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This is a preliminary version of results obtained mostly in collabora-
tion with John Mather. The final version will appear as a joint paper. The
reasons for this separated presentation are mostly stylistical. Although the main
ideas involvedboth in the formulation and in the proofs appeared in collaboration,
each of us has his own favourite way to present these ideas. Mather prefers a
rather analytical language which he first developed in his landmark paper [1],
whereas I follow a more geometric style of my paper [2] where I gave simpler

proofs and slightly generalized Mather's results.

This text is a continuation of [2] so that we shall use all definitions
and notations from this paper without any special notice. We shall always assume
that f 1is a twist homeomorphism of the annulus preserving a measure positive

on open sets. Additional assumptions will be mentiomed in appropriated places.

1. Homoclinic and heteroclinic orbits for Birkhoff orbits

Let -% be a rational number belonging to the twist interval for f

Let us consider a sequence of irrational numbers ay converging to -g and mi-
nimai Mather sets En with rotation numbers ay - By replacing o, by a sub-
sequence, if necessary, we can always assume that En converge in Hausdorff
topology to a set E which by Proposition 3 [2] 1is a Mather set for f with
rotation number %-. All non-wandering points of the restriction f g 2are, of
course, Birkhoff periodic points of type (p,q) . Let EO be the subset of E
consisting of all those points. We claim that E\Eo is a non-empty set, unless
E_ is a circle. Moreover, let us consider the projection of E_ to the circle.

The complement to this projection consists of finite or countable number of

intervals.

Proposition 1 : Every such interval contains a projection of a non-periodic




point from E .

Proof : If among the sets En there are infinitely many circles thén; E 1is
also a circle and the statement is oEviously correct. To prove it in the case
where all but finitely many of En's are Cantor sets, &e shall considér the
behaviour of holes in those sets as n goes to infinity. A hole H in a
Mather set is determined by two points of the set, whosé projections to the
circle bound an interval which is complemetary to the projectién of the set.

The length of this interval will be called the length of the hole H and de-

noted #(H) . The image f(H) of the hole H has am obvious meaning.

Let H be a hole in E determined by points k and vy . In order to
prove the proposition it is enough to show that either x or y 1is not a
periodic point. To prove that, let us consider a sequence Hn of holes in En
couverging to H . Such a sequence obviously exists. Since the rotation numbers
of the sets E_ = are irrational, for every hole Hn the projections of all its
images are disjoint so that
(1) roa(fH ) <1

m=0 nT

Let us assume now that the hole H is periodic, i.e. both x and y are

periodic points. Then for some c¢ > O and every N.z 1

N
(2} 5 oo (£ > N
m=0
Since Hn converge to H we have for every m
(3) (7 ) —— L (£7H)

Obviously (1), (2) and (3) are incompatible. O

For every non-periodic point z € E , its oa-limit set is the orbit



of the periodic point which is projectedintoan endpoint of the complementary
interval to EO , containing the projection of =z the set (z) 1is the orbit
of the point which projects into &msothér end of the same interval. Thus, z

is either a homo- or a heteroclinic point to some periodic points. Let us sum-
marize the information we have oBtained for the typical case when EO is a

finite set.

Corollary 1 : Let E0 consist of finitely many Birkhoff periodic orbits, say
YyoeteYg o ordered accordingly to a cyclic order on the circle. Then there

exist heteroclinic (homoclinic if s = 1) orbits, . 0ys--+50g 5 such

that eilther

Y, = w(os) = a(ol)

Yy = w(Ol) = a(oz)

Y. = w(os_l) = a(os) .

or

<
P
it
Q
o~
Q
~
1]

w(cl)

Yy = a(ol) = w(oz)

Yo =0 ) =w(@)

In both cases we can say that Opseeesly form a homoclinic link for YioeoeYgr




2. Conditional minima for the Lagrangian

Let us consider a Birkhoff periodic orbit for f . By lifting this orbit

to the universal cover and projecting the lift to the line we obtain a map

(cf. details in [2], section 4).

Let us consider the following subspace Qi q of the space @p a
o' =fpee , yn) <pn) < y@@+l) , n € Z}

Psq pP-q

This space is naturally fibered by smaller spaces ¢§’% where ¢ (0) < x < y(1)
5

v 1] =
) q {p € @p’q » ©(0) = x}

X,
P>
Notice that in those cases the identification of integral shifts is not meces-—

sary.

are compact. Let us show that they are

Obviously @¢ and all @X’w
P>4 q

b

non-empty . For the map y can be extended to a homeomorphism $': R—— R

such that

P(t+rq) = J(r)+1

and

g, V() < T(t+p) < g (D)

Such an extension can be constructed separately on each interval [k,k+1] ,
k = 0,...,9-1 and then continued by periodicity. Since for some t € R we

have ﬁ(t) = x we obtain an element of ¢§’g by putting @(n) = $(t+n)



The following lemma will be used later in this section for the study of the

. . X . .
Lagrangian Lp q restricted to the spaces ¢ 3 as well as in section 4 for

b b

the construction of a second "minimax'" Birkhoff periodic orbit associated with

an orbit which gives minimum to Lp q "
b

Lemma 2.1. If ¢ € Qg q and (k) = y(k+1l) then for that ¢ , hl(k) > hz(k)
b
and the inmequality is strict iff ((k-p) < y(k-p+1)

Similarly, if @(k) = y(k) then hl(k) j_hz(k) and this inequality is

strict iff @(k+p) > y(k+p)

Proof : Let us consider the first case (cf. Figure 1).

Iy J I, FI,
|
g(k+p+1)
) A glk+l)
. /' ¥ h, (k)
/[ /
©(k=-p)  Y(k-p+1) O(k)=p (k+1) ©(k+p) <p (k+p+1)

Figure 1

Let (y(n),g(n)) be the coordinate form of the Birkhoff orbit determined

by ¢ . From the assumption of the lemma and the twist condition we have
h, (k) > g(k+l)

and the inequality is strict iff @(k-p) < y(k-p+1l) . However,
F(p(k+l),g(k+1)) = (p(k+p+l),g(k+p+l))

and since Y (k+p+l) > @(k+p) the point (p (k+p+1) ,g(k+p+1)) lies further to



the right or coincides with F(w(k),hz(k)) . This implies that hz(k) < g(k+1).

This proves the first statement of the lemma.

The second case is considered similarly ; namely we prove that
h2(k) > g(k) and the inequality is strict iff ((k+p) > y(k+p) and then show that

g(k) > hl(k) . o

Lemma 2.2. : If the functiomal L restricted to the space ¢§’w reaches
- b

3

its local minimum at ¢ then for that ¢ and for n # 0 (mod q)

hl(n) = hz(n)

X’
oV

Proof : Let us first put together the cowplete definition of the space poq
- ]

Namely, this space comsists of all maps ¢ : Z—— R such that

(4) ©(0) = x )

p(n+q) = p(n)+1 s
(5 g (o(m) < oatp) < gylom)
(6) p(n) < ) < y(n+l)

and the topology in this space is defined by the embedding into R given by

© ——— (@), ...,0(q=1)) -

Not only the formulation but also the proof of our lemma is but a minor

modification of those for the lemma from section 4 of [2] .

The argument from that proof applies directly to thecase when inequalities
(6) are strict for all =n . That argument shows that if hl(n) # hz(n) for
some n which is not an integer multiple of q , them (¢ can be modified by

- . X ' i
an arbitrary small amount within ¢’ so that the value of the functional
b



L decreases. For, it is obvious that the perturbation keeps all conditions
b

except for, probably condition (4). However, by (6) ©(1) > ©(0) > (-1) so

that @(0) remains unchanged by the perturbation.

. . . X . ..
Thus, it remains to prove that if for ¢ € ¢’ one of the inequalities
b

P

=R TS

(6) is not strict and for some n , n #0 (mod q), 1(n) # hz(n) then the

value of L can be decreased by an arbitrary small perturbation within
s

@i’i . In this case there exists k , O <k <q such that either
b

(7) O(k=p) <P(k-p+1) , @(k) = P(k+1)

and then by lemma 2.1,

(8) hy (k) > hy(k)
or
(9) ok) = y&) , @(k+p)> Y(k+p)

and then again by lemma 2.1,
h2(k) > hZ(k)

In the first case (i.e. where (7) and (8) are satisfied) we have

(10) k) = p(k+1) > g (pk-p+1)) > g_(o(k-p))
and
(1) o(k+p) < y(k+p+l) < g, (p(k+p)) = g, (o(k))

The inequalities (8), (10) and (11) assure that we remain in @E’ﬁ if we replace

~

© by ?p'e where

@ (n) =

{ w(n) . n # k, mod q
€

o(n)-¢ , n =k, mod q



for sufficiently small € >0 .

Now the argument from the proof of the above mentioned lemma applies and

shows that L () <L . (cf. figure 2, [2]
shows tha p’q(cps) > q(cp) ( igure )

b

The case when conditions (8) are satisfied is considered similarly. In

this case we apply the argument in the situation reflected by Figure 3 from [2].o

Since the space @;’2 is compact and non-empty and the functional Lp q
b b

. . . . . .. X )

is continuous, this functional always reaches 1ts minimum On ) ¥ . By lemma 2.2
b

the map @ where this minimum is reached determines a map Z—S ,

n —— (@(n),h(n)) such that for n # 0 mod q

F(p(n),h(m)) = (O(a+p),h(n+p))

and since @(0) = x and p and q are relatively prime
Fl(x,h(0)) = (x,h(a))

The projection to the annulus gives an orbit of a point y which moves
around the circle respecting the order defined by the iterates of the original
Birkhoff periodic point 2z and after q iterates returns to the same vertical

segment.

Let us denote

(12) fz (qh,rn) as in [2] and

(13)

+h
<
1

(@I;)rr;) 3 n=0’1’°"!q

Condition (6) allows us to prove the following extension of Proposition 1 from

[21]

Proposition 2 : If Iq%—q&‘ <r then [rn—réi < y(r) and if lwé“@él < r
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then Ir;—ré[ < y(r) for myn=1,...,q-1 and for the same function Y as

in Proposition 1 [2]

The proof of the mentioned proposition directly applies to this case.
The exclusion of my,n = 0 or q allows to move pointsboth forward and backward

which is crucial for the application of the twist condition.

Simply by reformulating the statements of two propositions we obtain the

following result.

Corollary 2 : The orbit of =z and a part of the orbit of g namely fny s
n=1,...,q-1 form together a graph of a function defined on a finite subset

of the circle with the values at [0,1] . This function has module of conti-
nuity vy ; for a Lipschitz-twist map this function satisfies the Lipschitz con-

dition with the constant depending only on £ .

The points y and f; are excluded from this picture. Apparently, it
is unavoidable if 2z 1is an arbitrary Birkhoff periodic point. Very likely

candidate for a counterexample is thecase when both eigenvalues at z are -1.

However, if y 1is a point of minimum for the functional LD q and the inva-

ladi ]

riant measure 1s given a density bounded away from O and then the two

remaining points can be included into the picture. We shall discuss this case
assuming in addition in order to avoid some unpleasant, but purely technical

complications that f 1is a Lipschitz twist map. Throughout the rest of this

section we assume that all these extra conditionsare satisfied.

Let k be the only number O < k < q-1 such that the coordinate

v . .
@, @q lies on the circle between @, and @ -

Proposition 3 : There exists a constant C such that max(lré—rJ,]r&—rol) <
¢ min(lol-w |, |0 0 |) -

The proof of this proposition is based on several lemmas which
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will also be used in subsequent sections. We shall work on the

universal covering again. Let us remind that @(0) = x and ¥(0) < x < ¥(1)

Lemma 2.3 : There exists a constant €' such that Lp q((p)—Lp q(w)>

3

C' [h(q)-h(0)| xmin(|h(q)~h(0)}x~¥(0),}(1)-x)

Proof : Without loss of generality we can assume that x ‘is not too close to

¥(1) . This case can be reduced to the one we are going to treat by considering

F 1 instead of F and changing notation appropriately.

Cases h(q) > h(0) and h(q) < h(0) are presénted on figures 2 and 3
which reproduce in our notation corresponding figures from [2] . Both cases are
treated similarly but we shall give more details for the latter one because it
is the only case which is needed for the proof of Proposition 3.

Flr

I 2 Il FIO 12

O

I

|

| h(q)
\\Jg(
/ / 1 (0)

///
S/

/

NN

I

~
|
I
I
l

x—e= y

@(-p) ¥(0) =5 (0) ¥ w(p)

€

Figure 2
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-1
‘ /
| /
w‘ ; /
/ h(q)
(-p) $(0) x=p(0) xte= o(p)
=p (0)
€
Figure 3

In this case (cf. Figure 3) we replace ¢ by &2 where

(n) if n£0 modq

n

e(m)+e if n =0 mod q

and thus diminish the value of the functional Lp q by the measure of the
b

shaded domain D (see [2], p. 13).

Because :of the assumption about the invariant measure we have

14 L © L - C
(14) p,q(we) < p,q(qﬂ 1 area D

where C1 is independent of y . By the Lipschitz twist condition the curves

F“]‘I2 and FI0 bounding D have bounded slope so that

(15) area’D > C,(h(0)-h(q)) (min(e,h(0)-h(q)))

for another constant C2 .
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If € 1is sufficiently small then a& (S q- On the other hand, we

b
can assume that x-y(0) is sufficiently small because otherwise the desired
inequality is trivial. Thus, in particular, ©. €d and since L
4 Y ’ P (pX"I!J(O) P,q P,q

reaches its minimum at y we have from (14) and (15)
Lp,q(w) < Lp,q(wx—w(09 < Lp,q(m) - Clcz(h(q)‘h(o)) x
x (min(h(0)-h(q),x-y(0))).

If h(q) > h(0) we move ©(0) leftward (figure 2) and proceed with similar

argumernt. [a]
Lemma 2.4. There exists a constant C'" such that

Ty ' 2
Lp’q(m)‘< Lp,q(w) + C"(min(x-9(0),y(1)-x))

Proof : As before we can assume that x 1is not too close to (1) . First we
shall show that Lp q((p)—LD q(11)) is bounded from above by a constant which
3 jg

depends only on f but not on a particular Birkhoff periodic orbit. It is

enough to show that the function M(x) defined by
(17) M(x) = min L ()

is a Lipsthitz function of x with a uniform Lipschitz constant. But that
easily follows from the construction of the previous lemma. Namely, since for

small ¢ M{x+e) :-Lp q(GE) we have

(18) ]M(x+€)—M(x)[ < C3 area D < C3€ ,

where C3 depends only on the density of the invariant measure. Now we can assume

that x 1is close to ¢ (0)
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Let E; be defined by

(n) if n#0 mod q

pn)+e if n=0 mod q

If ¢ 1is small enough then ﬁ; € ®$(2)+E’w 3 in particular we can assume
b
~ X, . . . ..
d t of f
that wx-w(O) € ®p,q and since (¢ 1s a point of minimum for Lp,q on
®x,w we have
b
1.9 L Q. > L
(1.9) praVx-y(0)) 2 p,q @
-1
I F I I
o 2 1 FIO 12
\ ]
l
N
| \
(-p) v(0) y(0)+g- (p)

Figure 4

From the same consideration as above we obtain that

(20) L @)

p,ql¥e) = Lp, W)+ u@Y <

2

IA

|
Lp,q(w) + Cy area D i.Lp,q(¢)+C3C4€

The lemma follows now from (18), (19) and (20). @

Lemma 2.5. h(0)-h(q) < C" (x-y(0))
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Proof : From Lemmas 2.4 and 2.3 we obtain

L ®) <L
q(-p

P>

RORR TGP

b

< Lp q(cp)—c'(h (0)-h(q)) x min(h(0)-h(q),x-y(0))

3

+ C"(x=0(0))°
This implies that
h(0)-h(q) < C"' (x-¥(0)) . o-

Proof of Proposition 3 : The subsequent argument is essentially the repeti-

tion of the argument from the proof of Proposition 1 from f21.

Let us first assume that h(0) < g(0) and consider the images of
three points (¥ (0),g(0)),(x,h(0)) and (¥ (0),h(0)). The first two images
are respectively @ (p),g(p)) and (o) ,h(p)) . Let us denote F(y(0),h(0))

by (7,8) . By the Lipschitz twist condition
T < (@€ (g(0)-h(0)
and since F 1is a Lipschitz map
©(p) > ¥ = Cp(x—y (0))
But since @(p) > y{(p) we have
(21) g(0)-h(0) < C,(x~¥(0))

Similarly, assuming that h(q) > g(0) and taking pre-images of appropriate

points we obtain

(22) h(g)-g(0) < cs(x—w (0))
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If h(q) < g(0) we have from Lemma 2.5 and (21)
(23) h(q) > h(0)=C" (x=9(0)) > g(0) - Co(x-¥(0))
Similarly, if h(0) > g(0) we derive from Lemma 2.5 and (22)
(24) h(0) < h(g) + C™ (x=¥(0)) < g(0) + Cy(x-W(0))
Inequalities (21) and (24) imply that

[h(0)-g(0) | < C(x~¥(0))
and similarly from (22) and (23) we see that

In(q)-g(0)| < cx=y(0)) ,

Those two inequalities together with the similar ones for the case when x

is close to Y(1) imply the statement of the proposition. O

Now we can formulate a stronger version of uniform Lipschitz property

for the orbit of y and z

Corollary 3 : The points fny, fnz, n=20,...,9~1 form a graph of a Lispschitz
function with a Lipschitz constant depending only on f defined on a finite
subset of the circle. The same is true for the points fn(fqy), fnz, n =

0,-1,...,—q+1 .

3. "Stable and unstable manifolds'" for Mather sets

In [2] section 3 we used a simple limit process to obtain Mather
sets from Birkhoff periodic orbits. Exactly the same process allows to constuct

orbits which are asymptotic to Mather sets from orbits constructed in the
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previous section. The properties of those orbits depend on the information
for the rational rotation number case. Thus,we shall get less in a more general
situation which was summarized in Corollary 2 and more for a more special

situation described in Corollary 3 .

Let us fix an irrational number o from the twist interval for

. . Pn .
f and consider a sequence of rational numbers -—  converglng to @ and

corresponding sequence of Birkhoff periodic orbitsnof type (pn,qn) we shall
denote those orbits r, = {zn,...,fq_lzn} . Without loss of generality we
can assume that r, converge in Hausdorff topology to a Mather set E ; by
[2] , Proposition 3, p(E) = o . Let us assume that E is not a circle.

Then it consists of a minimal Cantor set EO and a certain number (finite or

infinite) of orbits whose a—- and w-limit sets coincide with Eo .

Let ¢ € S1 ~ projection of EO . Let us consider for every mn the

q
orbit T = {y_see.,f nyn} as described in the previous section. Remind

n,Q n
that both Ya and £ nyn are projected into ¢ . Without loss of generality
we can assume that Tn §] Fn © converge in Hausdorff topology to a set
3

which we denote by ELp .

In particular, y, —V = (@, 1) £ nyn — y' = (Q,r') . It
follows from Corollary 2 that E@\({y}u{y'}) is a graph of a function with
module of continuity y defined on a certain closed subset of the circle.
Moreover, if y =y' then fE@ = Em ;if v # y' then wa A Em =y ,

-1,
f ELD A Ew =y' .
Suppose that ¢ belongs to the hole H0 for EO in the sense

that the complementary interval to the projection of Eo which corresponds

to EO contains ¢ . Then the projection of f; ,n >0 belongs to ano .
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This follows from the convergence of Fn and the preservation of order for

,®

. 'y = - . ..
Fn U];’m . In particular, oa(y") w(y) E0 . Moreover,every orbit in E@
different from the orbits of y and y' has EO as both its a- and w-

limit sets.

If the assumptions of Proposition 3 are satisfied we can add an extra
bit of information, namely each of the sets E@\{y} and E@\é{y'} is a graph

of a Lipschitz function.

If we take for every T, all orbits obtained by minimizing
X .
the functional L on & ¥ for every x ,we obtain for every n a
P9, L

closed set ?; 5T which in general is not a graph of the function. However
the Hausdorff limit of this set which we shall denote by ¥ has some nice

properties which are summarized in the following theorem :

Theorem 1 : (i) T =E, UE

1 and for every point y € E1

9 , w(y) = EO and

for y € E, , a(y) = E_ . Moreover, the projections of the point fny for

yE€E, ,n >0 (corr. y€ E, , n<0) lie in the n-th image of the holes

1 2

in EO containing the projection of y .

(11) E1 and E2 intersect every vertical interval {op} x[0,1] at least

at one point.

(iii) TIf (p,r) € fE; and (Lpo,rO)EEO then |r—ro| iy(lgp—(pol) for vy(r)

from Proposition 1 of [1] . Similarly for (p,r) € f_'1 5 -

(iv) If the conditions of Proposition'3 are satisfied then for (g,r) € El'U E2

((po,ro) €E_
lr-r | < K|oo_|

where the constant K depends only on f .
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Remark : It is interesting to know whether the set E, n E, > E is non—empty.
If it is, it consists of orbits homocyclic to EO . We can prove the existence

of homoclinic orbits to E using a different method, namely an infinite-..

dimensional version of the method from the next section.

4. Minimax Birkhoff orbits

For the rest of this paper we shall assume that f is a Lipschitz twist

map preserving a measure given by a positive Lipschitz density. A natural local

coordinate system on @p q is given by coordinates 0; = o) ,i=0,...,q-1
b

This coordinate system becomes global on Qg . In this case hl(n) and hz(n)

for every n are Lipschitz functions of coordinates 05 - Let p(x,y)dx dy be

the 1ift of the invariant measure to the universal covering. Then our computations

of the variation of Lp,q in [2] pp. 13-14 show that for ¢ = (@o...@q_l)e Qp,q
h. (1)
oL 1
(25) —Le) = o(o;,t)de
APl hz(i) -

and those derivatives are Lipschitz functions too. In particular if ¢ is a

critical point of L q then hz(n) = hl(n) for all n,and ¢ determines a

b

Birkhoff periodic orbit. If the map { determines a Birkhoff periodic orbit then

there are always two critical points for L in the space @i q’ namely
b

3

and $ given by y(n) = y(n+l) . Both of them obviously lie on the boundary

of ®¢ and L (y) =L
P>q P»q v Paqéy)
Proposition 4 : The functional Lp q has at least onme critical point ¢ inside
3
w .
P9

®

Proof : First of all, we can by a simple trick omit inequalities (5) from the

definition of the space @ﬁ Q- We simply continue £ to a larger annulus by
b
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adding sufficiently strong twist and then (6) imply (5).

Thus ¢ q is simply a parallelepiped in the space RY given by

b

inequalities

¥(0) <@ < (1)

WD) <o < b2
(26)

‘w(q-1) < ©q-1 < p(q) = ¢(0)+p

and y and J are two vertices of this parallelepiped. To simplify the no-
tations we shall denate Qg q by 1T . Let us consider the vector-field
V(p) = —grad Lp q((p) on ¢¢ q° By (25) it is a Lipschitz vector field and

b b

P and $ are attracting points for it. If we can show that orbits of V  which

begin at the boundary of Qg q stay within @i q that would imply that LP q

has at least ome more critical point which is not a local minimum. But this sta-—
tement about the orbits follows easily from Lemma 2.1. For; if ¢ belongs to

a face of the boundary, i.e. if only one of 'finequalitiés (26) becomes

an equality, say @; = y(i) then by that lemma hl(i) < hz(i) so that V 1is
transversal to the face 9; = p(1) and looks inside the parallelepiped. A
similar argument works if 0, = p(i+l) . Now imagine that some  orbit. of V
which beginsat the boundary eventually leave ¢g,q . Then the same is true for

an open set of initial conditions on the boundary and this open set must leave
the parallelepiped through a set which contains an open set and subsequently
intersects a face, which is impossible. Thus Lp q has a critical point ¢ in

b

@w q which is not a local minimum. But Lemma 2.1 shows that on the boundary the

vector-field is non—zero except for ¢ and $ . Thus, @€ Int ¢£ . a]

Let us reformulate the result in terms of orbits on the annulus.
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Corollary 4 : Under the assumptions of Proposition 4 let T = {z,...,fz_lzbfnz=
(mn,rn) , n=0,...,q-1 be the Birkhoff periodic orbit determined by ¥

Then there exists another Birkhoff periodic orbit T = {y,...,fg;qy} such that
fny = (w;,r;) and every w; lies on the circle between wnandthenext of mi's

counterclockwise. In particular, I' U T' is a Mather set.
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