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Abstract. We investigate invariant ergodic measures for certain partially hyperbolic and
Anosov actions of R¥, Z* and Z%. We show that they are either Haar measures or that
every element of the action has zero metric entropy.

1. Introduction
Actions of higher-rank abelian groups and semigroups on compact smooth manifolds
display a remarkable and not yet completely understood array of rigidity properties
provided that the action is sufficiently hyperbolic. Early indications of such phenomena
can be found in the works of Koppel and Sacksteder [17, 27] on commuting one-
dimensional and expanding maps. Katok and Lewis [11] established local and global
differential rigidity of the actions of Z"~! on T™ by hyperbolic toral automorphisms.
Some of the phenomena, including trivialization of the first cohomology group, absence
of non-trivial time changes and local Holder and differential rigidity for a general class
of standard abelian actions, are studied in our papers [13-15]. For related developments
see [10, 12].

Another of these rigidity properties is the relative scarcity of invariant Borel probability
measures. It was first noticed by Furstenberg in his landmark paper {5} where he posed
the following problem.

Furstenberg’s Conjecture. The only ergodic invariant measures for the semigroup of
circle endomorphisms generated by multiplications by p and g, where p* # g™ unless
n =m = 0, are Lebesgue measure and atomic measures concentrated on periodic orbits.
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Furstenberg establishes the weaker topological version of this statement by showing
that all topologically transitive sets are either finite or the whole circle. This was
generalized to the optimal results for semigroups of toral endomorphisms by Berend
[2, 3]. Satayev {28] proved that the only ergodic invariant measures are Lebesgue and
atomic for larger semigroups generated by multiplications by P(n),cz, where P is any
polynomial with integer coefficients. The first result directly pertaining to Furstenberg’s
conjecture was obtained by Lyons [21] using harmonic analysis. He proved that the only
invariant measure which makes the multiplications exact endomorphisms is Lebesgue.
Rudolph and Johnson [8, 26] strengthened this result by replacing the exactness condition
with positive entropy for some and hence all elements of the action. At the heart of their
arguments lies a symbolic version of the natural extension of a Zi-action to a Z?-action.
For further developments on this specific problem see [4, 6].

More generally, one notices a sharp contrast between Anosov diffeomorphisms and
flows, i.e. hyperbolic actions of Z and R, which possess an abundance of invariant
measures with very different ergodic properties, including many measures with positive
entropy, and ‘genuine’ hyperbolic actions of higher-rank abelian groups and semigroups.
In the latter case, all known ergodic invariant measures are of an algebraic nature unless,
like in an example constructed by Rees in an unpublished manuscript [24], there is an
invariant submanifold on which the action has a factor where it reduces to an action
of a rank-one group. The question of deciding which hyperbolic (Anosov) or partially
hyperbolic actions should be considered ‘genuine’ is rather subtle. Obviously, in addition
to faithfulness one should require the absence of rank-one factors for the action and all of
its finite covers. The central open question in the area is whether all such actions are of an
algebraic nature (cf. [9]). For the time being, it is reasonable to list all known examples
and bundle them together under the name of standard actions. These include irreducible
semigroups of partially hyperbolic endomorphisms of tori and (infra)nilmanifolds, their
natural extensions and suspensions, Weyl chamber flows and rclated symmetric space
examples and twisted Weyl chamber flows (cf. §3 and 6 as well as [13]). Then the
central open problem concerning invariant measures can be formulated in the following
way.

All standard examples act on biquotients M of a Lie group G. We call a submanifold
M’ of M homogeneous if its pre-image in G is a coset of a closed subgroup. We call
a measure on a finite union of homogeneous submanifolds Haar if its restriction to any
of the homogeneous submanifolds can be constructed by projecting Haar measure on a
coset in G to M.

Main conjecture. Let « be a standard Anosov action of ZX , Z* or R¥, k > 2 on a manifold
M. Then any «-invariant ergodic Borel probability measure u is either Haar measure on
a homogeneous real algebraic subspace or the support of y is a homogeneous subspace
M’ which fibers in an a-invariant way over a manifold N such that the a-action on N
reduces to a rank-one action, i.e. the action of Z,, Z or R.

In particular, if the support of p is all of M then p is Haar measure on M.

The second alternative includes measures supported on closed orbits of the action. The
set of such orbits is always dense. Apart from these measures, the second alternative
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does not appear in the standard toral examples and appears to be rather exceptional in
the symmetric space examples.

A similar conjecture can be stated for a more general class of partially hyperbolic
actions where one may have to allow natural measures on some non-homogeneous real
algebraic submanifolds.

In this paper we consider invariant ergodic measures for certain homogeneous actions
of higher-rank abelian groups. Our main assumption is similar to that of Rudolph and
Johnson, namely that some element has positive entropy w.r.t. the measure in question.
In the most general case, we have to assume more. For Rf-actions for example,
it is sufficient to assume that every one-parameter subgroup is ergodic. The similar
assumptions for Z*- and Zﬁ-actions are that one parameter subgroups of the suspension
and correspondingly the suspension of the natural extension are ergodic. In particular, all
weakly mixing measures satisfy these assumptions. These conditions exclude measures
coming from Rees’s examples since those measures are not ergodic with respect to certain
one-parameter subgroups.

Under these or slightly weaker assumptions, we show in the toral and semisimple
(symmetric space) cases that the measure is Haar measure on a homogeneous algebraic
subspace (Theorems 5.1 and 7.1, Corollaries 5.2 and 5.3, and analogous statements for the
semisimple case). In many cases, where there are no non-trivial homogeneous algebraic
invariant subspaces, this implies that the measure is Haar measure on the whole space.
In the case of twisted Weyl chamber flows, to achieve similar conclusions we need to
assume, in addition, that the projection to the semisimple factor has positive entropy for
some element (Theorem 7.2).

For certain toral actions, essentially the totally non-symplectic actions, the extra
assumptions can be removed. Thus we obtain a generalization of the Rudolph and
Johnson results which covers certain commuting expanding toral endomorphisms, Anosov
actions of higher-rank subgroups of Z"~! on T" by automorphisms and many other
examples (Corollary 6.4).

The main idea of our argument is to decompose the invariant measure into conditionals
along stable and unstable foliations of various elements of the action. These foliations
are homogeneous. By looking at conditionals at various invariant subfoliations we show
that some of these conditional measures are either atomic or Haar along a homogeneous
subfoliation. In the first case, the entropy of some and then every element is zero. In the
second case, rigidity follows in the toral case from the unique ergodicity of a linear flow
on the torus on its orbit closures and in the semisimple and twisted cases from Ratner’s
classification [23] of invariant measures for homogenous actions of unipotent groups.

Let us point out that our method, which is based on the local structure of stable and
unstable foliations for various elements, breaks down for symplectic actions of Z* on
even-dimensional tori. Such actions may be totally irreducible (no invariant rational
subtori); explicit examples of this kind starting from Z? actions on T* were shown to us
by L. Vaserstein. However, the local structure of such actions as presented by Lyapunov
decompositions, Weyl chambers and Lyapunov hyperplanes (see the next section) is
undistinguishable from that of the products of rank-one actions.
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2. Lyapunov exponents
We will study Anosov and, more generally, partially hyperbolic actions of Z* , Z* and
R*. For a general discussion of such actions we refer to [14, 15]. As we will see,
it is more convenient for our approach to operate with R¥-actions. Therefore, let us
first explain how to pass from an action of Z* to R¥. This is the so-called suspension
construction.

Suppose Z* acts on N. Embed Z* as a lattice in R*. Let Z* act on R* x N by
zZ(x,m) = (x — z, zm) and form the quotient

M =R x N/ZF.

Note that the action of R¥ on R* x N by x(y,n) = (x + y,n) commutes with the
Zk-action and therefore descends to M. This R¥-action is called the suspension of the
Zk-action.

Note that any Z*-invariant measure on N lifts to a unique R*-invariant measure on
the suspension.

Furthermore, we can pass from a ZX -action to a Zk-action by a natural projective
limit construction in an appropriate category. This construction is explained in detail
for toral endomorphisms in §3, where it is called the solenoid construction. As we will
see in the Appendix, the solenoids are locally modeled on the products of certain p-adic
rings of integers with R*. Let us also mention that any invariant measure on the torus
canonically lifts to the solenoid.

A crucial role in our analysis of R¥-actions is played by the Lyapunov exponents.
Consider a measure-preserving ergodic action of R* on a space X. Suppose R* acts by
bundle automorphisms on a bundle over X with products of real and p-adic vector spaces
as fibers covering the given action on X. For a single element a in the group and a vector
v in the extension, the Lyapunov exponent A(a, v) is defined in the usual way (compare
with (22, ch. V]). There is a decomposition into Lyapunov subspaces of the extension
a.e. such that the different Lyapunov exponents of a are given as Lyapunov exponents
of a and some vector in the Lyapunov space. Due to the commutativity of the group,
we can find a common refinement of the Lyapunov decompositions of single elements
of the group. We will call this refined decomposition the Lyapunov decomposition of
the extension. This allows us to consider the Lyapunov exponents A(-, v), for v in a
Lyapunov space, of the extension as a real valued functional on the group. Since the
acting group is abelian, the Lyapunov exponents are linear functionals on the group. A
particular example of such an extension for a smooth system is its derivative. We refer
to [7] for a more detailed exposition of Lyapunov exponents in this case.

When we speak about Lyapunov exponents of a Z*- or a Z* -action we will always
mean those for the suspension and correspondingly the suspension of the natural extension
of the given action. Consider the finitely many hyperplanes in R* defined by the vanishing
of the functionals. We will call these hyperplanes the Lyapunov hyperplanes. Let us call
an element a € R* regular if it does not belong to the kernel of any non-trivial functional.
All other elements are called singular. Call a singular element generic if it belongs to
only one Lyapunov hyperplane. Note that the tangent space to the R*-orbit defines the
identically zero Lyapunov exponent. Let us emphasize that Lyapunov exponents may be
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proportional to each other with positive or negative coefficients. In this case they define
the same Lyapunov hyperplane.

The Lyapunov hyperplanes divide R into finitely many open connected components,
called the Weyl chambers of the action. Thus every regular element belongs to a unique
Weyl chamber. Every generic singular element belongs to the common boundary of
exactly two Weyl chambers. The system of Weyl chambers is symmetric w.r.t. the
origin. Thus, for any Weyl chamber C, —C is also a Weyl chamber.

Note that the Lyapunov hyperplanes cannot be directly seen from a Z- or Z* -action
as the hyperplanes are not rational in general. This is one of the reasons that make R*
actions a more convenient object of study.

In all homogeneous examples, standard or not, the Lyapunov exponents for the
derivative extension are defined and are constant everywhere. In particular, they are
independent of the invariant measure. They determine a splitting of the tangent bundle
(which may have p-adic components in the solenoid case) into invariant sub-bundles
called the Lyapunov spaces. Let us emphasize that the Lyapunov spaces in the p-
adic directions correspond to closed subgroups of some Z7. The dimension of each
Lyapunov space will be called the multiplicity of the exponent (where dimension for a
p-adic direction is the dimension of corresponding p-adic modules, c.f. the Appendix).
The multiplicity of the zero exponent is at least k. If the multiplicity of the zero exponent
is exactly &, we call the action Anosov. A regular element for an Anosov action is called
an Anosov element.

For an element a € R* let us define the stable, unstable and neutral distribution
Ef, E; and E? as the sum of the Lyapunov spaces for which the value of the
corresponding Lyapunov exponent on a is negative, positive and zero respectively. The
neutral distribution for any element of an R*-action contains the tangent distribution to
the orbit; in the non-Anosov partially hyperbolic case it also contains other directions
corresponding to the Lyapunov exponents identically equal to zero. We will be interested
in the complement to these ‘trivial’ directions in the neutral distribution of a singular
element. It is defined as follows.

Note that the stable and unstable distributions are constant on a Weyl chamber.
Furthermore, note that the sum of stable and unstable distributions is constant for all
regular elements. We will denote this sum by E¥. For singular elements the neutral
distributions are bigger than for regular elements. For example, for a generic singular
element the neutral distribution contains a direction which is stable for one adjacent Weyl
chamber and unstable for the other. We will call the intersection of the neutral distribution
for an element a with the distribution E¥ the center distribution of a and denote it by
EY. The center distribution for any singular element a always contains directions on
which the derivative of a acts isometrically w.r.t. a canonical homogeneous metric. We
denote the distribution of isometric directions inside EQ by E!.

Let us note that the Lyapunov spaces in the standard toral examples always integrate
to affine foliations (possibly with a p-adic part). In the symmetric space examples,
some of the Lyapunov spaces may not be integrable (cf. the discussion in the proof
of Theorem 7.1). However, stable, unstable and center distributions as well as their
intersections (for different elements) are always integrable and integrate to homogeneous
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foliations. In fact, the stable and unstable foliations of any element are always the
orbit foliations of a unipotent subgroup. For an element a we will denote the integral
foliations of the stable, unstable, center and isometric distributions E¥, E;, E? and E!
by W, W, W2 and W! respectively.

3. Toral endomorphisms, solenoids and their suspensions

Consider an embedding o of Z’jr into the semigroup of non-singular m x m integer
matrices. Then Zﬁ acts on the torus T™ by endomorphisms. Note that this includes
actions of Z* by toral automorphisms by restricting to Z%. We will always assume
that every non-trivial element of Z% acts ergodically with respect to Haar measure, or
equivalently, that no non-trivial element of Zﬁ has eigenvalues that are roots of unity.
Such an action is called irreducible if no finite cover splits as a product. Irreducible
actions by ergodic toral endomorphisms are called standard actions. Furthermore, in
agreement with the terminology of the previous section, we will call & Anosov if the
image of ZX contains matrices without eigenvalues on the unit circle.

Note that if the action admits a factor on which the action reduces to an action of Z
or Z,, then invariant measures cannot be rigid. In this case, however, any element in
the kernel of the action on the factor has one as an eigenvalue. Thus actions by ergodic
toral automorphisms do not admit such factors. Conjecturally, the presence of ‘rank-one
factors’ is the only obstruction to rigidity.

To make these actions invertible we will introduce the natural extension o* : Z¥ —
Aut(S) of «, where S is the solenoid obtained from the torus as follows.

Let Ay, ..., Ay be the images of the generators of Zl—‘r Then we get a projective

system
™~ -
.
T
/
where the maps are given by the A;. We let the solenoid S be the projective limit of
this system in the category of compact topological groups.
The solenoid can be realized as a subset of (T'")Z‘k as follows. Let g; be the ith shift
on Zk, 1€ 0;i(J1, s Jireen iy =ty oo Ji +1,..., ji). Then set

Tnl
/

k

R
A

S={we (T |w,; = Aiw;).

The solenoid is a compact subgroup of (T™Z with the product topology. Its dual is a
subgroup of Q™, more precisely it is contained in (Z(py, ..., p))", where py, ..., p; are
those prime integers which occur in the prime decomposition of the determinant of at least
one of the matrices Ay, ..., Ay and Z(p,, ..., p;) is the subgroup of rational numbers
whose denominators are only divisible by p;, ..., p;. Note that Z* acts on S naturally
by coordinate shifts. Let us denote this action by «*. The solenoid is a fibration over
T™ with Cantor set fibers by mapping @ € S to w(0, ..., 0). The projection intertwines
the o*-action restricted to ZX with «. Note that a local cross-section to this fibration
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is given by the local connected component of w. We will call this transversal the toral
direction at w. Note that the projection is one-to-one if and only if all A; are invertible.
Every a-invariant measure lifts in a unique fashion to an a*-invariant measure on S.
There is a natural Holder structure on the solenoid which comes from any metric on
the product of the form
/
d(w, ) = Z fiT_(w’_wf_).

: oIl

where ¢ > 1 and dy~ is the standard metric on the torus. Note that the Holder structure
is independent of c¢. This also allows us to define exponential convergence along the
fiber and hence stable, unstable and neutral spaces for the elements of «*.

For most of this paper, and in particular for the main Theorem 5.1, it is sufficient
to have these rough dynamical structures. For certain applications in §6, however, we
need to define specific exponential speeds of expansion and contraction in the p-adic
directions, i.e. Lyapunov exponents. To do this we need a more subtle metric structure
on S which requires an alternative, more arithmetic description of the solenoid. Its
main advantage is that we can canonically define a special metric d on § which gives
a Lipschitz structure on S and defines Lyapunov exponents on S which agree with the
standard Lyapunov exponents in the toral direction. The metric d is Holder equivalent
to d.. Since these issues are irrelevant to the invertible case and the main theorem, we
only give this description in the Appendix.

4. Conditional measures and entropy

Let us briefly recall how a probability measure v on M determines a system of conditional
measures on a foliation F'. Denote by B the Borel o-algebra on M. A measurable
partition & of M is a partition of M such that, up to a set of measure zero, the quotient
space M /£ is separated by a countable number of measurable sets [25]. For every x in
a set of full v-measure there is a probability measure v defined on &(x), the element
of & containing x, and satisfying the following properties. If B; is the sub-c-algebra of
B whose elements are unions of elements of £, and A C M is a measurable set, then
X = vf (A) is B-measurable and v(A) = f vf (A)v(dx). These conditions determine
the measures vf uniquely.

Given a continuous foliation F', let F'(x) denote the leaf through x. The partition
into the leaves of F' is not a measurable partition in general (although the point of the
proposition below, as well as of most of the arguments in §5, is that in the zero entropy
situation they are in fact measurable). Let o (F') denote the o-algebra of all sets that
consist a.e. of complete leaves of F. It corresponds to a unique measurable partition
which is called the measurable hull of F, and is denoted by &(F). It is the finest
measurable partition whose elements consist a.e. of the entire leaves of F'. Unless it is
trivial, it is usually hard to describe geometrically. We will be primarily interested in
the integral foliations of the various distributions described in §2. Conditional measures
on leaves of such a foliation are o-finite locally finite measures v defined up to a
multiplicative constant. In other words, for almost every x € M and for open sets
A, B C F(x) with compact closures one can canonically define the ratio vf (A)/ vf (B).
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In the homogenous case in question, as well as in some other cases, this can be done
as follows. Take a small homogenous transversal T to F'(x) at x and translate it to cover
a neighborhood of large enough disc D in F'(x) which contains both A and B. Thus,
in this neighborhood we have a product structure modeled on D x T. There is also a
metric which is translation invariant. Let T(¢) C T be the g-ball around x. Then

vi(A) fim v(A x T(g))
vF(B)  e>0v(B x T(g))

There is an alternative way of describing conditional measures which works in a more
general situation. Call a measurable partition £ subordinate to F if for v-a.e. x we have
&(x) € F(x) and £(x) contains a neighborhood of x open in the submanifold topology
of F(x). Note that two different partitions subordinate to the same foliation determine
conditional measures that are scalar multiples when restricted to the intersection of an
element of one partition with an element of the other partition. Thus there is a locally
finite measure vf" on F'(x) uniquely defined up to scaling that restricts to a scalar multiple
of a conditional measure for each partition subordinate to F. The measures vF form the
system of conditional measures on the leaves of F'. In more general situations, which do
not concern us in this paper, a certain care is needed to justify the fact that conditional
measures are really correctly defined up to a constant scalar multiple. However, in order
to show connections between trivialization of conditional measures it is enough to see
that conditional measures are defined up to a scalar function, which is of course quite
obvious from the preceding construction in a fairly big generality. Of course, in the end
this is not surprising at all since the conclusion will be that the conditional measures are
atomic, hence finite and can be normalised so that the partition into leaves is measurable!

Given a € R* and an a-invariant measure u, we denote the partition into ergodic
components of u under a by &,.

Let us recall the relation between conditional measures and entropy. It is well known
that entropy is related to exponential contraction and expansion. In order to accommodate
solenoids, we will formulate a criterion for the vanishing of metric entropy in the context
of foliated compact metric spaces.

The underlying spaces for our actions are locally isometric with the product of some
R” with finitely many @,”. All the invariant distributions and associated foliations are
also locally isometric to such products. Recall that the box dimension of a metric space
(M, d) is given by

, log(Nau(¢))
limsuyp —————
£—0 IOg(E)
where Ny(¢) is the maximum number of disjoint £-balls in M. Let ¢ > § > 0 and let
N,(g, 8) be the maximum number of disjoint §-balls in any e-ball. There is a constant
D > 0 such that for all small ¢ > § > O,

log Ny(g, 8)
log(e/d)
Let (F, dr) and (T, dr) be metric spaces. A foliation F of a metric space (M, d),

modeled on F with transversal T, is a disjoint decomposition of M into subspaces F,,
called the leaves of F', such that each F, is the Lipschitz image of F and for every point
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x € X, there is a neighborhood U such that U is bi-Lipschitz with the metric product
Ur x Ur, where Uy and Uy are neighborhoods in F and T respectively, and where the
bi-Lipschitz map takes Uyp x {t} for all t € Uy to the intersection of a leaf of F' with
U. We say that a pair of foliations F' and G of M define a local product structure if
F' is modeled on F with transversal T, GG is modeled on T with transversal F, and the
bi-Lipschitz maps defined locally respect both foliations simultaneously.

PROPOSITION 4.1. Let M be a compact metric space of finite local box dimension. Suppose
F and G are foliations on M that define a local product structure. Let ¢ : M — M be
a bi-Lipschitz homeomorphism preserving F and G, which locally strictly contracts F,
and such that for every € > O there is a C. > 0 such that for alln > 0 and y € G(x) the
distance d{¢p™"(y), 7" (x)) < Cpe"d(x,y) ifd(x,y) < &.

Then, if u is a Borel probability measure on M, and pF is its system of conditional
measures, the metric entropy h, = 0 if and only if for u-a.e. x, ;Lf is atomic. In this case
wF is supported on a single point.

In this paper we will only need this statement in one direction, namely that the metric
entropy is zero if the conditional measures .f are atomic. We will describe the proof
for this direction. First, note that the conditional measure uF is supported on a single
point if it is atomic. Indeed, if x is an atom of the conditional measure, there is a
small neighborhood U of x in the leaf such that uF(U — {x}) < enF ({x}). Pushing uF
backward and using Poincaré recurrence, we see that for a typical x, uf is concentrated
at x.

Now assume that uF is supported in a single point. Then we can find a set of full
measure which intersects every F-leaf in at most one point. In particular, the intersection
of this set with a neighborhood with local product structure is the graph of a measurable
function defined on an open set U C T with values in an open set V C F. By Lusin’s
theorem, there is a compact set K of arbitrarily large measure which is a finite union of
graphs of continuous maps from subsets of T to F. Let L be a Lipschitz constant for ¢.
Pick an n and é > O such that L"§ is small. Consider a partition & of M with two types
of elements: intersections of sets of diameter less than § with K and with M \ K. It is
well known that (¢, &) < H(& | ¢"&)/n. The latter quantity is estimated separately
for the pre-images under ¢ ™" of the two types of elements of &£. In both cases, we just
estimate the contribution of each element ¢ € ¢ £ by the number of elements of &
which have non-empty intersections with ¢. For ¢ in ¢ 7" K, we estimate the diameter
of ¢ by Cce®"4, using the assumption of the proposition. Since the local box dimension
is finite, the number of non-trivial intersections grows at most exponentially in n with
arbitrarily small exponent.

For ¢~"(c) for ¢ € &, where ¢ C M \ K, we have a uniform exponential estimate of
the size and hence the number of non-trivial intersections using the Lipschitz constant
of ¢. Since the measure of M \ K is small, the contribution of such elements to the
conditional entropy is small.
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5. The main theorem for toral endomorphisms

In all standard toral examples, let us consider the tangent bundle to the phase space
and define the derivative action. (In the solenoid case, this will include some non-
Archimedean components, as explained in the Appendix. All the arguments in this
section, however, only use the Archimedean directions. Thus we may just consider
the real tangent bundle over the solenoid in this section.) The derivative is a linear
extension of the action, and the Lyapunov exponents are given by logarithms of the
appropriate valuations of the eigenvalues. By commutativity we can find a joint splitting
into subspaces on which the Lyapunov exponents are constant for each element. This is
the decomposition into Lyapunov spaces described in §2.

Let us again recall that there is a one-to-one correspondence between Borel probability
ergodic invariant measures for an action of Z*_ by toral endomorphisms and those for the
R*-action which is the suspension of the solenoid extension of the toral action. Since
in our arguments we will be dealing mostly with R¥-actions obtained as suspensions of
solenoid extensions, we will adopt the following notation. If i is an invariant measure
for an R*-action, then 7= will denote the corresponding measure for the toral action.
Obviously, every element of the R¥-action has zero entropy w.r.t. u if and only if every
element of the corresponding Z’jr-action has zero entropy w.r.t. pym.

The following theorem is our principal technical result in the toral case.

THEOREM 5.1. Let a be a R¥-action with k > 2 induced from a standard action by toral
endomorphisms. Assume that p is an ergodic invariant measure for a such that there
are generic singular elements ay, . .., a; and a regular element b € R* with E; totally
Archimedean such that

Ef = Z(Ef"i NE;) (%)

i

(where the sum need not be direct) and such that
£, <E(EJ NE}). (%)

Then either ppn is Haar measure on a rational subtorus or every element of o has zero
entropy w.r.t. L.

The genericity of the a; is not actually needed as one can easily see from the proof
of the theorem.

Remark. This theorem generalizes to suspensions of groups of solenoid automorphisms
more general than those obtained from extensions of groups of toral endomorphisms (cf.
Example A.8). The principal difference in the formulation is that the stable distribution
E,'f is not assumed to be totally Archimedean. Conditions (*) and (**) remain the same.
The differences in the proof are not very significant, and will be left to the reader.

COROLLARY 5.2. Let a be a standard R¥-action with k > 2 induced from an action by
toral endomorphisms. Let @ be an a-invariant measure such that every one-parameter
subgroup is ergodic. Then either (r« is Haar measure on a rational subtorus, or every
element of o has zero entropy w.r.t. L.
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Since weak mixing for an action of Z’i implies that every one-parameter subgroup of
the suspension of its natural extension is ergodic, we have the following corollary.

COROLLARY 5.3. Let a be a standard toral Zf‘,_ or Z¥ action with k > 2. Then every
weakly mixing o-invariant measure v is either Haar measure on a rational subtorus or
every element has zero entropy w.r.t. v. In particular, if there are no rational invariant
subspaces, then v is Haar measure on the torus itself or every element has zero entropy
w.r.t. v,

Proof of Theorem 5.1. First let us describe the scheme of the proof. Let b be as in
the statement of the thecorem. We may assume without loss of generality that different
Lyapunov exponents take different values at b by moving b within its Weyl chamber if
necessary.

We will show that the conditional measure of the stable foliation of b is atomic unless
i 1s Haar measure on a rational subtorus. By Proposition 4.1, the entropy of b is zero.
Since the stable foliation of any two elements in the same Weyl chamber coincide, this
also implies that the entropy of any element in the Weyl chamber C of b is zero. Since
entropy is invariant under the taking of inverses, all entropies of elements in —C vanish.
Now every element can be represented as a positive linear combination of elements in
C and —C. Since the entropy is sublinear [7], we see that all entropies are zero.

As noted in §2, the center foliation of a singular element in R* always contains a non-
trivial isometric direction. This follows from the Jordan decomposition. Furthermore,
the p-adic parts of the center direction are all isometric.

We first show that the conditional measure of u w.rt. W, N W, is either atomic or
( is Haar measure on a rational invariant subtorus. This is done by Lemmata 5.4-5.8.
In Lemma 5.4 we analyze the invariance properties of the conditional measure w.r.t.
Wm0 W, along fibers of W, N W/. This is the only place where the condition ()
is used. In Lemma 5.5, we restrict our considerations to the intersection of Wa',_ with a
single Lyapunov subspace and deduce that the support of the corresponding conditional
measure is an affine subspace. Using Lemma 5.4, we establish in Lemma 5.6 that this
conditional measure is Haar on this subspace. If this subspace has positive dimension
then p is invariant under a one-parameter group of translations. Unique ergodicity of
such a group on its orbit closure implies that 7= is Haar measure on an invariant rational
subtorus (cf. Lemma 5.7). Then we proceed by induction on the Lyapunov exponents
and establish the desired dichotomy.

Next, in Lemma 5.9, we establish the same dichotomy for W,” N W2. Thus we can
assume for the rest of the proof that for all i/ the conditional measures of p on any
wrn W‘?', are atomic.

We then conclude that the conditional measure w.r.t. stable foliation of b is supported
on the invariant complement of WIS NW;F in W, (cf. Lemma 5.10). This is the beginning
of another induction. For that purpose, we restrict « to a 2-plane P which contains b and
intersects all the Lyapunov hyperplanes in generic lines. Pick ¢; # O in the intersection
of P with the unique Lyapunov hyperplane that contains a;. Since any two generic
elements in the same Lyapunov hyperplane have the same center foliations, we can
replace the a;’s by the ¢;’s in condition (x). Hence the conditional measures of 1 on any



762 A. Katok and R. J. Spatzier

W," N WY are atomic. Reorder the ¢; such that the indexing of the c;’s corresponds with
the ordering of the Lyapunov lines on P starting from C. Note that not every Lyapunov
line necessarily contains a ¢;. In fact, those that do contain a ¢; correspond to the kernels
of Lyapunov exponent negative on b. Denote the invariant complement of WCO1 NWY in
W,,+ by G(x). Then G(x) can be split into a component in the center manifold of ¢,
and a sum G,(x) of Lyapunov spaces. As for ¢;, we show that the conditional measure
w.r.t. the stable foliation of b is supported on a single leaf of G>(x) (cf. Lemma 5.10).
Continuing in this fashion, using Lemma 5.10 inductively, we see that the support of the
conditional measure w.r.t. stable foliation of b is contained in smaller and smaller leaves
of foliations, and eventually will shrink to a point. This follows from the condition (x).
Hence b has zero entropy.

Now we proceed to the details. We will call a foliation Archimedean if the leaves
do not contain any non-Archimedean directions. Suppose that a is a generic singular
element. Let ' C W/ be any a-invariant Archimedean subfoliation of W/. Denote by
BF (x) the unit ball in F(x) about x with respect to the flat metric. Let u¥ denote the
system of conditional measures determined by F' normalized by the requirement that
uF(BF(x)) = 1 for all x in the support of p.

The next Lemma contains the key geometric idea of the proof. We use the fact that
singular elements are isometric in certain directions together with condition (x*) to show
invariance of the system of conditional measures under a certain group of isometries.

LEMMA 5.4. Suppose that &, < £(F). Then for u-a.e. x, the support of u¥ is the orbit of
the closed subgroup G, of isometries of F(x) which preserve u¥ up to a scalar multiple.
Furthermore, for uF-ae. y € F(x), uf is the image of u¥ under an isometry in G,.

Proof. Since G, maps the support of uf to itself, we only need to show that G, is
transitive on the support of uf.

Let Ky be the set of all x such that the ergodic component of a passing through x
contains F'(x) (up to a set of p,f -measure zero). By the assumption on a, Ky has full
JL-measure.

For p-a.e. x, the ergodic component F, of x is well defined. Let u, be the induced
measure on E,. By Lusin’s theorem, for every £ > O there is a closed set K; contained
in the support of w such that

) u(E,NK;) >1—¢ forall x € Ky, and

2) /,Lf depends continuously on x € K| w.r.t. the weak*-topology.

Set K, = Ko N K. Since the transformation induced by a on K, N E, is ergodic,
the set K3 of x € K, whose orbit {a"x},cz is dense in Ky N E, has full u-measure
in K;. Finally, for any constant L > 0, let K4 be the set of all x € K3 such that
pF(F(x) N K3 N BF(x)) > 1 — Le, where, again, Bf (x) is the ball of radius one in
F(x) w.r.t. the flat metric. Then w(K4) > (1 — (1/LY)(K3) > (1 — (/L)1 —¢). If
x € K4 and y € F(x) N K3, there is a sequence ny, — 00 with a™x € K4 converging
to y. Since /,Lf depends continuously on x € K4 w.r.t. the weak*-topology and a maps
F(x) isometrically, it follows that uf = ¢p,f where ¢ is some isometry of F'(x). Since
u¥ is a scalar multiple of uf, ¢ belongs to G,. Since & can be chosen arbitrarily small
and L arbitrarily large, we see that there is a set X of u-measure one such that for any
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x € X and y in the support of uf, y is in the G,-orbit of x. Since the support of u¥ is
closed and the orbit of G, of x is closed, the claim follows. O

LEMMA 5.5. In addition to the assumptions in Lemma 5.4, let F' be contained in the
intersection of Wa’ with a Lyapunov subspace for a non-zero Lyapunov exponent A. Then
for p-a.e. x, the support S, of u¥ is an affine subspace of F(x).

Proof. By Lemma 5.4, S, is the orbit of a closed group of isometries. Therefore, S, is a
submanifold, possibly disconnected. Note that the maximal principal curvature of S, is
constant along S,. Let «(x) denote this constant.

Let ¢ be any element such that A(c) < 0. Note that ¢ maps S, to S.,. Iterates of ¢
exponentially contract the fibers of F'. In particular, since the exponential contractions in
all directions inside F' are the same, any curve with positive principal curvature will be
mapped to curves with exponentially increasing principal curvatures. Hence «(c"x) goes
to infinity for u-a.e. x unless k(x) = 0. This is impossible by Poincaré recurrence. Thus
k(x) = 0, and hence the support of ;Lf is a union of non-intersecting affine subspaces.

Let us now show that the support is connected. Suppose to the contrary that the
support is a union UA; of at least two affine subspaces A;. Let d, denote the minimum
of the distances from x to any A; which does not contain x. Since the support is a closed
subset, d, > O for all x. Note that d., — 0 as n — oo. This is again a contradiction
to Poincaré recurrence. O

LEMMA 5.6. Under the assumptions of Lemma 5.5, uF is Haar measure on S,.

Proof. By Lemma 5.4, the group G, of isometries of F'(x) which map uF to a scalar
multiple acts transitively on the support S, of /Lf . By Lemma 5.5, S, is an affine
space. Let G, = K, T, be the decomposition of G, into a product of the solvable radical
subgroup 7y by a semisimple group K,, the so-called Levi component. Note that 7, is
abelian and uniquely defined as T, is normal. Since G, is transitive on the affine space
Sy, sois T,. Since T, C G, we can define a measurable cocycle ¢ : T, x S, — Ry by
the relation
(g, uy = pk

If h € G, note that for y € F(x) the pushforward h,pu} = [Lf;, since h maps u! to a
scalar multiple by definition and preserves the normalization as # is an isometry. Since
T, is abelian and c(g, x)uf = uf, we find for all g, h € T, that

(g, ity = (g Oty = hapfy = U = b, = c(g, hX)ptf,.

This shows that ¢ is uFf-ae. constant in S,, and hence defines measurable
homomorphisms ¢, : T, — Ry.

Since b maps conditional measures to conditional measures, b induces a
homomorphism G, — G, via

g (b lpw) ogo ™ Irex)-
Denote the induced homomorphism on the solvable radicals by b, : T, — 7Tj,. Note that

Chx 0 by = ¢. M
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Indeed, we have

F F _ . F _ . F
chx (b (@NHp = Mp (g)bx = Mpogob-1(bx) = Mbog(x)

= bug = bule(@nf) = (@,

By assumption, F' is contained in the A-Lyapunov space, and A(b) # 0. As T, acts
simply transitively on F(y), we can endow the T, with the induced Riemannian metric
[l - §,y from the torus. We can also identify 7, with a subgroup of the torus. Let K be
a compact set of positive measure on which T, || - ||, and ¢, vary continuously. Using
recurrence on K once again, we see that the homomorphisms ("), : T, — Tja, expand
exponentially fast, at least on recurrent subsequences in K. By (1), this contradicts the
continuity of ¢, on K. O

LEMMA 5.7. Let G be a linear foliation on T™. Suppose that v is a probability measure
on T™ such that for v-a.e. x € T™, the conditional measure vf on G(x) is Lebesgue.
Then v is Lebesgue on a subtorus of T™ saturated by G.

Proof. The condition implies that v is invariant under the subgroup G of T™ whose orbit
foliation is G. Hence v is invariant under the closure of G in 7™, and hence Haar on
the corresponding subtorus. O

Recall that b is a regular element satisfying (x). For the remainder of the proof, we
assume that @ is a generic singular element satisfying condition (xx).

LEMMA 5.8. Let F be the foliation W! N W, For u-a.e. x, the conditional measure uf
is atomic unless pr= is Haar measure on a subtorus.

Proof. Split F = ) ,(F N W*) into its intersection with the Lyapunov subspaces. By
Lemmata 5.4, 5.6 and 5.7 the support S, of p,f is a smooth submanifold which intersects
every FF'N W* in at most one point unless w is Haar measure on a subtorus. Let A be
the Lyapunov exponent smallest on b. Let D be the distribution of tangent spaces of S;.
It is measurable, b-invariant and C® on F'(x). Since D cannot intersect the component
in the E, direction in a subspace of positive dimension, D must lie in the sum }_, ; E,,
by b-invariance. By induction, by taking the Lyapunov exponents in increasing order,
we see that D is trivial and uF atomic unless u is Haar on a subtorus. O

Let a be a generic element on the Lyapunov hyperplane defined by a Lyapunov
exponent A for which A(b) < 0. Denote by W? the foliation with tangent distribution
E® = E°NE}. Let u® denote the system of conditional measures with respect to WO(x)
normalized by ug(B?(x)) = 1, where B?(x) is the unit ball in W9x) about x with
respect to the flat metric.

The argument for the next lemma is another application of Lusin’s theorem. The main
construction will be used again in Lemma 5.10.

LEMMA 5.9. Let a be as above. Suppose that the conditional measures on F; = W/ NW;}
are atomic. Then the conditional measure u° on F = WO N W™ is atomic.
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Proof. By the Jordan decomposition, Fj is non-trivial if F' is non-trivial.

By ergodicity of u, the conditional measure w0 is either continuous for a.e. x or
atomic for a.e. x.

Let K € M be compact such that for all x € K, K N F;(x) is at most one point
and u(K) > 1 — (1/L) for some L to be determined later. Such a K can be found by
approximating from inside a set of full measure which intersects any fiber of Fj in at
most one point. Since u? is continuous, we can further assume that for every x € K,
K N WO(x) has no isolated points in the topology of the subspace.

Let D(x) be the orthogonal complement to Fj(x) in W%(x). Denote by BaD x)
(respectively Bf (x)) the a-ball about x in D(x) (respectively Fj(x)). One can choose
g > 0and § > O such that for every x € K, K N (BF1(x) x BP(x)) is the graph of
a function ¢, : P, — Bf (x) and ¢, is an equicontinuous family of functions (with
domains P, varying continuously in the Hausdorff topology).

We will arrive at a contradiction by showing that if x € K returns to K under the
action of an appropriately chosen element of R, the pushforward of ¢, will become too
steep, and hence cannot belong to an equicontinuous family.

By compactness and perfectness of K, there are numbers § > &; > 0 such that for all
x € K, KN (BF(x) x (B (x)\ B{(x))) # . By equicontinuity there is §, > 0, and
such that for x € K and y € By, we have ¢,(y) € BSF;’,OO(x).

Let p € BFi(x) x (BP(x)\ B{(x)) for x € K. Combining the finitely many
exponential speeds of decay for b with the finitely many polynomial speeds of expansion
for a, we can pick a finite number of elements #;,b + n;a € R* fori = 1,...,L such
that (t;6 + n;a)(p) C (Fy((t;b + n;a)x) \ B:;’loo((t,-b + n;a)x)) x Bl;[;((tib + n;a)x) for
at least one i. Let us point out that the number L depends only on a and b and hence
can be chosen in advance, while the specific numbers ¢; and n; depend on §; and ¢ and
hence have to be determined once K is fixed.

Since u(K) > 1 — (1/L), we can find x € K such that (t;b 4+ n;a)x € K for
all i. By the above, there is a p € BFi(x) x (BP(x) \ By (x)). Then for some
i, (tib + nia)(p) € (Fr((tib + ma)x) \ Bjfioo((tib + nia)x)) x BL((tib + nia)x), a
contradiction to the choice of §;. O

The proof of the next lemma is very similar to that of the Lemma 5.9.

LEMMA 5.10. Suppose that A, B and H are invariant subfoliations of W', H = A® B,
A belongs to W® and B belongs to W}. Then the conditional measure of u on H is
supported on a single leaf of B.

Proof. By Lemma 5.9, there is a set of full measure which intersects almost every
leaf of WO N W,F and hence A in at most one point. Hence for p-a.e. x, locally, the
intersection with almost every leaf of H has the form of a graph of a measurable function
¢, : B(x) = A(x). Since b is ergodic and contracts, it follows that either for p-a.e. x,
¢. = 0or ¢, # 0. As in the proof of Lemma 5.9, we can pick a compact set K such that
for all x € K, K N A(x) is at most one point and w(K) > 1 — (1/L), where L is as in
Lemma 5.9. Furthermore, there is £ > 0 as before and 8 > 0 such that ||¢,(¥)l| > & for
some y € Bf (x). As before, K N H(x) is the graph of a continuous function ¢, defined
on a closed set which can be assumed to be perfect. Moreover, the ¢, vary continuously.
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We will now see that the set K N H(x) is contained in the tubular neighborhood
of B(x) of radius §, similar to the proof of Lemma 5.9. Indeed, let y be outside the
3-tubular neighborhood. By equicontinuity of the family of functions ¢,, one can choose
such a y with the B coordinate which is small enough but away from zero. Then there
are finitely many sequences in the plane generated by b and a such that at least one of
them moves every such y to y’ # x in A(x). Then picking a sufficiently large element
in each of these sequences, we deduce that the set K N H(x) is contained in the tubular

neighborhood of B(x) of radius §. Since § can be chosen arbitrarily small the statement
of the lemma follows. O

Now Theorem 5.1 follows as described in the outline of the proof. a

6. Rigidity of positive entropy ergodic measures for toral endomorphisms

In a number of cases, the technical condition (**) on the measure can be deduced from
Jjust the ergodicity of the measure with respect to the action of the whole (semi) group.
The key step for this is the following lemma. Denote the measurable hull £(W}) of
the unstable foliation of an element a € R* by W Similarly let W, = &(W.") and
W0 = £(W?) be the measurable hulls of the stable and neutral foliations of a respectively.

LEMMA 6.1. Suppose a, b € R¥ are such that b is Anosov and E} C E}. Then we have
£ W)

Proof. The Hopf argument shows that £ < W;. Indeed, if f is a continuous function
on M then the forward ergodic averages F¥(x) =1im,_ %22;}, f{a"x) are constant
along stable manifolds of a as they contract exponentially under a. Since the continuous
functions are dense in Li(M), it follows that any invariant LZ-function is constant a.e.
on W (x) with respect to the conditional measure induced by .

Since Ej C E}, we get WH < W/. Note that W; = W since they both
equal the Pinsker algebra of b. This can be seen as in [1, 20]. Even though
some of the directions included in those foliations are non-archimedean, the standard
argument establishing their equality with the Pinsker algebra works since it only uses
exponential expansion and contraction of foliation, does not use the Euclidean structure,
and works in the framework of Borel measure-preserving homeomorphisms of metric
spaces with uniformly contracting foliations satisfying some mild geometric conditions.
More specifically, the argument is based on showing that one can find fine enough
partitions & with w(3§) = 0 such that the intersection of almost every element of the
past £~ with almost every leaf of the contracting foliation contains an open set in the
leaf. Then the negative iterates of £~ contain larger and larger balls in the leaves and
the infinite past contains the whole leaves. But such partitions can be easily constructed
from coverings by closed balls using the following general remark: every ball B can be
perturbed to a set B’ for which exponentially decreasing neighborhoods of the boundary
have exponentially decreasing measure.

Now using the decomposition into Lyapunov spaces, we see that E; C E; implies
that E; D E?@ E; D E?, and hence that W, < WJ.
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Combining all the inequalities between o -algebras established above, we get
£, < W5 <WF =W < WP
O

Proposition 6.3 below gives two natural conditions that imply the hypothesis of
Lemma 6.1. First we need a simple lemma on Lyapunov exponents. Recall that the
Lyapunov exponents of o define linear functionals on R*.

LEMMA 6.2. Let o be a standard action of Z¥, k > 2. Suppose the action contains
an Anosov element a with one-dimensional unstable foliation. Then not all Lyapunov
exponents of the suspension of the solenoid extension of a are proportional to each other.

Proof. Assume to the contrary that all Lyapunov exponents A; are proportional. Suppose
first that some element in Zﬁ is not invertible. Then there is at least one non-Archimedean
Lyapunov exponent A’ (cf. the Appendix for a discussion of non-Archimedean Lyapunov
exponents). Recall that A’ takes rational values on Z*. Hence the kernel of A’ contains
a non-trivial element b € Z*. Pick a large | such that ¢ := a'b € Z* . Note that ¢ leaves
invariant the one-dimensional unstable manifold W (0) of a through zero. Without
loss of generality, let A = A; be the Lyapunov exponent determined by the unstable
distribution E;. Since A and A’ are proportional, we see that ra) = r(c). Since
W, (0) is one-dimensional, and zero is fixed, we see that a' and c act identically on
W (0). Since a is Anosov, W, (0) is dense in T™. Hence ¢ and a' define the same
endomorphism of T™. Hence a’ = ¢ as a matrix. Thus we see that b = 0, contradicting
the choice of b.

Therefore, we may suppose that all elements in Zi are invertible so that we have an
action of Z* on T™. Suppose first that all elements are semisimple. By commutativity,
there is a matrix M such that for all ¢ € Z¥X, M~ 'cM is diagonal (over C). Let D > 1
be the maximum of the matrix norms ||M}|, M 'l of M and M~ respectively. Then
the matrix norm of ¢ € Z* is bounded in terms of its eigenvalues and D, and thus by its
Lyapunov exponents and D. We obtain

lell < D? max e,
!

Now we will argue via the covering action of Z* on R™. Let I denote the line through
zero covering W, (0). Pick v € Z™, v # 0 such that there is an element v/ € I with
lv ~ v’} < 107/2D?. Let A = A again be the Lyapunov exponent determined by W~
By assumption, there are ¢; € R such that A; = c;A. Pick b € Z* such that for all
I =1,...,r we have

|ez,‘,/\(l)) - 1|

1
101w~
Set w = v — v'. Then we get
lbv — vl = 16y = v' + bw —w| < [ — T[] + |bw| + fw| <3-107°

since ||bw| < D?max;—; _, e“*®|w| < 2D?|w]} < 10~°. Since bv and v lie in Z", it
follows that bv = v. Thus b has one as an eigenvalue which contradicts the definition
of standard action.
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Next we will reduce the general case of a Z*-action to the special case above. Let
P be the minimal polynomial of a, and let Q be the greatest common divisor of P and
P’ over Z. Write P = QR, and set W = Q(a)(R™). Then W is defined over the
rationals, is Zf-invariant and hence defines a Zf-invariant closed subtorus of 7™. We
claim that a|w has the same set of eigenvalues as a with each eigenvalue occurring with
multiplicity one. In particular, a|w is diagonalizable over C. To see this, first note that
the minimal polynomial for a|w is exactly R. Let A be a root of P of multiplicity /. Then
(x = 2! divides P and P’ and hence Q over C. Thus x — X divides R at most once.
Conversely, x — A divides R at least once since otherwise (x — A)’ divides P’. Since Z*
leaves the one-dimensional eigenspaces of a invariant, it follows that each element of Z*
is semisimple when restricted to W. Finally, a has one-dimensional unstable manifold in
W by construction. Clearly, each element of the Z*-action restricted to W is invertible.
Hence, by the special case above, the Z*-action on W has Lyapunov exponents which
are not multiples of each other. d

PROPOSITION 6.3. Let « be a standard action of ZX , k > 2. Suppose one of the following
two conditions holds.

(@) The action contains an Anosov element with one-dimensional unstable distribution.
(b) For all Lyapunov exponents A and all ¢ > 0, —cA is not a Lyapunov exponent.
Then we can find elements a, b € R¥ such that b is regular, E} C E} and a is a generic
singular element on the boundary of the Weyl chamber which contains b. In case (b), we
can pick any generic a in the kernel of .

Proof. For (a) let us pass to the suspension X of the solenoid extension if necessary.
Let b be the Anosov element with one-dimensional unstable distribution on the torus.
By formula (A.2), all non-Archimedean Lyapunov exponents of the action on X are
non-positive on b. Hence the unstable distribution E,” of b on X is one-dimensional
and totally Archimedean. Let A be the Lyapunov exponent determined by E,". By
Lemma 6.2, there is a Lyapunov exponent that is not a multiple of A. Hence we can
pick a Lyapunov exponent w such that & is not a multiple of A and such that the kernel
of 1 intersects the closure of the Weyl chamber of b. Pick a generic a € R¥ subject
to the condition that u(a) = 0 and A(a) # 0. Since a belongs to the closure of the
Weyl chamber of b, and A(a) # 0, A(a) and A(b) are both positive. Since E, is
one-dimensional, we find that E}', = E; C E; = E,, as desired.

For (b) let Hy,..., H, be the kernels of the Lyapunov exponents. Pick a two-
dimensional plane P C R* such that P N H; N H; = {0} whenever i # j. Note that
the Lyapunov exponents restricted to P are all distinct. Furthermore, the kernels of the
restrictions L; def P N H; coincide if and only if the kernels on R¥ coincide. Indeed, let
A # p be two exponents. If « and & have the same kernel then ¥ = cp is a multiple of
@ with ¢ % 1. Hence their restrictions to P are non-trivial multiples. If « and x do not
have the same kernel then the kernels of their restrictions to P are distinct by the choice
of P.

Fix an orientation and a metric on P. Draw all the unit vectors v; for which there is
a Lyapunov exponent 8 such that 8(v;) = 0 and 8 is positive to the right of v;.
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By assumption, A is a Lyapunov exponent such that any other Lyapunov exponent
with the same kernel on P is a positive multiple of A. Let L be the kernel of A restricted
to P and pick a # 0 € L, [la|| = 1 such that A is positive to the right of a.

Pick b € P close to a such that b is to the left of a (which makes sense locally) and
such that there is no v; in the closed cones defined by a, b and —a, —b except for a.
This is possible since no negative multiple of A is a Lyapunov exponent. Note that any
v; that lies in the half-plane strictly to the left of b also lies in the half-plane strictly to
the left of a. Hence a and b have the same stable distribution, Ej = E,'f . Finally, note
that we can pick a as any generic element in the kernel of A by the genericity of P. [J

Combining Theorem 5.1 with Lemma 6.1 and Proposition 6.3, we obtain criteria for
rigidity of measures with positive entropy.

COROLLARY 6.4, Let « be a standard action of ZX, k > 2, on a torus T".

(a) Suppose the action contains an Anosov element with one-dimensional unstable
distribution. Then  is either Lebesgue measure or the entropy w.r.t. u of every
element is zero.

(b) Iffor all Lyapunov exponents X and all ¢ > 0, —cA is not a Lyapunov exponent, then
W is either Lebesgue measure on an invariant rational subtorus or the entropy w.r.t.
W of every element is zero.

Proof. In both cases, pass to the suspension X of the solenoid extension of the Z'j_—action,
if necessary.

In case (a) we apply Proposition 6.3 to find elements @, b € R* such that b is Anosov,
E ,,+ C E} and a is a generic singular element on the boundary of the Weyl chamber which
contains b. Therefore, we get E; D EC. Recall from the proof of Proposition 6.3(a) that
E, is one-dimensional and totally Archimedean. It follows that E, = EJ. Also notice
that & < WY by Lemma 6.1. This together with the above implies condition (x) of
Theorem 5.1 for b='. Since ESNE, = E? and &, < W2, condition (+x) of Theorem 5.1
also holds. By Theorem 5.1, either the entropy w.r.t. 1 of every element is zero or pu
is Haar measure on a non-zero rational subtorus 7™. Since the unstable foliation of b
is dense in T" and one-dimensional, its leaves are not tangential to T*. Hence T™ is
contained in a single stable leaf of b and gets contracted to a point. Since b(T™) is open
and closed in 7™ by the non-singularity of b, b(T™) = T™. Since T™ gets contracted
to a point, 7™ is a point, which is a contradiction.

In case (b), note as before that the unstable foliation on X of a regular element b of
Z* is totally Archimedean. Hence the claim follows from Theorem 5.1 applied to b1,
provided conditions (x) and (x#*) hold. Since E;L_l = E, is a sum of Lyapunov spaces,
there are generic singular elements a; such that

E; =) ESNE,.
i

Let us check condition (#%) for these g;. By the assumption and Proposition 6.3, there
are regular elements b; with E,’: C EI By Lemma 6.1, we find &,, < Wl?'_ = E(E,(;),-) <
E(E) NE;). d
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Let us point out that Examples A.5 and A.7 as well as all standard actions of Z"~!
on T" are covered by case (a) of this corollary.

7. Symmetric space and twisted examples

Let G be a semisimple connected real Lie group of the non-compact type and of R-rank
at least two. Let A be the connected component of the unit element of a split Cartan
subgroup of G. Suppose I' is an irreducible lattice in G. Then the action of A on G/ T
is partially hyperbolic. Unlike our results on cocycle rigidity and local differentiable
rigidity [13-15], our results here do not depend on cocompactness of I'.

The centralizer Z(A) of A splits as a product Z(A) = M A where M is compact.

Since A commutes with M, A acts on N M \ G/T. This action is called the Weyl

chamber flow. We will call the Weyl chamber flows as well as the actions on the cover
G/ T or any intermediate cover standard symmetric space actions.

Let p : ' — SL(n,Z) be an irreducible representation of I" such that for at least
one y € I', p(y) is Anosov on T™. Then I' acts on the n-torus 7" via p and hence on
M\ G x T" via

v, ) =Gy~ p()(@)).
def def

Let N=M\G X T" =M\ G xT")/T be the quotient of this action. As the action
of Aon M\ G x T" given by a(x,t) = (ax, t) commutes with the I"-action, it induces
an action of A on N. This action is called the twisted Weyl chamber flow.

This example generalizes by taking an action on an intermediate cover between G/ T’
and M \ G/T as the base space of the twisting. We may also restrict the action of R¥
to a closed subgroup isomorphic to either R™ or Z™ with m > 2, as long as at least one
element acts partially hyperbolically with neutral foliation given by the quotient of the
M A-orbit foliation. All of these examples are called standard twisted symmetric space
actions.

Our main result for the symmetric space case is strictly parallel to the toral case.
However, due to the symplectic nature of these examples, we do not get applications as
strong as those described in §6.

THEOREM 7.1. Let a be a standard symmetric space R*-action with k > 2. Assume that
W is an invariant ergodic measure for o such that there are generic singular elements
ay,...,a and a regular element b € R* such that

Ey =) (ESNE)) (%)

(where the sum need not be direct) and such that
£, <E(E) NEY). (%)

Then w is either Haar measure on a homogeneous real algebraic subspace or every
element has zero entropy w.r.t. [

Let us note that there are some examples of symmetric actions on a compact space
G/T for which there is a subgroup H of the same real rank that intersects I" in a
cocompact lattice in H. Hence the Haar measure on H/(H N I") is invariant for the
action of the maximal split Cartan on G/T.
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Proof. The structure of the proof closely follows the structure for the toral case.

It suffices to consider the symmetric space action on G/ T since stable and unstable
manifolds project injectively to any factor. At each step of the argument we arrive at
a dichotomy for certain conditional measures. Either they are atomic, and we proceed
to the next step or they are Haar on certain homogeneous subspaces inside W,}L which
is unipotent. In this case, we can apply Ratner’s classification of invariant measures for
unipotent subgroups of Lie groups [23]. This is the main difference of the argument.

The second difference appears in arriving at the conclusion of Lemma 5.5. Instead of
decomposing everything into Lyapunov spaces, we consider the coarser decomposition
into sums of Lyapunov spaces with proportional Lyapunov exponents. Note that in some
symmetric space examples we can have A and 2A as Lyapunov exponents. It follows
from the classification of symmetric spaces that this is the only possibility of proportional
exponents for the action of the maximal split Cartan subgroup. This decomposition is
integrable and its leaves F'(x) are the orbits of a unipotent group of nilpotent length two.
Inside each fiber, the fast directions are also integrable and make up the center of the
unipotent group in question. Since the center is abelian, we can apply the arguments of
Lemmas 5.4 and 5.5 to this central foliation. Thus the central conditional measure is
either Haar on a subgroup and we can apply Ratner’s theorem or it is atomic. In the
latter case, we apply the argument of Lemma 5.4 to F'. We conclude that the conditional
measure on F' is supported on a graph of a smooth function from a transversal to
the central foliation to the central leaves. This smooth function depends measurably
on the initial point and its tangent distribution produces an «-invariant subdistribution
of F which projects non-trivially to the transversal direction; however, such invariant
measurable distributions do not exist (cf. Lemma 5.8).

The rest of the argument is identical to the toral case. In fact, since in this case the
center foliation coincides with the isometric foliation, Lemma 5.9 is not needed. O

Theorem 7.1 implies the statements for the symmetric space case completely analogous
to Corollaries 5.2 and 5.3 for the toral case.

The techniques of the proof of Theorem 7.1 also yield a partial result in the twisted
symmetric space examples.

THEOREM 7.2. Let o be a standard twisted symmetric space Rf-action on M with
symmetric space factor M’. Assume that k > 2 and that p is an invariant ergodic measure
for « such that there are generic singular elements ai, ..., a, and a regular element
b € R* satisfying conditions (x) and (xx) (cf. Theorem 7.1). Then either every element
has zero entropy w.r.t. | or [ is an extension of a zero entropy invariant ergodic measure
on M’ by Haar measure along the toral fibers or p is Haar measure on a homogeneous
real algebraic subspace.

Proof. We may assume again that the base space M’ is of the form G/TI" for some
cocompact lattice T" in G. Note that M is foliated by both the fibration over M’ as well
as the G-orbit foliation. The stable, unstable and neutral foliations for various elements
split into the toral part and the G-orbit part. Recall that if the entropy of some element
is positive, then the entropy of b is also positive (cf. the proof of Theorem 5.1). In
this case, the conditional measures of p on toral or G-orbit parts of the stable foliation
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of b are non-atomic. In the first case, we proceed as in the proof of Theorem 5.1 and
deduce that the family of conditional measures on the toral foliation is Haar on a family
of rational subtori. Since the representation p of I' is irreducible, the rational subtori
have to coincide with the complete fibers.

In the second case, we proceed as in the proof of Theorem 7.1 and deduce that
conditional measures on a certain unipotent subfoliation are Haar. Invoking Ratner’s
theorem again, we find that g is Haar measure on a homogeneous real algebraic
subspace. a

We believe that the above argument can be generalized to actions on very general
homogeneous and bi-homogeneous spaces.

Finally, let us mention that at least in some cases such as compact quotients of
SL(3, R) one can obtain some results about arbitrary ergodic invariant measures with
positive entropy for some element of the action. One cannot conclude in this case that
the measure is Haar on a subspace. In fact, the example due to Rees [24] to which we
alluded in the introduction is a symmetric space flow on SL(3, R)/I" which has a compact
invariant homogeneous subspace isomorphic to an S'-bundle over SL(2, R)/I"’. Then
any measure on SL(2, R)/ I’ invariant under the maximal Cartan in SL(2, R) (which is
an Anosov flow) lifts to an invariant measure for the R?-action on SL(3, R)/T". Thus
we obtain measures of positive entropy which are not Haar. Note that for a reguiar
element b in RZ, the conditional measure on the three-dimensional stable manifold of b
is supported on a single one-dimensional fiber corresponding to a Lyapunov subspace in
the SL(2, R)-direction.

For an arbitrary ergodic R2-invariant measure u on a quotient of SL(3,R) with
positive entropy for some element, we can show that one of the following two possibilities
holds: u is Haar on a homogeneous algebraic submanifold or the conditional measure on
the three-dimensional stable foliation for any regular element is supported on a single line.
The main extra ingredient in the proof is the use of the non-commutativity of Lyapunov
foliations which allows us to transport the conditional measures on a Lyapunov foliation
along another Lyapunov foliation inside the same stable foliation. If enough of these
measures are non-atomic (e.g. two in the SL(3, R) case) the conditional measures can
be shown to possess a translation invariance property similar to the one discussed in the
proof of Lemma 5.6.

This local non-integrability of the Lyapunov foliations makes the Weyl chamber flows
(which are always symplectic), at least those which come from split simple Lie groups,
somewhat more amenable examples than toral symplectic actions, where at present we
are unable to obtain any results beyond those that follow from Theorem 5.1. Another
difficult case is represented by symmetric space examples, where the G is the product of
rank-one simple groups and I' is an irreducible lattice. For some of these examples, both
toral and semi-simple, the picture of the Lyapunov hyperplanes and Wey! chambers looks
exactly the same as for the products of rank-one actions, where naturally there are many
ergodic invariant measures of positive entropy. Thus, in order to exclude pathological
measures with positive entropy one should go beyond the local analysis based on the
structure of Lyapunov spaces and use global (probably arithmetical) properties of these
actions.
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Appendix
Here we give an alternative metric structure on the solenoids which is more arithmetical
in nature, and is needed to define Lyapunov exponents in the non-Archimedean directions.
For each prime number p € Z,, denote by Q, and Z, the p-adic completions of QQ
and Z respectively and by | - |, the p-adic norm. Endow each Z7 with the sup norm.
Set I =R" @ @ » 4
diagonally on /. Also Z™ acts on / diagonally by integer translations. This action is
normalized by the Z* -action. Hence Zﬁ acts on the quotient ] = I/Z™. Note that I is
a fiber bundle over T™ with fiber @p Z™, where p ranges over all primes in Z, and that
the Z* -action on I covers «.

Zy, where p ranges over all prime numbers in Z. Note that Zﬁ acts

PROPOSITION A.l. The Z’i-action on I extends to a Z*-action.

Proof. 1t suffices to check that each element is surjective and injective. We will slightly
abuse notation by identifying elements of ZX with their images under a. Let A € ZA.
We first show that A is injective on I. Suppose it is not. Then there is a non-zero
element v = (Vgn,...,Vp,...) € [ where vgw is the R™-coordinate such that there is
a k € Z™ such that for all primes p we have Av, = k. Hence vgs € Q™ and v, is
vge embedded into Q,. Hence the p-adification of vg= € Q™ is a p-adic integer for all
primes p. Therefore vg~ lies in Z™.

For surjectivity, let F denote the finite set of primes which divide detA. If p ¢ F,
then det A is a unit in Z,. By Kramer’s rule, A is invertible on Zj; for p ¢ F. Thus it
suffices to show that the image contains EBPE 7 Zp. Note that A multiplies Haar measure
on @, . Z" and hence on @p Zy by the product of ITper|det Af,. Since this product

peEF “p
is 1/|det A|, A is an injective measure preserving endomorphism on I. Hence A is
surjective. 0

For each prime p, set

M2 ={x e Q| forall A€Zwe have |Ax|, = |x|,}.

Then set M, = M;? NZj,. As noted above, if a prime p does not divide det A, then
A is invertible over Z,. Note that multiplication by a matrix with entries in Z, does
not increase the p-adic norm of a vector. Thus if p does not divide det A, then A is an
isometry on Q7. Hence M), coincides with Z} for all but finitely many p.

It is easiest to discuss the properties of M, when the matrices are upper-triangular.
To this end, we pass to a suitable field extension. This will also prove useful later when
we discuss Lyapunov exponents. We will freely use the basic material on valuations and
their completions (cf. for example [18]).
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Let K be the number field generated by the eigenvalues of the A;, and let R be its
ring of integers. Then we can upper-triangularize all A € Zf simultaneously over K.
Let p C R be a prime ideal and let p > 0 be the prime number that generates p N Z.
Then p determines a unique absolute value | - |, such that

lplp = —.
PTp

The completion K, of K with respect to | - |, is a finite extension of Q, of degree at

most the degree of k over QQ (and possibly smaller). Note that | - |, extends | - |,.

LEMMA A.2. The set M, is a submodule of Zy;. Moreover, the quotient Z /M), is a free
Z,-module.

Proof. Let K and p be as above. Set
MY ={x e K} | forall A cZ" we have |Axly = [x|p}.

Clearly, M, = M,f N Z;‘. Hence the first claim follows if we show that M,f is a vector
space. Let A € Zf . Consider the decomposition of K™ into generalized eigenspaces
V. of A with eigenvalue A. Then there is a nilpotent matrix M with integer coefficients
such that A|y, = Al + M, where I denotes the identity matrix. The inverse matrix A~
is of the form (1/A)I + N, where N is another nilpotent matrix with integer coefficients.
Suppose that N'*! = 0. Note that

1 ! l !
(XI+N) =r’1+(I)A—’+‘N+---+A"+’< )N’. (A.1)
r

Since A~! € Z¥ acts isometrically on MX, no vector in K™ with non-zero component
in V) with |A|, # 1 can belong to M{f. Indeed, A € R, and hence [A|, < 1.

Conversely, suppose that |A], = 1. Then the restrictions to Vj of both A and A~!
are matrices with Rp-coefficients. Multiplication by such a matrix is automatically norm
non-increasing. Hence Aly, is an isometry.

To summarize, le is precisely the intersection over all A € ZF of the sum of the
generalized eigenspaces of A with eigenvalue A with |A], = 1. In particular, le is a
vector subspace.

To prove the second claim, first note that Z,, is a principal ideal domain. Hence every
finitely generated module over Z, is a direct sum of a free module and the submodule
of torsion elements. Suppose that x € Z;,"/M,, is a torsion element. Pick a € Z, such
that a # 0 and ax = 0. Let x € Z7 be a representative of x. Then ax € M),. Hence for
all a € Z¥, |A(ax)|, = |ax],. Dividing by |a|,, we see that x € M,. Hence there are
no torsion elements in Z7 /M), O

Set M = P, M, and A = I/M. By Lemma A2, A fibers over T™ with fiber
@l, Z," and Z* acts on it covering the action of Z% on T™. We will denote this action
by &. Furnish A with the product metric v of the finitely many p-adic metrics and the
Euclidean metric.

Let A* denote the natural fiber bundle over T"™ with fiber Q,". Note that Z* naturally
acts on A*. The fiber splits in a Z*-invariant way into finitely many subspaces E? over



Invariant measures for higher-rank hyperbolic abelian actions 775

the various QQ,, where X : Z*¥ — R is a non-zero linear functional, such that for all
AeZallneZ, and all x € EZ we have

1
lim — log |A"x|, = A(A).
n

This follows from the multiplicative ergodic theorem (cf. [22, ch. V, Theorem 2.1]) or
simply from linear algebra, as we will explain below.

We will call these A the non-Archimedean Lyapunov exponents and call the subspaces
E? the corresponding (rational) Lyapunov spaces. The intersection E? N Z;,"" isaZ,-
submodule of the fiber of A, and in particular a closed subgroup. We will call it a
Lyapunov subspace or Lyapunov subgroup.

Let us now describe the Lyapunov exponents and spaces of A € Z* algebraically.
Let us first discuss the case of a single matrix A. The general case for Z* follows as
usual since the Lyapunov spaces for a single matrix are invariant under all of Z* by
commutativity and we can then just intersect the Lyapunov spaces for different elements
in Z.

For a single matrix A, we claim that the Lyapunov exponents are the logarithms of
the p-adic norms of the eigenvalues of A. Furthermore, given a Lyapunov exponent
A(A), the corresponding Lyapunov space is the intersection of the Q, with the sum of
all generalized eigenspaces of A over K, with eigenvalue v, where

log |vip = A(A).

In fact, consider a generalized eigenspace V, of A over K,. Then Aly, = vI + N,
where N is a nilpotent matrix. By formula (A.1) above, it is clear that the Lyapunov
exponent of a vector in V,, is log |v|p. Recall that the Galois group of K, over Q,, acts by
isometries on K, with respect to | - |, [19, ch. II, §1]. Hence the sum of the generalized
eigenspaces whose eigenvalues have absolute value e* is defined over Q,, as desired.

Indeed, it is immediate from formula (A.1) and the discussion of nilpotents in the proof
of Lemma A.2 that the Lyapunov spaces are the intersections of the various eigenspaces
of all A € Z* and the Lyapunov exponents are the logarithms of the p-adic norms of the
eigenvalues of A. It follows that the non-Archimedean Lyapunov exponents on Z* have
values which are logarithms of rational numbers. Note that these Lyapunov exponents
are defined everywhere and independently of any invariant measure. Also note that for
all A e Zﬁ_ and all non-Archimedean Lyapunov exponents A, we get

A(A) <O. (A2)

Notice that there are elements of Z’j_ for which all non-Archimedean Lyapunov
exponents are non-zero. The extensions of the generators A;, however, may not be
amongst such elements. In the Anosov case there are elements such that all Lyapunov
exponents, Archimedean as well as non-Archimedean, are non-zero. Dynamically this
implies that each point has a neighborhood with a product structure of exponentially
expanding and contracting subgroups. For reasons of uniformity of language and ideas,
we make the following definition.
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Definition A.3. We will call these expanding and contracting subgroups the non-
Archimedean unstable and stable manifolds respectively. Note that these ‘manifolds’,
just like the non-Archimedean Lyapunov spaces, are always subgroups.

PROPOSITION A.4. The solenoid S with a* is isomorphic to A with &.

Proof. Since (S, «*) is the unique minimal compact group extension of (T™,«) to a
ZF-action, there is an equivariant surjective homomorphism 7 : A — S. The kernel C
of 7 is a closed subgroup of 4, and thus a Z-module under the diagonal embedding of Z
into @pe r Zp,. Since the latter embedding is dense by the Chinese remainder theorem,
Cisa @pe r Zp-module. Suppose C is not discrete. Multiplying by a suitable element
©,...,1,...,0) € EBpeF Zp, C contains a non-trivial Z,-submodule for some p € F.
Let A € Zﬁ have all non-Archimedean Lyapunov exponents non-zero, and thus strictly
negative. Hence A strictly contracts C, and hence cannot be invertible on S. Thus we
sec that C is discrete.

As C is a discrete subgroup of a compact group, it is finite. As the fiber is a product
of additive subgroups of fields of characteristic zero, C is trivial. ]

We will also call the solenoid extensions of standard actions by toral endomorphisms
and their suspensions standard.
Let us illustrate the construction of the solenoid by some examples.

Example A.5. Let s and r be positive integers. Consider the action of Z% on S' by
multiplication by s and ¢. In order to construct the solenoid, let pi,..., p; be the
primes occurring in the prime decomposition of s and f. Let s = p’l‘l p;" and
t = p" - p/", where the k; and m; are non-negative integers. Then the fiber of S over
zero is Zp, X --- X Zp,. There are [ non-Archimedean Lyapunov exponents Ay, ..., A,
where

Ai(x,y) = —(kix +m;y)log p;.

There is one Archimedean Lyapunov exponent of multiplicity one given by

Alx,y) = Z(k,-x + m;y)log p;.

!

Example A.6. Consider the action of Z% on T? generated by the matrices

(L7) = (27)

Both matrices have eigenvalues 14 2i and 1 — 2i. They generate the field K = Q[:]
whose ring of integers is the Gaussian integers Z[i]. The principal ideals p; = (1 4 2i)
and p; = (1 — 2i) are prime ideals. We have {1 4 2i|,, = 1/5 while |1 —2i|, =1, and
similarly |1 + 2i|,, = 1 while |1 — 2i|,, = 1/5. Note that the p;- and p,-adifications of
Z[i] are just Zs, since Zs contains a square root of —1 (cf. e.g. [16]).

The fiber of the solenoid S over zero is Zg. There are two non-Archimedean Lyapunov
exponents A; and Ay, each with multiplicity one, given by

A(x,y) = —xlog5 and A,(x,y)= —ylog5,
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where (x,y) € Z?. Also note that there is one Archimedean Lyapunov exponent of
multiplicity two given by

log 5
Ax,y) = (x +y)%.

Example A.7. Let Z3 act on T? by the generators

4 3 12 8
A_<3 1) and B—< 2 4>.
This is a faithful action since for any m, n, det A" B" = (—5)"(—16)" # 1 unless both
m and n are zero. In this case, one toral direction is contracted by both A and B although

both of them are non-invertible. It is a useful exercise to describe the non-Archimedean
Lyapunov exponents explicitly for this example.

Not every automorphism of a solenoid which covers 7™ comes from an endomorphism
of T™. To illustrate this let us consider the following example.

Example A.8. Let S be the solenoid whose dual group is (Z(py, ..., pi))™, where
pi, ..., pi are distinct prime integers. This solenoid covers 7™ with the fiber Z7 x

- X Zy,. Any m x m matrix with rational entries whose decomposition into prime
factors contains only powers of pi, ..., p; determines an automorphism of S.
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