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Summary. In this paper we investigate the regularity of the topological entropy
hep for C* perturbations of Anosov flows. We show that the topological entropy
varies (almost) as smoothly as the perturbation. The results in this paper, along
with several related results, have been announced in [KKPW].

The authors wish to thank Bernard Shiffman for graciously supplying us with the proof of the
key technical theorem used in step 3 of Theorem 1.

Theorem 1. Let M be a closed n-dimensional manifold and let {¢},}, —e < A< ¢ (e

M1

sufficiently small) be a C® (real analytic) perturbation of a C® Anosov flow ¢' = @5,
Then hy,(¢}) is C°.

Theorem 2. Let M be a closed n-dimensional manifold and let {¢}}, —e < A <€ (e
sufficiently small) be a C**' perturbation of a C**' Anosov flow ¢' = ¢},

I £ k £ 0. Then hy,(¢}) is C*.

Since the geodesic flow on a closed Riemannian manifold with negative
sectional curvature is Anosov [ A], the following corollary is an immediate conse-
quence of Theorems 1 and 2:

Corollary. Let (M, g) be a closed n-dimensional Riemannian manifold with negative
sectional curvature, and let {g,}, —¢ < A < ¢ (¢ sufficiently small) be a C*** (or C®)
perturbation of g = go, 1 < k < 00. Then hy,($}) is C* (or C®), where ¢} is the time
one map of the geodesic flow on SM.

Strategy of proof. We give two proofs of Theorem 1. The first proof uses zeta
functions and complex analysis and only works for C® perturbations. This proof
yields valuable insight into how the periods of closed trajectories change when the
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** Chaim Weizmann Research Fellow
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flow is perturbed. We also believe that the techniques in this proof may lead to
advances in the study of qualitative properties of holomorphic dynamical systems.
The proof of Theorem 2, which also works in the C case and gives a second proof
of Theorem 1, involves studying the regularity of the maps obtained from structural
stability as a function of the perturbation parameter in the C* topology, along with
studying the regularity of the pressure function.

In Theorem 2, we require a C? perturbation of an C? Anosov flow to ensure
that the topological entropy changes in a C' way. Katok et al. [KKW], using
different methods, prove a stronger result. They show that a C! perturbation of a
C' Anosov flow results in a C! change in entropy. They also find a useful formula
for the first derivative of topological entropy.

Background

Anosov flows

Let M be a closed C* Riemannian manifold and let ¢ M — M be a C* flow
(k=1). We call this flow Anosov if there is a continuous splitting
TM = E° ® E*® E* into D¢ invariant sub-bundles such that:

(a) E° is one dimensional and tangent to the flow.
(b) There exists C, A > 0 such that for t > 0:

IDY'(w)| < Ce™*|lvll, veE* and [D¢'(v)|l = Ce*|v]|, ve E*

The flow is called transitive if it contains a dense orbit.

Anosov [A] has shown that Anosov flows form an open subset in the C!
topology on flows. Anosov also showed that they are structurally stable, i.e., if ¢ is
Anosov, then there exists a neighborhood 1 of ¢ in the C! topology such that every
Y eu is topologically equivalent to ¢, i.e., there exists a homeomorphism 6(y):
M — M which maps the orbits of ¢ onto orbits of . A subsequent proof by Moser
utilizes the Implicit Function Theorem to construct 8(y). This approach has the
advantage that it yields information on the regularity of y+ 6(y), with the
appropriate differential structures.

Topological entropy

Given any ¢-invariant probability measure 4 on M we denote by h,(¢) the measure
theoretic entropy of ¢! with respect to p. The topological entropy, h,,,(¢), can be
defined using the variational principle [ W] by:

hiop(¢) = sup {h,(¢): u is a ¢-invariant probability measure} .

The topological entropy is always non-negative and finite. For a transitive
Anosov flow, the supremum is always realized by a unique measure. This measure
was explicitly constructed by Margulis [MA2] and Bowen [B3], and we call it the
Bowen-Margulis measure. The Bowen-Margulis measure has the following two
characterizations:
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(1) It induces measures on the leaves of the unstable (stable) foliation which have a

uniform expansion (contraction) property with respect to the flow with coefficient
elhmp‘

(2) The closed orbits are uniformly distributed with respect to the measure.
Let P(T) = number of closed trajectories of ¢' with (prime) period < 7. Bowen

1
[B3] has shown that h,,,(¢) = limit ?log P(T).
T

Geometric example

Let (M, g) be a C* closed Riemannian manifold with negative sectional curvature,
and let ¢" SM — SM be the geodesic flow on the unit tangent bundle. The
topological entropy of the geodesic flow has the following two realizations in terms
of the geometry of M:

(1) [MA1; B3]. Let P(T) = number of closed geodesics for M of length <T. Then
1
hiop(¢) = limit ?log P(T). This is simply a reformulation of property (2) above.
T-w

(2) [MA1; MN]. Let M denote the universal cover for M with lifted metric d. Then

1 o o -
hiop(¢p) = limit Tlog Vol{xe M:d(x,, x) < T} for any fixed point x,€ M.
T— o

Symbolic dynamics

To give a characterization of topological entropy for a flow which does not involve
limits, it is useful to introduce a symbolic model for the flow. Bowen [B2] and
Ratner [R] have shown that every Anosov flow ¢' has a Markov partition
F ={T,, ..., T} with sections having arbitrarily small diameter.

Let P: (J; T; - (J; T; denote the Poincaré map on sections, and let A be the
incidence matrix associated with P, i.e., A(i,j) = 1 if P(int ;) n (int T};) + ¢ and 0
otherwise. We can introduce a sequence space: y , ={xe[[=_.{1,2, ..., k}:

i=—0

Oy, . . : ;
A(x;, X;41) = 1} with the metric d(x, y) = Y2 _, ;I:Iy With this metric, the shift

map o: Y 4 — Y 4 defined by o(. .., x_, Xo, X1, .. )= (.., X, Xq, Xz, .. .) IS
continuous. The map 6: ), — ), models the Poincaré map P: ( J; T; - ( J; 7; in the
sense that if we define m: ) 4— J);T; by n(x) = ()Z_, P "(int T, ), then x is
Hoélder continuous, surjective, bounded-to-one, and Pen = neog.

Let r: ) ; - R, defined by r(x) = inf{t > 0; ¢'n(x)e T, }, be the symbolic
version of the first return time. This map is Holder continuous and will enable us to
characterize the topological entropy of ¢' in terms of ) , and r.

Survey of known results about regularity of entropy

The study of the regularity of the topological entropy for arbitrary smooth flows
(or maps) is very subtle. In general, topological entropy need not be continuous.
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This is illustrated by the following simple example:

Let 4 denote the closed unit disk in C and let f;: 4 — A be defined by
fi(z) = (1 — A)z% for 0 £ 1 < 1. Recalling that the entropy of a map is equal to the
entropy of the map restricted to its non-wandering set, it is easy to see that
hiop(fo) = log 2 and hy,,(f;) = 0 for 4 > 0.

There are several results concerning the regularity of entropy for diffeomor-
phisms of compact manifolds. Misiurewicz [MI1] constructed examples to show
that h,,,: Diff ,(M") — R is not continuous for n = 4. His constructions are similar
in spirit to the example above. It seems unknown, although unlikely, whether
entropy is continuous for n = 3. Yomdin and Newhouse [Y1; Y2; N] have proved
that h,,,: Diff ,(M") — R is upper-semicontinuous for n = 2. Katok [K1; K2; KM]
has shown that for surfaces, h,: Diff,(M?)— R is lower-semicontinuous. By
combining these two results, one sees that h,,,: Diff,(M?) — R is continuous. This
result also holds for C* flows on three dimensional manifolds.

Misiurewicz [M12] and Margulis (see [Y1] for details) also proved that h,,,:
Diff,(M") —» R is not upper-semicontinuous in the C" topology (r finite) for n > 2. It
is unknown whether h,,,: Diff,(M") — R is upper-semicontinuous on a residual set
for n = 3, or whether h,,,: Diff ,(M") —» R is continuous on a residual set for n > 3.

The structural stability of Anosov difftomorphisms [A] implies that h,,, is
locally constant.

The structural stability of Anosov flows [A] implies that h, is continuous.
However, Misiurewicz [MI2] has shown that for general C* flows on M" k < oo

and n = 3, h,,, need not be continuous.

Theorem 1. Let M be a closed n-dimensional manifold and let {¢%}, —e <A <¢ (e
sufficiently small) be a C® perturbation of a C® Anosov flow ¢' = ¢g. Then hyo,(¢}) is
ce.

Proof. If ¢' is an Anosov flow on M, we define d(s) = [ [.(1 — exp(—sl(1))), where
I(7) is the least period of the closed orbit 1, s is a complex variable, and the Euler
product is over all closed orbits. d(s) is the reciprocal of the zeta function associated
to ¢'. It is easy to prove that d(s) defines a non-vanishing holomorphic function for
re(s) > hy,,(¢)[PP1]. Pollicott [PO1] has shown that d(s) has a holomorphic
continuation into a slightly larger half plane with a zero at s = h,,,(¢). To study the
regularity of topological entropy under perturbations, we study how the zeros of
d(s) vary.
The proof has four main steps:

Step 1. Show that d(4, s) is real analytic in 4 for re(s) sufficiently large.

Step 2. For each 1e(—¢, ¢), apply Pollicott’s result to holomorphically continue
d(2, s) to a larger half plane. We denote the extended function d(4, s).

Step 3. Show that d(4, s) is real analytic in A.

Step 4. Conclude that the zeros h,,,(4) of d(4, s) vary real analytically in A.



Anosov and geodesic flows 585
Step 1

Since Anosov flows are structurally stable, every closed trajectory © = 7, of ¢' = ¢}
can be naturally identified with some closed trajectory 7, of ¢%. We let [;(1) = [,(t;)
denote the least period function corresponding to t, i.e. the function which assigns
to each £, the least period of the closed trajectory of ¢ corresponding to t. The
proof of Step 1 begins by holomorphically extending each (real analytic) least
period function, /,(t), into an open neighborhood V < C, where V is independent of
7. We then show that the partial products converge uniformly and conclude that
d(4, s) is holomorphic in A for A€ V. The function d(4, s) restricted to Ae(—¢, ¢) is
real analytic. Admittedly, this strategy seems unnatural; we know of no direct proof
of this result, even in the geometric case.

Proposition 1.1. For each t, the map A — 1,(z) is real analytic and has a holomorphic
extension into an open neighborhood V < C, where V is independent of 1.

Proof. The key idea is to employ Markov sections for the flow so that infinitely
many closed orbits can be dealt with simultaneously using only a finite number of
sections. Choose a family # = {T, ..., T,} of Markov sections for the flow ¢.
We do not need to choose Markov sections for the perturbed flows! Since the
ambient manifold M is C®, we may assume that 7; < int D;, where D; is a C® disc
transverse to the flow. Let P: | J; T; — | J; 7; be the Poincaré map. A closed orbit t
corresponds to a periodic point P"x =xeT,.

Since we are considering C® perturbations of a C“ Anosov flow, it is easy to see
that the Poincaré maps, P;, and the return times between sections, r,, are real
analytic functions of 4 and x. The closed orbit corresponding to a period point
P"(x;) = x, € T; has least period Z o F1(P%(x;)). This expression clearly depends
real analytically on 4; hence the least period functions, [;(t), depend real analyti-
cally on 4.

It is well known that a real analytic function defined on (—¢, ¢) has a
holomorphic extension into some open neighborhood (—¢, ¢) = V < C. Thus, for
each 1, [;(r) has a holomorphic extension into an open neighborhood
(—¢,&) = V, = C. However, a priori, we cannot choose each V, to have uniform size,
i.e., we cannot preclude (), ¥, = (—¢, ¢). We will show that each ¥, can indeed be
chosen to have uniform size.

For the unperturbed flow, there is a natural local product structure [, ] on each
T,- which extends onto D,. In particular, each 7; is usually presented in the form

=[U;,S;],i=1,...,k where U, S; < T, lie in the expanding and contracting
submamfolds respectlvely We want to extend this construction in two ways:

(1) We enlarge U; to U 2 int U o>2U, S, to S 2 mtS 2 §;, and assume that
T,=[U, S;]<intD,.

(2) Using the C® charts for M, we can assume that S; < R, U, < R' and
T < R" For small § > 0 we write:

U,= U, xi(—9,0) < R + iR* = C
§,-xi(—5 6)CR’+1R’ c!
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where k and [ are the dimensions of the expanding and contracting submanifolds,
and n = [ + k = dimension M. We also identify:

U x ST, and U, xS,oT,.

Let A be the incidence matrix associated to 7. For A(i, j) = 1, we choose
(—& g V;;cC and 6 =0,;>0 such that (PA)“(U)C ., where P, is the
holomorphlc extension of the real analytic map P,, which is well defined provided
d;; > 0 is sufficiently small. Let § = ﬂ,,(, n=i Jy-

For A€V, we define 7}, U - U, by n (p,, id)e(P,)~ %, where p;: T, > U, is
the canonical projection. In general this map will be only Hélder continuous, since
p; involves projecting along a Holder continuous foliation. It is convenient to
assume that 7f; is a contraction. Since p; is Hélder, we can assume that 7/} is a
contraction if (P;)~ 1 |, contracts sufficiently. This can always be effected, possibly
by replacing (P e by some iterate. We can similarly define a map pf: S; - S,.

A closed orbit 7 for ¢ and the corresponding periodic point for (Py)"x = xe T,

can be coded by a finite sequence (ig, i, . . ., i,) With A(i;, iy11moan) = 1. Let
V*= (Vauj=1 Vi For e V" the sequence (iy, iy, . . . , i,) gives rise to a contract-
ing map:

The contraction mapping theorem gives a unique fixed point u, for this composi-
tion of mappings.
Similarly, for A€ V?*, the sequence (iy, i, - . . , i,) gives rise to a contracting map:

’ ok
Pio.in

-~ ~ ~

S8, ¢S, — ...« 8, i -8
and a unique fixed point s;.

The point (s, u;) guarantees the existence of a periodic point for (P,)" in T‘0

If V'=V"nV*>(—¢, ¢), an application of the Implicit Function Theorem
yields that the map V — T, defined by A x; = (s;, ;) is holomorphic.

Let rp: | T: - R be the real analytic return times between sections. We
denote by #;: | J; T; — C the holomorphic extensions of these real analytic functions
(defined for ¢ suf’ﬁcxently small).

For Ae(—¢,¢), the closed orbit corresponding to x, has least period
Y iZorii* H(Pi(x,)), which we denote by I,(t). For A€ V, the appropriate complex
extension is ) _ St 1(Pi(x,)). Thus, the map (—¢, &) » R* defined by A [,(1)
is real analytic and has a holomorphic extension to A€V, independent of the
choice of . [

Proposition 1.2. For re(s) sufficiently large, d(4, s) =[], (1 — exp(—sl,(z)) con-
verges uniformly in A€V and hence defines a holomorphic function of A.

Proof. We know from elementary complex analysis [M] that the uniform con-
vergence of the infinite product d(4, s) is implied by the uniform convergence of the
series Y . |exp(—s/;(z))|. The uniform convergence of this series in 1€ V will quickly
follow from the next lemma.
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Lemma 1.3. For any n > 0, there exists a Markov partition for the unperturbed flow
and an open set V' = V (V' open in C and (—¢,, &y) < V' for some ¢, > 0) such that
forall e V' and for all <, |1,(t) — ly(t)| £ K(t)n, where K (t) is the number of Markov
sections that T traverses.

Proof. Implicit in the statement of this lemma is that for all 7, each curve in
{r;]AeV'} has the same coding with respect to the Markov partition of the
unperturbed flow. Given # > 0, we can choose the diameter of our Markov sections
sufficiently small, choose 6 > O used in the definition of 7; sufficiently small, and
choose V' “sufficiently small” such that we can slightly enlarge our Markov
sections, and ensure that for all AeV’, all 7, and all T, [P ie,n )
—r™* (1o~ T;)| < n. This is a simple consequence of the continuity of the return
times between the (finitely many) sections and the structural stability of Anosov
flows. The lemma follows immediately. [
From definitions, we have:

Y. lexp(—sl; (1) = Y. exp(—oare(l;(v)) exp(pim(l;(z)), wheres =0 +ip.
Lemma 1.3 immediately implies:

(i) im(l;(r)) = K(r)n and

(i) re(/;(z)) 2 lo(r) — K()n.

Since K () is the number of Markov sections which 7 traverses, it is easy to see that
K (1) ~ ly(7), i.e., there exists C = C(n) > 0 such that K(z) < Cly(r). Consequently,
the sum can be estimated by:

Zr:exp<—alo(r)|:1 - cn<1 % g)]) .

Let P(T) denote the number of closed trajectories of ¢* with prime period <T.
Margulis has shown that P(T) ~ exp(h, T)/(h, T) [MA1; PP1]. Using this fact,
it is easy to check that the above sum converges (uniformly in A) for

C . . . .
o> h“’—"(OM. Since we are only interested in p = im(s) small, say |p| < 1, this

1 —0Cny
heopn(0) + C .

calculation shows that for re(s) > “’A‘I’(_)CT'?, Y lexp(—sl,(t))| converges uni-
formly in 4 and defines a holomorphic function of 2. [J

For re(s) > h“’—‘l’(o)—_gﬂ, d(s, A) restricted to (—&q, £9) = V' N R is real analytic

—Ln

in 4.
Step 2

Pollicott has proved the following theorem for {-functions of Axiom A4 flows
restricted to basic sets, although we state it for Anosov flows:

Theorem [PO1]. Let ¢: M - M be a C' Anosov flow. There exists k < hy,,(¢),
where k depends continuously on: (i) hy,(¢), (ii) the contraction/expansion coefficient
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A in the definition of Anosov flow, (iii) the return-time map between sections in the C°
topology, and (iv) the choice of Markov partition for ¢ such that:

(@) d(s) is holomorphic and non-vanishing for re(s) > h,,(¢).
(b) d(s) has a holomorphic extension to re(s) > k with a simple zero at s = hy,(¢).

In [PO1], Pollicott gives an explicit characterization of k for a meromorphic
extension in terms of the associated symbolic dynamics. The quantities involved in
the characterization at the symbolic level can easily be seen to have the desired
continuous dependence. All that remains to show is that no poles can occur for
re(s) > k (perhaps after a suitable adjustment to k). It follows from Sects. 5 and 6 in
[B2] that the poles for d(s) cannot occur in the meromorphic extension in the
region re(s) > m, where m < h,,,(¢) is an upper bound on the topological entropy
of certain semi-flows arising from the boundaries of Markov sections. Since nearby
flows have conjugate Poincare maps on Markov sections and C° close return times,
we can again arrange for m to have the same continuous dependence as k. Finally,
we replace k by max{k, m}. For three dimensional Anosov flows we can choose
m=0.

The above argument implies that there exists k > 0 and ¢, = &, (k) > 0 such
that if Ae(—ey, €,), then d(4, s) has a holomorphic continuation into the half plane

re(s) > hy,,(0) — k. We denote the extended function by d(4, s).

Step 3

In Step 1, we have shown that for re(s) sufficiently large, d(4, s) is real analytic on
(— &g, &)- In Step 2, we have shown that for Ae(—¢,, &), d(4, s) has a holomorphic

continuation d(4, s) into the half plane re(s) > h,,,(0) — x. We need to show that
d(4, s) is real analytic in 4 for re(s) > h,,(0) — .

This is a “Hartogs type” problem. The problem reduces to the following
question in complex analysis, where we are interested in the case k = w: Suppose
that for every Ae(—1, 1), f(4, *) is holomorphic in 4, (the unit disk in C) and has a
holomorphic extension to 4, (the disk of radius 2). Furthermore, suppose that for
every zed,, f(*, z2)eC*(—1, 1). Is f(*, z2)e C*(—1, 1) for ze 4,?

The following counterexample exhibits what can go wrong for C'. This
example can be modified to give a counterexample for 1 < k < 0.

o) k
Example. Letf(A,z)= Y, <%> sin(2%1). For every Ae(—1, 1), f(4, %) is holomorp-
k=0

) )
hic in 4 =4, and has a holomorphic extension to 4,. Since 6—{(1, z) =

& )
— Y Z¥cos(2*A), fis C' in 4,. However, —f(,l, z)
k=0 A=

= , so f is not
0 4 S

o 1-
Ctin 4,.

In [SH2], Shiffman has shown that this question has an affirmative answer in
the real analytic case. He proved the following stronger theorem:
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Theorem. Let f: (—1, 1) x 4, - C and let 0 < a <2 be such that (i) for every
xe(—1, 1), f(x, *) is holomorphic in A, (ii) for every z€ 4,, f(*, z) is C* on (—1, 1).
Then for all r < 2, theie exists an open set U <= C such that UnR = (—1,1),and a
holomorphic function f on U x A, such that f|_y x4 = f.

This theorem immediately implies that f(x, z) is real analytic on (—1, 1) for all
zed,. The proof uses pluripotential theory in C" (plurisubharmonic extremal
functions, analysis of pluripolar sets, approximation theory, etc.) and combines
methods from [SH1] with results of Siciak in [S].

Step 4

Since the zeros hy,,(4) of d(4, s) are simple, we may apply the Implicit Function
Theorem to conclude that h,,(A) is real analytic. [

Theorem 2. Let M be a closed n-dimensional manifold and let {¢%}, —e <A =<¢
(¢ sufficiently small) be a C**! perturbation of a C**' Anosov flow ¢' = ¢,
1 < k < 0. Then hy,,(¢;) is C~.

Proof. Our strategy is to show that the map (4, x)~— P(—xr,) is C*, where r,
denotes the return map between sections for ¢} (the height function over ) ,),
and P(f) denotes the pressure of f. It is easy to show that P(—xr;) = 0 implies
that x = h,,,(4). We then apply the Implicit Function Theorem to conclude that
hop(4) is CX.

Step 1. Show that the map C*() ,) — R defined by fi— P(f) is analytic.
Step 2. Show that the map (—¢, ) > C*(}_4) defined by A+>r, is C-.

Step 1

Given fe C°(3_,, R), we define the pressure P(f)€R by:
P(f) = sup{h,(0) + [fdu: p is a o-invariant probability measure on ) ,} .

The case where f: ), — R is Holder continuous leads to particularly useful results.
For 0 < o < 1, we denote by C"(ZA) the set of all real valued a-Holder continuous
functions on ) ,. These form a Banach space with norm

1f1x) — fy)]
11 =11l +§L§; PR
For fe C*(}_,), there exists a unique measure u realizing the above supremum,
ie. P(f) = h,(0) + [fdu [B1]. This measure is called the equilibrium state for f. The
following result indicates some useful properties of pressure:

Proposition 2.1. (a) If f is a strictly positive Holder continuous function defined on
Yo let Y4 ={(x,1:xeY 4, 0=t = f(x)} where (x, f(x)) and (a(x), 0) are identified.
We define the f suspension flow a': Y 4 — Y% by o's(x, r) = (X, r + t) up to identifica-
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tions. Then the map R — R defined by x — P(— xf) is strictly monotonically decreas-
ing with P(—xf) = 0 precisely when x = hy,(c}).

(b) The map P: C*(}_,) — R is analytic with derivative D P = u, where p is the
equilibrium state for f.

Proof. (a) The monotonicity follows from the definition of pressure since fis strictly
positive.

If fis a strictly positive Hélder continuous function defined on ) ,, part (a)
implies that there exists ¢ > 0 such that

h
(=) = sup (1,01~ e[} = sup (1 ) (o2 =) =0,
n u ffdu
Since (fdu > 0 for every o, invariant probability measure g, this implies that
hy(f ))
c=su = sup hy(o}) = h,, (o),
”p (jfdﬂ ﬁp 2(0y) o(07)

where [i is the invariant measure of the suspended flow ¢, induced by u. The
equality in the middle follows from Abramov’s theorem for the entropy of the
suspended flow.

(b) For 0 <a < 1, we define C*(}_,)* = {feC*(}_4): f(x) =f(y) for x, = y,.
n = 0}. Parry [PA] observed that there is a linear map C*(}_,) > C*(}.,)* defined
by fiof* with P(f) = P(f") provided that o > \/E Furthermore, Ruelle intro-
duced a family of linear operators L +: C*(} )" - C*(}.,)* such that (i)
f* — L+ is analytic and (i) L+ has e”V” as an isolated eigenvalue. In particular,
we know by standard perturbation theory that L+ — eV is analytic. Altogether,
this shows that f— P(f) is analytic [RU1].

Finally, once we know that f— P(f) is differentiable, it is easy to compute the
derivative using the variational principle [RU1]. O

Step 2

In this step we analyze how the maps (the conjugating homeomorphisms and the
time reparameterizations) obtained from the structural stability of Anosov flows
depend on the perturbation parameter A. It is well known that these maps are
always Holder continuous on the manifold, and that in general they possess no
more regularity. It is therefore surprising that for a C* perturbation of an Anosov
flow, these maps depend C* on the perturbation parameter (in the C° topology).

Moser’s proof of structural stability for Anosov diffeomorphisms [MO] uses
the contracion mapping principle to obtain the conjugating homeomorphism. To
prove C* dependence of the conjugating homeomorphisms for a C* perturbation,
one simply adds a perturbation parameter into Moser’s proof. It is easy to check
that the contraction mapping depends C* on the perturbation parameter, and the
Implicit Function Theorem guarantees that the fixed points (the conjugating
homeomorphisms) depend C* on the perturbation parameter.
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Moser’s proof of structural stability for Anosov flows [MO] is incorrect.
However, by modifying his argument, a proof based on the Implicit Function
Theorem can be given. One can also add a perturbation parameter into this proof
and conclude that for C* perturbations of Anosov flows, the conjugating home-
omorphisms and the time reparameterizations depend C* on the perturbation
parameter in the C° topology. In Appendix I of [LMM], de la Llave et al. give a
detailed proof of this result written in the language of manifolds of mappings.

Theorem [LMM]. Let {¢,}, —¢ < A < ¢ (¢ sufficiently small) be a C* perturbation
of a C* Anosov flow ¢' = ¢, 1 < k < w. Then there exists a C* map S:(—¢, €)
- C%(M, M) x C°(M) defined by A (0,, p;), where 0, C°(M, M) is the con-
jugating homeomorphism and p,e C°(M) is a time reparameterization.

Remark. C*(M, M) and C*(M), 0 £ a < 1, possess C* (or C*) Banach manifold
structures—assuming that M is a C* (or C”) manifold [E].

We need to strengthen this theorem to show that € is C* in the C* topology.
Unfortunately, this can only be assured for C¥*! perturbations of C¥*! Anosov
flows.

Proposition 2.2. Let {¢'}, —¢ < 4 < ¢ (e sufficiently small) be a C** ' perturbation of
a C**' Anosov flow ¢' = @b, 1 < k < w. Then for o sufficiently small, there exists
a C* map &: (—¢, &)— C*(M, M) x C*(M) defined by Ar(0;, p;), where
0,e C*(M, M) is the conjugating homeomorphism and p,e C*(M) is a time re-
parameterization.

Proof. The proof is similar to the proof in [LMM] for the C° case. The idea is to
construct S as the implicit solution to an identity on vector fields. This map is
guaranteed by the Implicit Function Theorem provided a certain invertibility
condition (Lemma 2.3) is satisfied.

Let @ denote the generating vector field for ¢' and C4(M) = {ue C*(M, M)
such that for all pe M, %‘ uod'(p) = Du(p)® exists}. We will show that for

t=0

sufficiently small « > 0, there exists a C** ! neighborhood U (&) of ®, and a C* map
S: U(®) » C%(M) x C*(M, R) defined by ¥ — (u, y), which solves the structural
stability equation ¥eu = y Du(p) ®. This clearly implies the proposition.

The idea is to use the Implicit Function Theorem to solve ¥Weou =y Duc Q.
Define G: V¥*1(M) x C%(M) x C*(M, R) - C*(M, TM) by

G(¥,u,y)=¥ou—yDu-d,

where V**1(M) denotes the space of C**! vector fields on M. All of the spaces
involved in the definition of G are C* (or C®) Banach manifolds, and it is an
exercise in applying the mean value theorem to show that G is a C* map.

Remark. Itis in this step where we lose a derivative! For G to be a C* map, we need
to know that the perturbations are not just C* or even C***'*, but are C**'. This is
to ensure that the composition operator (¥, u) » ¥ ou is C*. We thank Rafael de la
Llave for pointing out to us that a loss of smoothness is inevitable and Albert Fathi
for providing us with the precise statement and a C***'* counterexample.
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It is obvious that G(®, id, 1) = 0. Let D, 5 denote the derivative with respect to
the second and third variables. D, ;G(®, id, 1): V(M) x C*(M, R)— V*(M),
where Vg (M) denotes the space of C* vector fields such that the directional
derivative with respect to @ exists, i.e. 7,4 C5(M) = V3(M). One computes:

D, ;G(®, id, 1)(v, 7) = D®(v) — Do(®) — y&

= [¢1 U] - y(p
d
=—| D¢ 'vd' —y®
& De T =
. . d _ ;
The kernel of the Lie Derivative Ly (v) = [®, v] = i D¢~ "'v¢' is [@]. Hence,
t=0

D, ;G is not invertible. To circumvent this problem, we choose a section transverse
to @, i.e. @+ = I'(E°) @ I'(E*). Now define V% (M) = V% &*+. We will show in
Lemma 2.3 that Lg: V5 (M) — V3 (M) is invertible in the C* topology, with

KX

(L) Y(v,) = —£D¢ v,¢'dt, v,el(EY)

(L) (v,) = —jD¢'u¢> ‘dt, v,el(E%)

This proves that (v, ) » Lg(v) — y® = D, 3G(P, u, 1)(v, 7) is invertible. We can
now apply the Implicit Function Theorem to the equation G = 0, where we replace
o(M) by exp(Vg  (M)). [

Invertibility condition
Let I'* = I'*(M, TM) denote the Banach space of C* sections a: M — TM with

norm |of,=|oll, + sup S 000, B1)
0<d(x,y)<p d(x, y)*
let TM = E°@ E*@® E° be the Anosov splitting for the Anosov flow ¢. The
splitting of TM induces a splitting of I'° = '°(E®) ® I'°(E*) ® I'°(E®) in the
obvious way. The operator (the graph transform) ¢, I'° > TI'° defined by
(¢,0)(x) = (D¢,0)(¢ ' x) preserves the Anosov splitting. It is easy to see that the
spectrum of ¢, = ¢, |rogs is contained in an annulus with inner and outer radii
0 <y <y, < 1. Similarly, the spectrum of ¢, = ¢, |rog+ is contained in an
annulus with inner and outer radii 1 < 4, < 4,. The invertibility condition needed
to apply the Implicit Function Theorem is precisely the condition that the spectra
of ¢, and ¢, are disjoint from the unit circle.
Hirsch and Pugh have proved the following theorem:

, where o(x)=(x, v(x)), and

. |logi, 1
Theorem [HP]. Ifo < min {125 /1: ; IZ:I;:}’ then the splitting TM = E° ® E* @ E*

is C% In particular, I'* = I'"(E°) ® I'*(E*) ® I'*(E®) is a splitting into closed sub-
spaces.
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The following lemma ensures that we may apply the Implicit Function
Theorem in the C* topology of flows. We thank Rafael de la Llave for suggesting
the result to us.

Lemma 2.3 (Hyperbolicity of the graph transform in Holder norm). There exists
0 <a <1 sufficiently small such that the spectra of ¢,. I''(E*)—> I'*(E®) and
¢, T*(EY) - I'*(E") are disjoint from the unit circle. J

Proof. We first consider ¢, and show that it is a contraction on I'*(E®). As stated
above, ¢,: I'°(E*) » I'°(E®) is a contraction. We can always adapt the metric on M
such that ¢ : I'°(E®) - I'°(E®) is a strict contraction, and hence can assume that
[D|ros |l = K < 1. Let M denote the Lipschitz constant of D¢, N the Lipschitz
constant for ¢!, and y the Holder exponent in the Anosov splitting. Given
oel™(E®) and x # y, the triangle inequality gives:

dry(Dpa(d™'x), Ddpa(d™'y)) < dpy(D¢ a(¢p™'x), D)
+ dry(DPV, Do),
where v’ is the projection onto E® of the parallel translate of a(¢~'y) to ¢~ !x.
< Kdpy(o(d7'x), v) + M dpy (0, 5(d™))
< Kdry(o(¢p™'x), (™ 'y) + MQd(¢ ™ 'x, ¢ 'y) ol
It immediately follows from the definition of the Holder norm that:
<K(lola—lolls)d@ ™ x, ¢ 'y)* + MQN"d(x, y) ol
SK(loll,— lollo) N*d(x, yy + MQNd(x, y) lloll,

Choose a, 0 < a <y such that KN*=P < 1, 6 >0 such that § < P — K, and
B > 0 in the definition of the Holder norm such that MQNd(x, y)’ < dd(x, y)*.
This implies that:

dry(Dpa(¢p~'x), Dpa(¢p™'y) < d(x, y(KN*(loll, — llolle) + 0lall)
Sd(x, y)(P(loll, — llolls) +dllalls) -
Therefore:

Mttt + sy CrePEeC@ 0 AGoleT5)

0<d(x,y)<p d(x, y)*

where a(x) = (x, v(x)) ,
SKlole+ Ploll,—Plolle +dllall,
< Plol, for0<P<l1 [O

Let 7 be a family of Markov sections for ¢'. If 7 = {T,, T,," - -, T},}, we can
assume that 7, < int D;, where D, is a slightly larger C* transverse section with co-
dimension one. Let T} denote the projection of 8,(T;) onto T; along the orbits of ¢},
where 0, is the conjugating homeomorphism from structural stability. This pro-
cedure is well defined provided |4] is sufficiently small.
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If we use the Markov sections 7 * = {T}, T3, ..., T4} for ¢}, we obtain
precisely the same map 6: ) , —» Y, as for ¢". ThlS is because the Poincaré map is
oblivious to changes in velocity. The quantity which changed is the return time
between sections. We define r, e C*(3_,) by:

r(0,m(x))

rix) = 6[ p:(¢'(0,m(x)))dt, wheren:%}»UT,

Proposition 2.4. The map (—¢, €) > C*(}_ ), defined by A—r,, is C~.

Proof. This follows immediately from Proposition 2.2. [

Propositions 2.1 and 2.4 imply that the map (—¢, &) x R— R defined by
(4, )y P(—tr;) is C*. We are interested in solutions A+ hy,(4) to P(—tr;) = 0.
Since

dP(—tr;)

= _to rld <0,
dt - AI, #

where p is the unique equilibrium state for f= —tr, [RU1; PP1], the Implicit
Function Theorem shows that A — h,,,(4) is C*. O

Remark. We have proved that for C¥*! perturbations, the topological entropy of
Anosov flows varies C* in the Gdteaux sense. We have actually proved more: the
topological entropy varies C* in the Fréchet sense. In Proposition 2.1, we show that
pressure is analytic in the Fréchet sense and in Proposition 2.2, we show that the
maps obtained from structural stability depend C* on the perturbation parameter
in the Fréchet sense. The proof of Theorem 2 is essentially a combination of these
two results.

Alternate proof of theorem 2

Although our proof is complete, we shall indicate a (superficially) shorter proof that
a C**! perturbation of an Anosov flow results in a C* change in topological
entropy. It is important to note that all of the following results are derived using
techniques described in the last section.

Let 7 be a closed orbit for ¢* with least period I(z). Given F € C*(M) with F > 0,
we can define the “weighted period” of t to be Ip(t) = [(? F(¢'x,)dt, x.e 1. We
define the F-weighted zeta function:

{p(s) = H(l — exp(—slg(r))™?

This product converges for re(s) sufficiently large.
Let ¢4 be a C¥*! perturbation of an Anosov flow ¢', and let F; = p, (the time
reparameterization from structural stability). It is easy to check that {,;(s) = {(4, s).
The following theorem is an immediate consequence of Theorem 2 in [RU2]
whose detailed proof has never appeared. It can also be deduced from work in
[PA]:
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Theorem. (i) Given G e C*(M), there exists a neighborhood U of G and & > 0 such
1

{r(s)

analytic as a map into the space of holomorphic functions on the disc D of radius ¢

about P(log G).

(ii) For each Fe, P(log F)€ Dp g6, and is a simple zero for d(F, s).

that the map R: U = C*(M) — # (Dpogc),.) defined by Fi—d(F, s) = is real

Part (i) along with Proposition 2.2 imply that the composition 4 A4 pA »ﬁd(pl, s)

is C*. Using part (ii), we can apply the Implicit Function Theorem to deduce that
od(4, s)

5 Is=hoyle)
apply the Implicit Function Theorem is an immediate consequence of the simp-
licity of the zero. [

the zero s = h,,,(4) depends C* on 4. The condition =+ 0 required to

Remark. If we assume that M is a C" manifold, then some complications arise with
the regularity unless r = k + 2. This is because the Banach manifolds C*(M, M)
and C*(M) have only C"~ 2 charts. We refer the reader to the paper of Eells [E] for
details. Also, if a manifold with negative sectional curvature is C", then compli-
cations again arise to make the entropy C* where k < r. We refer the reader to the
paper of Hirsch and Pugh [HP] for details.

Smoothness of pressure and Gibbs states

The techniques used in this paper can be easily adapted to prove slightly more
general results. In particular, everything that we have proved about topological
entropy holds true for the pressure relative to some smooth function f M — R.

Let {¢%}, —e < 4 < ¢ (e sufficiently small) be a C* perturbation of a C* Anosov
flow ¢' = ¢4, 1 < k Sw. For fixed fe C¥(M), the map f— P(f, A) is well known to
be C* [RU2].

Proposition. Let {¢'}, —¢ < 4 < ¢ (¢ sufficiently small) be a C¥** perturbation of a
C**1 Anosov flow ¢" = ¢4, 1 < k < w. For fixed fe C*¥* (M), the map A — P(f, 1)
is C*. Consequently, the map C**'(M) x (—¢, &) = R defined by (f, ) = P(/f, 1)
is C*,

Let u, ; be the ¢; Gibbs state for f, ie., the unique ¢;-invariant probability
measure characterized by: P(f, 1) = hu, ;(¢1) + [y fdu,, ;. The Variational Prin-
ciple tells us that P(f;, 1) Zh,(¢}) + [sfdp, for all other ¢}-invariant probability
measures. A simple argument (along the lines of the proof of Proposition 2.1) gives
that (D, P);. ;) = Hy, ;- This fact, together with the above proposition yields:

Corollary 1 (Gibbs measures are weakly smooth). Let {¢%}, —e<Ai<e¢
(¢ sufficiently small) be a C*** perturbation of a C**' Anosov flow ¢'= ¢§,
1<k<w. For fixed peC**'(M), the map C**'(M)x(—¢,&)>R defined by
(f, )= [mpdpy ; is CE71.

The Proposition, Corollary 1, and the Variational Principle immediately imply:
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Corollary 2 (Smoothness of entropy for Gibbs states). Let {¢}}, —¢<A<e
(¢ sufficiently small) be a C**' perturbation of a C**' Anosov flow ¢' = @5,
1 < k < w. For fixed fe C** (M), the map A — hy, ; is C*~*, where hy, ; denotes
the measure theoretic entropy with respect to the ¢} Gibbs state for f.

Remark. In [LMM] it was shown that for a C* family of Anosov flows with
smooth invariant measures, the measures have a C* weak dependence.

Another direction is a generalization of our results from Anosov flows to Axiom
A flows. The main ingredients remain the same; the extra element involves the
careful extension of the hyperbolic structure to appropriate neighborhoods of the
basic sets.
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