MINIMAL ORBITS FOR SMALL PERTURBATIONS OF
COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS

A. KATOK*

1. Introduction. In this paper we summarize an attempt to carry out certain
aspects of Aubry-Mather theory for twist maps (see e.g. [M1] [AL] [K] [Mos2]
[B1]) to Hamiltonian systems with more than two degrees of freedom. In a sense,
the paper should be considered as a continuation of [BK]. Although the minimal
motions for an arbitrary “admissible” rotation vector, may not exist (see [He2], p.
54) the combination of KAM theory with some of the methods developed in [BK]
still yields a considerable information about those motions. Qur two main results

are:

(i) the orbits in KAM tori are minimal and they are the only minimal motions
for corresponding rotation vectors (Section 5, Theorem 1);

(ii) there are infinitely many rotation vectors for which KAM tori do not exist
but minimal motions do exist and the closure of these minimal motions
contains all the KAM tori (Section 6, Theorem 2).

Both results hold for small perturbations of completely integrable Hamiltonian
systems satisfying convexity assumptions (see Section 2 below and [BK], Sections 2
and 7). For (ii) we naturally assume that the set of KAM tori is nowhere dense.

John Mather has a proof of (i) or a close result (personal communication) which
looks considerably more involved that the proof presented in this paper.

We will use notations from [BK]. We will only present arguments for the discrete-
time case. namely for symplectic maps. The reduction of the more traditional
contimmons time case of Hamiltonian vector-fields to the discrete-time one is ex-
plsined in Section 7 of [BK]. Furthermore, some of the arguments and estimates
poesented in [BK] for Birkhoff periodic orbits work almost literally for more general
types of minimal orbits and orbit segments considered in this paper. In such cases
w= will give precise formulations and will refer to an appropriate place in [BK] for
=aboration.

This paper grew out of the talk given on September 17, 1988 at the Conference
o= Bamiltonian Dynamics at La Jolla, California dedicated to John Greene’s sixtieth
birthday and was certainly influenced by Greene’s work. I would like to thank
Bobers McKay for inviting me to speak at the conference. Earlier discussions with
Wictor Bangert were useful in developing some of the ideas which led to this paper.
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2. Minimal states. Let us briefly recall the notations and assumptions from
[BK], Section 2. We will consider the space

M=T"xR"={p1,...,¢n,T1,---,Ta); i ER/T,r; €R}

provided with the standard symplectic form € = Zd{p, A dr; and a symplectic

=1

diffeomorphic embedding
[:T"xU—-M

where U C R™ is diffeomorphic to an open n-disc. We assume that f is a small
perturbation of an integrable map fp : fo(w,r) = (¢ + afr),r). Let us denote by
F and F, the lifts of f and fo correspondingly to the universal cover of T" x U.

Let Fy(z,r) = (z + a(r),r). In terms of generating functions, Fy is generated by a

function A(z' — z) and F by a function

H(z,z') = h(z' — z) + P(z,z")

where P is periodic, ie.; P(z + m,2' + m) = P(z,2') for all m € T, and is
small with several derivatives. Precise assumptions on the size of P will vary. The
strongest assumptions will be those to guarantee that the map f has sufficiently :
many invariant KAM tori close to the tori r = const. for the unperturbed map f,.
On the other hand, we will assume that the function h is strictly dﬂfezentxably
convex, i.e. its Hessian is a positive definite quadratic form. :
At the end of Section 2 of [BK] an extension of H to the whole space R* xR"
is described which allows to keep the smallness of the perturbation part P of the
generating function. We will use that extension, but unlike [BK] we will still denote
the extended function by H = h + P.

Fix z,y € R and a natural number ¢. Let
VoY = {29 =2,21...2g-1,%¢ = ¥; T1,...3¢-1 ER"}.
Let us introduce the Lagrangian L3:¥ : ¥2¥ —» R by

g—1
L:”(-’Bo, Ll ,Ig) = ZH(S:;, .'t.'+1).

=0

Any critical point (g, z1,...,2,) of the Lagrangian determines a unique orbit seg-
ment of F such that (z;,r;) = F‘(zo,ro) and vice versa, for any such orbit segment
the sequence of first coordinates (z,zy,. .., Z4—1,7) is a critical point for L7*¥. Some- k
times we will call the elements of the spaces ¥7¥ siaies and the cntu:al points of
L"’ equilibrium states.

The convexity of & and the smallness of P imply that L7¥ is a proper functum .
bounded from below and hence that it reaches its absolute minimum which we will
denote by £7°7. '
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DEFINITION. Any state (z, T1,...,Zg-1,Y) € ¥PY for which L3¥(z,Z1-..»
Tg-1,y) = £ is called a minimal state. Corresponding orbit segments for F and
f are called minimal orbit segments.

Let 6 be the C* norm of the function P. For a state 7 € ¥3¥ let us denote
Z; — Ti-1 = ai- The following statements are direct counterparts of corresponding
results from [BK] for minimal periodic orbits. The letter C with various indices
denotes constants which depend only on the unperturbed generating function A,
i.e. on the map fo.

LEMMA 1. KT € ¥ is an equilibrium state then lait: — @] < C16; for

i=1...,4—1 [T is a minimal state then |aiyy —a;l <Czé(1,/2. k

Proof. See [BK], Lemma 1.

LEMMA 2. Let T be a minimal state for L7¥ and ¢ > C367'/2. Then |a;—a;| <
R e :

Similasly, if ¢ > Cs8; /* then |a; — ;] < ERr

Proof. See the proof of Lemma 2 from [BK]. It works verbatim in our case
if either C67Y/? < min(i,j) or max(i,j) < ¢— €672 for the first statement
and either C8;/* < min(i, j) or max(i,j) < ¢~ €671/ for the second. H both
conditions are violated let k = [2] and then our inequality for g guarantees that

one of the conditions holds for the pair (i, k) and the other for the pair (j, k). Since
la; —a;]l < lai— ag| + lag — a;l, by doubling the constant we obtain the desired
inequalities for arbitrary ¢ and j.

]

— % € a(U) and is not too close to the

Lemma 2 implies that if the vector v = Y

q
boundary of a(U) then all minimal orbit segments for f corresponding the minimal
states from ¥2¥ belong to T® x U and consequently they are orbit segments of the
original map. Thus the way we extended the generating function is unimportant.

LEMMA 3. Let (9i,7i) = fi(wo,m0), i=0,1,...¢ be a minimal orbit segment,
i,j,k € {0,1,...q} be different. Then
Irs el < Cr(dist(pi, @) + dist(pi, 1) /?

Proof. See [BK], Proposition 5.
3. Minimal orbits

DEFINITION. An orbit of f is minimal if every finite segment of it is a minimal
orbit segment.

For the geodesic problem on a Riemannian manifold, the corresponding concept
of minimal geodesic was considered by Morse [Mo], Hedlund [H] and recently by
Bangert [B2].



#

186

DEFINITION. An orbit of f has rotation vector v if for some (and hence any) :
Lift (Zm,Tm) = F™(z9,70), m€Z ;

6)) BLm Ia %8 o

m—toco *m

More generally, the rotation set of the orbit, is the set of all limit points of ____z&(

For (p,7) € T* x U let p(y,r) be the vector opposite to the difference between the
z coordinates of any lift of (y,r) and its F-image.

DEFINITION. For any probability Borel f -mvana.nt measure u the roietion vec-

tor of p, p(u) is
= [ s
T xU

By Birkhoff Ergodic Theorem for any finite f-invariant measure y, u-almost
every orbit has a rotation vector i.e. the limit in the left-hand part of (1) exists. In
particular, if 4 is ergodic, p-almost every orbit of f has the same rotation vector
equal to p(u).

PROPOSITION 1. Let (@m,Tm) = f™(po,70), m € Z be a minimal orbit of f.

If ¢ = ¢ is a non-isolated point for the set ® = {;}; € Z then for every mteger :
; "

(2 Irs — x| < Ca(dist(wi, 0))*/?

If the orbit is non-periodic and ¢ is an isolated point in ®, then (2) holds for all the
integers 2, except maybe for one.
If the orbit is periodic with the minimal period ¢ then (2) holds for all except
may beone i € {0,1,...,4 -1} '
Proof. I g is a non-isolated point in @ then for any i one can choose an integer
J such that dist(p, ;) < dist(¢, ¢;) and (2) immediately follows from Lemma 3.
Otherwise choose j such that dist (p,¢;) < 2mfdxst(ep,cp,) and again apphr '
Lemma 3. '
B
PROPOSITION 2. If a minimal orbit has rotation vector v then for all integers
28 1/2
n,jrn—a (U)i < Cg .

Proof. Consider the lift of the orbit and the corresponding minimal state (... 2.y,
%9, ...). Take a sufficiently large N > |n| such that .

IN —ZT_N

1/2
2N +1 ol

©)

Since T = (z_n+...,zn) € U;5""" is a minimal state, by Lemma 2 for any
i,7 € {-N+1,...,N} !a,-—a,l <C'45:’I2 where as before a; = z; — z;_;.
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N
We have Z a; = TN — Z_p, hence by (3) for any ¢
i=N+1

@ la; — v] < (Cy +1)6172.

But since T is an equilibrium state we have
oH aP
(5) ri = 25— (2i,2i+1) = dh(a:) + 7 (#0zin),
P o s
where u—é:—t-“ < 8, by the definition of 61, and dh(v) = a~!(v). Thus by (4)

and (5) |rn —a"(2)] <
& +[|dn|| (C + )8}

%:i” + |dh(a;) — a7 (v)] < & + |dh(a;) — dh(v)] <

0

The next statement is an immediate corollary of the definitions of a minimal

orbit segment and a minimal orbit. We formulate it separately because of its im-
portance for the theory.

PROPOSITION 3. Let ¢ € R*,z = lim z,, and suppose there are k,, —
m—00
(m) _(m)
00,l,, — 0o and minimal states T(™) = (::(,,m),...,:ti:l_,m) € \Il:: +’;:"°*"" such
that z,, = ::ﬁ:). Then the F-orbit of = is minimal. In particular, the closure of a
minimal f-orbit consists of minimal f-orbits.

Let us fix a vector v € a{U) not too close to the boundary of e(U). Consider a
sequence of minimal states in \I’;;:‘“"H""” where z,, and ¢, — oo are chosen in
such a way that the sequence z,, + g, v converges. This is always possible because
z., can be moved by any integer vector so we can assume that the vectors z,, +¢nv
lie within the unit cell and then take a converging subsequence. Put a uniform
normalized §-measure on the projection of the minimal orbit segment determined
by each minimal state and take a weakly converging subsequence. The limit measure
is f-invariant and has rotation vector v. It is also supported on the set of minimal
orbits since for every point (@, ) € supp p the z-coordinate of every lift of ¢ satisfies
the assumption of Proposition 3. If x4 also happens to be ergodic, then p-almost
every orbit has rotation vector v.

4. Minimal action function
LEMMA 4. For any z,y,w € R® and a natural number g

(6) ’e:,z+w - eg,y-{rwl < C

where C is independent of z,y,w, q.

Proof. First, let us notice that for every p € Z*, £ 9 =+w¥p = ¢z, =#»_ Then
let us find p € 7" such that the distance between 2+ p and y is less than n!/2. Then
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compare the values of the Lagrangian at any minimal state (y,y1,...,Yg—1, y+w) €
¥ ¥+% and at the state (z+p,y1, - - -, Yg—1,T+p+w) € @zt #4242, The first value
is equal to l’ » ¥+% by definition, the second is greater or equal than £3: z+%_ Thus we
have £3° o < v 4 H(z+p,v1)—H(y v1) |+ H(yg-1, z+p+w) H(yg—1, y+
w)| < f” P VL h(z4p—y1 )~ h(y—y1 )|+ R(z+p+w—ye—1)—h(y+w—ys1 )| +|P(z+
P y1)— P(y, Y1)+ P(Yg-1, 2+p+w)—P(yg-1, y+w)| < G +2|k(z+p—y)|+260.
To obtain the last inequality we used the convexity of the (extended) function h.
Since |jz + p — y|| < n!/?, the lemma is proved. :
0
T, z+gqv

PROPOSITION 4. The ratio 2 has a limit as ¢ — oo, which is independent

of z.
Proof. By the definition of the minimal state one has

z+{g1+g2)v z,24q17 +q17,2+(g1+g2)v
(7) e;1,+q2 = elh g +e:= x .

Combining (6) and (7) one derives “almost subadditivity” of £;**9” in ¢

e; ,z+(g1+g2)v < ez,:H-qw & ez w+av 4 o
1442

!: KS2id

which implies the existence of hm . Lemma 4 implies that the limit does

not depend on z.

q

0
fzetgy :
We will denote lim —Lr by £(v) and will call £ the minimal action function.
g—00
PROPOSITION 5. £ is a convex function.
Proof. Using the definition of the minimal state and Lemma 4 we have

e;,=+v+w < ez,z-l-v 4 e:+v,:+v+w l;:,z-i—v +e;:,1'+w o C

whiih hacaedintily haphics that £ ( L4 ‘; “’) < &) ‘;L("’).
g

Let us fix a lift of ¢ € T" and denote it as usual by z; let furthermore z'(z,7}

be the first coordinate of F(z,r). The periodicity of H implies that the function
H(z,z'(z,r)) does not depend on the choice of a particular lift of ¢ and thus can
be denoted by H{p, ). :

PROPOSITION 6. L(v) = inf [ Hdy where the infinum is taken over all proba
bility f-invariant measures p with rotation vector v.

Proof. (1) In order to establish the inequality

® L) < / I
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for every u with rotation vector v it is enough to do that only for ergodic measures
p. For, otherwise take the ergodic decomposition of 4,

f‘=‘/l‘zd”~ .
zZ

We have v = p(u) = [ p(p.)dv, since the rotation vector is defined as an integral of
z

the shift function p(p,r)-
On the other hand, also by definition

/my=2/(/9{d,‘,)du.

Assuming that £(p(u:))< [Hdu, and using the convexity of £ : L(v)< [L{p(u.))dv
z

we obtain (8).

For an ergodic measure g with p(p) = v, as we mentioned already, u-almost
every point (ip,7) has rotation vector v. That means that for every lift (z,r) of
(,7), the z-coordinate of F' 9(z,r) has the form

z+ wy(z,r) =z + qv + o(q)-

Thus : i
gotolen) < B (i) = ¢ / Hdp + o(q)-
i=0
Now, let us take a minimal state & € 5"+ and use Lemma 2 which allows to
replace its last C6; 1/2 4(g) terms to obtain a state z € Y3+ such that the norm
of the difference of corresponding coordinates for T and Z does not exceed C'6'/2.
This implies that £2°19 < g£(Z) < 2700 4 o(q) < g [Hdp + ofq)- Dividing
by ¢ and taking limit we obtain (8).
(2) In order to construct a measure 4 with rotation vector v {unfortunately, not
necessarily ergodic) for which L(v) = J Hdp we take a sequence of absolute min-
ima in U3 =+9% 4 d denote by p, the normalized §-measures on corresponding

minimal orbit segments for f. Since for any ¢

"21; @;qv,z.ﬂv = /ﬁf dytg,

for any weak limit point s of the sequence pq, £(v) = [ dp.

PROPOSITION 7. If v is an extreme point of the convex set L, = {w: Lw) <
£(v)} then there exists an ergodic measure p with rotation vector v for which

L(v) = [ Hdy

and whose support consists of minimal orbits.
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Proof. Consider the construction from part (2) of the previous proposition. The
support of the limit measure u consists of orbits which are limits of minimal orbit
segments of increasing length. In order to see that one should remember that any
subsegment of a minimal orbit segment is minimal. If the measure y is ergodic, it
satisfies the assertion of the proposition.

Otherwise consider the ergodic decomposition of p,u = [u.dv, so that v =

z -

[ p(ps2)dv and by Proposition 6
Z

© i = / Nl = / ( / ?Cd,u,) e > / (p(u.))dv

z

Since £ is convex and v is an extreme point of the set £, then either
£o) < [ tlptue))av
z

which contradicts (9) or for v-almost every z € Z, p(u;) = v and every such measure
i~ satisfies the assertion of the proposition. . o
o

5. Minimality of KAM tori. Let us summarize without going into much
technical details some of the results concerning the existence of invariant tori which
are needed for the subsequent discussion (see e.g. [Bo]; the original proof for the
real analytic case is in [A] and useful discussions are in [Mos1] and [Hel]): :

There exists a closed set V' C a(U) of a large relative Lebesque measure such
that for any map f for which the perturbation part P of the generating function
H is small enough with sufficiently many derivatives and for any v € V, there is an
f-invariant torus

Tro = {(,7) : 7 = 91,0(¥)}

such that the restriction of f to Ty, has rotation vector v. Those tori are usually
called KAM tori. The set V is defined by arithmetic conditions which have to do
with rational approximation. Let us point out two important uniformity properties
of KAM tori which will play an important part in our proofs of minimality and

First, the difference g¢,,(¢) — a~(v) is uniformly small with several derivatives.

Secondly, the restriction of the map f to the torus T, is smoothly conjugate
to the translation L, : ¢ — ¢ + v via a diffeomorphism whose p-coordinate
Y5 : T" — T, is uniformly in v and f close to the identity with several derivatives.

Not every invariant torus of the form graph g where g : T* — U which the map
f may happen to possess is necessarily smooth and even if it is, it might not satisfy
the uniform estimates mentioned above. Such extra or “accidental” tori are not
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covered by our results concerning minimality and uniqueness although they satisfy
local versions of some of those properties.

Let us fix a KAM torus Ty,, and consider the following symplectic coordinate
change §7* = §"” 0 S, where .

S{'v(‘P)r) = (‘Pa S gf,v(‘tf‘)), S’zf’v(ﬁ’) r) o1, (¢f,v(§p)9 (d¢;,v ;lr)‘
Here (d¢},, )y denotes the matrix transposed to that of the derivative of ¥y, at ¢.
The map S{ ¥ is symplectic because the torus T¥,, is 2 Lagrangian manifold. From
now on let us suppress the dependence on f and v in our notation.

The coordinate change S transforms our KAM torus Ty, = T into the standard
torus r = 0 and the map f restricted to T, into the linear translation L,. It is
important to remember that the estimates given by Lemmas 1-3 and results based
on those lemmas remain true, maybe with different constants, due to the uniformity
of the functions g5, and maps ¥y,».

In general, generating functions change under symplectic coordinate changes
in a complicated way. However the map S> is “Lagrangian” and it carries out the
generating function. The Lift of the map g toR” has the form dG where G : R" — R.
It is easy to see that the map S; changes the generating function by adding a
coboundary G(z') — G(z). Thus, minimal orbit segments and minimal orbits are
preserved under the coordinate change S. S; does not change the minimal action
function £ either; S; may only add a linear term to it and thus does not change
properties like strict convexity, etc.

After the coordinate change the generating function takes the form

Q(z' — z —v) + P(z,z")
where Q is a positive definite quadratic form and both the first and the second
derivatives of P vanish at z' —z = v. By adding a constant we may assume that P
itself vanishes too.

Thus, in a fixed neighborhood of the plane 2’ —z = v

(10) P(z,2') < CQ(z' —z —v)*/? < -;— Q(z' —z —v)

Since derivatives of the maps S and S~! are uniformly bounded, that neighbor-
hood contains pairs (z;,zi+1) for any minimal state from ¢7:*+97. We will use our
new coordinates to calculate those minimal states.

LEMMA 5. The only minimal state in $5*19° is (2,2 +v,...,z + qv).

Proof. Let (z = zg,21,...,Tq—1, T+ gV = T4) be a minimal stade. Then, using

(10) we have
g—1

L5203, Zg1,8g) = 3 Q(Zi+1 — 2i — ) + P(zi,Zid1) 2
=0

1 & .
3 ZQ(“:‘H — z; —v) > O unless z;4y = z; +v ie zi=zo+iv, 1=0,1,...,0.
& :

0
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COROLLARY 1. Any KAM torus consists of minimal orbits.

LEMMA 6. There exists e > 0 which depends only on the unperturbed map fo
and on the C* size of the perturbation for some k, such that if for a vector v there
is a KAM torus with rotation vector v, than for |[v' —v|]] <e¢

L) + L, (v — v) + Qu(v' — v) = Cllv’ —v|]® < L(v) < L(v) + £,(v' — v)+
Qu(v' —v) +Cll’ —of?,

where £, is a linear function and Q, is a positive definite quadratic form.

Proof. The coordinate changes described at the beginning of this section may
only change £ by a linear term. Thus we will use the new coordinates for our

calculations.

Let T € 1/:;"’"""' be a minimal state.
‘We have

g—1
gQ(v' —v) + Cqljv’ —v||* > ¢Q(v' —v) + EP(:: +E+ 1),z +i) =
=0
L:”+’”'(z,z +v,..,2+(g— 1,z +gv") > e;xzﬂv’ =
g-—-1
L;,I‘Pqﬂ (20,31, ~vey .'tq_l, Iq) = Z Q($i+1 i 1)) “+ P($i+1, I;‘)-

=0
Using (10) and the convexity of @ we can continue

g1 , g1
E Q=ziv1 — 7 — v)+ Pz, zi41) ?-Z Qzit1—2i— 9)—C(Q(zi41 — -"f‘i—"))3/2 Z

=0 =0

2(Q(v' = v) — CQ(v' = v)*/?) 2 ¢Q(v' —v) - C'gl}v’ — v|f*.

0

THEOREM 1. Iffor a vector v there exists a KAM torus with that rotation vector
then every minimal orbit with rotation vector v (or even those whose rotation set
contains v) belongs to the torus.

Proof. Take the closure of such a minimal orbit. It is an f-invariant closed set.
Its intersection with the torus is also f-invariant and closed. Since every orbit of f
on the torus is dense, the intersection is either empty or coincides with the torus.
By Proposition 1 in the latter case there is no room for elements of a minimal orbit
outside the torus; hence the whole orbit lies on the torus.

Consider the former case. Take a lift of the orbit, F™(z,r) = (Zm,*m),m €L
By our assumption there exists either a sequence g, — oo or ¢,, — —oco such that
Zg,, = T+ gm¥ + 0(gm ). The two cases are completely symmetric so we assume the
first.
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Since the orbit closure does not intersect the torus,
Q(ziy1 — z; —v) 2 6 > 0 for all i. Thus, using (10) we obtain

gm—1 gm—1
Z3Zgm, 1 ma
Ly (15,1«'1,..-,xqm)=i§=0:Q($i+1"zi'—v)“"P(ziS zi41) 25 ;_D:Q(xm—zn‘-v) >g_2__

On the other hand, let u,, = Tom =7 o5 that Uy = v + o{1) and let us calculate
and estimate using (10) again

gm—1
L™ (2,24 Um, & + 2Um, - ., 2+(gm — 1)tm, Zg,,)= ZQ(“M)T"P(-’C'*'"“m: z+

=0
i+ Ditm) < 50mQim).

é
=, (z,21,...,%,,) is not a minimal orbit

Since for large enough m, Q(um) < 3

segment so our orbit is not minimal.

0

6. Other minimal orbits. Now, having established the minimality of KAM
tori and their rather strong uniqueness properties we are going to look for minimal
orbits which are not associated with these tori. Let W be the set of all vectors for
which KAM tori do not exist and let Wi C W be the set all w € W for which
a minimal orbit with the rotation vector w exists. Let Ax be the set of rotation
vectors for which a KAM torus exists. If follows from Proposition 7 that the convex
hull of Ay = ArUWjy contains W. Now we are going to strengthen that statement.

PRrOPOSITION 8. The convex hull of Wy contains W.

Proof. By definition Aas is the set of all vectors v for which minimal orbits with
_rotation number v exists. By the convexity of the minimal action function £ every
w is a linear combination of extreme points of the set £,, which by Proposition 7
belong to Azs. What remains to prove is that for w € W\ Wy none of those extreme
ponts can belong to the set A, i.e. correspond to a KAM torus. But that follows
from Lemma 6, since after a coordinate change which only changes £ by a linear
term any vector v € Ax becomes an isolated minimum of L.

0

THEOREM 2. Unless KAM tori exist for every v, there are infinitely many v
for which a KAM torus does not exist but minimal orbits with rotation number v
exist. Furthermore, the closure of the set of such v contains the boundary of the

set a(U)\W.

Proof. Follows immediately from Proposition 8.

The most natural approach to the construction of minimal orbits is the one
indicated in part (2), Proposition 6 and further discussed in the proof of Propo-
sition 7. In other words, one should hope that in general minimal orbit segments
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-3
with correct average behavior converge to a minimal orbit with the desirable ro-
tation vector. The kind of convergence discussed in our proof of Propositions 6
and 7 is the weak convergence of §-measures on minimal orbit segments. Another
type of convergence would be the convergence in Hausdorff topology on the space of
compact subsets of T x U. In order to gnarantee the convergence one has to choose
the initial condition carefully. A natural way to do that. is to start from minimal
Birkhoff periodic orbits constructed in [BK] (see Corollaries 3 and 4 of that paper).
Any segment of such an orbit, whose length does not exceed the period, is a minimal
orbit segment in our sense.

Now we will give a simple criterion for the existence of minimal orbits with a
given rotation number whose validity is supported by rather convincing numerical
experiments performed by Mark Muldoon.

As before, let v € a(U) be any vector not too close to the boundary of a(U).

PROPOSITION 9. Suppose there are sequences (™, y(™ € R* ¢, — oo, such

that
gy — gm)

Im

Vi - v,

and minimal states

(642 =, o2, 0 = ) €,
such that fori=1,...,g—1
dist (zﬁ"",z"") - iv(m)) <C

where C is independent of m.
Then there exists a minimal orbit with rotation vector v.

Proof. Using the periodicity of the generating function we can assume that
all z{™ . Ye in the unit cell. Hence, by compactness one can also assume that

[+]

:t(m)] — z and corresponding r-coordinates also converge to r. By Proposition 3

[
the orbit F¥(z,r) = (z,ry) is minimal. Fixing k, putting i = k + [%"‘] in (11)
and letting m go to co we have for sufficiently large m
dist(zf‘m) , 20" 4+ kv) < 3C
and hence
T~ e
k—ztoo k i

g

Let us discuss some of numerical results supporting the validity of the criterion
of the last proposition and possible shapes of minimal orbits for irrational rotation
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vectors which do not produce KAM tori. The results were obtained by Mark Mul-
doon in his Ph.D Thesis [Mu]. Related calculations can be found in a preprint by
Kook and Meiss [KM].

Muldoon studies Birkhoff minimizing periodic orbits for four-dimensional sym-
plectic maps. The symbal (p,g)/m describes such an orbit with rotation vector
(-’1—;—-, ;% . A typical example presented by Figure 3 displays 2 highly disconnected
behavior for a fairly small approximation of the integrable map due to a near reso-
nance. Nevertheless, the picture is quite far from a uniform two-dimensional Cantor
set which would appear for a product of two twist maps. This is probably related
to very different behavior of two positive Lyapunov exponents corresponding to the
minimizing orbits. We refer to [Mu] for further discussion.
< Figure 4 shows that the bounded deviation condition of Proposition 9 is highly

plausible.

POLYNOMIAL TRIGONOMETRIC
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Pictures of the perturbations fo the generating function. We study maps gener-
ated by funcitions of the form

H(z,z') = h(zl — z) + P(z,2"),

where .
h(z' —z) = '2'[|$' -z|?, P.(z,z') =eP(z),
and
either ;
1 3 - .
Piig(z) = ~(sin 27zg + sin27zy) + sin2n(zo + 21) ¢ »
P(z) = Mrsg 12

or

Prant@) = g { 3 - 20e = ) (3 - 20) | et -2}

The z;, i = 0,1 in the formula above are real numbers, the components of the argu-
ment of the function P(z). Call the first perturbation the trigonometric perturbation
and the second the polynomial perturbation. The constants Myg and Mpay are cho-
sen so that maxzern P(z) = 1. These are standard-like perturbations, they depend
on z, but not on its successor, z'. Using the definition of a generating function one

finds the map:
P =p-c| @)

#'(z,p)=z—p+e [g—i—;(z)} :
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Deviation of points in the minimizing staie from the position they would
have if the state were unperturbed. The squares in the plots above represent
the largest deviation found. The labels at the tops of the frames indicate the

perturbation and rotation number.
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