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Annals of Mathematics, 110 (1979), 529-547

Bernoulli Diffeomorphisms
on surfaces

By A. KATOK*

Introduction

The smooth ergodic theory deals with the metric (ergodic) properties
of classical dynamical systems (i.e., diffeomorphisms and smooth one-para-
meter flows on smooth manifolds) with respect to a positive smooth invariant
measure. By a positive smooth measure we mean a measure on a smooth
(usually C*) manifold (possibly with boundary) which is given by a positive
smooth density in every local coordinate system. We shall say that a
diffeomorphism f: M — M is a Bernoulli diffeomorphism if (1) f preserves
some smooth positive probability measure g on M and (2) considered as an
automorphism of the Lebesgue space (M, 1), the mapping f is metrically
isomorphic to a Bernoulli shift.

Recently Ja. B. Pesin ([1], [2], [3]) established remarkable connections
between the Lyapunov characteristic exponents and the ergodic properties
of classical dynamical systems on compact manifolds. One of the main
results of Pesin can be described as follows. Almost every ergodic compo-
nent of a diffeomorphism f: M- M with respect to a smooth invariant
measure, belonging to the set

A = {x € M, upper Lyapunov exponent X*(x, v) = 0 for every
tangent vector ve T. M},

has a positive measure, and the restriction of f on such a component is
metrically isomorphic to the direct product of a Bernoulli shift and a cyclic
permutation of a finite set. If A = M(mod0) and some extra conditions
concerning unstable manifolds hold, then f is a Bernoulli diffeomorphism
(I3], Theorems 7.5, 7.6, 7.7, 7.8, 8.1).

In this paper we construct a diffeomorphism satisfying the strong
version of Pesin’s conditions on every two-dimensional manifold. Thus, we
prove the existence of Bernoulli diffeomorphisms on such manifolds. In the
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main part of the construction we deal with the two-dimensional disc.
Reduction of the general case to this particular case is given by a purely
differential topology construction and does not depend on the ergodic pro-
perties of the example on the disc. We make this reduction for the
n-dimensional case because we hope that our result admits an n-dimensional
generalisation.

This work has been done in co-operation with V. Z. Grines. Non-mathe-
matical circumstances have forced separate publication.

1. Preliminaries

1. The following standard notations are frequently used in the paper:
D} ={(®, ---,x)eR" & + -+ + 22 <Y,
D" = D}, S* = oD*, T* = R*/Z" .
The probability Lebesgue measures on all these manifolds are always denoted
by .

2. We use two ways to produce the induced map of measures by the
given point map. First, if (X, p) is a measure space and fiX— Y is a map
then the formula (f,z)(4) = z(f~*(A)) defines the measure on Y.

On the other hand, let M, N be n-dimensional manifolds and fifM—> N
be a map with the following property: the restriction fl4 is a smooth map
for some A such that p(M\A) = 0 for every smooth positive measure ¢ on
M and y(f(M\A)) = 0 for every smooth positive measure v on N. Smooth
measures are defined locally by differential n-forms so that in this case we
can define the induced measure f*v for every smooth measure v on N. If
fla is injective then f*f, ¢t = po. If, moreover, y(N\f(M)) = 0 then f, f*v = y.

3. We shall widely use definitions, notations and results concerning
Lyapunov characteristic exponents, local stable and unstable manifolds and
ergodic properties of measure-preserving diffeomorphisms. This material is
contained in [3], especially in Sections 3, 4, 7, 8. The multiplicative ergodic
theorem which plays the fundamental role in this region is proved in [4]
(Theorems 1-4).

4. It is useful for our purposes to define classes of functions and diffeo-
morphisms on the two-dimensional disc D* which are “sufficiently flat” near
oD*. We shall say that a sequence p = (p,, 0,, - - -) of real-valued continuous
functions on D? is admissible if every function 0, n=20,1,2, .-, is
non-negative and positive inside the dise. Let

Cr(DY) = {h eC™(DY), Vi 20,3, > 0:V(x, ) e D%, a? + 22> (1 — ¢,)?,
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for all non-negative integers 1,, 4,, i, + i, = n,

0" h(x,, ;)
04, 0%,

< pa(@, @)}

Any diffeomorphism f: D*— D® can be represented in the coordinate

form: f(w,, a,) = (f.(%,, 2,), fu(®,, x.)). Let us define
Diff7 (D?) = {f € Diff*(D?): fi(x,, ,) — x,€ Co(D?), i = 1, 2} .

These definitions can be extended immediately from D? to D".

Similarly we can define the classes C2(R", 0) and Difty (R", 0) of “flat”
germs of functions and diffeomorphisms near the origin in R* marked by
a sequence 0 = (0, 0,, - --) of germs p,, such that p,(x) = 0 and On(x) > 0 for
x # 0. In the one-dimensional case we need the corresponding one-sided
definition of classes C(R*, 0) for functions defined on the half-line.

5. The following two propositions are used for extending our examples
from the disc to an arbitrary manifold.

PROPOSITION 1.1. Let M"be an n-dimensional C* manifold and F:D"— M"
be a continuous mapping such that the restriction F [tnipn 28 @ diffeomorphic
embedding. Then there exists an admissible sequence of Sunctions o such
that for every he C;(D") and fe Diff? (D) the formulae

i) = {h(F‘ly) if y€ F(Int D")
V= 0 otherwise
and
. F(f(F™'y)) if y e F(Int D")
(1.1 =
K2 { otherwise

define a C” function on M" and a C diffeomorphism of M™.

PROPOSITION 1.2. Let tt be an arbitrary positive smooth measure on a
compact connected n-dimensional C™ manifold M (possibly with boundary).
There exists a continuous mapping F: D*— M with the Sfollowing properties:

1.1. The restriction F|i, pn s a diffeomorphic embedding:;

1.2. F(D") = M;

1.3. p(M\F(D") = 0;

14, F\ = p.

The proof of Proposition 1.1 is routine so we omit it. The proof of the
second proposition rests upon the following fact from differential topology.

PROPOSITION 1.3. For every C” n-dimensional compact connected mani-
fold M there exists a C* mapping f: D > M such that f(D*) = M and the
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restriction fli.p» 18 u diffeomorphic embedding.

Undoubtedly, this fact is well-known, although I find it difficult to give
the exact reference. It can be proved by induction with the use of a smooth
triangulation of M. Let o, ---, 0, be the n-dimensional simplexes of such
a triangulation, so ordered that each simplex o, has a common (n — 1)-
dimensional face with some simplex ¢,, i < k. The inductive statement is
formulated as follows:

Forevery k =1, .-, N there exists a C* mapping f*: D" — M with the
following properties:

1.5. F4D") = UkL.o..

1.6. The restriction f*|;,,» is a diffeomorphic embedding.

1.7. Foreveryi,1 <1 <k,and every (n — 1)-dimensional face ¢ of the
simplex o, there exists a point « € 9D" such that f*(x) € o and f* is regular at
the point z.

The statement for £ = 1 is almost obvious. The inductive transition is
reduced to the following local statement.

Let o', ¢” be two smooth n-dimensional simplexes with a common
(n — 1)-dimensional face ¢ and z be an interior point of o. Then for every
neighborhood U of the point « there exists a C* mapping g: ¢’ >0’ Ud”’
such that

1.8. g(¢’) = ¢ Uo”;

1.9. g coincides with identity outside U;

1.10. The restriction g ., is a diffeomorphic embedding;

1.11. Forevery (n — 1)-dimensional face ¢ of ¢”, there exists a regular
point x of ¢g such that g(x) e g.

This statement means that a small part of ¢’ may be “blown up” onto
0" through a small “hole” in the face ¢ without perturbation of the remain-
ing part of ¢’.

The inductive transition from % to k + 1 follows immediately. For, let
o’ be such a simplex ¢,, i <k, that has a common (n — 1)-face ¢ with a,,,,
and let 0" be g,,,. Construct the map g:0, > o, satisfying properties
1.8-1.11 and prolong this map identically to the map g: Ut .0, — U*'l0..
Then the map f**' = gf* satisfies conditions 1.5-1.7 for k& + 1.

6. Proof of Proposition 1.2. Let f be mapping satisfying the assertions
of Proposition 1.3. Then f*/ = pr» where p is a C* function which is
positive inside D*. We are going to construct a homeomorphism 4: D" > D*
which is C” and regular inside D" such that h*(o\) = R*(f*#t) = n. Then

(foh)h = fuhah = fu(ON) = fof*pe =,
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i.e., the mapping F' = f ok which obviously satisfies conditions 1.1-1.3 also
satisfies condition 1.4.

Now we proceed to the construction of h. First, we construct a
diffeomorphism &,: D" — D" such that (k¥ f*p)(D}.) = MD?,). To do this, we
can find » > 0 such that (f*u)(D?) = A(D},) and let h, be an arbitrary
diffeomorphism, such that 4,(D},) = D?. Let p, be a density of the measure
k¥ f*pe with respect to .

Consider the restriction of the measures N and p\ to the set K* =
D™\Int D},. Let m: K*— S*~* be the radial projection: n(z,, - - -, 2,) = (x,/r, - - -,
x,/r) where » = (3" )2 Since MK™) = (o,M)(K™), we have
(1.2) (T AN(S™7Y) = (T (EM))(S ) .

The measure 7, \ coincides with the Lebesgue measure A up to a constant
factor while the measure 7.(0,\) has the form £\ where

1
£WYy oY) = ans 0(rYy, - -, YT Y (a, is a constant) .
1/2

Since « is a positive C” function, 7, (o,\) is a positive smooth measure on S*™*
and by the Moser theorem [5] there exists a C* diffeomorphism A: S** — S
such that ﬁ*(n'*(plx)) = 4A. This diffeomorphism can be lifted to K", for
example by the following formula:

h’2<x17 Tty xn) = (EZ‘le%)l/Z};(ﬂ'—(xl, Ty xn)) .
Since h,om = ok we have
(1.3) Teh () = h* (T (oN)) = T

Let us denote the density of the measure k(o)) with respect to » by p,.
Formula (1.3) means that for every (y,, ---, y,) € S*™,

1
S (02(7'2/1; Tty ryn)?‘n_ld?. = a = const.
1/2

r=

Now we want to improve conditional measures on radii. For this purpose
we let

Ba(1Ysy =y 1Y) = Py Y1y -y Py (1) Y)

where @, ..., (7) is an inverse function to
v (rn =L+ <—LS Uy, -+, UY )u“‘ldu>m
Y1° ' Yn 2 20 iz 2 1y ’ n .

It is easy to verify that &, is a homeomorphism of K™ which is C* and

regular for » = 1 (i.e., on K"\0D") and that h}(p.\) = N. Thus we have on
the set K~,

hEhE(ON) = M .
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The homeomorphism h,ohy: K™ — K™ is C* and regular on K™\oD" so
that it can be extended to a homeomorphism %: D* — D* which is C* and
regular on Int D*. Denote the density of the measure ﬁ*(plx) by f. This
density is a positive C* function which is equal to 1 on K”*. Moreover,
S Odx = 1, so that we can apply a version of the Moser theorem (see [6],

Theorem 1.1) and construct a C* diffeomorphism h,: D* — D" identical near
oD" such that

(1.4) REON) = N .

Finally, let h=h,hh,. Combining the equalities hif*pr=pxN, R*(oN)=pPN
and (1.4), we obtain

R*(F*0) = hE(R*hEf*pe) = hi(h* (o) = RE@N) = .
Proposition 1.2 is proved.

2. Construction of Bernoulli diffeomorphisms on the

two-dimensional disc

1. THEOREM A. For every admissible sequence of fumctions p on D*
there exists a Bermoullt diffeomorphism g € Diffy (D*) which preserves the
Lebesgue measure .

Remark. All positive smooth measures are equivalent, so ¢ may have
only one invariant ergodic positive probability smooth measure. Con-
sequently the Bernoulli smooth positive measure y coincides with .

We begin the construction of such a diffeomorphism g by considering a
linear hyperbolic automorphism g, of T having positive eigenvalues which
leaves the following four points fixed:

2.1) 2 = (0, 0), @, = (%,0), 2, = (o,%), %, = <%%> _

For example, the automorphism generated by the matrix (g 13) is
appropriate.
The construction can be represented by means of the following com-
mutative diagram:
h

T? T: <1 T2 (3 S? ¢3 D:
(22) lgﬂ 191 lgz lga gl
UL N N N

Actually we shall construct the mappings g,, ¢, #., #.. The existence
of a homeomorphism & that makes the left square of the diagram com-
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mutative and transforms the stable and unstable manifolds of g, intc
smooth curves is proved in Section 4. The mappings ¢, ¢,, and g (which
will prove to be C* diffeomorphisms) are defined by the commutativity of
the diagram.

The mapping ¢, will be a homeomorphism which is C* everywhere
except for the points x,, x,, @;, z, (see (2.1)). It preserves a measurey = px
where the density p is a positive function C* everywhere except for the
points x, with singularities at these points. The mappings ¢, and @, will be
C= and regular everywhere except for the points xz;; ¢, has the same pro-
perties everywhere except for @,(z,).

From the measure-theoretical point of view the squares in the right-
hand part of the diagram (2.2) can be represented in the following way:

(T? v) — (T% N) —> (S% A) —— (D% \)

Igl [gz 193 ]g

(T?, u)«———»(T2 A) —— (8% N) —— (D% \)

Here the two-way arrows represent automorphisms of measure spaces
and the one-way arrows represent non-invertible homomorphisms.

2. Construction of g,. It is convenient to use a special coordinate
system near each of the points x,, 7 = 1, 2, 3, 4, namely coordinates in which
the map g, has a diagonal linear form. It will be recalled that all these
points are fixed with respect to g,. We shall denote these coordinates by
(s, 8,). Let us denote the neighborhood of the point x, which is given in
these coordinates as {(s,, s,), s} + s; <7} by D}, © = 1, 2, 3, 4. Let us choose
numbers », > 7, > 7, > 0 so that D} N D = @, i+ j, (9.D;, Ug™D;)C Dy,
D;, < Int (g,D;).

The construction of g, depends on the choice of a real-valued function
~r defined on the unit interval and having the following properties:

2.1. 4 is C” except the point 0;

2.2. (0) = 0;

2.3. ¥'(u) = 0;

2.4. y(uw) =1 for u =7}

2.5. S du

0 yr(w)

To provide the differentiability of the mappings g¢,, g;, ¢ and the inclu-

sion g e Diff7 (D?), the function - must satisfy some extra conditions.

1

Namely, near zero the integral ‘ du/y(w) must converge “very slowly”.
Jo

These conditions are precisely formulated and explained in Section 3.
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However, the important dynamical properties of ¢, (and, consequently, those
of g¢,, 95, 9) do not depend on these additional conditions. Thus we can for
the time being construct and study the mapping g, using any function
satisfying conditions 2.1-2.5.

The mapping g, will coincide with the linear automorphism g, outside
the set U; ,D;. In the neighborhood D; the automorphism g, can be
represented as the time-one map generated by the vector field

$ = Inas,,
(2.3) .
$, = —Inas, .

Here a is the larger eigenvalue of the matrix generating ¢g,. Let us denote
by g% the time-one map generated by the following vector field vy defined
in D :

$, = In asr(s? + s?),
(2.4) . ¥( 2)
8, = —Inas (s} + s3) .

The choice of the number 7, and properties 2.3 and 2.4 imply that the

domain of G contains D; and
Gy(Di) C D}, .

Further, the choice of 7, and condition 2.4 guarantee that §% coincides
with g, in some neighborhood of the boundary 6D; , so the following formula
defines the homeomorphism g¢y: T* — T? which is a C* diffeomorphism every-
where except for the points x,, 7 =1, 2, 3, 4:

g if xeT7\U. D}
gy(x) =17 . S
gyx if xeD; , 1=1,238,4.

Remanrks. 1. Actually, to construct g, we do not need the assumption
v(0) = 0. Moreover, if 4 € C'([0, 1]) then gy is a C' diffeomorphism of T*.

2. It is easy to ensure the C' differentiability of gy in the case where
(0) = 0. Namely, it is true if

nmwmwﬁzo.

Denote the local coordinates of the point « € D} by (s,(2), s,(x)). Let

1
p(x) = { P(si(x) + s¥(x))

1 otherwise .

if xeD;, i=1234

The function o so defined is C” everywhere except for the points z,,
1 =1,2, 3,4, and has integrable singularities at these points. The map g+
has the invariant probability measure
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vy=p0,'0n, where p,= S odx .
T2

We let g, = gy for some function +r satisfying conditions 2.1-2.5.

The following two propositions contain all of the properties of g, which
we need to establish the Bernoulli property for g,, g, and ¢ with respect to
the Lebesgue measures.

PROPOSITION 2.1. The mapping gy = g, 18 topologically conjugate to g,.
Moreover, the conjugating homeomorphism h tramsforms the stable and
unstable manifolds of g, into smooth curves.

PROPOSITION 2.2. The larger Lyapunov exponent X, (x) of gy is positive
almost everywhere with respect to any Borel invariant measure 1t such that
{x}) =0,7=1,2, 3 4.

These propositions are proved in Section 4.
3. Comstruction of ®,. The involution J: T* — T* given by the formula
Jit,t,) =10 —t¢t,1—1t,)

has four fixed points: x,, «,, ,, *, and commutes with g,. It is necessary that
the mapping @,: T > T* should be a homeomorphism which is a C* diffeo-
morphism outside the four fixed points x,, x,, x,, x,. Moreover, it must have
the following properties:

2.6. (@)WY =\;

2.7. @ od =Jop;

2.8. In a neighborhood of each point «;,

_ (0 s, Sl du \'? 0075, S“?“? du >‘ 2

@9 e = (A2(50) ) AT

Such a mapping can be constructed in the following way: Let us choose
7, > 0 so that leST3du/q/r(u) < 7} and define the map ¢{in D; by the formula
(2.5). One can easoily verify that ($)),v = » and ®ioJ = Jo@!. The choice
of the number 7, implies that ¢ D; c D; .

The maps @ so defined can be extended to a map ¥, which satisfies all
the conditions we require from @, except 2.6. For example, let ¢, = id
outside the set {J{ ,D; and prolong each of the maps @' symmetrically
along the radii up to a map identical near the boundary. Denote the density
of the measure (¢,,)v with respect to A by p,. Obviously p,oJ = p, and
0, = 1 in a neighborhood of each point x,. Now we can construct a diffeo-
morphism X:T* > T?, identical in neighborhoods of =, 7 = 1, 2, 3, 4, such
that XoJ = JoXand X,(0\) = A. To do this, let us consider the submanifold
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M = T\Int (U:!., D;,), where r, is a sufficiently small positive number, as a
double covering over its factor space M|, = N with projection 7: M — N.
By Theorem 1.1 of [6] there exists a diffeomorphism ¥: N— N, homotopic to
the identity and identical near the boundary oN, such that (X),7,(0\) =T \.
To obtain the required diffeomorphism X, let us lift ¥ to the covering and
extend it identically to the remaining part of the torus.

The map @, = X o P, satisfies all our requirements.

4. Construction of @,. The factor space T?|, is homeomorphic to the
2-sphere S* and admits the natural smooth structure. This structure is
induced from the torus everywhere except for the points x,. The coordinate
mapping 6 in a neighborhood of the point z, is defined as follows: 6(s,, s,) =
(r,, 7,) where

S st — 82 o= 28,8
CovVEE s T Vst st

The image of the Lebesgue measure )\ on T?is a positive smooth measure
on the factor space which coincides with the measure dr dr, in a neigh-
borhood of each point x,.

These facts imply the existence of a map @,: T* — S* with the following
properties;

2.9. @, is a double branched covering which is regular and C~ every-
where except for points x,, x,, x,, x, and branches at these points;

2.10. @,oJ = @,;

2.11. (@) N = N;

2.12. There exist the local coordinates (z,, z;) in a neighborhood of
each point p, = @,(x,), © = 1, 2, 3, 4, such that locally

_ (.8 — s 28,8,
2.6) Pule, &) = <'\/s% +s8 Vs + s§> '
where (s, s,) are the local coordinates near the point x; which we usually
employ.

We shall not construct such a map explicitly although this is not a
difficult problem.

5. Comnstruction of @,. The mapping @, is a C* diffeomorphism between
S%\{p,} and Int D* with the following properties:
2.13. (PN = .
2.14. In a neighborhood of the point p,, the map @, has the following
form
(Vi —T =1 V1 -1 — Z'§>
2. Pe, T = < Vo r o V42 ’
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The mapping g: D* — D? is defined by

P05 ‘PNz, x,) if  (x, x,) € Int D?
(xn xz) if (x,, xz) e oD? .

6. Let us suppose that Propositions 2.1 and 2.2 are proved and that the
choice of the function 4 can ensure the C* differentiability of the mappings
02 95, 9 and the inclusion g € Diffy (D?). We show how to conclude the proof
of the theorem.

9(x,, x,) =

Proposition 2.1 implies that the homeomorphism k transforms the
unstable foliation of g, into a continuous mod 0(5(x), 1) foliation of T* in the
sense of Definition 7.1 [3]. Naturally, g, preserves this foliation. Further,
the images of this foliation under the action of the mappings @,, ,®,, P;P.P,
are continuous mod 0(6(x), 1) foliations of T? S? D? which are invariant with
respect to the diffeomorphisms g¢,, g,, ¢ respectively. Proposition 2.2 and
the regularity of the mappings ®,, @,, @, almost everywhere imply that the
larger Lyapunov exponents X, for g,, g,, ¢ are positive almost everywhere
with respect to the Lebesgue measures. Since in each of these cases
Lebesgue measure is invariant, the smaller Lyapunov exponent X, is equal
to —X,. Consequently, for almost every point y there exists a one-dimen-
sional local unstable manifold V~(y) (see [3], Theorem 4.1 and Definition
4.1). It is easy to see that V (y) belongs to the leaf of a corresponding
foliation described above.

Let M mean T? S?or D*and G mean g,, g, or g. For every pointze V7 (y)
the distance between G "z and G, " tends to 0 as n — <. On the other hand
the leaf of the corresponding foliation coincides with the set of all points z
for which this distance tends to zero. The diffeomorphism G is topologically
transitive. Thus we can apply Theorems 7.7 and 7.8 of [3]. It follows from
Proposition 2.2 that J:2, A,, = M (mod 0) so by these theorems G is ergodic.
Theorem 8.1 [3] shows that G is metrically isomorphic to the direct product
of a Bernoulli shift and a cyclic permutation of a finite set. But conditions
of Theorem 7.7 hold for every power G™, m = 0. Consequently, the cyclic
component is trivial and G itself is a Bernoulli diffeomorphism.

3. Smoothness of mappings 9., g5, ¢

In this section we explain how to ensure the differentiability of the
mappings ¢, 9;, ¢ and the inclusion g € Diffy (D?) by the choice of the function
2. All our considerations will be local because the problem concerns only
neighborhoods of points x,, x,, 2, ,. The vector field (2.3) is Hamiltonian
with respect to the Lebesgue measure A with the Hamiltonian function
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H(s,, s;) = Inas,-s,. The vector field vy (see (2.4)) is obtained from this
vector field by a time change, so it is Hamiltonian with respect to the
measure v with the same Hamiltonian function H,.

The mappings g¢,, ¢,, g, g are locally the time-one maps generated by the
vector fields vy, (P)).vy, (P2, vy and (P,2,P,),vy. Since (@,),v = A, (@,) N =
(P5)M = \, the last three vector fields are Hamiltonian with respect to the
Lebesgue measures with the Hamiltonian functions H,=H 9", H, =
2H,o@,'and H = H,- @, respectively. Coefficient 2 arises because PIN = 2.

Let us denote the function inverse to

7(w) = o5 SM%

by B(w). Using the local explicit expressions of the mappings @,, @, and @,
(see (2.5), (2.6), (2.7)), we obtain the expressions of the functions H, and H,
near the origin and H near 0D? namely:

Ina - 5,5,(801/st + st))

HZ(SU 82) - s+ 8 ’
L 2
Hy(z, 7)) = lna.:z/(l‘i(l—i/—z;—k 2-;)) ,
! 2
Ina-2(80/1 — 2t — )
H(x” x2> = (118/(x2 + xz 2 ) .

If the constant p, is fixed, the function v can be found from v, namely
y(u) = p,'/2v(w)y'(w) and, consequently, from 5.

Let us see how conditions 2.1-2.5 can be satisfied by the choice of the
function 8. If B(u) is C~, then condition 2.1 holds. Condition 2.2 follows
from the tendency of (¥ *(w))’ to - when u >0, and condition 2.3 from the
convexity of the function v*. Both these properties hold if B decreases
sufficiently fast near 0. Condition 2.4 is provided by an appropriate exten-
sion of the function +y. Finally, condition 2.5 holds automatically. All the
derivatives of the functions H,, H, and H can be expressed from the deriva-
tives of 3, so that if the derivatives of 8 decrease near 0 sufficiently fast,
then the derivatives for H, and H, near the origin and H near oD* will also
decrease at any prescribed speed. Thus we have proved the following fact.

PROPOSITION 3.1. For any sequence r of admissible germs near the
origin in R* and any sequence © of admissible functions on D? there exists a
sequence 0 of admissible germs near 0 in R such that, if Be Cy(R™, 0), then
H,, H,e C:(R’, 0) and H e C3(D?).

We shall not give a detailed description of translation from Hamiltonian
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functions and vector fields to time-one maps. The decrease of the derivatives
of solutions of differential equations near 0 and near oD* may be estimated
from the decrease of the right sides and, consequently, through the Hamil-
tonian functions. Thus, an appropriate choice of the function £ guarantees
that the diffeomorphisms g¢,, g,, g are C* and g € Diff; (D?).

4. Proof of Propositions 2.1 and 2.2

The given function » satisfying conditions 2.1-2.5 can be joined with
the function equal to 1 identically through C' functions satisfying all of
these conditions except 2.2. To be more definite, let us fix the following
continuous family of functions joining 1 = «, and + = r;:

T
1 -7

"//\*(u)zl_f"'_

S;_Tq/r(u + s)ds .

To simplify our notations, we let gy = g.. We are going to prove that g.
is an Anosov diffeomorphism for every 7:0 <7 < 1 and that g, is of the
“almost Anosov” type. Let (&, &) be the natural coordinates in each tangent
space T,.T? such that the linear map Dg, has the form Dg,(¢,, &) = (a&, a™'&,),
and let us denote the cone {(&, &)e T.T% |&| < |& |} by K. and the cone
{6, &) e T.T% & = |&]} by K.

PROPOSITION 4.1. 1. Foreveryt €[0, 1] and x € T* the families of cones
K. and K, are semi-invariant;i.e.,

Dg.'(K::r) - Kutz ’ D(g.')‘l(va) c K’!}_ Yo s

2. For every x € T* and 7 €0, 1| except whent = landx = x,,1 = 1, 2,

3, 4, the intersections
Er* = N0 Dg*K e and Br* = .2 Dg2K; -,

are one-dimensional subspaces of T,T:.

Proof. We restrict ourselves to the case of the cones K, because the
other case is completely similar. Obviously, the family K+ = {K,", x € T} is
semi-invariant outside the neighborhoods D!. To check this property inside

D; we use the method of [7]. The linear part of the vector field vy_ (cf.
(2.4)) has the form

£ = Ina((y. + 28W0)E + 28,8975,) ,
£, = —Ina(2y!s,8,8 + (v + 2890)E,) .

The equation for the tangent = &,/¢, is

4.1)

(4.2) B — —2ina((y. + 61+ DV + sarF + 1)
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Substitution of 7 = 1 and 7 = —1 in (4.2) gives

(4.3) D — —2nay. + s+ sv) =0
and

d77 — 2
(4.4) T 2Ina(y. + (s, — 8,)%7) = 0 .

Moreover, these inequalities are strict everywhere for 7 < 1 and every-
where, except the origin, for 7 = 1. Inequalities (4.3) and (4.4) imply the
first assertion of the proposition.

To prove the second assertion we shall estimate from below the decrease
of the angle between two arbitrary lines inside the cone K forxe D;. We
shall obtain two estimations of that kind. The first of these deals with the
change of the angle during a unit time. This estimation implies assertion 2
in the case of 7 < 1. To finish the proof we shall consider the change of the
angle along the whole segment of trajectory of the vector field vy inside
D; for a sufficiently small ». Let N0 (8, a,) be the solution of equation (4.2)
with the initial conditions ¢t = 0 and @ = a, along the trajectory of vy_with
the initial conditions (s}, s;) € D; . We are going to estimate from above the
ratio

|na?,32(1y 771) - nsg'sg(ly 772)|
19— 7]

for all initial conditions 7,, 7, such that (7. <1, |9 <1. To do this, we
introduce the function

t
(4.5) D) = exp ~2Inal (v + st + sthy)du.

0
For the sake of brevity we omit here and below the dependence of 81y Sa, Y-
ete. on t, s, s;. Moreover, we shall omit the indices in the notations for the

functions 7 and 7. The following equality is verified by direct comparison:

(4.6) n(tn) = nA(t) — 2In aﬁ(t)g 3132“"“(’75“’ 7 +1) 4,

° 7(u)
It follows from (4.3) and (4.4) that the inequality |7,] <1 implies that
|7(t, )| <1 for every ¢ > 0 so that

[7(t, ) — (¢, 1)
()
The Gronwall inequality (cf. [8]) gives

17(t, 7)) — n(E, 1)
()

¢ |3132|"}'/'i]77(u:\ 771) — 7](% 772)] du .
° 7(u)

=)=l + 4lnas

t
=17~ milexpainal s, sl yidu
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Substituting ¢ = 1 and using the expression (4.5) for 7)(t) we obtain
4.7 |n@,n) -9, n)| = |9 — n.lexp —21116!80(% + (s =[5, ))du .

If 7 <1, then the integrand . + ¥/(|s,| — |s,|)? is strictly positive in
the set D; Ug.D;. Let L.>0 be the minimum value of this function.
Inequality (4.7) implies that

|71, 9) — 91, 9)| = Nl

so that every cone inside K, contracts uniformly. This concludes the proof
of the proposition for 7 < 1.

It remains to consider the most important case, namely, © = 1.

Let us fix positive numbers ¢,, 8, 6 and denote the region {(s,, s,):]5,5:| <¢&,,
|s,| < B, |s.| <B} by Q. Now we are going to estimate the solution of
equation (4.2) along the segment of the hyperbola {ss, =¢, 0=<s <8,
0 <s,< B} for each ¢ <¢, Let us consider s, as a parameter on such a
hyperbola. Equations (2.4) and (4.2) imply that

_‘_il]_ _ 2(31 + 32) Vi "lf
4.8) o (81 Y Vg +2s Lo+ D)

Let (s, ¢/8, 1,) be the solution of this equation with the initial condi-
tions s, = ¢/B, 7 = 1, |7,| <1. The Gronwall inequality and the inequality
|7(s, €/8, 75)| <1 imply that for every 7, 7., (.| = 1, || =1,

(85 m)— (8,5, m)] = — nlexp 2| A il I PN
8 8

B
|771—772| —exD 28 '\/r (st — ef d31<|7]1_772|_-

31 81
B‘ e/B ’\//‘ 31
The same inequalities are true in other quadrants, i.e., for n(—g8, —¢/B, )
ete.

Let {x, g.x, - - -, 9" 'z} be a segment of a trajectory of g. lying inside Q7.
This implies that all these points belong to Qf,, but ¢g-'x and g2 do not belong
to Q%. Suppose that x = (s, s3). Then for every 7, 7., [9,| <1, |7.| <1 the
following inequality holds:

: Mes
70000, 7) — ., )| < 1, — 7, S <1 —ml—B,i

151
Here M is a uniform constant for all sufficiently small ¢, and 8. It means
that every angle inside the cone K, is contracted under the action of Dg?
by at least Me/B* times. Let us choose ¢, > 0 so small that
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Me; 1
(4.9) & < y
Estimation (4.7) is uniform for every t including ¢ = 1, outside every
neighborhood of the origin. Consequently, we can find a constant r<1
such that every angle inside K, is contracted at least L times if x does not
belong to the region Q; near one of the points x,. Thus we have proved
that for every z € T® such that gz does not tend to one of the points z, as
n — — oo, the intersection

(4.10) Nz Dgi(K,bn,)

must be a single line.

Finally, let us consider a point # such that lim,.__ g’ = x,. The local
unstable manifold (non hyperbolic) of the point z, is a segment of the s, = 0.
Consequently, equation (4.8) on this line is reduced to the linear equation

an _ 2 284
4.11 2 = (& A0V )y
( ) ds, <sl + Jr >77

Let us fix the number X\ > 0 and consider the solution of (4.11) with the
initial conditions s, = ¢, 7 = 1 along the segment [e, A]:
n(\, €, 1) = exp —Hi + M)dsl < &
NS, f\l]‘
Consequently, n(\, ¢, 1) > 0 as ¢ — 0 and by the linearity of the equation,
7(\, €, —1) — 0 too. Thus, for the point = (\,, 0) intersection (4.10) is also
a single line. Proposition 4.1 is proved.

COROLLARY 4.1. The subspaces E** and E** depend on x continuously
Jor every v <1. The subspaces E*' and E** depend on x continuously
except, maybe, for the points x = x,, 1 = 1, 2, 3, 4.

Proof. The family of cones K,";” = Dg:K7-», forms a closed subset of
the tangent bundle TT:. Consequently, the same is true for the family of
intersections E*° N5, K,'5.

COROLLARY 4.2. For every v <1, g. is an Anosov di feomorphism.

Proof. This follows immediately from Proposition 4.1 and the fact that
g- preserves a smooth positive measure.

COROLLARY 4.3. The homeomorphism g, is topologically conjugate to
.

Proof. It is proved in [7, n°3] that g, is an expansive homeomorphism.
Corollary 4.2 implies that g, belongs to the C° closure of the set of all Anosov
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diffeomorphisms. Thus the theorem from [7] implies that ¢, is topologically
conjugate to g,.

Denote the homeomorphism (homotopic to the identity) which conjugates
g, and g, by h. Each point x € T? has local stable and unstable manifolds W;
and W} which are images of the local stable and unstable manifolds of g,.

LEMMA 4.1. The sets W: and WY are smooth curves and T,W; = E;',
T, Wy = E»".

Proof. We restrict ourselves to the case of unstable manifolds. First,
let us consider the unstable manifold W of the point ;. Locally this mani-
fold coincides with a segment of the line s, = 0. The proof of Proposition
4.1 shows that at each point z of this segment the space E}' is the line
& =0,ie., TW? = E*'. This fact remains true for every point z belonging
to the global unstable manifold of the point «,. Thus, for such a point

(4.12) TW; = E' CInt K" .

The global unstable manifold W;‘i of the point z; is everywhere dense.
Now let zeT* and z, ¢ W;‘i, 2, — 2. Let us translate our local coordinate
system from a neighborhood of the point x, into some neighborhood U of
the point z and denote the local coordinates of the points z, by (s, ., Ss,n)-
Fix a compact segment I, on the manifold W in such a way that I, c U
and I, tend in a topological sense to a compact segment I of the manifold
W:. By (4.12),

L\{z.} C {(sl, spe U, |25 | < 1} )
Sy — Soun
Consequently,
(4.13) I\{z} C {(sl, 50) € U,% < 1} .

Let us denote the set of all limit tangent vectors for 1 at the point z
by [l.c T,T®. [ ], is a nonempty closed set. Inclusion (4.13) implies that
[l. € K. Obviously, Dg,["], = [,.. Thus, Proposition 4.1 implies that
[, = E¥'. The lemma is proved.

Proposition 2.1 follows immediately from Corollary 4.3 and Lemma 4.1.

To finish the proof of Proposition 2.2 we need a simple fact about
Lyapunov characteristic exponents. We shall consider a purely measure-
theory situation, namely an automorphism T of a Lebesque space (X, #) and
some linear extension T: X xR™ X x R™ of T. Such an extension is given by
a matrix function on X: T’(oc, t) = (Tx, A,t), where A,eGL(m,; R). The
multiplicative ergodic theorem of Oseledec [4] deals with such extensions
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satisfying the additional assumption max (In* || A, ||, In* [| A7) e LA(X, p).

Let EC X be a subset of positive measure. Then we can consider the
induced map T'; and the corresponding induced extension T,. By the Birkhoft
ergodic theorem the following limit exists almost everywhere:

Ax) = lim, ., = 3" X,(TF) .
n

PROPOSITION 4.2. The Lyapunov exponents X(x),1=1, ---, m, of the
extension T, are equal to X (x)/X(x), where X (x) < Xy(w) < --- X,.(x) are the
Lyapunov exponents of the extension T. We count each exponent with its
multiplicity.

This is an easy consequence of the Birkhoff ergodic theorem and Theorem
4 from [4].

COROLLARY 4.4. If almost every trajectory of T intersects the set B and
X¥(x) # 0 almost everywhere, then X{x) # 0 almost everywhere.

Proof of Proposition 2.2. Let us denote T\Ui-. Q% by B, where Q’F
is the set Q’ constructed near the point x, and B and ¢, are chosen so that
(4.9) holds. We shall consider the induced map (g,); and linear extension
D;i: TB— TB. Let us fix orientation for the one-dimensional subbundles
E*'and E*' of TB and denote positive rays of EX' and E*' by E* and E:.
We introduce a new continuous Riemannian metric on TB by choosing the
orthonormal basis (el(x), e,(x)) in each space T,T® for xe B. That is, let
e(x) e B, ey(x) € B2, e,(x) + eyx) € 0K, and o,(e,(x), e,(x)) = 1, where w, is a
2-form which generates the smooth positive invariant measure v (see §2,
n°2). It is easy to see that the Euclidean norm of e,(x) is bounded from
below. Proposition 4.1 implies that

Dje(x) = 7.(2)e,((9.)5@)) ,  DZes(®) = 7y(x)es((9,)s()) ,
where 7,(x)/v,(x) < K <1. On the other hand, v,(x)v,(x) = 1 because the
form w, is invariant. Consequently
(4.14) To(w) < K<L, 7v@)>K'r>1.

Thus, the Lyapunov exponent for the vector e,(x) with respect to D, must
be positive.

Since every trajectory of g,, except for the fixed points x;, intersects
the set B, Corollary 4.4 implies that for Dg, the larger Lyapunov exponent
is positive almost everywhere. Proposition 2.2 is proved.

5. Main theorem

Now we are able to prove our final result.



BERNOULLI DIFFEOMORPHISMS 547

THEOREM B. Let M be an arbitrary compact connected two-dimensional
manifold (possibly with boundary), ¢t a smooth positive measure on M.

There exists a C* Bernoulli diffeomorphism f : M — M which preserves the
measure /L.

Proof. Let F:D*— M be a mapping which satisfies the assertions of
Proposition 1.2 and p be an admissible sequence of function on D* which
satisfies the assertion of Proposition 1.1 for F chosen in this way. By
Theorem A we can construct a Bernoulli diffeomorphism g € Difty (D™). Pro-
position 1.1 guarantees that the mapping f defined by (1.1) is a C* diffeo-
morphism of M. This mapping preserves the measure ¢ and f considered
as an automorphism of the Lebesgue space (M, y) is metrically isomorphic

to g: (D% A) — (D? ), i.e., f is a Bernoulli diffeomorphism. The theorem is
proved.
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