+, and for 
I e C -  using the solution given by P - .  Therefore P+ is a C~176 along the fibers. 

One sees that the sum of absolute values of  Fourier coefficients for Qdepends  continuously 

on r. Hence O is continuous. 
Now the proposition follows from Lemma 4.1. [] 
Now Theorem 2.9 a) for suspensions follows from the following simple lemma. 

Lemma 4 . 4 .  - -  Let y be an R-valued Coo-cocyde of  the homogeneous action o f  R k on T ~. 

Then y is C~~ to a homomorphism ~ : R k ~ R .  

Proof. - -  By the cocycle equation, the restriction of y to Z ~ • { t } defines a homo- 
morphism 0t : Z~ ~ Rz for any t e T k. Since for all a e Z k and s ~ R k 

"f(a, st) = y(s  + a, t) - -  V(s, t) = y(a, t), 

O = Ot is independent of t e T k. Extend p to a homomorphism from R * to R.  Then 
Y - - 0  factors through a cocycle y * : T  ~ • T k - + R .  Set P(t) =~,(t ,  1). Then 
T(a, t) = P(t) --  P(at, 1), and hence y --  p is a Coo coboundary. Finally note that the 
coboundary is Coo along the orbits of R k since in fact it is differentiable along these 

orbits. [5 

4.3. Symmetric space examples 

Here we will discuss Theorem 2.9 a) for the standard examples of symmetric 

space type (Example 2.6) under the extra assumption that the Lie algebra g of G 
does not have any factors isomorphic to so(n, 1) or su(n, 1). This will allows us to use 
Corollary 3.2. Cocycle rigidity of Weyl chamber flows for which 9 has so(n, 1)- or 
su(n, 1)-factors (as well as the rigidity for H61der cocycles over standard Anosov actions) 
is based on the generalized Livshitz theorem. We will discuss this in Section 4.5.  

We will first consider the actions of a split Cartan subgroup A by left translations 
on G/F. As we noticed in Example 2.6, this action is Anosov ff G is split. Otherwise, 

it is always normally hyperbolic to the orbit foliation �9 of  the centralizer M A  of A. This 

means that there is an element g ~ A and a continuous splitting of the tangent bundle 

TM = E:  + E 0 + E7 

19 
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such that E ~ is tangent to O and for all p e M, for all v e E+(p) (v e E~-(p) respectively) 
and n > 0 (n < 0 respectively) we have for the differential g, : T M  ~ T M  

~v [ ] g , ( ) [ l ~  < Ce-Xl"llIvll  

and for all n ~ Z  a n d  v ~ E ~ we have 

II g"(v)II >I C' e -'~"~ II v II- 

We call such an element regular. 
The sum of  the distributions E + �9 E~- is completely non-integrable, i.e. Lie brackets 

tangent to this distribution span the whole tangent space. This property is crucial for 
proving that the first Coo-cohomology is trivial [10]. For our current purposes, it suffices 

to show existence of a distribution solution to the cohomology equation. 

Theorem 4.5.  - -  Let [~ : A • G/I '  ~ R ~ be a C~ where the Lie algebra g of G 
does not have any factor isomorphic to so(n, 1) or ~u(n, 1). Assume that k >i 2 and that I" is irre- 
ducible. Then there is a constant cocycle 9 : A x G/P -+ R ~ and an lRl-valued distribution P on G/I" 

such that 

~(a ,  x)  - -  p (a )  = a P  - -  P .  

Furthermore, the distribution derivatives of  all orders of  P along both stable and unstable manifolds 
of  some regular element and along the orbit foliation of A are continuous functions. Finally, i f  ~ is 
M-invariant, so is P. 

Proof. - -  Define 

I t  clearly suffices to show that ~(a, x) --  p(a) is a coboundary. Thus we will assume that 

the averages fG/r ~(b, x) are all 0. 

Again we will assume that l = 1. Let a x and a~ be R-linearly independent, and 
let A denote their span. We may assume that a I is regular. Set fx(x) = ~(a 1, x) for 
x e G]F. By Lemma 4.1 it suffices to find a C~176 P that satisfies the difference 

equations A.1P = f x .  
To find the coboundary P let us first show that the formal solutions P+ = ]~k~176 0 ~ f 

and P = --  2~-~_ 1 ~ f d e f i n e  distributions on G/F. Let g e COO(G/F). By Corollary 3.2 

there is a positive integer m and constant E > 0 such that I ( a~f, g ) ] ,< Ee -*p I]f l l .  I] g ]l., 
where I] I I,, is the Sobolev norm. Hence 2~,~=_ 0 < a[ f ,  g ) converges absolutely, and there 
is a constant A > 0 such that I ~]~=0 ( a~f, g ) I ~< A II g II~. Thus P+ and similarly P_ 
are distributions. In  fact, they are elements of the Sobolev space H - ' .  
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Lemma 4.6. - -  The distributions P+ and P_ coincide. 

Proof. - -  As in the proof of  Proposition 4 .2  we have the difference equations 

% , f ,  = ~ x / ~ .  

Hence we get 
l l 1 

~ = - - l  k = - - l  ~=  --l  

Since r is an irreducible lattice the matrix coefficients of elements in L2(G/r)  orthogonal 
to the constants vanish [23, ch. 2]. Hence we see that for g e C~(G/ r )  

( ~ , a ; l g )  - ~ ( a ~ f ~ , g ) = l i m ( ~ + I L - - a ; ' f 2 , g ) = O .  
1 r  - - o 0  k =  - - o 0  l ~ ~ 

Since a~ a~ ~ oo as (k, m) -+ oo and the matrix coefficients decay exponentially, the 
sum Z ~ _  co Z ~ a" ~o - - k = -~o ( a~ f~, ~ g ) = lim,,_~ ~ 2m ~ = _ oo ( a ~ f ,  g ) converges absolutely. 

Thus we get ~]k~176 _ o~ ( ~ f x ,  g ) = 0. [] 
Henceforth we will denote P+ = P_ by P. 
Next we will show differentiability of  P along the strong stable as well as the strong 

unstable manifold of  al. Fix an ordering of the set of roots ~ of G with respect to the 
split Cartan R k such that a 1 is in the positive Weyl chamber. Let  X~ be an element in 

0 
the root space E" for a negative root ~. Let  ~ denote the Lie derivative by X~. Note that 

converges uniformly on G]F. Thus the derivative of P along stable directions X~ is a 
continuous function. Similarly all the higher derivatives along stable directions are 
continuous functions. Since P = P_ by Lemma 4.6,  a similar argument shows that the 
derivatives of P along unstable directions are also continuous functions. (As the stable 
and unstable directions X~ for ~ e 9~ generate the Lie algebra g of  G as a Lie algebra, 
Theorem 2.1 of [10] shows that P is C ~~ on G/F.) 

Finally, let us prove that derivatives of all orders of  P along the orbit foliation of A 
are continuous functions. This follows immediately once we see that P is also a coboun- 
dary for ~ for all of A. Let b e A. Then we see from the cocycle identity that 

0P - P = ~ b~" ~(~,  ) - -  ~" ~(~, ) 
k~0  

c o  

= Y~ a "+~ b~(b,  ) - a" ~(b,  ) = ~(b,  ). 

Thus P is a coboundary for ~ for all of  A. That  P is M-invariant is clear if  we know that 

is invariant. [] 
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In fact, the distribution P is a C~ This follows from the complete non- 
integrability of  the sum of the stable and unstable foliations and certain subelliptic 

estimates [10]. 
We are now ready to prove Theorem 2 .9  a) for our class of  symmetric space 

examples. Recall that the Weyl chamber flow is the action on M k G / P  induced from 
the action of A on G / F  by left translations. 

Given a C~-cocycle ~ on X, lift it to a cocycle ~ on G/I ' .  Since ~(a, x) is M-invariant 
so is P. Thus P projects to a distribution P on M k G / F  which solves the coboundary 
equation ~(a, x) = P(x) - -P(ax)  for all a cA .  Furthermore, derivatives of  all orders 
of  P along stable and unstable manifolds of  some regular element and along the orbit 
foliation are continuous functions. In  particular, let A be the sum of the Laplacians 
raised to the power m of the stable, unstable and orbit foliations raised to the power m. 
Then A is an elliptic operator, and A(P) is a function. As m is arbitrary large, P belongs 

to all Sobolev spaces by standard results on elliptic operators, and thus is C ~ 

4.4.  Fiber bundle  ex tens ions  o f  s tandard  act ions  

As discussed in the description of  Example 2 .7  and of the actions on nilmanifolds 
in Example 2.5, the actions of  this class are obtained by  successive toral extensions of 
products of actions of the same kind with transitive actions on tori. For simplicity, we 
will just describe the case of a toral extension of a symmetric space example. The  argu- 
ments in general are entirely analogous and are left to the reader. 

Suppose R k is a split Cartan subgroup in a real semisimple Lie group G without 
SO(n, 1) and SU(n, 1) local factors. Let r be an irreducible cocompact lattice in G 
and let ~ : F ~ SL(m, Z) be a representation of r by automorphisms of the m-torus T"*. 

Then let ~ be the Rk-action on G • r T~ given by a([(g, t)]) = [(ag, t)] where [(x,y)] 
denotes the equivalence class of (x,y) ~ G • T "  in G X r T% Then the twisted Weyl 
chamber flow is the R~-action induced on M \ G  X r T~ where M again is the compact 

part  of  the stabilizer of A. 
We will view M \ G  x r T~ as a torus bundle over M \ G / F .  Every cocycle ~ can 

be decomposed into the orthogonal sum of a cocycle constant along the fibers and one 

with 0 averages over all fibers. The first component is a cocycle on the base, and is coho- 
mologous to a constant by Theorem 2 .9  for Weyl chamber flows. Thus it suffices to 
consider the second component which we will treat similarly to the suspension case. 

Fix a relatively compact fundamental domain ~ for I' acting on G. For p ~ G and 
a ~ R ~ write p -  1 ap = b., ~, 7., ~ with ~,~, ~ E r and b,, ~ ~ ~ .  Denote the restrictions of a 
function F on G • T '~ to the tori Tv by F v. We have a natural  trivialization of  the torus 

bundle over ~ .  Using this trivialization expand F ~ as a Fourier series F v = ~]~ F~' x I. 

Let ~ be a C~176 Pick a regular element a ~ R ~, and for (p, x) z G X T ~' 

set f ( p ,  x) = ~(a, [(p, x)]) where [(p, x)] denotes the projection of (p, x) to G •  T".  
Similar to the suspension case we will calculate obstructions to the solvability of 
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the cocycle equation through Fourier coefficients. A straightforward calculation shows 

that for I e Z "~ and p e & the expression 

co 
O~(p)  = v ~ , k , p  

J"~oo d P(Yak , p) I 

provides an obstruction to solving the cohomology equation on the fiber T~. Note that 

P(Yak,~) = P(bak,~) - 1  p(p-1 a~p). 

This and the fact that p(y,k,~)I e Z  ~ implies that for I ~ Z ~ - - { 0 } ,  p(p) I  cannot 
belong to the stable subspace of p(a). Hence 1[ p('C,k,,) I [[ grows exponentially uni- 
formly in p ~ ~ when k ~ oo. In  particular, the obstruction Oi(p) is finite and changes 
continuously in p as ~ is C ~ 

Lemma 4.7. - -  For all I and every p ~ ~ ,  we have Or(p) = O. 

Proof. - -  As the obstructions change continuously in p, it suffices to show that 
O~(p) = 0 for almost every p. Let a' ~ R ~. Arguing as in the proof of Lemma 4.3 we 

see that for every l E Z 

: ~ ~bak(a ' ) l ,P  
OI(•) le= -- oo J P{Tak(a')l,p) I* 

4"~bak(a')l'P is finite. In  order to show that O i ( P )  = 0 it suffices tO see that ~dk, l=_ooaP(Yak(a,)l,p}i 
Now assume that p(a~(a') ~) is ergodic. Note that 

p (,~ak(a,)l ' p) = p (bak(a,)l, ~) -1  p (p--1 a ~ ( a , ) ,  p ) .  

Hence for I ~ Z"  - -{  0 }, p(T,k(.'~l, ~) I grows exponentially if p(p) I does not lie 
in one of finitely many proper subspaces of R '~, namely the weak stable subspaces of non- 
hyperbolic elements of the representation p restricted to the plane generated by a and a'. 
Rational irreducibility of p implies that the set of such p is a proper subvariety of ~ and 
hence has measure 0. [] 

Now we construct a coboundary P+(p, x ) =  P-(p ,  x ) =  P(p, x) whose Fourier 

coefficients at p ~ ~ are given by ~ ~r~"k,p We obtain exponential estimates uniform 0 J O(Tak,p) I " 
in p as in the final part  of the proof of Proposition ft. 2. In  particular, P+ is a distribution. 
Then  using elliptic estimates as in the Weyl chamber flow case, one sees that P is C ~ 

4.5. Livshitz Theorem and H61der rigidity 

We now prove Theorem 2.10. Since the set of  ergodic elements of any volume 
preserving Anosov action is dense and the set of regular elements is open, there exists 
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an ergodic and hence topologically transitive regular element  a e R k. Le t  x e M be a 

point  whose a-orbit is dense. We define 

P((na) x) = ~(na, x) 

for all n ~ Z. Thus  the function P is defined on a dense subset of  M. The  hear t  of  the 

proof  of  the Livshitz theorem is the following 

L e m m a  4 . 8 .  - -  The  funct ion  P extends uniquely to a H6 lder  continuous func t ion  on M .  

Proof. - -  I t  is sufficient to show tha t  for some 8 0 > 0 there exist positive numbers  C 
and  �9 such tha t  for any  two points y and z for which P is defined with  dist (y,  z) < 8 0 

one has 

II P(z) - P(y)II ~ c dist(y, z)L 

Let  y = ( n a ) x ,  z = ( m a ) x  and  assume tha t  m i> n. Then  the cocycle equat ion 
implies tha t  

P(z) --  P(y)  = ~(ma,  x) - -  ~(na, x) = ~ ( ( m  - -  n) a , y ) .  

Choose the number  8 0 according to the Closing L e m m a  (Theorem 2.4) ,  and  apply 

tha t  theorem to the orbit  segment (ta) Y t  ~ to, , , -  ,~. In  particular,  there is a p o i n t y '  whose 
a-orbit  is closed and  a sequence of  vectors Yo = 0, y l ,  . . . .  -(,~_, ~ R  k where Y, = y(k) 

is such that:  

1. d i s t ( ( ka )  y ,  y ~ y ' )  < Ce -x~min(k' m - , - k ) d i s t ( y ,  z), 

2. I[ V~+~ --  7k --  a II < c II a [I dis t(y,  z) 
3. y , , _ ,  y '  = By' where 

4. II 8 II < c dist(y,  z). 

Now one has 

~ ( ( m  - -  n) a , y )  : 5: ~(a, (ka) y) 
k = 0  

m - - ~ - - I  

= Z ~ ( w + l - w ,  wy')  
k = 0  

m - - n - - 1  

q- ~ [{~(a, ( k a ) y )  - -  ~(Y~+x -- Vk, YkY')] 
k = 0  

m - - n - - 1  

= ~ ( v . - . , y ' )  + Z [~(a, (ka)y) - ~(a, v~y')] 
k = 0  

r a - -  n - - 1  

+ Z f~(Vk+~ - -  Vk - -  a, (Yk -{- a ) y ' ) .  
k = O  
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We will estimate each of the three components in the last expression. First, 3. implies 
that ( y~_ .  --  8)y '  = y ' ,  and hence ~(y~_.  --  8,y') = 0 by the assumption on 6. There- 
fore we get 

~ ( Y . - . , Y ' )  = ~ ( r . - . - -  ~,Y ') + ~(~, ( r . - . - -  ~)Y ') 

= ~(~, ( V . - . -  ~)Y'). 

By the Ht lde r  property of the cocycle [3 and 4. above we have 

[I ~(Y..-. ,Y')l[  = l[ ~(~, (Y~-.  -- ~)Y')1[-< K II ~ II ~< C~ K(dist(y, z)) ~, 

where ~: is a Ht lde r  exponent of f3 and K is the corresponding constant. 
The k-th term in the second summand is estimated by 1. and again by the Ht lder  

property of ~ by 

K , ( C e - x ( ~ ( , . , . - . - k ,  dist,., ,~)K, 

where K'  depends on a. Summing these estimates for k ---- 0, . . . ,  m --  n --  1 we obtain 
an estimate for the norm of the second sum by D(dist(y, z)) K, where D depends on C, 

k and K'. 
To estimate the terms in the third sum we will show that [] Y k + ~ - - Y , -  a I I 

decreases exponentially with respect to min(k, m -  n -  k). 
Since a is a locally free action, we have dist(x, bx) 1> C1 [[ b I[ or equivalently 

( ,)  [[ b [[ ~< C~ -~ dist(x, bx) 

for all small enough b e R *. We can assume by 2. that the vector Yk + 1 -- Y, --  a is 
small enough whenever dist(y , z) is small. Set w = (y, -k a)y ' .  We are going to estimate 
dist(w, (y~ + a) w) and hence, by 2,  [] Yk + a ]] from above. We have 

dist(w, (Yk -t- a) w) = dist((yk q- a)y', Yk+lY') 
<~ dist(a(yky'), a(ka)y) + dist((k 4- 1) ay, Yk+IY')" 

The  second term is estimated from 1. directly, the first from 1. and from the fact that 
0t(a) expands distances by at most a bounded amount.  Combining these estimates 

with ( .)  we obtain 

[[ Yk-t-1 - -  Yk - -  a [1 ~ C2e -x~(k '"-k~ dist(y, z) 

and using again the Ht lde r  property of 

m - - n - - 1  

Y' [1 ~(Tk+l -- Y~ --  a, (Yk + a)y')1[ ~< D'(dist(y, z)) ~ 
k=0  

for another constant D'. This finishes the proof of the lemma. [] 
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Thus P can be extended to a H61der function on M. Hence P(ax) -- P(x) is also a 
H61der function. Since P(ax) --  P(x) = ~(a, x) holds on a dense set, the latter equality 
holds everywhere. By Lemma 4.1 this proves the assertion of the theorem for H61der 

cocycles. 
The claims for C ~- and C~-cocycles follow as in [6] and similarly to Section 4.2. 

One first shows that P is C 1 (respectively C ~176 along the strong stable and the strong 
unstable directions of a regular element as well as the ~-orbits. Since these directions 
span the tangent bundle linearly, P is C 1 (respectively C ~) on M. Since the stable and 
unstable foliafions are not C ~ this last argument uses more than the standard elliptic 

regularity properties, cf. [6, 15, 8, 9]. [] 
We are now able to complete the proof of Theorem 2 .9  a) for standard Weyl 

chamber flows where the Lie algebra g of G has factors isomorphic to ~o(n, 1) or ~u(n, 1) 
as well as for fiber bundle extensions of such actions. 

Proof of  Theorem 8 .9  a). - -  Suppose that ~ is a Weyl chamber flow o f R  k on M \ G / F .  
Let ~ : R k x  M \ G / I " - + R  be a C~-cocycle over 0~ and set /5 = [5ore where 

z~ : G / s  -+ M \ G / s  is the canonical projection. Decompose L ( G / s  = @, V~ into irre- 

ducible representations p~: G -+ V~ of G. Let  "~ denote the projection of ~ to V,. 
Then "~, is an M-invariant cocycle. Hence ~ descends to a cocycle ~, over ~. Note that 
the argument in Section 4 .2  applies verbatim to the ~, as we have uniform exponential 
decay on each non-trivial irreducible component. In  particular, all the obstructions 
from the Livshitz theorem vanish for the [5, for p, non-trivial. As ~ is the limit in the 
smooth (and hence uniform) topology to the finite sums of the ~ all the obstructions 
from the Livshitz theorem vanish for [5. By the IRvshitz theorem [5 is cohomologous to 

a constant. [] 
Next we will show how to smooth continuous cocycles. This together with the 

Livshitz theorem yield the cohomology vanishing result for Ht lde r  cocycles from that 

for smooth cocycles. 

Proposition 4.9.  - -  Let o~ be a locally free Rk-action on a compact differentiable manifold M. 
Let [5 be a continuous cocyde over ~. Then [5 can be arbitrarily well approximated in the C~ 
by C~-eocyeles. 

Proof. - -  Let 0 be the orbit foliation of ~. First notice that ~ can be approximated 
by a cocycle which is C ~~ along the orbits. For that observe that a shift of  a cocycle 

~b(a, X) d~ [5(a, bx) for any fixed b e R k is also a cocycle since R k is abelian. Thus one 

can choose a C~~ p on R * concentrated near the origin and define a new cocycle by 

~b(a, x) aej fnk 9(b) ~b(a' X) db 

which is C ~ along the orbits of ~. 
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Now let us assume tha t  ~ is C Oo along the orbits. For  any  v e R *, set 

, =o x).  

This  defines the infinitesimal genera tor  for ~. T h e  cocycle equa t ion  implies tha t  co is a 

closed form on the orbi t  foliation. Conversely,  given a cont inuous field r of  closed forms 

on  the orbits we can  define a cont inuous  cocycle by  

~(a, x) = f~ o~(a, (;~a) x) d~. 

Thus  in o rder  to prove  the proposit ion,  we need to approx ima te  a cont inuous field co 

o f  closed 1-forms on  the orbi t  foliation by  a Coo-field o f  such forms. 

First  cover  M by coordinate  charts  (" flow boxes ")  U~ such tha t  the orbi t  foliation 

on  each char t  Ui is the foliation x~+ 1 ----- constant ,  . . . ,  x~ ~ constant  in local coordi- 

nates. Le t  V~ C U~ be ano the r  cover  of  M. By the Poincar6 L e m m a  we can  write 

co ----- d o F v inside a char t  U -~ U~ where  d o is exter ior  different ia t ion along d~ and  the 

funct ion F v is de te rmined  up  to an a rb i t ra ry  funct ion constant  on the local leaves. 

Fur the rmore ,  F v can  be chosen cont inuous on U.  W e  will approx imate  F v by  a func- 

t ion F~ such tha t  F~ is Coo on  V ----- Vi,  d o F~ is close to d o F U on U and  F~ ~ F v in a 

ne ighborhood  o f  the b o u n d a r y  0U. 

First  choose a C~176 0 such tha t  0 ~< p ~< 1, p ---- 1 on  V and  p ~ 0 in a 

ne ighborhood  of  0U. 
Next  we can  approx ima te  F v arbi t rar i ly  well by  a Coo-function G v such tha t  d o G v 

is also C~ to F v.  This  can  be done  by  approx imat ing  F v in local coordinates  with 

an  appropr ia te  smooth  kernel. Now pu t  F~ ----- pG v + (1 - -  p) F v.  T h e n  

do = p do Go  + (1 - -  p) do + (go P) - -  

---- d o F v  + p do(Gu - -  Fv) + (do P) (Gv - -  Fv).  

Since d o p is a fixed funct ion and  bo th  G v - -  F U and  do(G U - -  Fu) can  be m ad e  arbi t ra-  

r i ly small, d o F~ can be made  arbi t rar i ly  close to d o F v .  F u r t h e r m o r e  in V, d o F~ ----- d~ G U 

is Coo and  nea r  0U, d o F~ ---- d o F u --  r N o w  pu t  

~o* -~ [ co outside U,  

( d o F~ in U.  

T h e  1-form co* is C OO in V and  is un i formly  close to co. Apply  this approx imat ion  process 

induct ively  to the different  flow boxes f rom the given finite cover. Note  tha t  the process 

keeps a 1-form smooth  where  it  is a l ready  smooth.  Thus  we finally obta in  a 1-form 

smooth  on  all the  V~, and  thus on M,  which is C~ to co. [] 

2O 
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Proof of  Theorem 9..9 b). - -  Let 6 be a H61der cocycle over , .  Then 6 = lim 6, 

is the limit of smooth cocycles 6,.  By Theorem 2.9 a), the 6, are cohomologous to a 
constant cocycle 6" which is just the average of 6, over M. Hence 6" = lira 6~, exists 
and is a constant cocycle. As 6, -- 6~ are coboundaries, all the obstructions from the 
Livshitz theorem vanish for 6, -- ~ ,  and hence for 6 -- 6*- By the Livshitz theorem, 

6 -- 6" is a H61der coboundary. [] 

Proof of CoroUary 2.11.  - -  Given a cocycle 6 over the product of two Anosov actions, 

decompose it as 6 = 6x + 63 + Y where 61 and 6~ are constant along the first and 

second factor respectively, and y is orthogonal to both factors. I t  suffices to show that y 

is cohomologous to 0. 

Suppose x ~ M1 and a 1 x = x for some al ~ R k. Pick y ~ M 2 such that the an-orbit 
o f y  is uniformly distributed in M~. Since 6 is a cocycle we get 

0), = 1 0), 4y)). 
n k = l  

Since y is orthogonal to the second factor a n d y  is uniformly distributed the last sum tends 
to 0 as n --* oo. Since s u c h y  are dense in M~, we have y((at,  0), (x,y)) = 0 for a l ly .  

The same argument applies to the second factor. As any closed orbit for the product 

action is the product of closed orbits on the factors the Livshitz' theorem applies. [] 

5. T ime  changes,  invariant  vo lumes  and local H61der rigidity 

Proof of  Theorem 2.12. - -  For part a), suppose that  ~ is a standard R~-action on 
a closed manifold M with k t> 2. Let another action ~* of R ~ be a C=-time change of ~. 
For a ~ R  ~ and m e M set am = ~(a)(m) and a*m = ~*(a)(m) respectively. Note 

that  ~* has no isotropy at x if ~ has none. Then there is a unique continuous cocycle 
6 : R  ~ • M ~ R ~ that satisfies the equation 

ax = 6(a, x)* x. 

Note that 6 : R  k x M - + R  ~ is G ~. 

By Theorem 2.9 a), 6 is G~176 to a homomorphism p : R  ~ ~ R  ~ 
by a &~ P : M -+ R ~. Let us show next that p is an embedding. Pick x r M 

such that  the isotropy of x w.r.t. 0~ is trivial. Since P has compact range, we see that  the 

image of p cannot be contained in a hyperplane of dimension less than k. As p is linear, 

p : R k ~ R ~ is an isomorphism. 

Now set ~(x) = P(x)* x. Then +(ax) = p(a)* +(x). Therefore + is surjective. Sup- 

pose qJ(x)= +(y). Then y = bx for some b e R  ~. Hence p(b)*+(x)= +(x). As + is 

homotopic to the identity and the identity is an orbit equivalence, p induces an iso- 

morphism between the isotropy groups of x and +(x). Hence y = bx = x, and 
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is injective. The equivariance property implies that + is a diffeomorphism, establishing 
Theorem 2.12 a). 

The proof of  part b) is essentially the same, replacing C ~~ by H61der everywhere. D 

Proof of Theorem Z. 18. - -  Consider a standard Anosov action ~ of R * on a mani- 
fold M and a perturbation 0~* sufficiently close to ~ in the Ca-topology. By Theorem 2.3  
there is a H61der homeomorphism 9 : M -+ M that sends orbits to orbits. The pullback 
of  the perturbed action under ~ determines a H61der time change. Theorem 2.12 b) 
allows to straighten q~ into an isomorphism hb (up to an automorphism of Rk). Note 
that the resulting conjugacy is automatically smooth along the Rk-orbits. [] 

Proof of Theorem 2.14.  - -  Without loss of generality we can assume by Theorem 2.13 
that 0~* and 0c are conjugate by a H61der homeomorphism ~ (without an automorphism). 
To find an invariant volume for the perturbed action ~*, consider the Jacobian of  the 
original volume co for ~*. The logarithm of the Jacobian is a smooth cocycle over ~*. 
Hence the pullback of the logarithm of the Jacobian is a H/51der cocycle of the original 
action. By Theorem 2 .9  b) this cocycle is H/51der cohomologous to a constant cocycle. 
Hence the original cocycle over ~* is H61der cohomologous to a constant. Thus the 
obstructions in Theorem 2.10 vanish. As the original cocycle is C =, the coboundary is also 
C ~ by Theorem 2.10. This implies that there is a positive C~~ 9 : M - +  R 
and a constant C such that the Jacobian multiplies the volume pco by C. Since the total 
volume is preserved we see that C = 1. [] 
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