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ABSTRACT. - We define invariants for measure-preserving actions of
discrete amenable groups which characterize various subexponential rates
of growth for the number of "essential" orbits similarly to the way entropy
of the action characterizes the exponential growth rate. We obtain above
estimates for these invariants for actions by diffeomorphisms of a compact
manifold (with a Borel invariant measure) and, more generally, by Lipschitz
homeomorphisms of a compact metric space of finite box dimension. We
show that natural cutting and stacking constructions alternating independent
and periodic concatenation of names produce 7L2 actions with zero one-
dimensional entropies in all (including irrational) directions which do not
allow either of the above realizations.

RÉSUMÉ. - Nous definissons des invariants pour des actions préservant la
mesure de groupes moyennables discrets. Ces invariants caractérisent divers
taux de croissance sous-exponentiels du nombre d’orbites « essentielles »
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324 A. KATOK AND J.-P. THOUVENOT

de la même manière que l’entropie caractérise leur taux de croissance
exponentiel.
Nous obtenons des majorations de ces invariants pour des actions

par des difféomorphismes sur une variété compacte (avec une mesure
invariante Borélienne) ou plus généralement pour des actions par des

homéomorphismes Lipschitziens sur un espace métrique compact de
dimension « par boites » finie.
Nous montrons comment des constructions naturelles par découpages

et empilements alternant des concaténations de noms indépendantes et

périodiques peuvent produire des actions de 7L2 dont toutes les entropies
directionnelles (incluant les directions irrationnelles) sont nulles et dont on
ne peut trouver aucun modèle du type precedent.

INTRODUCTION

The smooth realization problem for measure-preserving transformations
has many aspects and facets, most of them far from well understood. For
the sake of this discussion we will stick to two basic types of questions.
Let T be a measure-preserving transformation of a Lebesgue space (X, J-l).

1. Does there exists a smooth, say Coo, diffeomorphism f of a compact
differentiable manifold M, preserving a Borel probability measure v such
that f considered as the automorphism of the Lebesgue space (M, v) is

metrically isomorphic to T?
2. The same with an extra requirement that the measure in question is

absolutely continuous, or smooth, or given by a smooth positive density.
The basic and well-known restriction on the possibility of smooth

realization is finiteness of entropy h Jl (T). This was originally shown by
Kushnirenko for the absolutely continuous measures in his seminal paper
[6] and was first proven by Margulis for arbitrary Borel measures in the late
sixties (unpublished). This fact follows from the entropy inequalities in [ 10]
or [5] . In fact, the entropy of a Lipschitz homeomorphism of any metric
space of finite box dimension is also finite (see e.g. [4], Theorem 3.2.9).
The realization problem 1 for finite entropy transformations has been

solved positively by Lind and Thouvenot [7] based on the methods of
the Krieger generator theory. In their work M = the two-dimensional

torus. In fact, they showed that the measure v can be made positive on
open sets. Without the latter requirement their method works for an arbitrary
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325SLOW ENTROPY AND SMOOTH REALIZATION

compact manifold of dimension &#x3E; 2. However, with that requirement the
smooth realization on an arbitrary manifold or, for that matter, on S3, is not
known. A related fact is that an arbitrary measure-preserving transformation
with finite entropy can be realized as a homeomorphism of an arbitrary
differentiable compact manifold of dimension &#x3E; 2 preserving a measure
given by a smooth positive density ([3], Chapter 15; for the case of T2
this result was proved earlier in [7]).

The situation with the "genuine" smooth realization (problem 2) is much
less understood. There are no known restrictions for realization within

the class of all compact manifolds. As is well-known if M = S~ any
diffeomomorphism preserving a non-atomic measure is conjugate to a

rotation. The only non-trivial restriction follows from Pesin’s theory of
diffeomorphisms with non-zero Lyapunov exponents which implies that in
dimension two any positive entropy diffeomorphism is essentially Bernoulli
[9]. No restrictions are known in the zero entropy case in dimension greater
than one and in the positive entropy case in dimension greater than two.

When one passes from single automorphisms to groups of measure-

preserving transformations the situation changes. Orbit growth characteri-
stics derived from and similar to entropy provide a number of obstructions
to smooth realization. Let us consider the simplest interesting case, that of
the free abelian groups &#x3E; 2. For smooth actions the (I-dimensional) .
entropy of the restriction of the action to any subgroup r of Zk of rank
I &#x3E; 2 must be equal to zero. Furthermore, the entropy with respect to an
absolutely continuous invariant measure is given by the Pesin formula [9]
as the sum of positive Lyapunov exponents and hence entropy of an element
is a subadditive function on the group. Since there are examples of actions
for which this is not true (such examples were constructed independently
by the second author and by Ornstein and Weiss [8]) we deduce that not
every action whose elements have finite entropy allows smooth realization
with an absolutely continuous invariant measure. Furthermore, one had
to take into account "irrational" directions in the group. The entropy in
such a direction can be described as the entropy of an appropriate element
of the suspension action of Particularly interesting examples of that
kind constructed by the second author feature an ergodic action of 7L2
whose elements have zero entropy but some (evidently irrational) element
of the suspension has positive entropy. Since smooth realization of an
action implies a smooth realization of its suspension such actions cannot
be realized with an absolutely continuous invariant measure.

In the present paper we construct obstructions to smooth realization

(even with just a Borel invariant measure) of actions of finitely generated
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326 A. KATOK AND J.-P. THOUVENOT

amenable groups which can be non-trivial already for actions of &#x3E; 2

for which all elements of the suspension have zero entropy. In fact, our
obstructions work for realization of actions by Lipschitz homeomorphisms
of compact metric spaces of finite box dimension. This is different in an

essential way from the obstructions used in [8] which relied on much deeper
facts from smooth ergodic theory. Our invariants generalize to the group
actions the invariants for individual maps whose description is outlined in
section 11 of [ 1 ] . They represent asymptotics of the growth of the number of
balls in the Hamming metrics needed to cover the "names" representing an
essential measure of codes with respect to a partition. The key observation

(Proposition 1 ) is that to majorize those asymptotics it is sufficient to

consider a single generating partition or, more generally, a family of

partitions whose a-algebras asymptotically generate the a-algebra of all
measurable sets (generating or sufficient families). This property makes
the invariants both calculable and useful unlike the asymptotics of the

entropy of iterated partitions which are useless in the zero entropy case. For
smooth and Lipschitz transformations our invariants can be estimated from
above via the box dimension and Lipschitz constants (Proposition 3). More

generally, for groups of homeomorphisms of compact metric spaces there
is an intimate connection between the invariants and similar asymptotics
obtained from the sequences of metrics measuring the maximal distance
between finite pieces of orbits (Proposition 2) It is rather remarkable that

zero-entropy examples not allowing smooth or Lipschitz realization come
from the most natural and "regular" cutting and stacking constructions
which alternate random and periodic behavior for increasing time scales

(Proposition 4 and Corollary 1 ). In order to keep notations reasonable and

presentation short we describe examples only for 7L2 actions although proper
modifications work for finitely generated amenable groups which are not
finite extensions of Z.

1. DESCRIPTION OF INVARIANTS

1.1. Preliminaries

Let r be a discrete group, its subset. We consider the spaces

with the natural projections - for F D F . In

particular, for every F ~ 0393 there is a proj ection 7Tr,F : 01v,r - 
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327SLOW ENTROPY AND SMOOTH REALIZATION

For any finite set F ~ 0393 we define the Hamming metric dF in 
as follows

In other words, dF measures the average number of coordinates which
take different values.

Let T : (X, x T --~ (X, be an action of the group F by measure-

preserving transformations of a Lebesgue space; let ~ _ be

a finite measurable partition. Our constructions will use an ordering of
elements of ~ but the results will be independent of a particular choice
of an ordering. We define the "coding map" ~~ ~ ~ ~ by
(03C6T,03BE)03B3 = 03C903B3(x) where E c03C903B3(x). Partial coding 03C6FT,03BE for F ~ 0393 is
defined by ~~ == ~r.~. We will call the ~’-name of x with

respect to ~. The partial coding pf,ç defines the measure ( ~~T,~ ) * ~c in 
Consider now a compact metric space with the distance function d and

a probability measure A. For E &#x3E; 0, b &#x3E; 0 let 8) be the minimal
number of balls of radius E whose union has measure &#x3E; 1 - 8.

For the special case X = = dF, ~ _ (~T,~)*~c we adopt the
following notation 

1.2. Comparison of codes

For let EF = {~y : ~ E E,y E F}. Let us denote by çE
the iterated partition

Any ordering of elements of ~ induces the lexicographical ordering of
elements of We will compare codings via ç and via ç E in terms of
the Hamming distance.

Notice that the F-names with respect to are completely determined by
EF-names with respect to ç. Furthermore, any disagreement between EF-
names with respect to ç will show up at most cardE times as a disagreement
between F-names with respect to ç E. Furthermore, if F’ D F there are
at most (cardF’ - cardF) more disagreements between F’-names than
between F-names. Hence the following inequalities hold:

Vol. 33, n 3-1997.



328 A. KATOK AND J.-P. THOUVENOT

and hence

It is obvious that if ~ ~ 03BE, dHF(03C6FT,~x,03C6FT,~y) ~ dHF(03C6FT,03BEx,03C6FT,03BEy) and

Finally let us consider two partitions ~ = (ci,..., and 7J = ( d 1, ... , dN )
and let

0152 = ~ N 1 di). Using Chebychev inequality one immediately sees
that

This translates into the following inequality

1.3. Asymptotic invariants

Now assume that F is an amenable n = 1, 2, ... is a Følner

sequence of finite subsets of F, i.e. Fi C F2 C ..., = F and

for every finite set E C r

Our invariants are built from the characteristics of the asymptotic growth of
the quantities Sf (T, E, 8) as n -~ oo. We then let E - 0 and 8 - 0 and
take the supremum over all finite partitions ç. Specific characteristics of the

asymptotic growth can be produced in a number of ways. For example, fix
a sequence of positive numbers an increasing to infinity and take

Alternatively, one can fix a "scale" i. e. a family an (t) of sequences

increasing to infinity and monotone in t such as the power family

nt, 0  t  oo and define the following characteristic of the asymptotic
growth rr _

or similarly with lim inf . The reader will find without much difficulty other

convenient characteristics of the asymptotic growth. Whatever specific

Annales de l’Institut Henri Poincaré - Probabilités et Statistiques



329SLOW ENTROPY AND SMOOTH REALIZATION

procedure is chosen, we will denote the resulting quantity which may
be either a non-negative real number or infinity by E, 8). Since

6~(T,F,6,$) are by definition non-increasing in E and b

Thus our invariants are defined as

where ~ is an arbitrary finite partition. Let us point out that if the action T is
ergodic and we use the exponential scale an (t) = exp tn in our definition
the resulting invariant coincides with the entropy of the action (See [2]
where the case r = 7L is treated in detail). Thus if the entropy 
is equal to zero, in order to produce non-trivial invariants we should use
slower scales such as nt or exp tna for some 0152  1. The resulting invariant
may then be called the "slow entropy" associated with the given scale.

Similarly to the case of the standard (exponential) entropy we need
to develop effective methods of calculating our invariants. Recall that a
partition ~ is called a generator for the action T if the minimal invariant
a-algebra containing ~ is the o--algebra of all measurable sets. This fact is
symbolically denoted E where E denotes the partition into single
points generating the o--algebra of all measurable sets. More generally we
will call a sequence of partitions 03BEm generating (or sufficient) if (£ - E.
This means that for every measurable set A and every 8 &#x3E; 0 there exists

mo such that for every m &#x3E; mo one can find a finite set Em C F and a set
Am measurable with respect to the partition such that 0
as m --~ oo. The following fact generalizes the well-known properties of
entropy including the generator theorem (See e.g. [4], Section 4.3.)

PROPOSITION 1. - generating sequence of partitions for the
action T of an amenable group f. Then

COROLLARY l. - is a generating partition for T then

Proof of Proposition 1.1. - The proof follows the same general scheme
as the corresponding proof for the entropy of a single transformation (See
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e.g. [4], Theorem 4.3.12). We will use inequalities ( 1.1 ) - (1.3) ; ( 1.1 ) will

be used to show that A( ç) = A(~E) for any finite set E C r; this is the
only place in the proof where amenability of the group r is used; (1.2)

immediately implies that for If]  ~,  ~(~). Hence for any finite set
E c r and for any partition 17  ~, A(17)  .4(~). In the case of entropy
the last step in the proof is showing the continuity of the entropy with respect
to a partition in the Rokhlin metric == + This

continuity follows form the Rokhlin inequality ([4], Proposition 4.3.10(4)).
In our situation we will use (1.3) for a similar purpose.
To prove the proposition we need to compare for a fixed finite

partition 17 = (cl, ... , with lim supm~~ A(03BEm) for a generating
sequence In fact, it is enough to show that A(17)  For,

then in particular  lin supm~~ A(03BEm) for every rno, hence

It follows from the definition of a generating sequence of partitions that for

any positive integer mo, and any E &#x3E; 0 one can find rn, = m(6) &#x3E; mo, a

finite set E = E(E) and a partition ( = (d1,... , dN) such that

By ( 1.3)

and hence

where the second inequality follows from (1.2).
Now we can use the fact that Fn is a F0lner sequence (see (1.4)) and

pick no such that for any n &#x3E; no

Using ( 1.1 ) we obtain for any such n the inequality
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and hence oo

Combining this inequality with (1.5) we obtain

Taking supremum over the second and third arguments completes the proof:
A(~) ~ ~). a

2. ABOVE ESTIMATES FOR SMOOTH AND LIPSCHITZ ACTIONS

2.1. Comparison with d,F metrics
Now let r act on a compact metric space X with the distance

function d by homeomorphisms preserving a non-atomic Borel probability
measure /~. For any finite set we define an equivalent metric
dF = max03B3~F d o T(q). Obviously if F ~ F’, dF &#x3E; 

We now specify the quantities ( E, 8) defined in section 1.1 for the case
d = d~, A = The corresponding numbers are denoted by Sd(T, F, E, 8).
Pick a finite partition ~ = (ci ; ..., cN) such that ~c(c~~) = 0, and a number
8 &#x3E; 0. Let a = a(8) &#x3E; 0 be such that  b2, where UQ(A)
denotes the open a-neighborhood of the set A: 

.

Proof. - Denote the neighborhood simply by U. Consider the set

By the Chebychev inequality JL( C) &#x3E; 1 - 8. Consider a cover of the set
C by the minimal number of balls of radius ~ in the metric d~.
LEMMA 1. - For any ball B from the cover the diameter of the image

metric dF is  8.

Proofofthe Lemma. - Since the cover is minimal B n ø. Let x E C.
That means that among points E F less than 8cardF belong
to the set ~(9~). Let

Vol. 33, n° 3-1997.
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For every 1 E Fx, the 2 ball around in the standard metric d lies

in the same element of the partition ~. Hence for any y E ~) and
1 E F~, c,~,~(~) = c,v.~(x) and consequently

To finish the proof of the proposition let us consider any cover Ql of
a set A with /~(~4) &#x3E; 1 - {3 by balls in the dF metric of radius 2 . For
each element B E 2t let J3~ = n C). By the lemma the set BH
can be covered by a dF ball of radius 8. Thus, we constructed a cover
of the set n C) by Sd (T; F, ~ , {3) balls in the metric d). Since

n C) &#x3E; ~(~4) 2014 M( C) &#x3E; i - fl - 8 we proved the proposition. D

2.2. Estimates of dF covers for smooth and Lipschitz actions

Now we assume that the group F is generated by a finite set Fo and
that the F0lner set Fn consists of elements whose word-length norm with

respect to Fo does not exceed an . Furthermore, we assume that the compact
space X has finite box dimension D with respect to the metric d and that r

acts on X by bi-Lipschitz homeomorphisms. Let L be a common Lipschitz
constant for all elements T(~), ~ E To Then obviously all elements
of T(Fn) have a common Lipschitz constant 

PROPOSITION 3. - For any partition 03BE with M( 8ç) = 0

Proof 1.1. - By our assumption about dimension for any given E &#x3E; 0 the

space X can be covered by e( E) exp (D log balls of radius 

where the choice of a has been explained before Proposition 2. By our

assumption on the Lipschitz constants every such ball lies inside an 2 ball
in the metric d$,, . Hence Sd(T; # ; 0) &#x3E; c(E) exp (D log But by

Proposition 2 Sf (T, Fn, E, c) ~ Sd (T, Frz ; ~ 2E~ , 0). 0

Since one can always find a generating sequence of partitions satisfying
the assumption of Proposition 3 one can apply Proposition 1 to show that

a necessary condition for realization of a measure-preserving action of F

by Lipschitz homeomorphisms in a space of finite box dimension, e.g. by
diffeomorphisms of a compact manifold, is that the slow entropy should

be no more than exponential as measured against the diameter of the

F0lner sets in the word-length metric. Naturally, zero entropy of the action

corresponds to the subexponential growth measured against the j2umber of
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elements in the Følner sets. For any group which is not a finite extension
of Z there is a gap between the two asymptotics which allows to construct
actions by zero entropy maps whose slow entropy is superexponential in
terms of the diameter of Følner sets. Hence such actions do not allow

smooth or Lipschitz realization. For example, let r = 7Lk, k &#x3E; 2; Fn,
the standard symmetric n-cubes around the origin, ro the standard set of
generators. In this case an = kn, cardFn = ( 2n + 1 ) ~ . In the next section
we will construct actions of Z~ such that every element of the suspension
1R2 action has zero entropy but the growth of Sf (T, Fn, E, 8) is faster than
exponential in n and hence in an. By the results of the present section such
actions do not allow smooth or Lipschitz realization.

3. CONSTRUCTION OF EXAMPLES

As before, we consider a Lebesgue space (X, ~) and a finite measurable
partition ~ = (ci,...,c~v). For a measurable set A c X we denote by

the entropy of the trace of the partition ~ on A, i. e. the entropy of ç
with respect to the conditional measure If ~ = (di,..., dM ) is another
finite measurable partition of X we denote by entropy of ç relative to
ri. It is a standard fact that H(~~r~) = 
(See e.g. [4], Section 4.3.). For A c X we define the numbers

(T, F, E, 8) similarly to our definition of Sf (T, F, E, 8) (see the end
of Section 1.1 ) with the only difference that we substitute the measure
(cPf,ç)*/1 by the image (~)~(~4) of the conditional measure Let

Cn = [0, n - 1] x [0, n - 1] C 7~ 2 . Let Ti and T2 be two commuting
measure-preserving transformations generating the action T of 7L2 on the
space X, ~c.

LEMMA 2. - Suppose An is a measurable set such that the images An
for (I, j) E Cn are disjoint and their union is the whole space X. Then for
a partition ç as before and for a positive integer k

and
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334 A. KATOK AND J.-P. THOUVENOT

Prf!of - Let ~n be the partition of X into the images of the set An under

T1T2 , (i, j) E Cn. We have

for some C~. and = [~].LetC’ = [0~-po-l]x[0,~-~o-l].
By subadditivity of entropy the right-hand expression in the previous
inequality is greater or equal than ~R(~~A~). To finish the proof of
(3.1 ) it is enough to notice that

The proof of (3.2) uses essentially the same argument. We begin with a
cover of a set B of measure &#x3E; 1 - 8 by E-balls in the metric Using
Chebychev inequality one can find ( po , qo ) E Ck such that among the sets

An, (a, b) E C~ the proportion of those which intersect B
by a set of conditional measure &#x3E; 1 - ~ z is at least 1 - b z . After that it
remains to compare Cn-names and C’-names using (3.3). D

For a single measure-preserving transformation T : ( X , - ( X , ~) we
denote the iterated partition by Çn.

LEMMA 3. - Let T be a measure-preserving transformation of a Lebesgue
space. Given a partition 03BE as before, a positive integer k and E &#x3E; 0 there

exists an integer na and 8 &#x3E; 0 such that if n &#x3E; no is an even number and

An is a measurable set disjoint with its first n - 1 images and such that

then

Proof. - Let r be the smallest positive measure of an element of the

partition çk. Pick ii &#x3E; 0 so small that for any probability measure v such
that BM(e) - v(e)1  81 one has H"(~~))  E. Let E be
the projection to the the algebra of T-invariant functions. We do not assume

Annales de l’Institut Henri Poincare - Probabilités et Statistiques
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that T is ergodic; in the latter case E corresponds to taking average. Let
us pick no so big that for any n &#x3E; no and for every element c 

Therefore using Chebychev inequality one can find for each c from a

set of conditional measure &#x3E; 1 - 61 r a natural 
(depending on c) such that on the set the following inequality holds

Pick a 6 &#x3E; 0 so small that for every c E ~, ) J1(e) I  bIT.
We have 

"

By (3.5) the last integral is within 281r from ~‘2~~ , and hence (3.4) implies
the assertion of the Lemma. D

LEMMA 4. - Given a measure-preserving transformation T : (X, ,u) --~
(X, p) and a finite partition ~ assume that for every positive integer no and
E &#x3E; 0 there exist n &#x3E; no and a set An such that

Proof - First we show that if n is large enough and E &#x3E; 0 is small enough
is close to H(T, ~). To see this we use the argument of Lemma

2 for the case of a single transformation instead of a Z2-action to obtain

Consider the partition ~ which consists of intersections of the elements of
Çn with An and the complement of An . The invariant a-algebra generated

Vol. 33, n° 3-1997.
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by ~ approximates ç up to E. Hence &#x3E; R(T,~) ~ H(T,03BE) - E, and
the statement follows  ~+(l-~)log(l-~).
Now we show that under our assumptions ~R(~~~) ~ ~~~~

oo and e - 0. This together with the previous statement and
assumption (3) imply the statement of the lemma.

Let 03B6n be the partition into the sets i = 0,..., n 2 - 1 and

X B We have for a suitably chosen ko, 0  k,

Lemma 3 implies that the last term converges to 2 H(~~ ) . The first term is
bigger that n H(~ 2 ~A,r,,) - C~n’~~ so the statement follows. D

Now we are ready to describe the construction of our example of a
7~ 2 -action.

PROPOSITION 4. - Let n = 1 , 2, ... be a sequence of positive numbers

decreasing to 0. There exists a measure-preserving ergodic Z2-action T on
the unit interval with Lebesgue measure generated by transformations Tl,
T2 and a generating partition ~ such that

( 1 ) . for some E &#x3E; 0,8 &#x3E; 0

(2) the entropy h~ (T ) = 0;
(3) every element of the suspension action of 1R2 has zero entropy.

Proof. - First, notice that due to the subadditivity of entropy of iterated

partitions condition (2) follows from the fact that generators of the action
have zero entropy, which in turn follows from (3). The generating partition
ç will consist of two intervals of equal Lebesgue measure 1 /2. The cons-
truction will be determined by a sequence I~ ( n ) , n = 0,1, ... where either
k(n) = 0 or k(n) = 1 + k(n’) where n’ _ ~sup p : p  n, 0~.
At the step n there will be an integer h(n) and a set An such that the sets

Ti T2 A.n,, (i, j ) E Ch(n) are disjoint and cover the whole interval [0,1].
We will alternate two types of construction. When k(n) = 0 we set

h(n + 1) = 2h(n) and the set is partitioned into names in

such a way that four blocks of Ch(n) names occur independently inside
the names. This is achieved by the standard cutting and stacking
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construction. At the base of the induction we put h(O) = 2, ~ ( Ao ) = 1 /4
and all 16 elements of the partition ~C2 are intervals of equal measure.

If k(n) = L &#x3E; 0, we set h(n + 1) = Lh(n). In this case is

partitioned into in such a way that for every name

the names, which are obtained by tiling it, are identical.

Thus we see that the names in IAn are obtained from an independent
distribution extended periodically in a fixed pattern determined by the
sequence I~(n). In order to guarantee the zero entropy condition (3) we
need to assume that 1~(n) ~ 0 for infinitely many values of n. On the other
hand, by taking long enough blocks of zeroes in k(n) we can guarantee
condition ( 1 ). In fact, even a stronger condition with lim inf instead of

lim sup would hold. This can be seen as follows. Due to the independent
nature of cutting and stacking the numbers (T, E, 8) can be
calculated from the number of different names in the set A~ and can
be made to grow faster than any given speed which is subexponential in
n2 . Then lemma 2 implies ( 1 ).
Now we will prove that if I~(n) ~ 0 for infinitely many values of

n condition (3) is satisfied.The phase space Y of the suspension action
can be identified mod 0 with the product of the phase space of the 7~2
action T (the unit interval in our case) and the unit square. Fix a positive
integer m and consider the Cartesian product of the partition with

the standard partition of the unit square into squares of size 1/m. Denote
this partition Denote the suspension action S : Y x (~2 --~ Y. Since
the entropies of the elements of a one-parameter subgroup of a !~2 action
are determined by the entropy of a generator it is sufficient to consider
the entropies of the elements S(cos 8, sin 8). Without loss of generality we
may assume 0  B  2. There are infinitely many rationals pq such that
I tan 03B8 - pql  q12. Fix E &#x3E; 0 and a positive integer m and pick pq such
that |p - q tan 03B8|  E. Since the numbers k(n) are unbounded we can find
an n such that 20142014  E2, E. Now define positive integers L and M
as follows: L = [k(n)h(n) - 2qh(n) tan M = sk(n) where s is found
from = 2sq + r, 0  r  2q. Consider the following set G E Y:

It is easy to check that the conditions of Lemma 4 are satisfied
with T = 2~ ~s eq ~, ~ _ = G. Hence

h(S(cos 8, sin g), = 0 for all m and since the m = 1, 2, ... is

obviously a generating sequence of partitions = 0 D
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Propositions 1, 3, and 4 immediately imply

COROLLARY 2. - If lim nEn = 00, then the action constructed in
n-oo

Proposition 4 is not isomorphic to any action by Lipschitz homeomorphisms
on a compact metric space of finite box dimension preserving a Borel

probability measure. In particular, it is not isomorphic to an action by
diffeomorphisms of a compact differentiable manifold.
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