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The proofs of Theorems 5.1 and 7.1 @& fontain a gap. We will show below how to
close it under some suitable additional assumptions in these theorems and their corollaries.
We will assume the notation o] throughout. In particulary is a measure invariant

and ergodic under aR*-actiona. Let us first explain the gap. Both theorems are proved

by establishing a dichotomy for the conditional measureg afong the intersection of
suitable stable manifolds. They were either atomic or invariant under suitable translation
or unipotent subgroup&. Atomicity eventually led to zero entropy. Invariance of the
conditional measures showed invarianceuofinder U. We then claimed that was
algebraic using, respectively, unique ergodicity of the translation subgroup on a rational
subtorus or Ratner’s theorem (c2, Lemma 5.7]). This conclusion, however, only holds

for the U-ergodic components gf which may not equal. In fact, in the toral case, the
R*-action may have a zero-entropy factor such that the conditional measures along the
fibers are Haar measures along a foliation by rational subtori. Since invariant measures
with zero entropy have not been classified, we cannot conclude algebraicity of the total
measureu at this time. In the toral case, the existence of zero entropy factors turns
out to be precisely the obstruction to our methods. The case of Weyl chamber flows
is somewhat different as the ‘Haar’ direction of the measure may not be integrable. In
this case, we need to use additional information coming from the semisimplicity of the
ambient Lie group to arrive at the versions of Theorem 7.1 presented below.

The toral case

Here we discuss the corrections to Theorem 5.1 2bfgnd its corollaries. We also
indicate a slight generalization of the theorem using conditidpigtroduced by Starkov
in [4] for a semigroupx of endomorphisms (automorphisms) Bf', isomorphic toZ*
(respectivelyZF).

(R) The actione contains a semigroup, isomorphic toZ2, which consists of ergodic
endomorphisms.
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Leta ando’ be two actions oZX by endomorphisms df™ and7™" correspondingly.
Call o’ an algebraic factorof « if there exists an epimorphisim: 7 — T™ such that
hoa =o' oh. The actionu is calledcompletely irreducibléf any non-trivial algebraic
factor has finite fibers. We will say that is arank-one factorof « if o/(Z’;) consists of
powers of a single map. Extending the arguments fréhwhich deal with the invertible
case (actions by automorphisms), one sees that condidrs(equivalent to

(R') The actiona does not possess non-trivial rank-one algebraic factors.
The next result replaces our main theorem, Theorem 5.1, f&m [

THEOREM 5.1. Let o’ be an R*-action withk > 2 induced from an action by toral
endomorphisms satisfying conditioR), Assume that is an ergodic invariant measure
for & such that there are generic singular elemeats. .., a, and a regular element
b € R* with E; totally Archimedean such that:
(C1) E; =Y ,(E2 N E;) (where the sum need not be direct); and
(C2) &, <&E2NE)).

Then the measurer is an extension of a zero-entropy measure in an algebraic factor
of smaller dimension with Haar conditional measures in the fibers.

The proof of Theorem 5.1 in2] is based on a sequence of Lemmata (5.4)—(5.10).
The lemmata dealing with conditional measures ((5.4)—(5.6), (5.9) and (5.10)) are correct
and continue to hold under conditioR) without any changes in the proofs. Lemma 5.7
which is not specific for actions by endomorphisms is obviously false without an
ergodicity assumption; hence one cannot derive Lemma 5.8 which is directly based
on it. Instead of these two lemmata, Lemm& Helow holds.

Let F(x) C W/ be anya-invariant Archimedean subfoliation a¥!. Let uf' denote
the system of conditional measures determined'byormalized by the requirement that
wE(BE (x)) = 1 for all x in the support ofx whereB{ (x) is the ball of radius one w.r.t.
the induced metric odF".

LEMMA 5.8. Let F be the foliationW/ N W,". For u-a.e.x, the conditional measure
wF is atomic unlesgizw is the extension of an invariant measure in an algebraic factor
of smaller dimension with Haar measures in the fibers.

Proof. Denote byS, the support ofuf. By Lemmata 5.5 and 5.6 o], for u-a.e.

x, the S, are affine subspaces, apd’ is a Haar measure of,. By ergodicity of the

action the subspace$ for a.e.x are parallel. In particular, the conditional measures

are either atomic or non-atomic a.e. Assume the second possibility. The fact that the
conditional measures are Haar is equivalent to the measprebeing invariant under

the subgroup of translations determined by those spaces and hence under the closure
G of that subgroup. The orbits af are parallel rational subtori and the partition into
these orbits isx-invariant. Hence, it determines an algebraic factoreobf smaller
dimension. By unique ergodicity of minimal linear foliations on the torus we conclude
that the conditional measures are Haar measures along the fibers. O

Proof of Theorem 5/1We now proceed as ir2] with the following modification. Once
we arrive at the assumption of Lemma5Sthere is a dichotomy. If the conditionals are
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atomic we proceed to use Lemmata 5.9 and 5.10. Otherwise, we obtain an algebraic
factor of smaller dimension. If the factor measure has zero entropy for all elements of
a, we are done. Otherwise, we may assume that in the faater still has positive
entropy and repeat the argument. Note that conditidni¢ inherited by any factor. We

will arrive at a factor of the factor and so on. Since at every step the dimension of the
factor drops this process has to stop, thus producing a factor with zero entropy. It is also
clear by induction that the conditionals are in fact Haar measures on the fibers. So if, for
example, the ultimate factor turns out to be trivial then the original measure is Haar.

Several consequences of Theorem 5.1 have to be changed to allow for zero-entropy
factors as well. We will just list them here. Corollary 5.3 as stated does not follow as
weak mixing for thez*-action on the torus does not necessarily imply weak mixing of
the R*-action.

COROLLARY 5.2. Let« be a RF-action withk > 2 induced from an action by toral
endomorphisms satisfying conditioR), Assume thaft is an a-invariant measure such
that every one-parameter subgroup is ergodic or, equivalently, thet weakly mixing
w.r.t. «. Then the measurer~ is an extension of a zero-entropy measure in an algebraic
factor of smaller dimension with Haar conditional measures in the fibers.

Proposition 6.3(a) and Corollary 6.4(a) remain correct as stated since Anosov
actions with one-dimensional expanding foliations cannot have algebraic factors. For
Proposition 6.3(b) and Corollary 6.4(b) we need to assume d¢has completely
irreducible.

Weyl chamber flows
Next we discuss standard symmetric space actions and, in particular, Weyl chamber
flows. We letG be a semisimple connected real algebraic group of real rank at least
2 and without compact factors. L&t be an irreducible lattice ir;, A a split Cartan
subgroup ofG, and u an A-invariant ergodic measure ofi/I". Even thoughr is
irreducible,u may be a product of a zero-entropy measure for an irreducible action of a
higher-rank subgroup ol on one factor with a Haar measure on the other factor. Thus
the hypothetical existence of non-algebraic measures of zero entropy forces us to modify
the claim of Theorem 7.1. We will indicate two different conditions sufficient to fill the
gap, yielding Theorems 7.1(A) and 7.1(B) below. We first recall the state of affairs from
[2] and prove some facts needed for both theorems.

As in Theorem 7.1 of7] let us assume that is a standard symmetric spag&-action
with £ > 2, thatu is ana-invariant ergodic measure such that there are generic singular
elementsay, ..., a; and a regular elememte R* such that:
(C1) E; =Y ,(E2NE}) (where the sum need not be direct); and
(C2) &, <&(EJ NE;).
We will assume in addition that is real algebraic. Note that it suffices to consider
symmetric space actions oi/I". Similar to the toral case, analyzing conditional
measures oft along suitable foliations, the argument & either shows that. has zero
entropy or that there is a nontrivial unipotent subgroupGofvhich leavesu invariant.
Suppose the latter. Ldt be the connected component of the identity of the stabilizer of
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u, and letM c L be the maximal Lie subgroup df generated by unipotent subgroups
of L. Note thatM is normal inL. By the above M is nontrivial. Letu, denote the
ergodic components gf w.r.t. M. SinceM is normalized byA C L, we see that

by = Hax-

By Ratner’'s theorem3, Corollary C] applied toM, eachpu, is algebraic, i.eu, is a
Haar measure on some closed orHit(x) of some algebraic subgroui, of G which
containsM. Consider the measurable functignfrom G/ T" to the space of algebraic
subgroupsH of G given byx — H,. Sinceau, = wq., a maps the support ok, to
that of u,,. HenceaH, (x) = H,,(ax), and thusp(ax) = a¢ (x)a~L. Since the quotient
of H modulo conjugacy is countably separated anid A-ergodic,¢ takes values in the
same conjugacy clags-a.e. Thus we can think @f as a map intaG/N whereN is the
normalizer of someH, in G. Note thatV is algebraic. By 1, §3.1, Corollary] applied to
M = G/N, ¢ and thusH, = H is u-a.e. constant. In particulaf, = H,, = aH,a™*
for p-a.e.x anda € A. HenceA normalizesH. Sinceau, = i, and theu, are
Haar measures faff, it follows that the adjoint action oA on H preserves the volume.
Since A is a split Cartan, this forces the unipotent radicaltbfto be trivial. ThusH is
reductive. In factM is then the product of all noncompact simple factorgigfand thus
M is semisimple. Finally, note that the, are the ergodic components @fw.r.t. H.

THEOREM 7.1(A). Let o be a standard symmetric space actiondf= R* for k > 2.
Supposeu is a weakly mixing measure for on G/ I'. Thenu is either a Haar measure
on a homogeneous real algebraic subspace or every element has zero entropy.w.r.t.

Proof. Since every one-parameter subgroupdoacts ergodically w.r.L, the conditions

(C1) and (C2) above are automatically satisfied and we may use the discussion before the
theorem. SinceH is reductive,A N H is a split Cartan off and thusA N H # 1. Then

AN H contains a one-parameter subgroup and henteergodic w.r.t.AN H sinceu

is weakly mixing. Thus thed-ergodic componentg, equalu, andu is algebraic by
Ratner’s theorem. O

The next theorem resembles Theorem 7.12)f\ery closely. Note, however, that
both the hypotheses are stronger and the conclusion weaker.

THEOREM 7.1(B). Let o be a standard symmetric spad-action withk > 2. Let i be
an invariant ergodic measure far with the following property.

.....

,,,,,,,,,, -V, is contained
in an ergodic component of for the one-parameter subgroup ta Bf.
Thenp is either a Haar measure on a homogeneous real algebraic subspasenoe
element has zero entropy w.r.t.

Proof. The hypothesis on maximal intersections of stable manifolds in the theorem implies
conditions (C1) and (C2) above. Thus we may assume the results of the discussion
before Theorem 7.1(A). IA C H, thenu = pu, sincep is A-ergodic by assumption.
In particular i is algebraic. Thus we will assume thatn H is a proper subspace
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of A. SinceH is reductive and normalized by, A N H is a split Cartan inH. Since
the (restricted) roots off are spanned by at most dishn H) many simple roots and
dim(A N M) < dimA, there is an element € A, ¢ # 1, which lies in the kernel of all
the (restricted) roots off. We claim that the metric entropy,(c) = 0. Note thatc has

a strong stable foliatiomV and a weak unstable foliation defined everywhere by Lie
theory. They are transverse foliations and satisfy the assumptions of Proposition 4.1 of
[2]. Hence it suffices to show that the conditional measures alétigare atomic. For
this we decompose the strong stable spéteas a sum of maximal intersections of stable
spaces withE. Using the main argument o], we deduce that either all conditional
measures ofx along the corresponding subfoliations are atomic or ihas invariant
under some unipoterty tangent toW.. ThenU c L and thusU ¢ M C H which
contradicts our choice af sinceW, is transversal to théf-orbits. Thus all conditional
measures of. along the relevant subfoliations are atomic. AsZh Lemma 5.10 of 2]
now implies that the conditional measures along are atomic. O

Finally, let us remark that we obtain similar results for twisted Weyl chamber flows
replacing Theorem 7.2 fron2].

THEOREM 7.2. Let« be a standard symmetric spad-action on M with symmetric
space factoM’. Assume that > 2 and thatu is an invariant weakly mixing measure for

a for which conditions (C1) and (C2) hold. Then either every element has zero entropy
w.r.t. u or u is an extension of a zero-entropy, invariant ergodic measur®6hy a Haar
measure along the toral fibers or an extension of a Haar measum 'oby zero-entropy
measures along the toral fibers pris a Haar measure on a homogeneous real algebraic
subspace.
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