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Smooth Non-Bernoulli K-Automorphisms

A. Katok *
Department of Mathematics, University of Maryland, College Park, MD, USA

§ 1. Introduction

Let M, N be C® compact connected Riemannian manifolds, g: M—>M a C®
Anosov diffeomorphism which preserves a smooth positive probability measure
u, {h;} a C* flow on N, preserving a smooth positive probability measure 4 and
ergodic with respect to that measure, ¢ a real-valued C* function on M.

We shall consider the following skew-product diffeomorphism f acting on
the direct product of the manifolds M x N:

S, )=(8x, hyy) )

We are going to give a condition sufficient for such a diffeomorphism f to be a
K-automorphism with respect to the measure uxA. Our considerations are
based on ideas of the theory of partially hyperbolic dynamical systems [1],
especially on a modification of the approach which has been used by Brin [2],
[3] for the study of group extensions of Anosov diffeomorphisms. Indeed, a
diffeomorphism satisfying our condition need not be a partially hyperbolic one.
Nevertheless, such a diffeomorphism has two absolutely continuous invariant
foliations - contracting and expanding - which form a metrically transitive pair
[1].

Let m: M—M be the universal covering, §: M—M a lifting of g on the
universal covering manifold M and ¢=¢on: M—IR — the lifting of .

Let us denote by C(M) the class of all real-valued continuous functions ¥ on
M such that for every two liftings U,, U,=M of any sufficiently small neigh-
borhood U <=M the difference (|y,)on~ ' —(|y,)en~" is a constant on U.

Theorem. 1. If for every constant c the equation

Y(Ex)—¥(x)=d(x)+c @
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has no continuous solution e C(M), then f is a K-automorphism with respect to
the measure px A.
2. If the flow {h,} is weakly mixing and the equation

Y(@x)— ¥ (x)=p(x)— @, )
where ¢o= [ @dp has no continuous solution \, then f is a K-automorphism with
M

respect to X A.
This theorem will be proved in §2.

Remark 1. Certainly, the lifting of a solution of (3) is a solution of (2). Every
function YeC(M) defines an element [y] of the first cohomology group
H'(M,R). Moreover, []=0 iff there exists a continuous function ¥, on M such
that Y=y, on. If ye C(M) is a solution of (2) then g*[y]—[¥]=0 ie. [¥] is an
invariant vector of the linear operator g* induced by g in the space H*(M, R).

All the examples of Anosov diffeomorphisms known up to now are topologi-
cally conjugate to hyperbolic infranilmanifold automorphisms [4]. Those auto-
morphisms generate hyperbolic linear operators in one-dimensional cohomol-
ogies. Therefore, if Y€ C(M) is a solution of (2) then []=0 and the correspond-
ing function y, satisfies the equation

Yol(gx)—¥olx)=o(x) +c.

Integrating over M with respect to u one can see that ¢c=—¢, and
consequently i, is a solution of (3). Hence, for every known Anosov diffeomor-
phism g and every C® function ¢ equation (2) has a solution ye C(M) iff (3) has a
continuous solution.

It seems quite probable that this fact is true for all Anosov diffeomorphisms.
It would follow from the positive answer to the following conjecture.

Conjecture. If g: M— M is an Anosov diffeomorphism then the induced operator
g*: H'(M,IR)— H'(M, R) has no non-zero invariant vectors.

Remark 2. 1t is proved in [5], that Eq.(3) has continuous solution iff for every
periodic trajectory y of g Z(qo(x)—<po)=0. Thus, we can reformulate the con-

xey

dition on ¢ in assertion 2 of the theorem (and for all known examples of Anosov
diffeomorphisms in assertion 1, too) in a following way:

there exists a periodic trajectory y of g of period k such that

Y () *ke, @
x€y
Corollary. Supp&se that M is an infranilmanifold, ¢ is a positive C® function, the
flow {h,} is not loosely Bernoulli (LB) [6] with respect to due measure A, and
condition (4) is satisfied. Then f defined by (1) is a K-diffeomorphism which is not
LB and consequently not Bernoulli.

Proof. By the theorem and Remarks 1 and 2 f is a K-automorphism with respect
to the measure p x A.
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Let us consider the direct product {H,} = {g?} x {h,} where {g?} is the special
flow constructed relative to g and ¢. The flow {gf} acts on the space M.,
={x,t)eM xR: 0=t < ¢(x)}. If {h,} is not LB flow then {H,} is also not an LB
flow. But the Poincaré map induced by the flow {H,} on the set (M x {0}) x N
coincides with f. So f being a section for non LB flow is not an LB
transformation. [

Thus, by Corollary in order to construct a C* diffeomorphism preserving a
smooth positive probability measure, which is a K-automorphism with respect
to that measure, but not isomorphic to a Bernoulli shift, we need a C*®
diffeomorphism which is not LB with respect to a smooth positive invariant
measure.

By now there are two known methods to produce such a diffeomorphism.
The first one which is due to the author is described in [7], §11 (but not
published yet in details). This method allows us to fulfill a version of Feldman’s
construction [6] of non LB-automorphism in a smooth situation by means of
a version of the construction from [8]. It works on every manifold of dimension
greater than 1 which possesses a nontrivial action of the circle. I am going to
write down that construction in full details because it provides together with the
ideas from the present paper and from Brin’s paper [9], a way for a construction
of a non-Bernoulli K-diffeomorphism on every manifold of dimension greater
than 4. :

The second method is due to Ratner [10] and gives much more natural and
simpler examples. She proves that a Cartesian square of the homocycle flow on
a compact surface of constant negative curvature is not LB.

I think that the method of S. Kalikow who solved the so-called T—T !
problem also can be adjusted to the smooth situation. This would provide the
third way to construct non LB-diffeomorphisms. Probably, it is possible, using
Kalikow’s approach to construct non-Bernoulli K-diffeomorphisms directly and
avoid the reduction described in the present paper.

§ 2. Proof of the Theorem

Step 1. Let us denote for xeM and r>0 by W?*(x,r) the stable manifold of x of
size r with respect to g. We are going to lift these manifolds to M x N by an f-
invariant way. For this sake, we consider the sequence of functions 7,, n=1,2...
defined on the set I,={(x,z)eM x M, ze W*(x,r)} by means of the formula

n-1
1,(%,2)= ,2:0 (p(g*x)— p(g*2)).

Since g is an Anosov diffeomorphism then for some <1 and ¢>0 the distance
d(g*z, g*x) between g*z and g*x admits the exponential estimation from above:

d(g*z,g*x)<cp )
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Moreover, |p(g"(z)) — @(g*(x))| <d(g*z, g*x)- | Doll, where D is the derivative and
-]l is a norm induced by the Riemannian metric. Hence, the sequence 7,
converges exponentially and uniformly on I; to a continuous function

)= ¥ (olg")~0le"2) ©

which satisfies the following equation
7(gx, g2)=1(x,2) — ¢(x) + ¢(2) ()

We are going to prove that for every xe M the function 1(x, z) is continuously
differentiable with respect to z. For, let £€E3, ||| =1, where E; < T,M is a stable
subspace with respect to g. We have

-1

(D7,)x,5(0, &)= — EOD(ng,(Dg"é)- ®

The norm of the vector Dgt¢ is estimated exponentially as in (5) so that
||D<pgkz(Dg"§)-||§max |[De| c-B*. Thus, the series (8) converges exponentially
and uniformly on I} to the derivative (D7), (0, &). Moreover, this derivative
depends on x continuously.

Let us define for (x,y)eM x N the mapping @, ,: W*(x,r)— N by the formula

¢x,y(z) =ht(x,z)y (9)

The differentiability of = with respect to z and the smoothness of the flow
{h,} imply that &, eC Y(W*(x,z), N) and the map ®,: N — C'(W*(x, z), N) defined
by &, y=¢&, , is C'. Moreover, in the natural sense @, , depends continuously
on both its arguments.

Let us denote the graph of the mapping @, , by W*(x, y,r). Evidently if r, >r,
then W*(x,y,r,)>W*(x,y,r,). It follows from the .previous arguments that
W*(x,y,r) is a C' submanifold of M x N which depends differentiably on y and
continuously on x. These manifolds are glued together to a global manifold
W*(x, y) which form a foliation W* on M x N. For, if x,e W*(x,r,), x,€ W*(x,,1,)
then

(%, %,)=1(%,x,) +1(x,X,), ie.

Wi(x, y,r, +1,) > Wi(x,, D, ,X1512)

Now, let us show that this foliation is f-invariant. For, suppose that
(x1,y)EWS(x,y,1), i.e. y, =h y. Using (7), we obtain

(x,x1)

f(xq,y1)=(gx,, h¢(x,))’1) =(gxy, h¢(x1)+t(x,xl)y)
=(8%15Pe(gx, gx0) + o0 ¥) = (8% 15 Peie, gx) B )

ie. f(xy,y,)eW*(gx,h,,y,r,) for some r,.
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The unstable manifolds W*(x, y,r) and the foliation W* are constructed by a
similar way with the use of the function

D)= Y (0E)— g ) (10)

k=-1
instead of 7. Here ze W¥(x,r).

Step 2. We shall show that the foliations W* and W* are absolutely continuous.
Certainly, it is sufficient to consider the first foliation because the both cases are
completely similar. For every sufficiently small positive number ¢ we can choose
0>0 such that for every xeM, zeW3(x,¢), x,eW"(x,e) the intersection
W*(x,,8) N W*(z, ) contains exactly one point, which we shall denote by I, ,x,.
Thus, the map IT, ,: W*(x,e)— W*(z,0) is defined. This map is sometimes called
the canonical isomorphism. It is absolutely continuous [11].

The natural transversal section for W* is the product W*(x, ¢) x N, which we
shall denote by K_ ..

Let us denote for ze W*(x, =) the mapping from K, , to K, , along the leaves
of W* by ﬁx,z. Thus, for x,e W¥(x,¢), ye N we have

ﬁx.y(xlsy)= Ws(xliy’ 5)nKz,6'
Using the definition of W*(x, y, §) we can express ﬁ” in a following way

ﬁx,z(xlay)=(Hx,zx17ht(x;,ﬂx,,xl).}’)'

Thus, I, , is a skew product over the absolutely continuous mapping II, , with
smooth maps in leaves, i.e. II, , is also absolutely continuous.

Step 3. Following the method used by M. Brin [2,3] in the case of group
extensions of Anosov systems we define the transformations of manifolds
{x} x N, xe M along the leaves of W* and W*". Let for r>0, xeM, zeW*(x,r),
yeN

nx,z(x’ y)=(Z, ht(x,z)y) (11)

and similarly for ze W¥(x,r)

Tcx,z(x’ y)=(Z, hc(x,z)y)' (12)

We shall call an ordered finite system K={x,,...,X,}, Xg,...,X,€M an ad-
missible system of points if there exists r>0 such that x,, ,eW?(x,,r) or
X4 1€EWH(x,,7) for k=0,1,...,n—1. We let for such a system K:

Mg=T Oy en 00Ty i {Xo} X N>{x,} x N.

Xn-1Xn X0X1"*

In particular, we shall call an admissible system K={x,,x;,x,,X3,Xo} @
local quadrangle if the point x, has a local product neighbourhood of size ¢ and
X, EWS(xg,6), X3€W"(xg,8), x,=W"x,,e)nW?3(x3,6) or x,eW“(xq,8),
x3€W5(x,, ), X, =W5(xy,8) N W*(x3, ).

Lemma 1. 1°. Equation (2) has a solution yeC(M) iff ny=id for any local
quadrangle K.

2°. Equation (3) has a continuous solution ¢ iff ny=id for any admissible
system K.
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Proof of the Lemma. Let K={x,, x,, X,, X3, X,} be a local quadrangle. Suppose
for definiteness that x, e W*(x,, ¢). From (11) and (12) we have

7'[K(xo’ y) a (XO’ ht(Xo, x1)+0(x1,x2)+1(x2, x3) +1(x3, xo)y)' (1 3)

Now suppose that n,=id for every local quadrangle K. Let us introduce the
following C° differential from w, on M:

for {=¢,+&,eT M, (&,€E;, &,€Ef
wq)(é) =Dt(x,x)(0: 61) + Da(x,x)(o, 62)

We shall consider for a local quadrangle K a class of piecewise differentiable
closed paths y: [0,1]—K such that

k
y (Z)=xk k=0, 1,2, 3’45 'V (I}L%])C WS(XO’ 8)’

(Bl r(Bewena o (Ei)ewenn

Since 7, =id then for every such path [w,=0.

It is easy to conclude from this facty that w,, is a closed form. Consequently,
the lifting &, of w,, to the universal covering manifold M is an exact form i.e. D,
=Dy, where Y is a continuous function on M. We are going to prove that there
exists a constant ¢ such that

Y(gx)—¥(x)=d(x)+c.

Let us choose a point xe M and such a neighbourhood U of the point x that
U and gU are projected into M one-to-one and their projections are contained
in local product neighbourhoods.

Let z be an arbitrary point in U and y=W?*(x,&)n W*(z,¢). It follows from
the definitions of the form w, and function y that the restriction of y on every
stable (unstable) manifold of ¢ coincides up to a constant term with the
restriction of f(corr. 8) on that manifold. Naturally, by © and & we denote the

liftings of functions 7 and ¢-on M. Thus,

Y(2)=12(x,y)+6(y,2) +cy,
Y(@2)=1(8x,8y)+ 6@y 82) +c,.

Subtracting the first equality from the second one and using the expressions
(6) and (10) for = and ¢ we obtain

Y(E2)-v(2)=1(¢x, £y)+ 6@y, §2)—1(x,y) - t(3,2)
tep—e= Z (@ x)— P& y) - Z (@@ x)— o€ y)

+ Z (@ 2)—o(E"y) - Z (@(8*2)— p(g*x))

k=—1
¢, —¢;=0()—B(x)+P(2) - d(y) +c,—c; =P(2) + ¢4

where ¢;=c, —c,; —@(x) is a constant in the neighbourhood U.
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Thus, the expression Y(£z)—y(z)— ¢(z) is a constant in U and consequently
it is constant everywhere on M, ie. ¥ is a solution of (2). Since Dy is a form
lifted from M, then e C(M). Hence, we have proved the “if” part of assertion 1
of the lemma.

Now let us suppose that ny=id for every admissible system of points K.
Then the form w, is exact, because every closed path on M is homotopic to a
path consisting of arcs on stable and unstable manifolds. Thus w, =Dy, where ¥
is a continuous function on M and the same computation as above shows that y
is a solution of (3). Thus the “if” part of assertion 2 is also proved. The
remaining part of the assertions of the lemma will not be used in the subsequent
arguments. But for the sake of completeness we shall conclude the proof.

Suppose that yeC(M) is a solution of (2) and consider points xeM,
zeW*(x,¢). Let xX’eM, nx'=x and UcM be a neighbourhood of the point x’
described above. Let, at last, z’e U, nz'=z. We have

()= 3 (0lex)=ple2)= T (0(E")~6(¢'7)
— P&~ W)+ lim (W@ V@) =) — ¥ ()

since lim d(g*(x’), £*(z'))=0 and the function ¥ is uniformly continuous. Similar-

k—

ly we have for ze W*(x, ¢)
a(x,2)=y(z') = Y(x).

Formula (13) shows that n,=id. The “only if” part of assertion 1 is proved.
Similarly, let ¥ be a continuous solution of (2.3), xe M, ze W3(x,r). Then we
obtain as above

(x, z)=k;§0(<p(g"x)-<p(g"z))
—p(E) -+ lim ("0~ Y(8"2) =¥~ ¥ ()

and similarly a(x,z)=y/(z)—y(x) for ze W¥(x,r). It is easy to conclude from the
definition of ny that n,=id for every admissible system of points K. [

Step 4. Let for xe M.

G,={ng: K={x,x,,...,X,_1,x} is admissible}. The set G, is a group because
for K'={x,x{,...x,_1,x}, K'={x,x],...,%Xn_1,X} g oMg. =Ty g Where
K'VK'"={x,X{,...,X\_1,% X1, Xm_1,x} and mngl=mng where for K
={X,X 150005 X,_1,X} K*={%,%,_1,.-.,%;,X}.

Lemma 2. 1. If ng+id for some local quadrangle K then for every point xe M the
group G, coincides with the group of all transformations {h}: hi(x,y)=(x,h,y),
teR}.

2. If ng=*id for some admissible system K then there exists t,+0 such that for
every xeM G, > {h}, ..z}

Proof of the Lemma. Evidently, every element of G, has the form h}. Let K
={x¢, Xy, X5, X3, X0} be a local quadrangle such that ng=+id, i.e. mg=h°, t,+0.
Without loss of generality we can suppose that x,eW?*(x,, ). Let us join the
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points x, and x, by a continuous path x,(s) 0<s=<1 inside the local product
neighbourhood of x, of size €. Let us denote the point W*(x,, &) » W*(x,(s), &) by
x,(s), the point W*(x,(s),e) W*(x,y,€) by x;(s) and the local quadrangle
{x0, x1(5), x,(5), x3(5), xo} by K(s), 0Ss<1.

Since the transformation my, depends on s continuously the group G,
contains all the transformations hf for ¢ between O and t,. Hence G,
={h{°;teR}. Now let us fix an arbitrary point xe M and choose an admissible
system of points L={x,z,,...,2,_;,Xo}. Further, fix teR and choose K
={Xgs X150 X5_15%0) Such that #,=h Let K={x2,.:2,_1:%0%1
vsXp_15X05 Zpm_15--+» 21, %}. The direct computation shows that ng =h.

This completes the proof of the first assertion of the 1 lemma. The second
assertion follows immediately from the same arguments. []

Step 5. We shall denote the non-measurable partitions of M x N into leaves of
the foliations W* and W* by the same symbols W* and W*. The measurable hull
of a partition ¢ is denoted by #n(&).

The foliation W* is uniformly expanding with respect to f; the foliation W* is
uniformly expanding with respect to f~!. So the theorem of Sinaj ([12],
Theorem 5.1) can be applied. This theorem asserts that n(W*) and n(W") are
refinement of the zm-partition n(f) or equivalently

n(f)<n(Ws A W¥). (14)

Thus, to conclude the proof of our theorem it is sufficient to show that every
measurable set AcM x N which consists mod0 of the whole leaves of W* and
W* has measure 1 or 0. This fact is an easy consequence of Lemma 2 and the
following lemma of Brin ([10], Lemma 2.2).

Lemma3. Let M be a smooth fibered space over a manifold M,g: M—M an
Anosov diffeomorphism, f: M—M a skew-product diffeomorphism, W*, W* - two
absolutely continuous f - invariant foliations of M which are projected into stable
foliation W* and unstable foliation W* of g and satlsfy the Lipschitz condition
along the leaves on the fibration.

Suppose that the set Ac M consists mod 0 of the whole leaves of W* and W*.
If zeM is a point of density for A and W is leaf of W* containing z then every
point €W is a point of density for A.

Conclusion of the Proof

Suppose that the set A is measurable with respect to z(f) and (ux 4)(4)>0.
Then by (14) the set A satisfies the conditions of Lemma 3. Let us denote by 4,
the set of all points of density for A. Applying this lemma consequentially we
conclude that myxeAd, for every point xeAd, and every admissible system of
points K. It is well-known that A,=A(modO0). If Eq.(2) is unsolvable then
Lemma 2 implies that the set A, is invariant with respect to the flow id x {h,}
and by ergodicity of {h,} we can conclude that 4, consists mod0 of the whole
sets {x} xN ie. A;=A'x N(modO0) for some measurable set A’ M. Lemma 3
implies that A’ consists of the whole leaves of W*. Since this foliation is
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metrically transitive then A'=M(mod0) and consequently A=M x N(mod0) i.e.
n(f) is a trivial partition. In other words, f is a K-automorphism. Now suppose
that Eq.(3) is unsolvable and the flow {h,} is weakly mixing. Then by Lemma 2
the A, is invariant with respect to the transformation id x h,, which is ergodic on
fibers. The conclusion of the proof in this case is the same as in the previous
one. []
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